MipsInstrInfo.td revision b637b9f89e88e8c1ffe147634c1b2b297fb6edeb
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_ExtractLOHI : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVT<1, untyped>,
27                                           SDTCisVT<2, i32>]>;
28def SDT_InsertLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
29                                          SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
30def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>,
31                                    SDTCisSameAs<1, 2>]>;
32def SDT_MipsMAddMSub : SDTypeProfile<1, 3,
33                                     [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
34                                      SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
35def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
36
37def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
38
39def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
40
41def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
42                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
43def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
44                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
45                                   SDTCisSameAs<0, 4>]>;
46
47def SDTMipsLoadLR  : SDTypeProfile<1, 2,
48                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
49                                    SDTCisSameAs<0, 2>]>;
50
51// Call
52def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
53                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
54                          SDNPVariadic]>;
55
56// Tail call
57def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
58                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
59
60// Hi and Lo nodes are used to handle global addresses. Used on
61// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
62// static model. (nothing to do with Mips Registers Hi and Lo)
63def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
64def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
65def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
66
67// TlsGd node is used to handle General Dynamic TLS
68def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
69
70// TprelHi and TprelLo nodes are used to handle Local Exec TLS
71def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
72def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
73
74// Thread pointer
75def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
76
77// Return
78def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
79                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
80
81// These are target-independent nodes, but have target-specific formats.
82def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
83                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
84def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
85                           [SDNPHasChain, SDNPSideEffect,
86                            SDNPOptInGlue, SDNPOutGlue]>;
87
88// Node used to extract integer from LO/HI register.
89def ExtractLOHI : SDNode<"MipsISD::ExtractLOHI", SDT_ExtractLOHI>;
90
91// Node used to insert 32-bit integers to LOHI register pair.
92def InsertLOHI : SDNode<"MipsISD::InsertLOHI", SDT_InsertLOHI>;
93
94// Mult nodes.
95def MipsMult  : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>;
96def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>;
97
98// MAdd*/MSub* nodes
99def MipsMAdd  : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>;
100def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>;
101def MipsMSub  : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>;
102def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>;
103
104// DivRem(u) nodes
105def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>;
106def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>;
107def MipsDivRem16  : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16, [SDNPOutGlue]>;
108def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16,
109                           [SDNPOutGlue]>;
110
111// Target constant nodes that are not part of any isel patterns and remain
112// unchanged can cause instructions with illegal operands to be emitted.
113// Wrapper node patterns give the instruction selector a chance to replace
114// target constant nodes that would otherwise remain unchanged with ADDiu
115// nodes. Without these wrapper node patterns, the following conditional move
116// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
117// compiled:
118//  movn  %got(d)($gp), %got(c)($gp), $4
119// This instruction is illegal since movn can take only register operands.
120
121def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
122
123def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
124
125def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
126def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
127
128def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
129                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
130def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
131                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
132def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
133                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
134def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
135                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
136def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
137                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
138def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
139                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
140def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
141                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
142def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
143                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
144
145//===----------------------------------------------------------------------===//
146// Mips Instruction Predicate Definitions.
147//===----------------------------------------------------------------------===//
148def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
149                      AssemblerPredicate<"FeatureSEInReg">;
150def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
151                      AssemblerPredicate<"FeatureBitCount">;
152def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
153                      AssemblerPredicate<"FeatureSwap">;
154def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
155                      AssemblerPredicate<"FeatureCondMov">;
156def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
157                      AssemblerPredicate<"FeatureFPIdx">;
158def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
159                      AssemblerPredicate<"FeatureMips32">;
160def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
161                      AssemblerPredicate<"FeatureMips32r2">;
162def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
163                      AssemblerPredicate<"FeatureMips64">;
164def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
165                      AssemblerPredicate<"!FeatureMips64">;
166def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
167                      AssemblerPredicate<"FeatureMips64r2">;
168def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
169                      AssemblerPredicate<"FeatureN64">;
170def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
171                      AssemblerPredicate<"!FeatureN64">;
172def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
173                      AssemblerPredicate<"FeatureMips16">;
174def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
175                      AssemblerPredicate<"FeatureMips32">;
176def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
177                      AssemblerPredicate<"FeatureMips32">;
178def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
179                      AssemblerPredicate<"FeatureMips32">;
180def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
181                      AssemblerPredicate<"!FeatureMips16">;
182def NotDSP :          Predicate<"!Subtarget.hasDSP()">;
183
184class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
185  let Predicates = [HasStdEnc];
186}
187
188class IsCommutable {
189  bit isCommutable = 1;
190}
191
192class IsBranch {
193  bit isBranch = 1;
194}
195
196class IsReturn {
197  bit isReturn = 1;
198}
199
200class IsCall {
201  bit isCall = 1;
202}
203
204class IsTailCall {
205  bit isCall = 1;
206  bit isTerminator = 1;
207  bit isReturn = 1;
208  bit isBarrier = 1;
209  bit hasExtraSrcRegAllocReq = 1;
210  bit isCodeGenOnly = 1;
211}
212
213class IsAsCheapAsAMove {
214  bit isAsCheapAsAMove = 1;
215}
216
217class NeverHasSideEffects {
218  bit neverHasSideEffects = 1;
219}
220
221//===----------------------------------------------------------------------===//
222// Instruction format superclass
223//===----------------------------------------------------------------------===//
224
225include "MipsInstrFormats.td"
226
227//===----------------------------------------------------------------------===//
228// Mips Operand, Complex Patterns and Transformations Definitions.
