MipsInstrInfo.td revision cdc0c59d1ed5ac6c616b8899222d1e102ccd9f8d
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
37
38def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
39                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
40def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
42                                   SDTCisSameAs<0, 4>]>;
43
44def SDTMipsLoadLR  : SDTypeProfile<1, 2,
45                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
46                                    SDTCisSameAs<0, 2>]>;
47
48// Call
49def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
50                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
51                          SDNPVariadic]>;
52
53// Tail call
54def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
55                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
56
57// Hi and Lo nodes are used to handle global addresses. Used on
58// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
59// static model. (nothing to do with Mips Registers Hi and Lo)
60def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
61def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
62def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
63
64// TlsGd node is used to handle General Dynamic TLS
65def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
66
67// TprelHi and TprelLo nodes are used to handle Local Exec TLS
68def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
69def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
70
71// Thread pointer
72def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
73
74// Return
75def MipsRet : SDNode<"MipsISD::Ret", SDTNone, [SDNPHasChain, SDNPOptInGlue]>;
76
77// These are target-independent nodes, but have target-specific formats.
78def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
79                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
80def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
81                           [SDNPHasChain, SDNPSideEffect,
82                            SDNPOptInGlue, SDNPOutGlue]>;
83
84// MAdd*/MSub* nodes
85def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
86                           [SDNPOptInGlue, SDNPOutGlue]>;
87def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
88                           [SDNPOptInGlue, SDNPOutGlue]>;
89def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
90                           [SDNPOptInGlue, SDNPOutGlue]>;
91def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
92                           [SDNPOptInGlue, SDNPOutGlue]>;
93
94// DivRem(u) nodes
95def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
96                           [SDNPOutGlue]>;
97def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
98                           [SDNPOutGlue]>;
99
100// Target constant nodes that are not part of any isel patterns and remain
101// unchanged can cause instructions with illegal operands to be emitted.
102// Wrapper node patterns give the instruction selector a chance to replace
103// target constant nodes that would otherwise remain unchanged with ADDiu
104// nodes. Without these wrapper node patterns, the following conditional move
105// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
106// compiled:
107//  movn  %got(d)($gp), %got(c)($gp), $4
108// This instruction is illegal since movn can take only register operands.
109
110def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
111
112def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
113
114def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
115def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
116
117def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
118                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
119def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
120                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
121def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
122                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
123def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
124                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
125def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
126                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
127def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
128                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
129def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
130                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
131def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
132                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
133
134//===----------------------------------------------------------------------===//
135// Mips Instruction Predicate Definitions.
136//===----------------------------------------------------------------------===//
137def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
138                      AssemblerPredicate<"FeatureSEInReg">;
139def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
140                      AssemblerPredicate<"FeatureBitCount">;
141def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
142                      AssemblerPredicate<"FeatureSwap">;
143def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
144                      AssemblerPredicate<"FeatureCondMov">;
145def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
146                      AssemblerPredicate<"FeatureFPIdx">;
147def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
148                      AssemblerPredicate<"FeatureMips32">;
149def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
150                      AssemblerPredicate<"FeatureMips32r2">;
151def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
152                      AssemblerPredicate<"FeatureMips64">;
153def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
154                      AssemblerPredicate<"!FeatureMips64">;
155def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
156                      AssemblerPredicate<"FeatureMips64r2">;
157def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
158                      AssemblerPredicate<"FeatureN64">;
159def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
160                      AssemblerPredicate<"!FeatureN64">;
161def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
162                      AssemblerPredicate<"FeatureMips16">;
163def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
164                      AssemblerPredicate<"FeatureMips32">;
165def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
166                      AssemblerPredicate<"FeatureMips32">;
167def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
168                      AssemblerPredicate<"FeatureMips32">;
169def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
170                      AssemblerPredicate<"!FeatureMips16">;
171
172class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
173  let Predicates = [HasStdEnc];
174}
175
176class IsCommutable {
177  bit isCommutable = 1;
178}
179
180class IsBranch {
181  bit isBranch = 1;
182}
183
184class IsReturn {
185  bit isReturn = 1;
186}
187
188class IsCall {
189  bit isCall = 1;
190}
191
192class IsTailCall {
193  bit isCall = 1;
194  bit isTerminator = 1;
195  bit isReturn = 1;
196  bit isBarrier = 1;
197  bit hasExtraSrcRegAllocReq = 1;
198  bit isCodeGenOnly = 1;
199}
200
201class IsAsCheapAsAMove {
202  bit isAsCheapAsAMove = 1;
203}
204
205class NeverHasSideEffects {
206  bit neverHasSideEffects = 1;
207}
208
209//===----------------------------------------------------------------------===//
210// Instruction format superclass
211//===----------------------------------------------------------------------===//
212
213include "MipsInstrFormats.td"
214
215//===----------------------------------------------------------------------===//
216// Mips Operand, Complex Patterns and Transformations Definitions.
