MipsInstrInfo.td revision bf19dba2d4c7927832d3037c15e0101afb730415
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_ExtractLOHI : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisVT<1, untyped>,
27                                           SDTCisVT<2, i32>]>;
28def SDT_InsertLOHI : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>,
29                                          SDTCisVT<1, i32>,
30                                          SDTCisSameAs<1, 2>]>;
31def SDT_MipsMultDiv : SDTypeProfile<1, 2, [SDTCisVT<0, untyped>, SDTCisInt<1>,
32                                    SDTCisSameAs<1, 2>]>;
33def SDT_MipsMAddMSub : SDTypeProfile<1, 3,
34                                     [SDTCisVT<0, untyped>, SDTCisSameAs<0, 3>,
35                                      SDTCisVT<1, i32>, SDTCisSameAs<1, 2>]>;
36def SDT_MipsDivRem16 : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
37
38def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
39
40def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
41
42def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
43                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
44def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
45                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
46                                   SDTCisSameAs<0, 4>]>;
47
48def SDTMipsLoadLR  : SDTypeProfile<1, 2,
49                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
50                                    SDTCisSameAs<0, 2>]>;
51
52// Call
53def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
54                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
55                          SDNPVariadic]>;
56
57// Tail call
58def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
59                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
60
61// Hi and Lo nodes are used to handle global addresses. Used on
62// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
63// static model. (nothing to do with Mips Registers Hi and Lo)
64def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
65def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
66def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
67
68// TlsGd node is used to handle General Dynamic TLS
69def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
70
71// TprelHi and TprelLo nodes are used to handle Local Exec TLS
72def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
73def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
74
75// Thread pointer
76def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
77
78// Return
79def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
80                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
81
82// These are target-independent nodes, but have target-specific formats.
83def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
84                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
85def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
86                           [SDNPHasChain, SDNPSideEffect,
87                            SDNPOptInGlue, SDNPOutGlue]>;
88
89// Node used to extract integer from LO/HI register.
90def ExtractLOHI : SDNode<"MipsISD::ExtractLOHI", SDT_ExtractLOHI>;
91
92// Node used to insert 32-bit integers to LOHI register pair.
93def InsertLOHI : SDNode<"MipsISD::InsertLOHI", SDT_InsertLOHI>;
94
95// Mult nodes.
96def MipsMult  : SDNode<"MipsISD::Mult", SDT_MipsMultDiv>;
97def MipsMultu : SDNode<"MipsISD::Multu", SDT_MipsMultDiv>;
98
99// MAdd*/MSub* nodes
100def MipsMAdd  : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub>;
101def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub>;
102def MipsMSub  : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub>;
103def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub>;
104
105// DivRem(u) nodes
106def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsMultDiv>;
107def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsMultDiv>;
108def MipsDivRem16  : SDNode<"MipsISD::DivRem16", SDT_MipsDivRem16,
109                           [SDNPOutGlue]>;
110def MipsDivRemU16 : SDNode<"MipsISD::DivRemU16", SDT_MipsDivRem16,
111                           [SDNPOutGlue]>;
112
113// Target constant nodes that are not part of any isel patterns and remain
114// unchanged can cause instructions with illegal operands to be emitted.
115// Wrapper node patterns give the instruction selector a chance to replace
116// target constant nodes that would otherwise remain unchanged with ADDiu
117// nodes. Without these wrapper node patterns, the following conditional move
118// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
119// compiled:
120//  movn  %got(d)($gp), %got(c)($gp), $4
121// This instruction is illegal since movn can take only register operands.
122
123def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
124
125def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
126
127def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
128def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
129
130def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
131                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
132def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
133                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
134def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
135                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
136def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
137                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
138def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
139                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
140def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
141                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
142def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
143                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
144def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
145                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
146
147//===----------------------------------------------------------------------===//
148// Mips Instruction Predicate Definitions.
149//===----------------------------------------------------------------------===//
150def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
151                      AssemblerPredicate<"FeatureSEInReg">;
152def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
153                      AssemblerPredicate<"FeatureBitCount">;
154def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
155                      AssemblerPredicate<"FeatureSwap">;
156def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
157                      AssemblerPredicate<"FeatureCondMov">;
158def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
159                      AssemblerPredicate<"FeatureFPIdx">;
160def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
161                      AssemblerPredicate<"FeatureMips32">;
162def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
163                      AssemblerPredicate<"FeatureMips32r2">;
164def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
165                      AssemblerPredicate<"FeatureMips64">;
166def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
167                      AssemblerPredicate<"!FeatureMips64">;
168def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
169                      AssemblerPredicate<"FeatureMips64r2">;
170def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
171                      AssemblerPredicate<"FeatureN64">;
172def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
173                      AssemblerPredicate<"!FeatureN64">;
174def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
175                      AssemblerPredicate<"FeatureMips16">;
176def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
177                      AssemblerPredicate<"FeatureMips32">;
178def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
179                      AssemblerPredicate<"FeatureMips32">;
180def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
181                      AssemblerPredicate<"FeatureMips32">;
182def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
183                      AssemblerPredicate<"!FeatureMips16,!FeatureMicroMips">;
184def NotDSP :          Predicate<"!Subtarget.hasDSP()">;
185def InMicroMips    :  Predicate<"Subtarget.inMicroMipsMode()">,
186                      AssemblerPredicate<"FeatureMicroMips">;
187def NotInMicroMips :  Predicate<"!Subtarget.inMicroMipsMode()">,
188                      AssemblerPredicate<"!FeatureMicroMips">;
189def IsLE           :  Predicate<"Subtarget.isLittle()">;
190def IsBE           :  Predicate<"!Subtarget.isLittle()">;
191
192class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
193  let Predicates = [HasStdEnc];
194}
195
196class IsCommutable {
197  bit isCommutable = 1;
198}
199
200class IsBranch {
201  bit isBranch = 1;
202}
203
204class IsReturn {
205  bit isReturn = 1;
206}
207
208class IsCall {
209  bit isCall = 1;
210}
211
212class IsTailCall {
213  bit isCall = 1;
214  bit isTerminator = 1;
215  bit isReturn = 1;
216  bit isBarrier = 1;
217  bit hasExtraSrcRegAllocReq = 1;
218  bit isCodeGenOnly = 1;
219}
220
221class IsAsCheapAsAMove {
222  bit isAsCheapAsAMove = 1;
223}
224
225class NeverHasSideEffects {
226  bit neverHasSideEffects = 1;
227}
228
229//===----------------------------------------------------------------------===//
230// Instruction format superclass
231//===----------------------------------------------------------------------===//
232
233include "MipsInstrFormats.td"
234
235//===----------------------------------------------------------------------===//
236// Mips Operand, Complex Patterns and Transformations Definitions.