229//===----------------------------------------------------------------------===//
230
231// Instruction operand types
232def jmptarget   : Operand<OtherVT> {
233  let EncoderMethod = "getJumpTargetOpValue";
234}
235def brtarget    : Operand<OtherVT> {
236  let EncoderMethod = "getBranchTargetOpValue";
237  let OperandType = "OPERAND_PCREL";
238  let DecoderMethod = "DecodeBranchTarget";
239}
240def calltarget  : Operand<iPTR> {
241  let EncoderMethod = "getJumpTargetOpValue";
242}
243def calltarget64: Operand<i64>;
244def simm16      : Operand<i32> {
245  let DecoderMethod= "DecodeSimm16";
246}
247
248def simm20      : Operand<i32> {
249}
250
251def simm16_64   : Operand<i64>;
252def shamt       : Operand<i32>;
253
254// Unsigned Operand
255def uimm16      : Operand<i32> {
256  let PrintMethod = "printUnsignedImm";
257}
258
259def MipsMemAsmOperand : AsmOperandClass {
260  let Name = "Mem";
261  let ParserMethod = "parseMemOperand";
262}
263
264// Address operand
265def mem : Operand<i32> {
266  let PrintMethod = "printMemOperand";
267  let MIOperandInfo = (ops CPURegs, simm16);
268  let EncoderMethod = "getMemEncoding";
269  let ParserMatchClass = MipsMemAsmOperand;
270  let OperandType = "OPERAND_MEMORY";
271}
272
273def mem64 : Operand<i64> {
274  let PrintMethod = "printMemOperand";
275  let MIOperandInfo = (ops CPU64Regs, simm16_64);
276  let EncoderMethod = "getMemEncoding";
277  let ParserMatchClass = MipsMemAsmOperand;
278  let OperandType = "OPERAND_MEMORY";
279}
280
281def mem_ea : Operand<i32> {
282  let PrintMethod = "printMemOperandEA";
283  let MIOperandInfo = (ops CPURegs, simm16);
284  let EncoderMethod = "getMemEncoding";
285  let OperandType = "OPERAND_MEMORY";
286}
287
288def mem_ea_64 : Operand<i64> {
289  let PrintMethod = "printMemOperandEA";
290  let MIOperandInfo = (ops CPU64Regs, simm16_64);
291  let EncoderMethod = "getMemEncoding";
292  let OperandType = "OPERAND_MEMORY";
293}
294
295// size operand of ext instruction
296def size_ext : Operand<i32> {
297  let EncoderMethod = "getSizeExtEncoding";
298  let DecoderMethod = "DecodeExtSize";
299}
300
301// size operand of ins instruction
302def size_ins : Operand<i32> {
303  let EncoderMethod = "getSizeInsEncoding";
304  let DecoderMethod = "DecodeInsSize";
305}
306
307// Transformation Function - get the lower 16 bits.
308def LO16 : SDNodeXForm<imm, [{
309  return getImm(N, N->getZExtValue() & 0xFFFF);
310}]>;
311
312// Transformation Function - get the higher 16 bits.
313def HI16 : SDNodeXForm<imm, [{
314  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
315}]>;
316
317// Plus 1.
318def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>;
319
320// Node immediate fits as 16-bit sign extended on target immediate.
321// e.g. addi, andi
322def immSExt8  : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
323
324// Node immediate fits as 16-bit sign extended on target immediate.
325// e.g. addi, andi
326def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
327
328// Node immediate fits as 15-bit sign extended on target immediate.
329// e.g. addi, andi
330def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
331
332// Node immediate fits as 16-bit zero extended on target immediate.
333// The LO16 param means that only the lower 16 bits of the node
334// immediate are caught.
335// e.g. addiu, sltiu
336def immZExt16  : PatLeaf<(imm), [{
337  if (N->getValueType(0) == MVT::i32)
338    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
339  else
340    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
341}], LO16>;
342
343// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
344def immLow16Zero : PatLeaf<(imm), [{
345  int64_t Val = N->getSExtValue();
346  return isInt<32>(Val) && !(Val & 0xffff);
347}]>;
348
349// shamt field must fit in 5 bits.
350def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
351
352// True if (N + 1) fits in 16-bit field.
353def immSExt16Plus1 : PatLeaf<(imm), [{
354  return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1);
355}]>;
356
357// Mips Address Mode! SDNode frameindex could possibily be a match
358// since load and store instructions from stack used it.
359def addr :
360  ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>;
361
362def addrRegImm :
363  ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>;
364
365def addrDefault :
366  ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>;
367
368//===----------------------------------------------------------------------===//
369// Instructions specific format
370//===----------------------------------------------------------------------===//
371
372// Arithmetic and logical instructions with 3 register operands.
373class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
374                  InstrItinClass Itin = NoItinerary,
375                  SDPatternOperator OpNode = null_frag>:
376  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
377         !strconcat(opstr, "\t$rd, $rs, $rt"),
378         [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> {
379  let isCommutable = isComm;
380  let isReMaterializable = 1;
381}
382
383// Arithmetic and logical instructions with 2 register operands.
384class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
385                  SDPatternOperator imm_type = null_frag,
386                  SDPatternOperator OpNode = null_frag> :
387  InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
388         !strconcat(opstr, "\t$rt, $rs, $imm16"),
389         [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))],
390         IIAlu, FrmI, opstr> {
391  let isReMaterializable = 1;
392}
393
394// Arithmetic Multiply ADD/SUB
395class MArithR<string opstr, bit isComm = 0> :
396  InstSE<(outs), (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt),
397         !strconcat(opstr, "\t$rs, $rt"), [], IIImul, FrmR> {
398  let Defs = [HI, LO];
399  let Uses = [HI, LO];
400  let isCommutable = isComm;
401}
402
403//  Logical
404class LogicNOR<string opstr, RegisterOperand RC>:
405  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
406         !strconcat(opstr, "\t$rd, $rs, $rt"),
407         [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu, FrmR, opstr> {
408  let isCommutable = 1;
409}
410
411// Shifts
412class shift_rotate_imm<string opstr, Operand ImmOpnd,
413                       RegisterOperand RC, SDPatternOperator OpNode = null_frag,
414                       SDPatternOperator PF = null_frag> :