217//===----------------------------------------------------------------------===//
218
219// Instruction operand types
220def jmptarget   : Operand<OtherVT> {
221  let EncoderMethod = "getJumpTargetOpValue";
222}
223def brtarget    : Operand<OtherVT> {
224  let EncoderMethod = "getBranchTargetOpValue";
225  let OperandType = "OPERAND_PCREL";
226  let DecoderMethod = "DecodeBranchTarget";
227}
228def calltarget  : Operand<iPTR> {
229  let EncoderMethod = "getJumpTargetOpValue";
230}
231def calltarget64: Operand<i64>;
232def simm16      : Operand<i32> {
233  let DecoderMethod= "DecodeSimm16";
234}
235def simm16_64   : Operand<i64>;
236def shamt       : Operand<i32>;
237
238// Unsigned Operand
239def uimm16      : Operand<i32> {
240  let PrintMethod = "printUnsignedImm";
241}
242
243def MipsMemAsmOperand : AsmOperandClass {
244  let Name = "Mem";
245  let ParserMethod = "parseMemOperand";
246}
247
248// Address operand
249def mem : Operand<i32> {
250  let PrintMethod = "printMemOperand";
251  let MIOperandInfo = (ops CPURegs, simm16);
252  let EncoderMethod = "getMemEncoding";
253  let ParserMatchClass = MipsMemAsmOperand;
254}
255
256def mem64 : Operand<i64> {
257  let PrintMethod = "printMemOperand";
258  let MIOperandInfo = (ops CPU64Regs, simm16_64);
259  let EncoderMethod = "getMemEncoding";
260  let ParserMatchClass = MipsMemAsmOperand;
261}
262
263def mem_ea : Operand<i32> {
264  let PrintMethod = "printMemOperandEA";
265  let MIOperandInfo = (ops CPURegs, simm16);
266  let EncoderMethod = "getMemEncoding";
267}
268
269def mem_ea_64 : Operand<i64> {
270  let PrintMethod = "printMemOperandEA";
271  let MIOperandInfo = (ops CPU64Regs, simm16_64);
272  let EncoderMethod = "getMemEncoding";
273}
274
275// size operand of ext instruction
276def size_ext : Operand<i32> {
277  let EncoderMethod = "getSizeExtEncoding";
278  let DecoderMethod = "DecodeExtSize";
279}
280
281// size operand of ins instruction
282def size_ins : Operand<i32> {
283  let EncoderMethod = "getSizeInsEncoding";
284  let DecoderMethod = "DecodeInsSize";
285}
286
287// Transformation Function - get the lower 16 bits.
288def LO16 : SDNodeXForm<imm, [{
289  return getImm(N, N->getZExtValue() & 0xFFFF);
290}]>;
291
292// Transformation Function - get the higher 16 bits.
293def HI16 : SDNodeXForm<imm, [{
294  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
295}]>;
296
297// Node immediate fits as 16-bit sign extended on target immediate.
298// e.g. addi, andi
299def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
300
301// Node immediate fits as 16-bit zero extended on target immediate.
302// The LO16 param means that only the lower 16 bits of the node
303// immediate are caught.
304// e.g. addiu, sltiu
305def immZExt16  : PatLeaf<(imm), [{
306  if (N->getValueType(0) == MVT::i32)
307    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
308  else
309    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
310}], LO16>;
311
312// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
313def immLow16Zero : PatLeaf<(imm), [{
314  int64_t Val = N->getSExtValue();
315  return isInt<32>(Val) && !(Val & 0xffff);
316}]>;
317
318// shamt field must fit in 5 bits.
319def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
320
321// Mips Address Mode! SDNode frameindex could possibily be a match
322// since load and store instructions from stack used it.