237//===----------------------------------------------------------------------===//
238
239// Instruction operand types
240def jmptarget   : Operand<OtherVT> {
241  let EncoderMethod = "getJumpTargetOpValue";
242}
243def brtarget    : Operand<OtherVT> {
244  let EncoderMethod = "getBranchTargetOpValue";
245  let OperandType = "OPERAND_PCREL";
246  let DecoderMethod = "DecodeBranchTarget";
247}
248def calltarget  : Operand<iPTR> {
249  let EncoderMethod = "getJumpTargetOpValue";
250}
251def calltarget64: Operand<i64>;
252def simm16      : Operand<i32> {
253  let DecoderMethod= "DecodeSimm16";
254}
255
256def simm20      : Operand<i32> {
257}
258
259def uimm20      : Operand<i32> {
260}
261
262def uimm10      : Operand<i32> {
263}
264
265def simm16_64   : Operand<i64>;
266def shamt       : Operand<i32>;
267
268// Unsigned Operand
269def uimm5       : Operand<i32> {
270  let PrintMethod = "printUnsignedImm";
271}
272
273def uimm16      : Operand<i32> {
274  let PrintMethod = "printUnsignedImm";
275}
276
277def MipsMemAsmOperand : AsmOperandClass {
278  let Name = "Mem";
279  let ParserMethod = "parseMemOperand";
280}
281
282// Address operand
283def mem : Operand<iPTR> {
284  let PrintMethod = "printMemOperand";
285  let MIOperandInfo = (ops ptr_rc, simm16);
286  let EncoderMethod = "getMemEncoding";
287  let ParserMatchClass = MipsMemAsmOperand;
288  let OperandType = "OPERAND_MEMORY";
289}
290
291def mem_ea : Operand<iPTR> {
292  let PrintMethod = "printMemOperandEA";
293  let MIOperandInfo = (ops ptr_rc, simm16);
294  let EncoderMethod = "getMemEncoding";
295  let OperandType = "OPERAND_MEMORY";
296}
297
298def PtrRC : Operand<iPTR> {
299  let MIOperandInfo = (ops ptr_rc);
300}
301
302// size operand of ext instruction
303def size_ext : Operand<i32> {
304  let EncoderMethod = "getSizeExtEncoding";
305  let DecoderMethod = "DecodeExtSize";
306}
307
308// size operand of ins instruction
309def size_ins : Operand<i32> {
310  let EncoderMethod = "getSizeInsEncoding";
311  let DecoderMethod = "DecodeInsSize";
312}
313
314// Transformation Function - get the lower 16 bits.
315def LO16 : SDNodeXForm<imm, [{
316  return getImm(N, N->getZExtValue() & 0xFFFF);
317}]>;
318
319// Transformation Function - get the higher 16 bits.
320def HI16 : SDNodeXForm<imm, [{
321  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
322}]>;
323
324// Plus 1.
325def Plus1 : SDNodeXForm<imm, [{ return getImm(N, N->getSExtValue() + 1); }]>;
326
327// Node immediate fits as 16-bit sign extended on target immediate.
328// e.g. addi, andi
329def immSExt8  : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
330
331// Node immediate fits as 16-bit sign extended on target immediate.
332// e.g. addi, andi
333def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
334
335// Node immediate fits as 15-bit sign extended on target immediate.
336// e.g. addi, andi
337def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
338
339// Node immediate fits as 16-bit zero extended on target immediate.
340// The LO16 param means that only the lower 16 bits of the node
341// immediate are caught.
342// e.g. addiu, sltiu
343def immZExt16  : PatLeaf<(imm), [{
344  if (N->getValueType(0) == MVT::i32)
345    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
346  else
347    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
348}], LO16>;
349
350// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
351def immLow16Zero : PatLeaf<(imm), [{
352  int64_t Val = N->getSExtValue();
353  return isInt<32>(Val) && !(Val & 0xffff);
354}]>;
355
356// shamt field must fit in 5 bits.
357def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
358
359// True if (N + 1) fits in 16-bit field.
360def immSExt16Plus1 : PatLeaf<(imm), [{
361  return isInt<17>(N->getSExtValue()) && isInt<16>(N->getSExtValue() + 1);
362}]>;
363
364// Mips Address Mode! SDNode frameindex could possibily be a match
365// since load and store instructions from stack used it.
366def addr :
367  ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex]>;
368
369def addrRegImm :
370  ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex]>;
371
372def addrDefault :
373  ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex]>;
374
375//===----------------------------------------------------------------------===//
376// Instructions specific format
377//===----------------------------------------------------------------------===//
378
379// Arithmetic and logical instructions with 3 register operands.
380class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
381                  InstrItinClass Itin = NoItinerary,
382                  SDPatternOperator OpNode = null_frag>:
383  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
384         !strconcat(opstr, "\t$rd, $rs, $rt"),
385         [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR, opstr> {
386  let isCommutable = isComm;
387  let isReMaterializable = 1;
388}
389
390// Arithmetic and logical instructions with 2 register operands.
391class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
392                  InstrItinClass Itin = NoItinerary,
393                  SDPatternOperator imm_type = null_frag,
394                  SDPatternOperator OpNode = null_frag> :
395  InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
396         !strconcat(opstr, "\t$rt, $rs, $imm16"),
397         [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))],
398         Itin, FrmI, opstr> {
399  let isReMaterializable = 1;
400  let TwoOperandAliasConstraint = "$rs = $rt";
401}
402
403// Arithmetic Multiply ADD/SUB
404class MArithR<string opstr, bit isComm = 0> :
405  InstSE<(outs), (ins GPR32Opnd:$rs, GPR32Opnd:$rt),
406         !strconcat(opstr, "\t$rs, $rt"), [], IIImult, FrmR> {
407  let Defs = [HI0, LO0];
408  let Uses = [HI0, LO0];
409  let isCommutable = isComm;
410}
411
412//  Logical
413class LogicNOR<string opstr, RegisterOperand RO>:
414  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
415         !strconcat(opstr, "\t$rd, $rs, $rt"),
416         [(set RO:$rd, (not (or RO:$rs, RO:$rt)))], IIArith, FrmR, opstr> {
417  let isCommutable = 1;
418}
419
420// Shifts
421class shift_rotate_imm<string opstr, Operand ImmOpnd,
422                       RegisterOperand RO, SDPatternOperator OpNode = null_frag,
423                       SDPatternOperator PF = null_frag> :
424  InstSE<(outs RO:$rd), (ins RO:$rt, ImmOpnd:$shamt),
425         !strconcat(opstr, "\t$rd, $rt, $shamt"),
426         [(set RO:$rd, (OpNode RO:$rt, PF:$shamt))], IIArith, FrmR, opstr>;
427
428class shift_rotate_reg<string opstr, RegisterOperand RO,
429                       SDPatternOperator OpNode = null_frag>:
430  InstSE<(outs RO:$rd), (ins RO:$rt, GPR32Opnd:$rs),
431         !strconcat(opstr, "\t$rd, $rt, $rs"),
432         [(set RO:$rd, (OpNode RO:$rt, GPR32Opnd:$rs))], IIArith, FrmR, opstr>;
433
434// Load Upper Imediate
435class LoadUpper<string opstr, RegisterOperand RO, Operand Imm>:
436  InstSE<(outs RO:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
437         [], IIArith, FrmI>, IsAsCheapAsAMove {
438  let neverHasSideEffects = 1;
439  let isReMaterializable = 1;
440}
441
442class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
443          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
444  bits<21> addr;
445  let Inst{25-21} = addr{20-16};