415  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
416         !strconcat(opstr, "\t$rd, $rt, $shamt"),
417         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR, opstr>;
418
419class shift_rotate_reg<string opstr, RegisterOperand RC,
420                       SDPatternOperator OpNode = null_frag>:
421  InstSE<(outs RC:$rd), (ins CPURegsOpnd:$rs, RC:$rt),
422         !strconcat(opstr, "\t$rd, $rt, $rs"),
423         [(set RC:$rd, (OpNode RC:$rt, CPURegsOpnd:$rs))], IIAlu, FrmR, opstr>;
424
425// Load Upper Imediate
426class LoadUpper<string opstr, RegisterClass RC, Operand Imm>:
427  InstSE<(outs RC:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
428         [], IIAlu, FrmI>, IsAsCheapAsAMove {
429  let neverHasSideEffects = 1;
430  let isReMaterializable = 1;
431}
432
433class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
434          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
435  bits<21> addr;
436  let Inst{25-21} = addr{20-16};
437  let Inst{15-0}  = addr{15-0};
438  let DecoderMethod = "DecodeMem";
439}
440
441// Memory Load/Store
442class Load<string opstr, SDPatternOperator OpNode, RegisterClass RC,
443           Operand MemOpnd, ComplexPattern Addr, string ofsuffix> :
444  InstSE<(outs RC:$rt), (ins MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
445         [(set RC:$rt, (OpNode Addr:$addr))], NoItinerary, FrmI,
446         !strconcat(opstr, ofsuffix)> {
447  let DecoderMethod = "DecodeMem";
448  let canFoldAsLoad = 1;
449  let mayLoad = 1;
450}
451
452class Store<string opstr, SDPatternOperator OpNode, RegisterClass RC,
453            Operand MemOpnd, ComplexPattern Addr, string ofsuffix> :
454  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
455         [(OpNode RC:$rt, Addr:$addr)], NoItinerary, FrmI,
456         !strconcat(opstr, ofsuffix)> {
457  let DecoderMethod = "DecodeMem";
458  let mayStore = 1;
459}
460
461multiclass LoadM<string opstr, RegisterClass RC,
462                 SDPatternOperator OpNode = null_frag,
463                 ComplexPattern Addr = addr> {
464  def NAME : Load<opstr, OpNode, RC, mem, Addr, "">,
465             Requires<[NotN64, HasStdEnc]>;
466  def _P8  : Load<opstr, OpNode, RC, mem64, Addr, "_p8">,
467             Requires<[IsN64, HasStdEnc]> {
468    let DecoderNamespace = "Mips64";
469    let isCodeGenOnly = 1;
470  }
471}
472
473multiclass StoreM<string opstr, RegisterClass RC,
474                  SDPatternOperator OpNode = null_frag,
475                  ComplexPattern Addr = addr> {
476  def NAME : Store<opstr, OpNode, RC, mem, Addr, "">,
477             Requires<[NotN64, HasStdEnc]>;
478  def _P8  : Store<opstr, OpNode, RC, mem64, Addr, "_p8">,
479             Requires<[IsN64, HasStdEnc]> {
480    let DecoderNamespace = "Mips64";
481    let isCodeGenOnly = 1;
482  }
483}
484
485// Load/Store Left/Right
486let canFoldAsLoad = 1 in
487class LoadLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
488                    Operand MemOpnd> :
489  InstSE<(outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
490         !strconcat(opstr, "\t$rt, $addr"),
491         [(set RC:$rt, (OpNode addr:$addr, RC:$src))], NoItinerary, FrmI> {
492  let DecoderMethod = "DecodeMem";
493  string Constraints = "$src = $rt";
494}
495
496class StoreLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
497                     Operand MemOpnd>:
498  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
499         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
500  let DecoderMethod = "DecodeMem";
501}
502
503multiclass LoadLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
504  def NAME : LoadLeftRight<opstr, OpNode, RC, mem>,
505             Requires<[NotN64, HasStdEnc]>;
506  def _P8  : LoadLeftRight<opstr, OpNode, RC, mem64>,
507             Requires<[IsN64, HasStdEnc]> {
508    let DecoderNamespace = "Mips64";
509    let isCodeGenOnly = 1;
510  }
511}
512
513multiclass StoreLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
514  def NAME : StoreLeftRight<opstr, OpNode, RC, mem>,
515             Requires<[NotN64, HasStdEnc]>;
516  def _P8  : StoreLeftRight<opstr, OpNode, RC, mem64>,
517             Requires<[IsN64, HasStdEnc]> {
518    let DecoderNamespace = "Mips64";
519    let isCodeGenOnly = 1;
520  }
521}
522
523// Conditional Branch
524class CBranch<string opstr, PatFrag cond_op, RegisterClass RC> :
525  InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset),
526         !strconcat(opstr, "\t$rs, $rt, $offset"),
527         [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch,
528         FrmI> {
529  let isBranch = 1;
530  let isTerminator = 1;
531  let hasDelaySlot = 1;
532  let Defs = [AT];
533}
534
535class CBranchZero<string opstr, PatFrag cond_op, RegisterClass RC> :
536  InstSE<(outs), (ins RC:$rs, brtarget:$offset),
537         !strconcat(opstr, "\t$rs, $offset"),
538         [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
539  let isBranch = 1;
540  let isTerminator = 1;
541  let hasDelaySlot = 1;
542  let Defs = [AT];
543}
544
545// SetCC
546class SetCC_R<string opstr, PatFrag cond_op, RegisterClass RC> :
547  InstSE<(outs CPURegsOpnd:$rd), (ins RC:$rs, RC:$rt),
548         !strconcat(opstr, "\t$rd, $rs, $rt"),
549         [(set CPURegsOpnd:$rd, (cond_op RC:$rs, RC:$rt))],
550         IIAlu, FrmR, opstr>;
551
552class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
553              RegisterClass RC>:
554  InstSE<(outs CPURegsOpnd:$rt), (ins RC:$rs, Od:$imm16),
555         !strconcat(opstr, "\t$rt, $rs, $imm16"),
556         [(set CPURegsOpnd:$rt, (cond_op RC:$rs, imm_type:$imm16))],
557         IIAlu, FrmI, opstr>;
558
559// Jump
560class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
561             SDPatternOperator targetoperator> :
562  InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
563         [(operator targetoperator:$target)], IIBranch, FrmJ> {
564  let isTerminator=1;
565  let isBarrier=1;
566  let hasDelaySlot = 1;
567  let DecoderMethod = "DecodeJumpTarget";
568  let Defs = [AT];
569}
570
571// Unconditional branch
572class UncondBranch<string opstr> :
573  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
574         [(br bb:$offset)], IIBranch, FrmI> {
575  let isBranch = 1;
576  let isTerminator = 1;
577  let isBarrier = 1;
578  let hasDelaySlot = 1;
579  let Predicates = [RelocPIC, HasStdEnc];
580  let Defs = [AT];
581}
582
583// Base class for indirect branch and return instruction classes.