323def addr :
324  ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
325
326//===----------------------------------------------------------------------===//
327// Instructions specific format
328//===----------------------------------------------------------------------===//
329
330/// Move Control Registers From/To CPU Registers
331def MFC0_3OP  : MFC3OP<0x10, 0, (outs CPURegs:$rt),
332                       (ins CPURegs:$rd, uimm16:$sel),"mfc0\t$rt, $rd, $sel">;
333def : InstAlias<"mfc0 $rt, $rd", (MFC0_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
334
335def MTC0_3OP  : MFC3OP<0x10, 4, (outs CPURegs:$rd, uimm16:$sel),
336                       (ins CPURegs:$rt),"mtc0\t$rt, $rd, $sel">;
337def : InstAlias<"mtc0 $rt, $rd", (MTC0_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
338
339def MFC2_3OP  : MFC3OP<0x12, 0, (outs CPURegs:$rt),
340                       (ins CPURegs:$rd, uimm16:$sel),"mfc2\t$rt, $rd, $sel">;
341def : InstAlias<"mfc2 $rt, $rd", (MFC2_3OP CPURegs:$rt, CPURegs:$rd, 0)>;
342
343def MTC2_3OP  : MFC3OP<0x12, 4, (outs CPURegs:$rd, uimm16:$sel),
344                       (ins CPURegs:$rt),"mtc2\t$rt, $rd, $sel">;
345def : InstAlias<"mtc2 $rt, $rd", (MTC2_3OP CPURegs:$rd, 0, CPURegs:$rt)>;
346
347// Arithmetic and logical instructions with 3 register operands.
348class ArithLogicR<string opstr, InstrItinClass Itin, RegisterClass RC,
349                  bit isComm = 0, SDPatternOperator OpNode = null_frag>:
350  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
351         !strconcat(opstr, "\t$rd, $rs, $rt"),
352         [(set RC:$rd, (OpNode RC:$rs, RC:$rt))], Itin, FrmR> {
353  let isCommutable = isComm;
354  let isReMaterializable = 1;
355}
356
357// Arithmetic and logical instructions with 2 register operands.
358class ArithLogicI<string opstr, Operand Od, PatLeaf imm_type,
359                  RegisterClass RC, SDPatternOperator OpNode = null_frag> :
360  InstSE<(outs RC:$rt), (ins RC:$rs, Od:$imm16),
361         !strconcat(opstr, "\t$rt, $rs, $imm16"),
362         [(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu, FrmI> {
363  let isReMaterializable = 1;
364}
365
366// Arithmetic Multiply ADD/SUB
367let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
368class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
369  FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
370     !strconcat(instr_asm, "\t$rs, $rt"),
371     [(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
372  let rd = 0;
373  let shamt = 0;
374  let isCommutable = isComm;
375}
376
377//  Logical
378class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
379  FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
380     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
381     [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
382  let shamt = 0;
383  let isCommutable = 1;
384}
385
386// Shifts
387class shift_rotate_imm<string opstr, PatFrag PF, Operand ImmOpnd,
388                       RegisterClass RC, SDPatternOperator OpNode> :
389  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
390         !strconcat(opstr, "\t$rd, $rt, $shamt"),
391         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR>;
392
393// 32-bit shift instructions.
394class shift_rotate_imm32<string opstr, SDPatternOperator OpNode = null_frag> :
395  shift_rotate_imm<opstr, immZExt5, shamt, CPURegs, OpNode>;
396
397class shift_rotate_reg<string opstr, SDNode OpNode, RegisterClass RC>:
398  InstSE<(outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
399         !strconcat(opstr, "\t$rd, $rt, $rs"),
400         [(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu, FrmR>;
401
402// Load Upper Imediate
403class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
404  FI<op, (outs RC:$rt), (ins Imm:$imm16),
405     !strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu>, IsAsCheapAsAMove {
406  let rs = 0;
407  let neverHasSideEffects = 1;
408  let isReMaterializable = 1;
409}
410
411class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
412          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
413  bits<21> addr;
414  let Inst{25-21} = addr{20-16};
415  let Inst{15-0}  = addr{15-0};
416  let DecoderMethod = "DecodeMem";
417}
418
419// Memory Load/Store
420let canFoldAsLoad = 1 in
421class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
422            Operand MemOpnd, bit Pseudo>:
423  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
424     !strconcat(instr_asm, "\t$rt, $addr"),
425     [(set RC:$rt, (OpNode addr:$addr))], IILoad> {
426  let isPseudo = Pseudo;
427}
428
429class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
430             Operand MemOpnd, bit Pseudo>:
431  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
432     !strconcat(instr_asm, "\t$rt, $addr"),
433     [(OpNode RC:$rt, addr:$addr)], IIStore> {
434  let isPseudo = Pseudo;
435}
436
437// 32-bit load.
438multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
439                   bit Pseudo = 0> {
440  def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
441               Requires<[NotN64, HasStdEnc]>;
442  def _P8    : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
443               Requires<[IsN64, HasStdEnc]> {
444    let DecoderNamespace = "Mips64";
445    let isCodeGenOnly = 1;
446  }
447}
448
449// 64-bit load.
450multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
451                   bit Pseudo = 0> {
452  def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
453               Requires<[NotN64, HasStdEnc]>;
454  def _P8    : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
455               Requires<[IsN64, HasStdEnc]> {
456    let DecoderNamespace = "Mips64";
457    let isCodeGenOnly = 1;
458  }
459}
460
461// 32-bit store.
462multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
463                    bit Pseudo = 0> {
464  def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
465               Requires<[NotN64, HasStdEnc]>;
466  def _P8    : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
467               Requires<[IsN64, HasStdEnc]> {
468    let DecoderNamespace = "Mips64";
469    let isCodeGenOnly = 1;
470  }
471}
472
473// 64-bit store.
474multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
475                    bit Pseudo = 0> {
476  def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
477               Requires<[NotN64, HasStdEnc]>;
478  def _P8    : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
479               Requires<[IsN64, HasStdEnc]> {
480    let DecoderNamespace = "Mips64";
481    let isCodeGenOnly = 1;
482  }
483}
484
485// Load/Store Left/Right
486let canFoldAsLoad = 1 in
487class LoadLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
488                    RegisterClass RC, Operand MemOpnd> :
489  FMem<op, (outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
490       !strconcat(instr_asm, "\t$rt, $addr"),
491       [(set RC:$rt, (OpNode addr:$addr, RC:$src))], IILoad> {
492  string Constraints = "$src = $rt";
493}
494
495class StoreLeftRight<bits<6> op, string instr_asm, SDNode OpNode,
496                     RegisterClass RC, Operand MemOpnd>:
497  FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
498       !strconcat(instr_asm, "\t$rt, $addr"), [(OpNode RC:$rt, addr:$addr)],
499       IIStore>;
500
501// 32-bit load left/right.
502multiclass LoadLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
503  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
504               Requires<[NotN64, HasStdEnc]>;
505  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
506               Requires<[IsN64, HasStdEnc]> {
507    let DecoderNamespace = "Mips64";
508    let isCodeGenOnly = 1;
509  }
510}
511
512// 64-bit load left/right.
513multiclass LoadLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
514  def #NAME# : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
515               Requires<[NotN64, HasStdEnc]>;
516  def _P8    : LoadLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
517               Requires<[IsN64, HasStdEnc]> {
518    let DecoderNamespace = "Mips64";
519    let isCodeGenOnly = 1;
520  }
521}
522
523// 32-bit store left/right.
524multiclass StoreLeftRightM32<bits<6> op, string instr_asm, SDNode OpNode> {
525  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem>,
526               Requires<[NotN64, HasStdEnc]>;
527  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPURegs, mem64>,
528               Requires<[IsN64, HasStdEnc]> {
529    let DecoderNamespace = "Mips64";
530    let isCodeGenOnly = 1;
531  }
532}
533
534// 64-bit store left/right.