446  let Inst{15-0}  = addr{15-0};
447  let DecoderMethod = "DecodeMem";
448}
449
450// Memory Load/Store
451class Load<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
452           InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
453  InstSE<(outs RO:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
454         [(set RO:$rt, (OpNode Addr:$addr))], NoItinerary, FrmI, opstr> {
455  let DecoderMethod = "DecodeMem";
456  let canFoldAsLoad = 1;
457  let mayLoad = 1;
458}
459
460class Store<string opstr, DAGOperand RO, SDPatternOperator OpNode = null_frag,
461            InstrItinClass Itin = NoItinerary, ComplexPattern Addr = addr> :
462  InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
463         [(OpNode RO:$rt, Addr:$addr)], NoItinerary, FrmI, opstr> {
464  let DecoderMethod = "DecodeMem";
465  let mayStore = 1;
466}
467
468// Load/Store Left/Right
469let canFoldAsLoad = 1 in
470class LoadLeftRight<string opstr, SDNode OpNode, RegisterOperand RO> :
471  InstSE<(outs RO:$rt), (ins mem:$addr, RO:$src),
472         !strconcat(opstr, "\t$rt, $addr"),
473         [(set RO:$rt, (OpNode addr:$addr, RO:$src))], NoItinerary, FrmI> {
474  let DecoderMethod = "DecodeMem";
475  string Constraints = "$src = $rt";
476}
477
478class StoreLeftRight<string opstr, SDNode OpNode, RegisterOperand RO> :
479  InstSE<(outs), (ins RO:$rt, mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
480         [(OpNode RO:$rt, addr:$addr)], NoItinerary, FrmI> {
481  let DecoderMethod = "DecodeMem";
482}
483
484// Conditional Branch
485class CBranch<string opstr, PatFrag cond_op, RegisterOperand RO> :
486  InstSE<(outs), (ins RO:$rs, RO:$rt, brtarget:$offset),
487         !strconcat(opstr, "\t$rs, $rt, $offset"),
488         [(brcond (i32 (cond_op RO:$rs, RO:$rt)), bb:$offset)], IIBranch,
489         FrmI> {
490  let isBranch = 1;
491  let isTerminator = 1;
492  let hasDelaySlot = 1;
493  let Defs = [AT];
494}
495
496class CBranchZero<string opstr, PatFrag cond_op, RegisterOperand RO> :
497  InstSE<(outs), (ins RO:$rs, brtarget:$offset),
498         !strconcat(opstr, "\t$rs, $offset"),
499         [(brcond (i32 (cond_op RO:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
500  let isBranch = 1;
501  let isTerminator = 1;
502  let hasDelaySlot = 1;
503  let Defs = [AT];
504}
505
506// SetCC
507class SetCC_R<string opstr, PatFrag cond_op, RegisterOperand RO> :
508  InstSE<(outs GPR32Opnd:$rd), (ins RO:$rs, RO:$rt),
509         !strconcat(opstr, "\t$rd, $rs, $rt"),
510         [(set GPR32Opnd:$rd, (cond_op RO:$rs, RO:$rt))],
511         IIslt, FrmR, opstr>;
512
513class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
514              RegisterOperand RO>:
515  InstSE<(outs GPR32Opnd:$rt), (ins RO:$rs, Od:$imm16),
516         !strconcat(opstr, "\t$rt, $rs, $imm16"),
517         [(set GPR32Opnd:$rt, (cond_op RO:$rs, imm_type:$imm16))],
518         IIslt, FrmI, opstr>;
519
520// Jump
521class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
522             SDPatternOperator targetoperator> :
523  InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
524         [(operator targetoperator:$target)], IIBranch, FrmJ> {
525  let isTerminator=1;
526  let isBarrier=1;
527  let hasDelaySlot = 1;
528  let DecoderMethod = "DecodeJumpTarget";
529  let Defs = [AT];
530}
531
532// Unconditional branch
533class UncondBranch<string opstr> :
534  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
535         [(br bb:$offset)], IIBranch, FrmI> {
536  let isBranch = 1;
537  let isTerminator = 1;
538  let isBarrier = 1;
539  let hasDelaySlot = 1;
540  let Predicates = [RelocPIC, HasStdEnc];
541  let Defs = [AT];
542}
543
544// Base class for indirect branch and return instruction classes.
545let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
546class JumpFR<RegisterOperand RO, SDPatternOperator operator = null_frag>:
547  InstSE<(outs), (ins RO:$rs), "jr\t$rs", [(operator RO:$rs)], IIBranch, FrmR>;
548
549// Indirect branch
550class IndirectBranch<RegisterOperand RO>: JumpFR<RO, brind> {
551  let isBranch = 1;
552  let isIndirectBranch = 1;
553}
554
555// Return instruction
556class RetBase<RegisterOperand RO>: JumpFR<RO> {
557  let isReturn = 1;
558  let isCodeGenOnly = 1;
559  let hasCtrlDep = 1;
560  let hasExtraSrcRegAllocReq = 1;
561}
562
563// Jump and Link (Call)
564let isCall=1, hasDelaySlot=1, Defs = [RA] in {
565  class JumpLink<string opstr> :
566    InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"),
567           [(MipsJmpLink imm:$target)], IIBranch, FrmJ> {
568    let DecoderMethod = "DecodeJumpTarget";
569  }
570
571  class JumpLinkRegPseudo<RegisterOperand RO, Instruction JALRInst,
572                          Register RetReg, RegisterOperand ResRO = RO>:
573    PseudoSE<(outs), (ins RO:$rs), [(MipsJmpLink RO:$rs)], IIBranch>,
574    PseudoInstExpansion<(JALRInst RetReg, ResRO:$rs)>;
575
576  class JumpLinkReg<string opstr, RegisterOperand RO>:
577    InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
578           [], IIBranch, FrmR>;
579
580  class BGEZAL_FT<string opstr, RegisterOperand RO> :
581    InstSE<(outs), (ins RO:$rs, brtarget:$offset),
582           !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI>;
583
584}
585
586class BAL_BR_Pseudo<Instruction RealInst> :
587  PseudoSE<(outs), (ins brtarget:$offset), [], IIBranch>,
588  PseudoInstExpansion<(RealInst ZERO, brtarget:$offset)> {
589  let isBranch = 1;
590  let isTerminator = 1;
591  let isBarrier = 1;
592  let hasDelaySlot = 1;
593  let Defs = [RA];
594}
595
596// Syscall
597class SYS_FT<string opstr> :
598  InstSE<(outs), (ins uimm20:$code_),
599         !strconcat(opstr, "\t$code_"), [], NoItinerary, FrmI>;
600// Break
601class BRK_FT<string opstr> :
602  InstSE<(outs), (ins uimm10:$code_1, uimm10:$code_2),
603         !strconcat(opstr, "\t$code_1, $code_2"), [], NoItinerary, FrmOther>;
604
605// (D)Eret
606class ER_FT<string opstr> :
607  InstSE<(outs), (ins),
608         opstr, [], NoItinerary, FrmOther>;
609
610// Interrupts
611class DEI_FT<string opstr, RegisterOperand RO> :
612  InstSE<(outs RO:$rt), (ins),
613         !strconcat(opstr, "\t$rt"), [], NoItinerary, FrmOther>;
614
615// Wait
616class WAIT_FT<string opstr> :
617  InstSE<(outs), (ins), opstr, [], NoItinerary, FrmOther> {
618  let Inst{31-26} = 0x10;
619  let Inst{25}    = 1;
620  let Inst{24-6}  = 0;
621  let Inst{5-0}   = 0x20;
622}
623
624// Sync
625let hasSideEffects = 1 in
626class SYNC_FT :
627  InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
628         NoItinerary, FrmOther>;
629
630let hasSideEffects = 1 in
631class TEQ_FT<string opstr, RegisterOperand RO> :
632  InstSE<(outs), (ins RO:$rs, RO:$rt, uimm16:$code_),
633         !strconcat(opstr, "\t$rs, $rt, $code_"), [], NoItinerary, FrmI>;
634
635class TEQI_FT<string opstr, RegisterOperand RO> :
636  InstSE<(outs), (ins RO:$rs, uimm16:$imm16),
637         !strconcat(opstr, "\t$rs, $imm16"), [], NoItinerary, FrmOther>;
638// Mul, Div
639class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
640           list<Register> DefRegs> :
641  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
642         itin, FrmR, opstr> {
643  let isCommutable = 1;
644  let Defs = DefRegs;
645  let neverHasSideEffects = 1;
646}
647
648// Pseudo multiply/divide instruction with explicit accumulator register
649// operands.