584let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
585class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
586  InstSE<(outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch, FrmR>;
587
588// Indirect branch
589class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
590  let isBranch = 1;
591  let isIndirectBranch = 1;
592}
593
594// Return instruction
595class RetBase<RegisterClass RC>: JumpFR<RC> {
596  let isReturn = 1;
597  let isCodeGenOnly = 1;
598  let hasCtrlDep = 1;
599  let hasExtraSrcRegAllocReq = 1;
600}
601
602// Jump and Link (Call)
603let isCall=1, hasDelaySlot=1, Defs = [RA] in {
604  class JumpLink<string opstr> :
605    InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"),
606           [(MipsJmpLink imm:$target)], IIBranch, FrmJ> {
607    let DecoderMethod = "DecodeJumpTarget";
608  }
609
610  class JumpLinkRegPseudo<RegisterClass RC, Instruction JALRInst,
611                          Register RetReg>:
612    PseudoSE<(outs), (ins RC:$rs), [(MipsJmpLink RC:$rs)], IIBranch>,
613    PseudoInstExpansion<(JALRInst RetReg, RC:$rs)>;
614
615  class JumpLinkReg<string opstr, RegisterClass RC>:
616    InstSE<(outs RC:$rd), (ins RC:$rs), !strconcat(opstr, "\t$rd, $rs"),
617           [], IIBranch, FrmR>;
618
619  class BGEZAL_FT<string opstr, RegisterOperand RO> :
620    InstSE<(outs), (ins RO:$rs, brtarget:$offset),
621           !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI>;
622
623}
624
625class BAL_FT :
626  InstSE<(outs), (ins brtarget:$offset), "bal\t$offset", [], IIBranch, FrmI> {
627  let isBranch = 1;
628  let isTerminator = 1;
629  let isBarrier = 1;
630  let hasDelaySlot = 1;
631  let Defs = [RA];
632}
633
634// Sync
635let hasSideEffects = 1 in
636class SYNC_FT :
637  InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
638         NoItinerary, FrmOther>;
639
640// Mul, Div
641class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
642           list<Register> DefRegs> :
643  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
644         itin, FrmR, opstr> {
645  let isCommutable = 1;
646  let Defs = DefRegs;
647  let neverHasSideEffects = 1;
648}
649
650// Pseudo multiply/divide instruction with explicit accumulator register
651// operands.
652class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1,
653                    SDPatternOperator OpNode, InstrItinClass Itin,
654                    bit IsComm = 1, bit HasSideEffects = 0> :
655  PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt),
656           [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>,
657  PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> {
658  let isCommutable = IsComm;
659  let hasSideEffects = HasSideEffects;
660}
661
662// Pseudo multiply add/sub instruction with explicit accumulator register
663// operands.
664class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode>
665  : PseudoSE<(outs ACRegs:$ac),
666             (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin),
667             [(set ACRegs:$ac,
668              (OpNode CPURegsOpnd:$rs, CPURegsOpnd:$rt, ACRegs:$acin))],
669             IIImul>,
670    PseudoInstExpansion<(RealInst CPURegsOpnd:$rs, CPURegsOpnd:$rt)> {
671  string Constraints = "$acin = $ac";
672}
673
674class Div<string opstr, InstrItinClass itin, RegisterOperand RO,
675          list<Register> DefRegs> :
676  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"),
677         [], itin, FrmR> {
678  let Defs = DefRegs;
679}
680
681// Move from Hi/Lo
682class MoveFromLOHI<string opstr, RegisterClass RC, list<Register> UseRegs>:
683  InstSE<(outs RC:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> {
684  let Uses = UseRegs;
685  let neverHasSideEffects = 1;
686}
687
688class MoveToLOHI<string opstr, RegisterClass RC, list<Register> DefRegs>:
689  InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> {
690  let Defs = DefRegs;
691  let neverHasSideEffects = 1;
692}
693
694class EffectiveAddress<string opstr, RegisterClass RC, Operand Mem> :
695  InstSE<(outs RC:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
696         [(set RC:$rt, addr:$addr)], NoItinerary, FrmI> {
697  let isCodeGenOnly = 1;
698  let DecoderMethod = "DecodeMem";
699}
700
701// Count Leading Ones/Zeros in Word
702class CountLeading0<string opstr, RegisterOperand RO>:
703  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
704         [(set RO:$rd, (ctlz RO:$rs))], IIAlu, FrmR>,
705  Requires<[HasBitCount, HasStdEnc]>;
706
707class CountLeading1<string opstr, RegisterOperand RO>:
708  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
709         [(set RO:$rd, (ctlz (not RO:$rs)))], IIAlu, FrmR>,
710  Requires<[HasBitCount, HasStdEnc]>;
711
712
713// Sign Extend in Register.
714class SignExtInReg<string opstr, ValueType vt, RegisterClass RC> :
715  InstSE<(outs RC:$rd), (ins RC:$rt), !strconcat(opstr, "\t$rd, $rt"),
716         [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary, FrmR> {
717  let Predicates = [HasSEInReg, HasStdEnc];
718}
719
720// Subword Swap
721class SubwordSwap<string opstr, RegisterOperand RO>:
722  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
723         NoItinerary, FrmR> {
724  let Predicates = [HasSwap, HasStdEnc];
725  let neverHasSideEffects = 1;
726}
727
728// Read Hardware
729class ReadHardware<RegisterClass CPURegClass, RegisterOperand RO> :
730  InstSE<(outs CPURegClass:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
731         IIAlu, FrmR>;
732
733// Ext and Ins
734class ExtBase<string opstr, RegisterOperand RO>:
735  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ext:$size),
736         !strconcat(opstr, " $rt, $rs, $pos, $size"),
737         [(set RO:$rt, (MipsExt RO:$rs, imm:$pos, imm:$size))], NoItinerary,
738         FrmR> {
739  let Predicates = [HasMips32r2, HasStdEnc];
740}
741
742class InsBase<string opstr, RegisterOperand RO>:
743  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ins:$size, RO:$src),
744         !strconcat(opstr, " $rt, $rs, $pos, $size"),
745         [(set RO:$rt, (MipsIns RO:$rs, imm:$pos, imm:$size, RO:$src))],
746         NoItinerary, FrmR> {
747  let Predicates = [HasMips32r2, HasStdEnc];
748  let Constraints = "$src = $rt";
749}
750
751// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
752class Atomic2Ops<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
753  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
754           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
755
756multiclass Atomic2Ops32<PatFrag Op> {
757  def NAME : Atomic2Ops<Op, CPURegs, CPURegs>, Requires<[NotN64, HasStdEnc]>;
758  def _P8  : Atomic2Ops<Op, CPURegs, CPU64Regs>,
759             Requires<[IsN64, HasStdEnc]> {
760    let DecoderNamespace = "Mips64";
761  }
762}
763
764// Atomic Compare & Swap.