535multiclass StoreLeftRightM64<bits<6> op, string instr_asm, SDNode OpNode> {
536  def #NAME# : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem>,
537               Requires<[NotN64, HasStdEnc]>;
538  def _P8    : StoreLeftRight<op, instr_asm, OpNode, CPU64Regs, mem64>,
539               Requires<[IsN64, HasStdEnc]> {
540    let DecoderNamespace = "Mips64";
541    let isCodeGenOnly = 1;
542  }
543}
544
545// Conditional Branch
546class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
547  BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
548             !strconcat(instr_asm, "\t$rs, $rt, $imm16"),
549             [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
550  let isBranch = 1;
551  let isTerminator = 1;
552  let hasDelaySlot = 1;
553  let Defs = [AT];
554}
555
556class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
557                  RegisterClass RC>:
558  BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
559             !strconcat(instr_asm, "\t$rs, $imm16"),
560             [(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
561  let rt = _rt;
562  let isBranch = 1;
563  let isTerminator = 1;
564  let hasDelaySlot = 1;
565  let Defs = [AT];
566}
567
568// SetCC
569class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
570              RegisterClass RC>:
571  FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
572     !strconcat(instr_asm, "\t$rd, $rs, $rt"),
573     [(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
574     IIAlu> {
575  let shamt = 0;
576}
577
578class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
579              PatLeaf imm_type, RegisterClass RC>:
580  FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
581     !strconcat(instr_asm, "\t$rt, $rs, $imm16"),
582     [(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
583     IIAlu>;
584
585// Jump
586class JumpFJ<bits<6> op, DAGOperand opnd, string instr_asm,
587             SDPatternOperator operator, SDPatternOperator targetoperator>:
588  FJ<op, (outs), (ins opnd:$target), !strconcat(instr_asm, "\t$target"),
589     [(operator targetoperator:$target)], IIBranch> {
590  let isTerminator=1;
591  let isBarrier=1;
592  let hasDelaySlot = 1;
593  let DecoderMethod = "DecodeJumpTarget";
594  let Defs = [AT];
595}
596
597// Unconditional branch
598class UncondBranch<bits<6> op, string instr_asm>:
599  BranchBase<op, (outs), (ins brtarget:$imm16),
600             !strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
601  let rs = 0;
602  let rt = 0;
603  let isBranch = 1;
604  let isTerminator = 1;
605  let isBarrier = 1;
606  let hasDelaySlot = 1;
607  let Predicates = [RelocPIC, HasStdEnc];
608  let Defs = [AT];
609}
610
611// Base class for indirect branch and return instruction classes.
612let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
613class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
614  FR<0, 0x8, (outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch> {
615  let rt = 0;
616  let rd = 0;
617  let shamt = 0;
618}
619
620// Indirect branch
621class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
622  let isBranch = 1;
623  let isIndirectBranch = 1;
624}
625
626// Return instruction
627class RetBase<RegisterClass RC>: JumpFR<RC> {
628  let isReturn = 1;
629  let isCodeGenOnly = 1;
630  let hasCtrlDep = 1;
631  let hasExtraSrcRegAllocReq = 1;
632}
633
634// Jump and Link (Call)
635let isCall=1, hasDelaySlot=1, Defs = [RA] in {
636  class JumpLink<bits<6> op, string instr_asm>:
637    FJ<op, (outs), (ins calltarget:$target),
638       !strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
639       IIBranch> {
640       let DecoderMethod = "DecodeJumpTarget";
641       }
642
643  class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
644                    RegisterClass RC>:
645    FR<op, func, (outs), (ins RC:$rs),
646       !strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
647    let rt = 0;
648    let rd = 31;
649    let shamt = 0;
650  }
651
652  class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
653    FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16),
654       !strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
655    let rt = _rt;
656  }
657}
658
659// Mul, Div
660class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
661           RegisterClass RC, list<Register> DefRegs>:
662  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
663     !strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
664  let rd = 0;
665  let shamt = 0;
666  let isCommutable = 1;
667  let Defs = DefRegs;
668  let neverHasSideEffects = 1;
669}
670
671class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
672  Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
673
674class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
675          RegisterClass RC, list<Register> DefRegs>:
676  FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
677     !strconcat(instr_asm, "\t$$zero, $rs, $rt"),
678     [(op RC:$rs, RC:$rt)], itin> {
679  let rd = 0;
680  let shamt = 0;
681  let Defs = DefRegs;
682}
683
684class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
685  Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
686
687// Move from Hi/Lo
688class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
689                   list<Register> UseRegs>:
690  FR<0x00, func, (outs RC:$rd), (ins),
691     !strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
692  let rs = 0;
693  let rt = 0;
694  let shamt = 0;
695  let Uses = UseRegs;
696  let neverHasSideEffects = 1;
697}
698
699class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
700                 list<Register> DefRegs>:
701  FR<0x00, func, (outs), (ins RC:$rs),
702     !strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
703  let rt = 0;
704  let rd = 0;
705  let shamt = 0;
706  let Defs = DefRegs;
707  let neverHasSideEffects = 1;
708}
709
710class EffectiveAddress<bits<6> opc, string instr_asm, RegisterClass RC, Operand Mem> :
711  FMem<opc, (outs RC:$rt), (ins Mem:$addr),
712     instr_asm, [(set RC:$rt, addr:$addr)], IIAlu> {
713 let isCodeGenOnly = 1;
714}
715
716// Count Leading Ones/Zeros in Word
717class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
718  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
719     !strconcat(instr_asm, "\t$rd, $rs"),
720     [(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
721     Requires<[HasBitCount, HasStdEnc]> {
722  let shamt = 0;
723  let rt = rd;
724}
725
726class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
727  FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
728     !strconcat(instr_asm, "\t$rd, $rs"),
729     [(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
730     Requires<[HasBitCount, HasStdEnc]> {
731  let shamt = 0;
732  let rt = rd;
733}
734
735// Sign Extend in Register.