650class MultDivPseudo<Instruction RealInst, RegisterClass R0, RegisterOperand R1,
651                    SDPatternOperator OpNode, InstrItinClass Itin,
652                    bit IsComm = 1, bit HasSideEffects = 0,
653                    bit UsesCustomInserter = 0> :
654  PseudoSE<(outs R0:$ac), (ins R1:$rs, R1:$rt),
655           [(set R0:$ac, (OpNode R1:$rs, R1:$rt))], Itin>,
656  PseudoInstExpansion<(RealInst R1:$rs, R1:$rt)> {
657  let isCommutable = IsComm;
658  let hasSideEffects = HasSideEffects;
659  let usesCustomInserter = UsesCustomInserter;
660}
661
662// Pseudo multiply add/sub instruction with explicit accumulator register
663// operands.
664class MAddSubPseudo<Instruction RealInst, SDPatternOperator OpNode>
665  : PseudoSE<(outs ACC64:$ac),
666             (ins GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin),
667             [(set ACC64:$ac,
668              (OpNode GPR32Opnd:$rs, GPR32Opnd:$rt, ACC64:$acin))],
669             IIImult>,
670    PseudoInstExpansion<(RealInst GPR32Opnd:$rs, GPR32Opnd:$rt)> {
671  string Constraints = "$acin = $ac";
672}
673
674class Div<string opstr, InstrItinClass itin, RegisterOperand RO,
675          list<Register> DefRegs> :
676  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$$zero, $rs, $rt"),
677         [], itin, FrmR> {
678  let Defs = DefRegs;
679}
680
681// Move from Hi/Lo
682class MoveFromLOHI<string opstr, RegisterOperand RO, list<Register> UseRegs>:
683  InstSE<(outs RO:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> {
684  let Uses = UseRegs;
685  let neverHasSideEffects = 1;
686}
687
688class MoveToLOHI<string opstr, RegisterOperand RO, list<Register> DefRegs>:
689  InstSE<(outs), (ins RO:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> {
690  let Defs = DefRegs;
691  let neverHasSideEffects = 1;
692}
693
694class EffectiveAddress<string opstr, RegisterOperand RO> :
695  InstSE<(outs RO:$rt), (ins mem_ea:$addr), !strconcat(opstr, "\t$rt, $addr"),
696         [(set RO:$rt, addr:$addr)], NoItinerary, FrmI> {
697  let isCodeGenOnly = 1;
698  let DecoderMethod = "DecodeMem";
699}
700
701// Count Leading Ones/Zeros in Word
702class CountLeading0<string opstr, RegisterOperand RO>:
703  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
704         [(set RO:$rd, (ctlz RO:$rs))], IIArith, FrmR>,
705  Requires<[HasBitCount, HasStdEnc]>;
706
707class CountLeading1<string opstr, RegisterOperand RO>:
708  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
709         [(set RO:$rd, (ctlz (not RO:$rs)))], IIArith, FrmR>,
710  Requires<[HasBitCount, HasStdEnc]>;
711
712
713// Sign Extend in Register.
714class SignExtInReg<string opstr, ValueType vt, RegisterOperand RO> :
715  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"),
716         [(set RO:$rd, (sext_inreg RO:$rt, vt))], IIseb, FrmR> {
717  let Predicates = [HasSEInReg, HasStdEnc];
718}
719
720// Subword Swap
721class SubwordSwap<string opstr, RegisterOperand RO>:
722  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
723         NoItinerary, FrmR> {
724  let Predicates = [HasSwap, HasStdEnc];
725  let neverHasSideEffects = 1;
726}
727
728// Read Hardware
729class ReadHardware<RegisterOperand CPURegOperand, RegisterOperand RO> :
730  InstSE<(outs CPURegOperand:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
731         IIArith, FrmR>;
732
733// Ext and Ins
734class ExtBase<string opstr, RegisterOperand RO>:
735  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ext:$size),
736         !strconcat(opstr, " $rt, $rs, $pos, $size"),
737         [(set RO:$rt, (MipsExt RO:$rs, imm:$pos, imm:$size))], NoItinerary,
738         FrmR> {
739  let Predicates = [HasMips32r2, HasStdEnc];
740}
741
742class InsBase<string opstr, RegisterOperand RO>:
743  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ins:$size, RO:$src),
744         !strconcat(opstr, " $rt, $rs, $pos, $size"),
745         [(set RO:$rt, (MipsIns RO:$rs, imm:$pos, imm:$size, RO:$src))],
746         NoItinerary, FrmR> {
747  let Predicates = [HasMips32r2, HasStdEnc];
748  let Constraints = "$src = $rt";
749}
750
751// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
752class Atomic2Ops<PatFrag Op, RegisterClass DRC> :
753  PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$incr),
754           [(set DRC:$dst, (Op iPTR:$ptr, DRC:$incr))]>;
755
756// Atomic Compare & Swap.
757class AtomicCmpSwap<PatFrag Op, RegisterClass DRC> :
758  PseudoSE<(outs DRC:$dst), (ins PtrRC:$ptr, DRC:$cmp, DRC:$swap),
759           [(set DRC:$dst, (Op iPTR:$ptr, DRC:$cmp, DRC:$swap))]>;
760
761class LLBase<string opstr, RegisterOperand RO> :
762  InstSE<(outs RO:$rt), (ins mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
763         [], NoItinerary, FrmI> {
764  let DecoderMethod = "DecodeMem";
765  let mayLoad = 1;
766}
767
768class SCBase<string opstr, RegisterOperand RO> :
769  InstSE<(outs RO:$dst), (ins RO:$rt, mem:$addr),
770         !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
771  let DecoderMethod = "DecodeMem";
772  let mayStore = 1;
773  let Constraints = "$rt = $dst";
774}
775
776class MFC3OP<string asmstr, RegisterOperand RO> :
777  InstSE<(outs RO:$rt, RO:$rd, uimm16:$sel), (ins),
778         !strconcat(asmstr, "\t$rt, $rd, $sel"), [], NoItinerary, FrmFR>;
779
780let isBarrier = 1, isTerminator = 1, isCodeGenOnly = 1 in
781def TRAP : InstSE<(outs), (ins), "break", [(trap)], NoItinerary, FrmOther> {
782   let Inst = 0x0000000d;
783}
784
785//===----------------------------------------------------------------------===//
786// Pseudo instructions
787//===----------------------------------------------------------------------===//
788
789// Return RA.