765class AtomicCmpSwap<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
766  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
767           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
768
769multiclass AtomicCmpSwap32<PatFrag Op>  {
770  def NAME : AtomicCmpSwap<Op, CPURegs, CPURegs>,
771             Requires<[NotN64, HasStdEnc]>;
772  def _P8  : AtomicCmpSwap<Op, CPURegs, CPU64Regs>,
773             Requires<[IsN64, HasStdEnc]> {
774    let DecoderNamespace = "Mips64";
775  }
776}
777
778class LLBase<string opstr, RegisterOperand RO, Operand Mem> :
779  InstSE<(outs RO:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
780         [], NoItinerary, FrmI> {
781  let DecoderMethod = "DecodeMem";
782  let mayLoad = 1;
783}
784
785class SCBase<string opstr, RegisterOperand RO, Operand Mem> :
786  InstSE<(outs RO:$dst), (ins RO:$rt, Mem:$addr),
787         !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
788  let DecoderMethod = "DecodeMem";
789  let mayStore = 1;
790  let Constraints = "$rt = $dst";
791}
792
793class MFC3OP<dag outs, dag ins, string asmstr> :
794  InstSE<outs, ins, asmstr, [], NoItinerary, FrmFR>;
795
796//===----------------------------------------------------------------------===//
797// Pseudo instructions
798//===----------------------------------------------------------------------===//
799
800// Return RA.
801let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
802def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
803
804let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
805def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
806                                  [(callseq_start timm:$amt)]>;
807def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
808                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
809}
810
811let usesCustomInserter = 1 in {
812  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8>;
813  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16>;
814  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32>;
815  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8>;
816  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16>;
817  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32>;
818  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8>;
819  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16>;
820  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32>;
821  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8>;
822  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16>;
823  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32>;
824  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8>;
825  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16>;
826  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32>;
827  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8>;
828  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16>;
829  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32>;
830
831  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8>;
832  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16>;
833  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32>;
834
835  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8>;
836  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16>;
837  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32>;
838}
839
840/// Pseudo instructions for loading and storing accumulator registers.
841let isPseudo = 1 in {
842  defm LOAD_AC64  : LoadM<"load_ac64", ACRegs>;
843  defm STORE_AC64 : StoreM<"store_ac64", ACRegs>;
844}
845
846//===----------------------------------------------------------------------===//
847// Instruction definition
848//===----------------------------------------------------------------------===//
849//===----------------------------------------------------------------------===//
850// MipsI Instructions
851//===----------------------------------------------------------------------===//
852
853/// Arithmetic Instructions (ALU Immediate)
854def ADDiu : MMRel, ArithLogicI<"addiu", simm16, CPURegsOpnd, immSExt16, add>,
855            ADDI_FM<0x9>, IsAsCheapAsAMove;
856def ADDi  : MMRel, ArithLogicI<"addi", simm16, CPURegsOpnd>, ADDI_FM<0x8>;
857def SLTi  : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>,
858            SLTI_FM<0xa>;
859def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>,
860            SLTI_FM<0xb>;
861def ANDi  : MMRel, ArithLogicI<"andi", uimm16, CPURegsOpnd, immZExt16, and>,
862            ADDI_FM<0xc>;
863def ORi   : MMRel, ArithLogicI<"ori", uimm16, CPURegsOpnd, immZExt16, or>,
864            ADDI_FM<0xd>;
865def XORi  : MMRel, ArithLogicI<"xori", uimm16, CPURegsOpnd, immZExt16, xor>,
866            ADDI_FM<0xe>;
867def LUi   : MMRel, LoadUpper<"lui", CPURegs, uimm16>, LUI_FM;
868
869/// Arithmetic Instructions (3-Operand, R-Type)
870def ADDu  : MMRel, ArithLogicR<"addu", CPURegsOpnd, 1, IIAlu, add>,
871            ADD_FM<0, 0x21>;
872def SUBu  : MMRel, ArithLogicR<"subu", CPURegsOpnd, 0, IIAlu, sub>,
873            ADD_FM<0, 0x23>;
874def MUL   : MMRel, ArithLogicR<"mul", CPURegsOpnd, 1, IIImul, mul>,
875            ADD_FM<0x1c, 2>;
876def ADD   : MMRel, ArithLogicR<"add", CPURegsOpnd>, ADD_FM<0, 0x20>;