736class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
737                   RegisterClass RC>:
738  FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
739     !strconcat(instr_asm, "\t$rd, $rt"),
740     [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
741  let rs = 0;
742  let shamt = sa;
743  let Predicates = [HasSEInReg, HasStdEnc];
744}
745
746// Subword Swap
747class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
748  FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
749     !strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
750  let rs = 0;
751  let shamt = sa;
752  let Predicates = [HasSwap, HasStdEnc];
753  let neverHasSideEffects = 1;
754}
755
756// Read Hardware
757class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
758  : FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
759       "rdhwr\t$rt, $rd", [], IIAlu> {
760  let rs = 0;
761  let shamt = 0;
762}
763
764// Ext and Ins
765class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
766  FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
767     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
768     [(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
769  bits<5> pos;
770  bits<5> sz;
771  let rd = sz;
772  let shamt = pos;
773  let Predicates = [HasMips32r2, HasStdEnc];
774}
775
776class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
777  FR<0x1f, _funct, (outs RC:$rt),
778     (ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
779     !strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
780     [(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
781     NoItinerary> {
782  bits<5> pos;
783  bits<5> sz;
784  let rd = sz;
785  let shamt = pos;
786  let Predicates = [HasMips32r2, HasStdEnc];
787  let Constraints = "$src = $rt";
788}
789
790// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
791class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
792                 RegisterClass PRC> :
793  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
794           !strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
795           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
796
797multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
798  def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>,
799                          Requires<[NotN64, HasStdEnc]>;
800  def _P8    : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>,
801                          Requires<[IsN64, HasStdEnc]> {
802    let DecoderNamespace = "Mips64";
803  }
804}
805
806// Atomic Compare & Swap.
807class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
808                    RegisterClass PRC> :
809  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
810           !strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
811           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
812
813multiclass AtomicCmpSwap32<PatFrag Op, string Width>  {
814  def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>,
815                             Requires<[NotN64, HasStdEnc]>;
816  def _P8    : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>,
817                             Requires<[IsN64, HasStdEnc]> {
818    let DecoderNamespace = "Mips64";
819  }
820}
821
822class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
823  FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
824       !strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
825  let mayLoad = 1;
826}
827
828class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
829  FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
830       !strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
831  let mayStore = 1;
832  let Constraints = "$rt = $dst";
833}
834
835//===----------------------------------------------------------------------===//
836// Pseudo instructions
837//===----------------------------------------------------------------------===//
838
839// Return RA.
840let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
841def RetRA : PseudoSE<(outs), (ins), "", [(MipsRet)]>;
842
843let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
844def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
845                                  "!ADJCALLSTACKDOWN $amt",
846                                  [(callseq_start timm:$amt)]>;
847def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
848                                  "!ADJCALLSTACKUP $amt1",
849                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
850}
851
852// When handling PIC code the assembler needs .cpload and .cprestore
853// directives. If the real instructions corresponding these directives
854// are used, we have the same behavior, but get also a bunch of warnings
855// from the assembler.