790let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
791def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
792
793let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
794def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
795                                  [(callseq_start timm:$amt)]>;
796def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
797                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
798}
799
800let usesCustomInserter = 1 in {
801  def ATOMIC_LOAD_ADD_I8   : Atomic2Ops<atomic_load_add_8, GPR32>;
802  def ATOMIC_LOAD_ADD_I16  : Atomic2Ops<atomic_load_add_16, GPR32>;
803  def ATOMIC_LOAD_ADD_I32  : Atomic2Ops<atomic_load_add_32, GPR32>;
804  def ATOMIC_LOAD_SUB_I8   : Atomic2Ops<atomic_load_sub_8, GPR32>;
805  def ATOMIC_LOAD_SUB_I16  : Atomic2Ops<atomic_load_sub_16, GPR32>;
806  def ATOMIC_LOAD_SUB_I32  : Atomic2Ops<atomic_load_sub_32, GPR32>;
807  def ATOMIC_LOAD_AND_I8   : Atomic2Ops<atomic_load_and_8, GPR32>;
808  def ATOMIC_LOAD_AND_I16  : Atomic2Ops<atomic_load_and_16, GPR32>;
809  def ATOMIC_LOAD_AND_I32  : Atomic2Ops<atomic_load_and_32, GPR32>;
810  def ATOMIC_LOAD_OR_I8    : Atomic2Ops<atomic_load_or_8, GPR32>;
811  def ATOMIC_LOAD_OR_I16   : Atomic2Ops<atomic_load_or_16, GPR32>;
812  def ATOMIC_LOAD_OR_I32   : Atomic2Ops<atomic_load_or_32, GPR32>;
813  def ATOMIC_LOAD_XOR_I8   : Atomic2Ops<atomic_load_xor_8, GPR32>;
814  def ATOMIC_LOAD_XOR_I16  : Atomic2Ops<atomic_load_xor_16, GPR32>;
815  def ATOMIC_LOAD_XOR_I32  : Atomic2Ops<atomic_load_xor_32, GPR32>;
816  def ATOMIC_LOAD_NAND_I8  : Atomic2Ops<atomic_load_nand_8, GPR32>;
817  def ATOMIC_LOAD_NAND_I16 : Atomic2Ops<atomic_load_nand_16, GPR32>;
818  def ATOMIC_LOAD_NAND_I32 : Atomic2Ops<atomic_load_nand_32, GPR32>;
819
820  def ATOMIC_SWAP_I8       : Atomic2Ops<atomic_swap_8, GPR32>;
821  def ATOMIC_SWAP_I16      : Atomic2Ops<atomic_swap_16, GPR32>;
822  def ATOMIC_SWAP_I32      : Atomic2Ops<atomic_swap_32, GPR32>;
823
824  def ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap<atomic_cmp_swap_8, GPR32>;
825  def ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap<atomic_cmp_swap_16, GPR32>;
826  def ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap<atomic_cmp_swap_32, GPR32>;
827}
828
829/// Pseudo instructions for loading and storing accumulator registers.
830let isPseudo = 1, isCodeGenOnly = 1 in {
831  def LOAD_ACC64  : Load<"", ACC64>;
832  def STORE_ACC64 : Store<"", ACC64>;
833}
834
835//===----------------------------------------------------------------------===//
836// Instruction definition
837//===----------------------------------------------------------------------===//
838//===----------------------------------------------------------------------===//
839// MipsI Instructions
840//===----------------------------------------------------------------------===//
841
842/// Arithmetic Instructions (ALU Immediate)
843def ADDiu : MMRel, ArithLogicI<"addiu", simm16, GPR32Opnd, IIArith, immSExt16,
844                               add>,
845            ADDI_FM<0x9>, IsAsCheapAsAMove;
846def ADDi  : MMRel, ArithLogicI<"addi", simm16, GPR32Opnd>, ADDI_FM<0x8>;
847def SLTi  : MMRel, SetCC_I<"slti", setlt, simm16, immSExt16, GPR32Opnd>,
848            SLTI_FM<0xa>;
849def SLTiu : MMRel, SetCC_I<"sltiu", setult, simm16, immSExt16, GPR32Opnd>,
850            SLTI_FM<0xb>;
851def ANDi  : MMRel, ArithLogicI<"andi", uimm16, GPR32Opnd, IILogic, immZExt16,
852                               and>,
853            ADDI_FM<0xc>;
854def ORi   : MMRel, ArithLogicI<"ori", uimm16, GPR32Opnd, IILogic, immZExt16,
855                               or>,
856            ADDI_FM<0xd>;
857def XORi  : MMRel, ArithLogicI<"xori", uimm16, GPR32Opnd, IILogic, immZExt16,
858                               xor>,
859            ADDI_FM<0xe>;
860def LUi   : MMRel, LoadUpper<"lui", GPR32Opnd, uimm16>, LUI_FM;
861
862/// Arithmetic Instructions (3-Operand, R-Type)
863def ADDu  : MMRel, ArithLogicR<"addu", GPR32Opnd, 1, IIArith, add>,
864            ADD_FM<0, 0x21>;
865def SUBu  : MMRel, ArithLogicR<"subu", GPR32Opnd, 0, IIArith, sub>,
866            ADD_FM<0, 0x23>;
867def MUL   : MMRel, ArithLogicR<"mul", GPR32Opnd, 1, IIImul, mul>,
868            ADD_FM<0x1c, 2>;
869def ADD   : MMRel, ArithLogicR<"add", GPR32Opnd>, ADD_FM<0, 0x20>;
870def SUB   : MMRel, ArithLogicR<"sub", GPR32Opnd>, ADD_FM<0, 0x22>;
871def SLT   : MMRel, SetCC_R<"slt", setlt, GPR32Opnd>, ADD_FM<0, 0x2a>;
872def SLTu  : MMRel, SetCC_R<"sltu", setult, GPR32Opnd>, ADD_FM<0, 0x2b>;
873def AND   : MMRel, ArithLogicR<"and", GPR32Opnd, 1, IILogic, and>,
874            ADD_FM<0, 0x24>;
875def OR    : MMRel, ArithLogicR<"or", GPR32Opnd, 1, IILogic, or>,
876            ADD_FM<0, 0x25>;
877def XOR   : MMRel, ArithLogicR<"xor", GPR32Opnd, 1, IILogic, xor>,
878            ADD_FM<0, 0x26>;
879def NOR   : MMRel, LogicNOR<"nor", GPR32Opnd>, ADD_FM<0, 0x27>;
880
881/// Shift Instructions
882def SLL  : MMRel, shift_rotate_imm<"sll", shamt, GPR32Opnd, shl, immZExt5>,
883           SRA_FM<0, 0>;
884def SRL  : MMRel, shift_rotate_imm<"srl", shamt, GPR32Opnd, srl, immZExt5>,
885           SRA_FM<2, 0>;
886def SRA  : MMRel, shift_rotate_imm<"sra", shamt, GPR32Opnd, sra, immZExt5>,
887           SRA_FM<3, 0>;
888def SLLV : MMRel, shift_rotate_reg<"sllv", GPR32Opnd, shl>, SRLV_FM<4, 0>;
889def SRLV : MMRel, shift_rotate_reg<"srlv", GPR32Opnd, srl>, SRLV_FM<6, 0>;
890def SRAV : MMRel, shift_rotate_reg<"srav", GPR32Opnd, sra>, SRLV_FM<7, 0>;
891
892// Rotate Instructions
893let Predicates = [HasMips32r2, HasStdEnc] in {
894  def ROTR  : MMRel, shift_rotate_imm<"rotr", shamt, GPR32Opnd, rotr,
895                                      immZExt5>,
896              SRA_FM<2, 1>;
897  def ROTRV : MMRel, shift_rotate_reg<"rotrv", GPR32Opnd, rotr>,
898              SRLV_FM<6, 1>;
899}
900
901/// Load and Store Instructions
902///  aligned
903def LB  : Load<"lb", GPR32Opnd, sextloadi8, IILoad>, MMRel, LW_FM<0x20>;