877def SUB   : MMRel, ArithLogicR<"sub", CPURegsOpnd>, ADD_FM<0, 0x22>;
878def SLT   : MMRel, SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>;
879def SLTu  : MMRel, SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>;
880def AND   : MMRel, ArithLogicR<"and", CPURegsOpnd, 1, IIAlu, and>,
881            ADD_FM<0, 0x24>;
882def OR    : MMRel, ArithLogicR<"or", CPURegsOpnd, 1, IIAlu, or>,
883            ADD_FM<0, 0x25>;
884def XOR   : MMRel, ArithLogicR<"xor", CPURegsOpnd, 1, IIAlu, xor>,
885            ADD_FM<0, 0x26>;
886def NOR   : MMRel, LogicNOR<"nor", CPURegsOpnd>, ADD_FM<0, 0x27>;
887
888/// Shift Instructions
889def SLL  : MMRel, shift_rotate_imm<"sll", shamt, CPURegsOpnd, shl, immZExt5>,
890           SRA_FM<0, 0>;
891def SRL  : MMRel, shift_rotate_imm<"srl", shamt, CPURegsOpnd, srl, immZExt5>,
892           SRA_FM<2, 0>;
893def SRA  : MMRel, shift_rotate_imm<"sra", shamt, CPURegsOpnd, sra, immZExt5>,
894           SRA_FM<3, 0>;
895def SLLV : MMRel, shift_rotate_reg<"sllv", CPURegsOpnd, shl>, SRLV_FM<4, 0>;
896def SRLV : MMRel, shift_rotate_reg<"srlv", CPURegsOpnd, srl>, SRLV_FM<6, 0>;
897def SRAV : MMRel, shift_rotate_reg<"srav", CPURegsOpnd, sra>, SRLV_FM<7, 0>;
898
899// Rotate Instructions
900let Predicates = [HasMips32r2, HasStdEnc] in {
901  def ROTR  : MMRel, shift_rotate_imm<"rotr", shamt, CPURegsOpnd, rotr,
902                                      immZExt5>,
903              SRA_FM<2, 1>;
904  def ROTRV : MMRel, shift_rotate_reg<"rotrv", CPURegsOpnd, rotr>,
905              SRLV_FM<6, 1>;
906}
907
908/// Load and Store Instructions
909///  aligned
910defm LB  : LoadM<"lb", CPURegs, sextloadi8>, MMRel, LW_FM<0x20>;
911defm LBu : LoadM<"lbu", CPURegs, zextloadi8, addrDefault>, MMRel, LW_FM<0x24>;
912defm LH  : LoadM<"lh", CPURegs, sextloadi16, addrDefault>, MMRel, LW_FM<0x21>;
913defm LHu : LoadM<"lhu", CPURegs, zextloadi16>, MMRel, LW_FM<0x25>;
914defm LW  : LoadM<"lw", CPURegs, load, addrDefault>, MMRel, LW_FM<0x23>;
915defm SB  : StoreM<"sb", CPURegs, truncstorei8>, MMRel, LW_FM<0x28>;
916defm SH  : StoreM<"sh", CPURegs, truncstorei16>, MMRel, LW_FM<0x29>;
917defm SW  : StoreM<"sw", CPURegs, store>, MMRel, LW_FM<0x2b>;
918
919/// load/store left/right
920defm LWL : LoadLeftRightM<"lwl", MipsLWL, CPURegs>, LW_FM<0x22>;
921defm LWR : LoadLeftRightM<"lwr", MipsLWR, CPURegs>, LW_FM<0x26>;
922defm SWL : StoreLeftRightM<"swl", MipsSWL, CPURegs>, LW_FM<0x2a>;
923defm SWR : StoreLeftRightM<"swr", MipsSWR, CPURegs>, LW_FM<0x2e>;
924
925def SYNC : SYNC_FT, SYNC_FM;
926
927/// Load-linked, Store-conditional
928let Predicates = [NotN64, HasStdEnc] in {
929  def LL : LLBase<"ll", CPURegsOpnd, mem>, LW_FM<0x30>;
930  def SC : SCBase<"sc", CPURegsOpnd, mem>, LW_FM<0x38>;
931}
932
933let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
934  def LL_P8 : LLBase<"ll", CPURegsOpnd, mem64>, LW_FM<0x30>;
935  def SC_P8 : SCBase<"sc", CPURegsOpnd, mem64>, LW_FM<0x38>;
936}
937
938/// Jump and Branch Instructions
939def J       : JumpFJ<jmptarget, "j", br, bb>, FJ<2>,
940              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
941def JR      : IndirectBranch<CPURegs>, MTLO_FM<8>;
942def B       : UncondBranch<"b">, B_FM;
943def BEQ     : CBranch<"beq", seteq, CPURegs>, BEQ_FM<4>;
944def BNE     : CBranch<"bne", setne, CPURegs>, BEQ_FM<5>;
945def BGEZ    : CBranchZero<"bgez", setge, CPURegs>, BGEZ_FM<1, 1>;
946def BGTZ    : CBranchZero<"bgtz", setgt, CPURegs>, BGEZ_FM<7, 0>;
947def BLEZ    : CBranchZero<"blez", setle, CPURegs>, BGEZ_FM<6, 0>;
948def BLTZ    : CBranchZero<"bltz", setlt, CPURegs>, BGEZ_FM<1, 0>;
949
950def BAL_BR: BAL_FT, BAL_FM;
951
952def JAL  : JumpLink<"jal">, FJ<3>;
953def JALR : JumpLinkReg<"jalr", CPURegs>, JALR_FM;
954def JALRPseudo : JumpLinkRegPseudo<CPURegs, JALR, RA>;
955def BGEZAL : BGEZAL_FT<"bgezal", CPURegsOpnd>, BGEZAL_FM<0x11>;
956def BLTZAL : BGEZAL_FT<"bltzal", CPURegsOpnd>, BGEZAL_FM<0x10>;
957def TAILCALL : JumpFJ<calltarget, "j", MipsTailCall, imm>, FJ<2>, IsTailCall;
958def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, MTLO_FM<8>, IsTailCall;
959
960def RET : RetBase<CPURegs>, MTLO_FM<8>;
961
962// Exception handling related node and instructions.
963// The conversion sequence is:
964// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
965// MIPSeh_return -> (stack change + indirect branch)
966//
967// MIPSeh_return takes the place of regular return instruction
968// but takes two arguments (V1, V0) which are used for storing
969// the offset and return address respectively.
970def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
971
972def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
973                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
974
975let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
976  def MIPSeh_return32 : MipsPseudo<(outs), (ins CPURegs:$spoff, CPURegs:$dst),
977                                [(MIPSehret CPURegs:$spoff, CPURegs:$dst)]>;
978  def MIPSeh_return64 : MipsPseudo<(outs), (ins CPU64Regs:$spoff,
979                                                CPU64Regs:$dst),
980                                [(MIPSehret CPU64Regs:$spoff, CPU64Regs:$dst)]>;
981}
982
983/// Multiply and Divide Instructions.