904def LBu : Load<"lbu", GPR32Opnd, zextloadi8, IILoad, addrDefault>, MMRel,
905          LW_FM<0x24>;
906def LH  : Load<"lh", GPR32Opnd, sextloadi16, IILoad, addrDefault>, MMRel,
907          LW_FM<0x21>;
908def LHu : Load<"lhu", GPR32Opnd, zextloadi16, IILoad>, MMRel, LW_FM<0x25>;
909def LW  : Load<"lw", GPR32Opnd, load, IILoad, addrDefault>, MMRel,
910          LW_FM<0x23>;
911def SB  : Store<"sb", GPR32Opnd, truncstorei8, IIStore>, MMRel, LW_FM<0x28>;
912def SH  : Store<"sh", GPR32Opnd, truncstorei16, IIStore>, MMRel, LW_FM<0x29>;
913def SW  : Store<"sw", GPR32Opnd, store, IIStore>, MMRel, LW_FM<0x2b>;
914
915/// load/store left/right
916def LWL : LoadLeftRight<"lwl", MipsLWL, GPR32Opnd>, LW_FM<0x22>;
917def LWR : LoadLeftRight<"lwr", MipsLWR, GPR32Opnd>, LW_FM<0x26>;
918def SWL : StoreLeftRight<"swl", MipsSWL, GPR32Opnd>, LW_FM<0x2a>;
919def SWR : StoreLeftRight<"swr", MipsSWR, GPR32Opnd>, LW_FM<0x2e>;
920
921def SYNC : SYNC_FT, SYNC_FM;
922def TEQ : TEQ_FT<"teq", GPR32Opnd>, TEQ_FM<0x34>;
923def TGE : TEQ_FT<"tge", GPR32Opnd>, TEQ_FM<0x30>;
924def TGEU : TEQ_FT<"tgeu", GPR32Opnd>, TEQ_FM<0x31>;
925def TLT : TEQ_FT<"tlt", GPR32Opnd>, TEQ_FM<0x32>;
926def TLTU : TEQ_FT<"tltu", GPR32Opnd>, TEQ_FM<0x33>;
927def TNE : TEQ_FT<"tne", GPR32Opnd>, TEQ_FM<0x36>;
928
929def TEQI : TEQI_FT<"teqi", GPR32Opnd>, TEQI_FM<0xc>;
930def TGEI : TEQI_FT<"tgei", GPR32Opnd>, TEQI_FM<0x8>;
931def TGEIU : TEQI_FT<"tgeiu", GPR32Opnd>, TEQI_FM<0x9>;
932def TLTI : TEQI_FT<"tlti", GPR32Opnd>, TEQI_FM<0xa>;
933def TTLTIU : TEQI_FT<"tltiu", GPR32Opnd>, TEQI_FM<0xb>;
934def TNEI : TEQI_FT<"tnei", GPR32Opnd>, TEQI_FM<0xe>;
935
936def BREAK : BRK_FT<"break">, BRK_FM<0xd>;
937def SYSCALL : SYS_FT<"syscall">, SYS_FM<0xc>;
938
939def ERET : ER_FT<"eret">, ER_FM<0x18>;
940def DERET : ER_FT<"deret">, ER_FM<0x1f>;
941
942def EI : DEI_FT<"ei", GPR32Opnd>, EI_FM<1>;
943def DI : DEI_FT<"di", GPR32Opnd>, EI_FM<0>;
944
945def WAIT : WAIT_FT<"wait">;
946
947/// Load-linked, Store-conditional
948def LL : LLBase<"ll", GPR32Opnd>, LW_FM<0x30>;
949def SC : SCBase<"sc", GPR32Opnd>, LW_FM<0x38>;
950
951/// Jump and Branch Instructions
952def J       : JumpFJ<jmptarget, "j", br, bb>, FJ<2>,
953              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
954def JR      : IndirectBranch<GPR32Opnd>, MTLO_FM<8>;
955def B       : UncondBranch<"b">, B_FM;
956def BEQ     : CBranch<"beq", seteq, GPR32Opnd>, BEQ_FM<4>;
957def BNE     : CBranch<"bne", setne, GPR32Opnd>, BEQ_FM<5>;
958def BGEZ    : CBranchZero<"bgez", setge, GPR32Opnd>, BGEZ_FM<1, 1>;
959def BGTZ    : CBranchZero<"bgtz", setgt, GPR32Opnd>, BGEZ_FM<7, 0>;
960def BLEZ    : CBranchZero<"blez", setle, GPR32Opnd>, BGEZ_FM<6, 0>;
961def BLTZ    : CBranchZero<"bltz", setlt, GPR32Opnd>, BGEZ_FM<1, 0>;
962
963def JAL  : JumpLink<"jal">, FJ<3>;
964def JALR : JumpLinkReg<"jalr", GPR32Opnd>, JALR_FM;
965def JALRPseudo : JumpLinkRegPseudo<GPR32Opnd, JALR, RA>;
966def BGEZAL : BGEZAL_FT<"bgezal", GPR32Opnd>, BGEZAL_FM<0x11>;
967def BLTZAL : BGEZAL_FT<"bltzal", GPR32Opnd>, BGEZAL_FM<0x10>;
968def BAL_BR : BAL_BR_Pseudo<BGEZAL>;
969def TAILCALL : JumpFJ<calltarget, "j", MipsTailCall, imm>, FJ<2>, IsTailCall;
970def TAILCALL_R : JumpFR<GPR32Opnd, MipsTailCall>, MTLO_FM<8>, IsTailCall;
971
972def RET : RetBase<GPR32Opnd>, MTLO_FM<8>;
973
974// Exception handling related node and instructions.
975// The conversion sequence is:
976// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
977// MIPSeh_return -> (stack change + indirect branch)
978//
979// MIPSeh_return takes the place of regular return instruction
980// but takes two arguments (V1, V0) which are used for storing
981// the offset and return address respectively.
982def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
983
984def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
985                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
986
987let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
988  def MIPSeh_return32 : MipsPseudo<(outs), (ins GPR32:$spoff, GPR32:$dst),
989                                [(MIPSehret GPR32:$spoff, GPR32:$dst)]>;
990  def MIPSeh_return64 : MipsPseudo<(outs), (ins GPR64:$spoff,
991                                                GPR64:$dst),
992                                [(MIPSehret GPR64:$spoff, GPR64:$dst)]>;
993}
994
995/// Multiply and Divide Instructions.
996def MULT  : MMRel, Mult<"mult", IIImult, GPR32Opnd, [HI0, LO0]>,
997            MULT_FM<0, 0x18>;
998def MULTu : MMRel, Mult<"multu", IIImult, GPR32Opnd, [HI0, LO0]>,
999            MULT_FM<0, 0x19>;
1000def PseudoMULT  : MultDivPseudo<MULT, ACC64, GPR32Opnd, MipsMult, IIImult>;
1001def PseudoMULTu : MultDivPseudo<MULTu, ACC64, GPR32Opnd, MipsMultu, IIImult>;
1002def SDIV  : Div<"div", IIIdiv, GPR32Opnd, [HI0, LO0]>, MULT_FM<0, 0x1a>;
1003def UDIV  : Div<"divu", IIIdiv, GPR32Opnd, [HI0, LO0]>, MULT_FM<0, 0x1b>;
1004def PseudoSDIV : MultDivPseudo<SDIV, ACC64, GPR32Opnd, MipsDivRem, IIIdiv,
1005                               0, 1, 1>;
1006def PseudoUDIV : MultDivPseudo<UDIV, ACC64, GPR32Opnd, MipsDivRemU, IIIdiv,
1007                               0, 1, 1>;
1008
1009def MTHI : MoveToLOHI<"mthi", GPR32Opnd, [HI0]>, MTLO_FM<0x11>;
1010def MTLO : MoveToLOHI<"mtlo", GPR32Opnd, [LO0]>, MTLO_FM<0x13>;
1011def MFHI : MoveFromLOHI<"mfhi", GPR32Opnd, [HI0]>, MFLO_FM<0x10>;
1012def MFLO : MoveFromLOHI<"mflo", GPR32Opnd, [LO0]>, MFLO_FM<0x12>;
1013
1014/// Sign Ext In Register Instructions.
1015def SEB : SignExtInReg<"seb", i8, GPR32Opnd>, SEB_FM<0x10, 0x20>;
1016def SEH : SignExtInReg<"seh", i16, GPR32Opnd>, SEB_FM<0x18, 0x20>;
1017
1018/// Count Leading
1019def CLZ : CountLeading0<"clz", GPR32Opnd>, CLO_FM<0x20>;
1020def CLO : CountLeading1<"clo", GPR32Opnd>, CLO_FM<0x21>;
1021
1022/// Word Swap Bytes Within Halfwords
1023def WSBH : SubwordSwap<"wsbh", GPR32Opnd>, SEB_FM<2, 0x20>;
1024
1025/// No operation.
1026def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
1027
1028// FrameIndexes are legalized when they are operands from load/store
1029// instructions. The same not happens for stack address copies, so an
1030// add op with mem ComplexPattern is used and the stack address copy
1031// can be matched. It's similar to Sparc LEA_ADDRi
1032def LEA_ADDiu : EffectiveAddress<"addiu", GPR32Opnd>, LW_FM<9>;
1033
1034// MADD*/MSUB*
1035def MADD  : MArithR<"madd", 1>, MULT_FM<0x1c, 0>;
1036def MADDU : MArithR<"maddu", 1>, MULT_FM<0x1c, 1>;
1037def MSUB  : MArithR<"msub">, MULT_FM<0x1c, 4>;
1038def MSUBU : MArithR<"msubu">, MULT_FM<0x1c, 5>;
1039def PseudoMADD  : MAddSubPseudo<MADD, MipsMAdd>;
1040def PseudoMADDU : MAddSubPseudo<MADDU, MipsMAddu>;
1041def PseudoMSUB  : MAddSubPseudo<MSUB, MipsMSub>;
1042def PseudoMSUBU : MAddSubPseudo<MSUBU, MipsMSubu>;
1043
1044def RDHWR : ReadHardware<GPR32Opnd, HWRegsOpnd>, RDHWR_FM;
1045
1046def EXT : ExtBase<"ext", GPR32Opnd>, EXT_FM<0>;
1047def INS : InsBase<"ins", GPR32Opnd>, EXT_FM<4>;
1048
1049/// Move Control Registers From/To CPU Registers
1050def MFC0 : MFC3OP<"mfc0", GPR32Opnd>, MFC3OP_FM<0x10, 0>;
1051def MTC0 : MFC3OP<"mtc0", GPR32Opnd>, MFC3OP_FM<0x10, 4>;
1052def MFC2 : MFC3OP<"mfc2", GPR32Opnd>, MFC3OP_FM<0x12, 0>;
1053def MTC2 : MFC3OP<"mtc2", GPR32Opnd>, MFC3OP_FM<0x12, 4>;
1054
1055//===----------------------------------------------------------------------===//
1056// Instruction aliases
1057//===----------------------------------------------------------------------===//
1058def : InstAlias<"move $dst, $src",
1059                (ADDu GPR32Opnd:$dst, GPR32Opnd:$src,ZERO), 1>,
1060      Requires<[NotMips64]>;
1061def : InstAlias<"bal $offset", (BGEZAL ZERO, brtarget:$offset), 0>;
1062def : InstAlias<"addu $rs, $rt, $imm",
1063                (ADDiu GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
1064def : InstAlias<"add $rs, $rt, $imm",
1065                (ADDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
1066def : InstAlias<"and $rs, $rt, $imm",
1067                (ANDi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
1068def : InstAlias<"j $rs", (JR GPR32Opnd:$rs), 0>;
1069def : InstAlias<"jalr $rs", (JALR RA, GPR32Opnd:$rs), 0>;
1070def : InstAlias<"jal $rs", (JALR RA, GPR32Opnd:$rs), 0>;
1071def : InstAlias<"jal $rd,$rs", (JALR GPR32Opnd:$rd, GPR32Opnd:$rs), 0>;
1072def : InstAlias<"not $rt, $rs",
1073                (NOR GPR32Opnd:$rt, GPR32Opnd:$rs, ZERO), 0>;
1074def : InstAlias<"neg $rt, $rs",
1075                (SUB GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>;
1076def : InstAlias<"negu $rt, $rs",
1077                (SUBu GPR32Opnd:$rt, ZERO, GPR32Opnd:$rs), 1>;
1078def : InstAlias<"slt $rs, $rt, $imm",
1079                (SLTi GPR32Opnd:$rs, GPR32Opnd:$rt, simm16:$imm), 0>;
1080def : InstAlias<"xor $rs, $rt, $imm",
1081                (XORi GPR32Opnd:$rs, GPR32Opnd:$rt, uimm16:$imm), 0>;
1082def : InstAlias<"or $rs, $rt, $imm",
1083                (ORi GPR32Opnd:$rs, GPR32Opnd:$rt, uimm16:$imm), 0>;
1084def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
1085def : InstAlias<"mfc0 $rt, $rd", (MFC0 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
1086def : InstAlias<"mtc0 $rt, $rd", (MTC0 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
1087def : InstAlias<"mfc2 $rt, $rd", (MFC2 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
1088def : InstAlias<"mtc2 $rt, $rd", (MTC2 GPR32Opnd:$rt, GPR32Opnd:$rd, 0), 0>;
1089def : InstAlias<"bnez $rs,$offset",
1090                (BNE GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
1091def : InstAlias<"beqz $rs,$offset",
1092                (BEQ GPR32Opnd:$rs, ZERO, brtarget:$offset), 0>;
1093def : InstAlias<"syscall", (SYSCALL 0), 1>;
1094
1095def : InstAlias<"break $imm", (BREAK uimm10:$imm, 0), 1>;
1096def : InstAlias<"break", (BREAK 0, 0), 1>;
1097def : InstAlias<"ei", (EI ZERO), 1>;
1098def : InstAlias<"di", (DI ZERO), 1>;
1099
1100def  : InstAlias<"teq $rs, $rt", (TEQ GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1101def  : InstAlias<"tge $rs, $rt", (TGE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1102def  : InstAlias<"tgeu $rs, $rt", (TGEU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1103def  : InstAlias<"tlt $rs, $rt", (TLT GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1104def  : InstAlias<"tltu $rs, $rt", (TLTU GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1105def  : InstAlias<"tne $rs, $rt", (TNE GPR32Opnd:$rs, GPR32Opnd:$rt, 0), 1>;
1106//===----------------------------------------------------------------------===//
1107// Assembler Pseudo Instructions
1108//===----------------------------------------------------------------------===//
1109
1110class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
1111  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1112                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1113def LoadImm32Reg : LoadImm32<"li", shamt,GPR32Opnd>;
1114
1115class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
1116  MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
1117                     !strconcat(instr_asm, "\t$rt, $addr")> ;
1118def LoadAddr32Reg : LoadAddress<"la", mem, GPR32Opnd>;
1119
1120class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
1121  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1122                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1123def LoadAddr32Imm : LoadAddressImm<"la", shamt,GPR32Opnd>;
1124
1125
1126
1127//===----------------------------------------------------------------------===//
1128//  Arbitrary patterns that map to one or more instructions
1129//===----------------------------------------------------------------------===//
1130
1131// Load/store pattern templates.