984def MULT  : MMRel, Mult<"mult", IIImul, CPURegsOpnd, [HI, LO]>,
985            MULT_FM<0, 0x18>;
986def MULTu : MMRel, Mult<"multu", IIImul, CPURegsOpnd, [HI, LO]>,
987            MULT_FM<0, 0x19>;
988def PseudoMULT  : MultDivPseudo<MULT, ACRegs, CPURegsOpnd, MipsMult, IIImul>;
989def PseudoMULTu : MultDivPseudo<MULTu, ACRegs, CPURegsOpnd, MipsMultu, IIImul>;
990def SDIV  : Div<"div", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1a>;
991def UDIV  : Div<"divu", IIIdiv, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x1b>;
992def PseudoSDIV : MultDivPseudo<SDIV, ACRegs, CPURegsOpnd, MipsDivRem, IIIdiv, 0>;
993def PseudoUDIV : MultDivPseudo<UDIV, ACRegs, CPURegsOpnd, MipsDivRemU, IIIdiv,
994                               0>;
995
996def MTHI : MoveToLOHI<"mthi", CPURegs, [HI]>, MTLO_FM<0x11>;
997def MTLO : MoveToLOHI<"mtlo", CPURegs, [LO]>, MTLO_FM<0x13>;
998def MFHI : MoveFromLOHI<"mfhi", CPURegs, [HI]>, MFLO_FM<0x10>;
999def MFLO : MoveFromLOHI<"mflo", CPURegs, [LO]>, MFLO_FM<0x12>;
1000
1001/// Sign Ext In Register Instructions.
1002def SEB : SignExtInReg<"seb", i8, CPURegs>, SEB_FM<0x10, 0x20>;
1003def SEH : SignExtInReg<"seh", i16, CPURegs>, SEB_FM<0x18, 0x20>;
1004
1005/// Count Leading
1006def CLZ : CountLeading0<"clz", CPURegsOpnd>, CLO_FM<0x20>;
1007def CLO : CountLeading1<"clo", CPURegsOpnd>, CLO_FM<0x21>;
1008
1009/// Word Swap Bytes Within Halfwords
1010def WSBH : SubwordSwap<"wsbh", CPURegsOpnd>, SEB_FM<2, 0x20>;
1011
1012/// No operation.
1013def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
1014
1015// FrameIndexes are legalized when they are operands from load/store
1016// instructions. The same not happens for stack address copies, so an
1017// add op with mem ComplexPattern is used and the stack address copy
1018// can be matched. It's similar to Sparc LEA_ADDRi
1019def LEA_ADDiu : EffectiveAddress<"addiu", CPURegs, mem_ea>, LW_FM<9>;
1020
1021// MADD*/MSUB*
1022def MADD  : MArithR<"madd", 1>, MULT_FM<0x1c, 0>;
1023def MADDU : MArithR<"maddu", 1>, MULT_FM<0x1c, 1>;
1024def MSUB  : MArithR<"msub">, MULT_FM<0x1c, 4>;
1025def MSUBU : MArithR<"msubu">, MULT_FM<0x1c, 5>;
1026def PseudoMADD  : MAddSubPseudo<MADD, MipsMAdd>;
1027def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu>;
1028def PseudoMSUB  : MAddSubPseudo<MSUB, MipsMSub>;
1029def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu>;
1030
1031def RDHWR : ReadHardware<CPURegs, HWRegsOpnd>, RDHWR_FM;
1032
1033def EXT : ExtBase<"ext", CPURegsOpnd>, EXT_FM<0>;
1034def INS : InsBase<"ins", CPURegsOpnd>, EXT_FM<4>;
1035
1036/// Move Control Registers From/To CPU Registers
1037def MFC0_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
1038                      (ins CPURegsOpnd:$rd, uimm16:$sel),
1039                      "mfc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 0>;
1040
1041def MTC0_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
1042                      (ins CPURegsOpnd:$rt),
1043                      "mtc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 4>;
1044
1045def MFC2_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
1046                      (ins CPURegsOpnd:$rd, uimm16:$sel),
1047                      "mfc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 0>;
1048
1049def MTC2_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
1050                      (ins CPURegsOpnd:$rt),
1051                      "mtc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 4>;
1052
1053//===----------------------------------------------------------------------===//
1054// Instruction aliases
1055//===----------------------------------------------------------------------===//
1056def : InstAlias<"move $dst, $src",
1057                (ADDu CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
1058      Requires<[NotMips64]>;
1059def : InstAlias<"move $dst, $src",
1060                (OR CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
1061      Requires<[NotMips64]>;
1062def : InstAlias<"bal $offset", (BGEZAL RA, brtarget:$offset), 1>;
1063def : InstAlias<"addu $rs, $rt, $imm",
1064                (ADDiu CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1065def : InstAlias<"add $rs, $rt, $imm",
1066                (ADDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1067def : InstAlias<"and $rs, $rt, $imm",
1068                (ANDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
1069def : InstAlias<"j $rs", (JR CPURegs:$rs), 0>,
1070      Requires<[NotMips64]>;
1071def : InstAlias<"jalr $rs", (JALR RA, CPURegs:$rs)>, Requires<[NotMips64]>;
1072def : InstAlias<"jal $rs", (JALR RA, CPURegs:$rs), 0>, Requires<[NotMips64]>;
1073def : InstAlias<"jal $rd,$rs", (JALR CPURegs:$rd, CPURegs:$rs), 0>,
1074                 Requires<[NotMips64]>;
1075def : InstAlias<"not $rt, $rs",
1076                (NOR CPURegsOpnd:$rt, CPURegsOpnd:$rs, ZERO), 1>;
1077def : InstAlias<"neg $rt, $rs",
1078                (SUB CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
1079def : InstAlias<"negu $rt, $rs",
1080                (SUBu CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
1081def : InstAlias<"slt $rs, $rt, $imm",
1082                (SLTi CPURegsOpnd:$rs, CPURegs:$rt, simm16:$imm), 0>;
1083def : InstAlias<"xor $rs, $rt, $imm",
1084                (XORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, uimm16:$imm), 1>,
1085      Requires<[NotMips64]>;
1086def : InstAlias<"or $rs, $rt, $imm",
1087                (ORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, uimm16:$imm), 1>,
1088                 Requires<[NotMips64]>;
1089def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
1090def : InstAlias<"mfc0 $rt, $rd",
1091                (MFC0_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
1092def : InstAlias<"mtc0 $rt, $rd",
1093                (MTC0_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
1094def : InstAlias<"mfc2 $rt, $rd",
1095                (MFC2_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
1096def : InstAlias<"mtc2 $rt, $rd",
1097                (MTC2_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
1098
1099//===----------------------------------------------------------------------===//
1100// Assembler Pseudo Instructions
1101//===----------------------------------------------------------------------===//
1102
1103class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
1104  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1105                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1106def LoadImm32Reg : LoadImm32<"li", shamt,CPURegsOpnd>;
1107
1108class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
1109  MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
1110                     !strconcat(instr_asm, "\t$rt, $addr")> ;
1111def LoadAddr32Reg : LoadAddress<"la", mem, CPURegsOpnd>;
1112
1113class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
1114  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1115                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1116def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegsOpnd>;
1117
1118
1119
1120//===----------------------------------------------------------------------===//
1121//  Arbitrary patterns that map to one or more instructions
1122//===----------------------------------------------------------------------===//
1123
1124// Load/store pattern templates.