1132class LoadRegImmPat<Instruction LoadInst, ValueType ValTy, PatFrag Node> :
1133  MipsPat<(ValTy (Node addrRegImm:$a)), (LoadInst addrRegImm:$a)>;
1134
1135class StoreRegImmPat<Instruction StoreInst, ValueType ValTy> :
1136  MipsPat<(store ValTy:$v, addrRegImm:$a), (StoreInst ValTy:$v, addrRegImm:$a)>;
1137
1138// Small immediates
1139def : MipsPat<(i32 immSExt16:$in),
1140              (ADDiu ZERO, imm:$in)>;
1141def : MipsPat<(i32 immZExt16:$in),
1142              (ORi ZERO, imm:$in)>;
1143def : MipsPat<(i32 immLow16Zero:$in),
1144              (LUi (HI16 imm:$in))>;
1145
1146// Arbitrary immediates
1147def : MipsPat<(i32 imm:$imm),
1148          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1149
1150// Carry MipsPatterns
1151def : MipsPat<(subc GPR32:$lhs, GPR32:$rhs),
1152              (SUBu GPR32:$lhs, GPR32:$rhs)>;
1153let Predicates = [HasStdEnc, NotDSP] in {
1154  def : MipsPat<(addc GPR32:$lhs, GPR32:$rhs),
1155                (ADDu GPR32:$lhs, GPR32:$rhs)>;
1156  def : MipsPat<(addc  GPR32:$src, immSExt16:$imm),
1157                (ADDiu GPR32:$src, imm:$imm)>;
1158}
1159
1160// Call
1161def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1162              (JAL tglobaladdr:$dst)>;
1163def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1164              (JAL texternalsym:$dst)>;
1165//def : MipsPat<(MipsJmpLink GPR32:$dst),
1166//              (JALR GPR32:$dst)>;
1167
1168// Tail call
1169def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1170              (TAILCALL tglobaladdr:$dst)>;
1171def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1172              (TAILCALL texternalsym:$dst)>;
1173// hi/lo relocs
1174def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1175def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1176def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1177def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1178def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1179def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1180
1181def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1182def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1183def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1184def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1185def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1186def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1187
1188def : MipsPat<(add GPR32:$hi, (MipsLo tglobaladdr:$lo)),
1189              (ADDiu GPR32:$hi, tglobaladdr:$lo)>;
1190def : MipsPat<(add GPR32:$hi, (MipsLo tblockaddress:$lo)),
1191              (ADDiu GPR32:$hi, tblockaddress:$lo)>;
1192def : MipsPat<(add GPR32:$hi, (MipsLo tjumptable:$lo)),
1193              (ADDiu GPR32:$hi, tjumptable:$lo)>;
1194def : MipsPat<(add GPR32:$hi, (MipsLo tconstpool:$lo)),
1195              (ADDiu GPR32:$hi, tconstpool:$lo)>;
1196def : MipsPat<(add GPR32:$hi, (MipsLo tglobaltlsaddr:$lo)),
1197              (ADDiu GPR32:$hi, tglobaltlsaddr:$lo)>;
1198
1199// gp_rel relocs
1200def : MipsPat<(add GPR32:$gp, (MipsGPRel tglobaladdr:$in)),
1201              (ADDiu GPR32:$gp, tglobaladdr:$in)>;
1202def : MipsPat<(add GPR32:$gp, (MipsGPRel tconstpool:$in)),
1203              (ADDiu GPR32:$gp, tconstpool:$in)>;
1204
1205// wrapper_pic
1206class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1207      MipsPat<(MipsWrapper RC:$gp, node:$in),
1208              (ADDiuOp RC:$gp, node:$in)>;
1209
1210def : WrapperPat<tglobaladdr, ADDiu, GPR32>;
1211def : WrapperPat<tconstpool, ADDiu, GPR32>;
1212def : WrapperPat<texternalsym, ADDiu, GPR32>;
1213def : WrapperPat<tblockaddress, ADDiu, GPR32>;
1214def : WrapperPat<tjumptable, ADDiu, GPR32>;
1215def : WrapperPat<tglobaltlsaddr, ADDiu, GPR32>;
1216
1217// Mips does not have "not", so we expand our way
1218def : MipsPat<(not GPR32:$in),
1219              (NOR GPR32Opnd:$in, ZERO)>;
1220
1221// extended loads
1222let Predicates = [HasStdEnc] in {
1223  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1224  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1225  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1226}
1227
1228// peepholes
1229let Predicates = [HasStdEnc] in
1230def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1231
1232// brcond patterns
1233multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1234                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1235                      Instruction SLTiuOp, Register ZEROReg> {
1236def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1237              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1238def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1239              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1240
1241def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1242              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1243def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1244              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1245def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1246              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1247def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1248              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1249def : MipsPat<(brcond (i32 (setgt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
1250              (BEQ (SLTiOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
1251def : MipsPat<(brcond (i32 (setugt RC:$lhs, immSExt16Plus1:$rhs)), bb:$dst),
1252              (BEQ (SLTiuOp RC:$lhs, (Plus1 imm:$rhs)), ZERO, bb:$dst)>;
1253
1254def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1255              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1256def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1257              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1258
1259def : MipsPat<(brcond RC:$cond, bb:$dst),
1260              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1261}
1262
1263defm : BrcondPats<GPR32, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1264
1265def : MipsPat<(brcond (i32 (setlt i32:$lhs, 1)), bb:$dst),
1266              (BLEZ i32:$lhs, bb:$dst)>;
1267def : MipsPat<(brcond (i32 (setgt i32:$lhs, -1)), bb:$dst),
1268              (BGEZ i32:$lhs, bb:$dst)>;
1269
1270// setcc patterns
1271multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1272                     Instruction SLTuOp, Register ZEROReg> {
1273  def : MipsPat<(seteq RC:$lhs, 0),
1274                (SLTiuOp RC:$lhs, 1)>;
1275  def : MipsPat<(setne RC:$lhs, 0),
1276                (SLTuOp ZEROReg, RC:$lhs)>;
1277  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1278                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1279  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1280                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1281}
1282
1283multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1284  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1285                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1286  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1287                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1288}
1289
1290multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1291  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1292                (SLTOp RC:$rhs, RC:$lhs)>;
1293  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1294                (SLTuOp RC:$rhs, RC:$lhs)>;
1295}
1296
1297multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1298  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1299                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1300  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1301                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1302}
1303
1304multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1305                        Instruction SLTiuOp> {
1306  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1307                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1308  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1309                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1310}
1311
1312defm : SeteqPats<GPR32, SLTiu, XOR, SLTu, ZERO>;
1313defm : SetlePats<GPR32, SLT, SLTu>;
1314defm : SetgtPats<GPR32, SLT, SLTu>;
1315defm : SetgePats<GPR32, SLT, SLTu>;
1316defm : SetgeImmPats<GPR32, SLTi, SLTiu>;
1317
1318// bswap pattern
1319def : MipsPat<(bswap GPR32:$rt), (ROTR (WSBH GPR32:$rt), 16)>;
1320
1321// mflo/hi patterns.
1322def : MipsPat<(i32 (ExtractLOHI ACC64:$ac, imm:$lohi_idx)),
1323              (EXTRACT_SUBREG ACC64:$ac, imm:$lohi_idx)>;
1324
1325// Load halfword/word patterns.
1326let AddedComplexity = 40 in {
1327  let Predicates = [HasStdEnc] in {
1328    def : LoadRegImmPat<LBu, i32, zextloadi8>;
1329    def : LoadRegImmPat<LH, i32, sextloadi16>;
1330    def : LoadRegImmPat<LW, i32, load>;
1331  }
1332}
1333
1334//===----------------------------------------------------------------------===//
1335// Floating Point Support
1336//===----------------------------------------------------------------------===//
1337
1338include "MipsInstrFPU.td"
1339include "Mips64InstrInfo.td"
1340include "MipsCondMov.td"
1341
1342//
1343// Mips16
1344
1345include "Mips16InstrFormats.td"
1346include "Mips16InstrInfo.td"
1347
1348// DSP
1349include "MipsDSPInstrFormats.td"
1350include "MipsDSPInstrInfo.td"
1351
1352// MSA
1353include "MipsMSAInstrFormats.td"
1354include "MipsMSAInstrInfo.td"
1355
1356// Micromips
1357include "MicroMipsInstrFormats.td"
1358include "MicroMipsInstrInfo.td"
1359