1125class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> :
1126  MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>;
1127
1128class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
1129  MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;
1130
1131// Small immediates
1132def : MipsPat<(i32 immSExt16:$in),
1133              (ADDiu ZERO, imm:$in)>;
1134def : MipsPat<(i32 immZExt16:$in),
1135              (ORi ZERO, imm:$in)>;
1136def : MipsPat<(i32 immLow16Zero:$in),
1137              (LUi (HI16 imm:$in))>;
1138
1139// Arbitrary immediates
1140def : MipsPat<(i32 imm:$imm),
1141          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1142
1143// Carry MipsPatterns
1144def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1145              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1146let Predicates = [HasStdEnc, NotDSP] in {
1147  def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1148                (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1149  def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1150                (ADDiu CPURegs:$src, imm:$imm)>;
1151}
1152
1153// Call
1154def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1155              (JAL tglobaladdr:$dst)>;
1156def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1157              (JAL texternalsym:$dst)>;
1158//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1159//              (JALR CPURegs:$dst)>;
1160
1161// Tail call
1162def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1163              (TAILCALL tglobaladdr:$dst)>;
1164def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1165              (TAILCALL texternalsym:$dst)>;
1166// hi/lo relocs
1167def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1168def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1169def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1170def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1171def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1172def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1173
1174def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1175def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1176def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1177def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1178def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1179def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1180
1181def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1182              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1183def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1184              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1185def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1186              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1187def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1188              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1189def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1190              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1191
1192// gp_rel relocs
1193def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1194              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1195def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1196              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1197
1198// wrapper_pic
1199class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1200      MipsPat<(MipsWrapper RC:$gp, node:$in),
1201              (ADDiuOp RC:$gp, node:$in)>;
1202
1203def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1204def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1205def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1206def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1207def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1208def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1209
1210// Mips does not have "not", so we expand our way
1211def : MipsPat<(not CPURegs:$in),
1212              (NOR CPURegsOpnd:$in, ZERO)>;
1213
1214// extended loads
1215let Predicates = [NotN64, HasStdEnc] in {
1216  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1217  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1218  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1219}
1220let Predicates = [IsN64, HasStdEnc] in {
1221  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1222  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1223  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1224}
1225
1226// peepholes
1227let Predicates = [NotN64, HasStdEnc] in {
1228  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1229}
1230let Predicates = [IsN64, HasStdEnc] in {
1231  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1232}
1233
1234// brcond patterns
1235multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1236                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1237                      Instruction SLTiuOp, Register ZEROReg> {
1238def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1239              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1240def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1241              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1242
1243def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1244              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1245def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1246              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1247def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1248              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1249def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1250              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1251
1252def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1253              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1254def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1255              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1256
1257def : MipsPat<(brcond RC:$cond, bb:$dst),
1258              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1259}
1260
1261defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1262
1263// setcc patterns
1264multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1265                     Instruction SLTuOp, Register ZEROReg> {
1266  def : MipsPat<(seteq RC:$lhs, 0),
1267                (SLTiuOp RC:$lhs, 1)>;
1268  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1269                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1270  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1271                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1272}
1273
1274multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1275  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1276                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1277  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1278                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1279}
1280
1281multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1282  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1283                (SLTOp RC:$rhs, RC:$lhs)>;
1284  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1285                (SLTuOp RC:$rhs, RC:$lhs)>;
1286}
1287
1288multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1289  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1290                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1291  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1292                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1293}
1294
1295multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1296                        Instruction SLTiuOp> {
1297  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1298                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1299  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1300                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1301}
1302
1303defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1304defm : SetlePats<CPURegs, SLT, SLTu>;
1305defm : SetgtPats<CPURegs, SLT, SLTu>;
1306defm : SetgePats<CPURegs, SLT, SLTu>;
1307defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1308
1309// bswap pattern
1310def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1311
1312// mflo/hi patterns.
1313def : MipsPat<(i32 (ExtractLOHI ACRegs:$ac, imm:$lohi_idx)),
1314              (EXTRACT_SUBREG ACRegs:$ac, imm:$lohi_idx)>;
1315
1316// Load halfword/word patterns.
1317let AddedComplexity = 40 in {
1318  let Predicates = [NotN64, HasStdEnc] in {
1319    def : LoadRegImmPat<LBu, i32, zextloadi8>;
1320    def : LoadRegImmPat<LH, i32, sextloadi16>;
1321    def : LoadRegImmPat<LW, i32, load>;
1322  }
1323  let Predicates = [IsN64, HasStdEnc] in {
1324    def : LoadRegImmPat<LBu_P8, i32, zextloadi8>;
1325    def : LoadRegImmPat<LH_P8, i32, sextloadi16>;
1326    def : LoadRegImmPat<LW_P8, i32, load>;
1327  }
1328}
1329
1330//===----------------------------------------------------------------------===//
1331// Floating Point Support
1332//===----------------------------------------------------------------------===//
1333
1334include "MipsInstrFPU.td"
1335include "Mips64InstrInfo.td"
1336include "MipsCondMov.td"
1337
1338//
1339// Mips16
1340
1341include "Mips16InstrFormats.td"
1342include "Mips16InstrInfo.td"
1343
1344// DSP
1345include "MipsDSPInstrFormats.td"
1346include "MipsDSPInstrInfo.td"
1347
1348// Micromips
1349include "MicroMipsInstrFormats.td"
1350include "MicroMipsInstrInfo.td"
1351