856let neverHasSideEffects = 1 in
857def CPRESTORE : PseudoSE<(outs), (ins i32imm:$loc, CPURegs:$gp),
858                         ".cprestore\t$loc", []>;
859
860let usesCustomInserter = 1 in {
861  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
862  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
863  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
864  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
865  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
866  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
867  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
868  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
869  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
870  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
871  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
872  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
873  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
874  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
875  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
876  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
877  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
878  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
879
880  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8, "swap_8">;
881  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16, "swap_16">;
882  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32, "swap_32">;
883
884  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
885  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
886  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
887}
888
889//===----------------------------------------------------------------------===//
890// Instruction definition
891//===----------------------------------------------------------------------===//
892
893class LoadImm32< string instr_asm, Operand Od, RegisterClass RC> :
894  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
895                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
896def LoadImm32Reg : LoadImm32<"li", shamt,CPURegs>;
897
898class LoadAddress<string instr_asm, Operand MemOpnd, RegisterClass RC> :
899  MipsAsmPseudoInst<(outs RC:$rt), (ins MemOpnd:$addr),
900                     !strconcat(instr_asm, "\t$rt, $addr")> ;
901def LoadAddr32Reg : LoadAddress<"la", mem, CPURegs>;
902
903class LoadAddressImm<string instr_asm, Operand Od, RegisterClass RC> :
904  MipsAsmPseudoInst<(outs RC:$rt), (ins Od:$imm32),
905                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
906def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegs>;
907
908//===----------------------------------------------------------------------===//
909// MipsI Instructions
910//===----------------------------------------------------------------------===//
911
912/// Arithmetic Instructions (ALU Immediate)
913def ADDiu : ArithLogicI<"addiu", simm16, immSExt16, CPURegs, add>,
914            ADDI_FM<0x9>, IsAsCheapAsAMove;
915def ADDi  : ArithLogicI<"addi", simm16, immSExt16, CPURegs>, ADDI_FM<0x8>;
916def SLTi  : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
917def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
918def ANDi  : ArithLogicI<"andi", uimm16, immZExt16, CPURegs, and>, ADDI_FM<0xc>;
919def ORi   : ArithLogicI<"ori", uimm16, immZExt16, CPURegs, or>, ADDI_FM<0xd>;
920def XORi  : ArithLogicI<"xori", uimm16, immZExt16, CPURegs, xor>, ADDI_FM<0xe>;
921def LUi   : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
922
923/// Arithmetic Instructions (3-Operand, R-Type)
924def ADDu : ArithLogicR<"addu", IIAlu, CPURegs, 1, add>, ADD_FM<0, 0x21>;
925def SUBu : ArithLogicR<"subu", IIAlu, CPURegs, 0, sub>, ADD_FM<0, 0x23>;
926def ADD  : ArithLogicR<"add", IIAlu, CPURegs, 1>, ADD_FM<0, 0x20>;
927def SUB  : ArithLogicR<"sub", IIAlu, CPURegs, 0>, ADD_FM<0, 0x22>;
928def SLT  : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
929def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
930def AND  : ArithLogicR<"and", IIAlu, CPURegs, 1, and>, ADD_FM<0, 0x24>;
931def OR   : ArithLogicR<"or", IIAlu, CPURegs, 1, or>, ADD_FM<0, 0x25>;
932def XOR  : ArithLogicR<"xor", IIAlu, CPURegs, 1, xor>, ADD_FM<0, 0x26>;
933def NOR  : LogicNOR<0x00, 0x27, "nor", CPURegs>;
934
935/// Shift Instructions
936def SLL  : shift_rotate_imm32<"sll", shl>, SRA_FM<0, 0>;
937def SRL  : shift_rotate_imm32<"srl", srl>, SRA_FM<2, 0>;
938def SRA  : shift_rotate_imm32<"sra", sra>, SRA_FM<3, 0>;
939def SLLV : shift_rotate_reg<"sllv", shl, CPURegs>, SRLV_FM<4, 0>;
940def SRLV : shift_rotate_reg<"srlv", srl, CPURegs>, SRLV_FM<6, 0>;
941def SRAV : shift_rotate_reg<"srav", sra, CPURegs>, SRLV_FM<7, 0>;
942
943// Rotate Instructions
944let Predicates = [HasMips32r2, HasStdEnc] in {
945  def ROTR  : shift_rotate_imm32<"rotr", rotr>, SRA_FM<2, 1>;
946  def ROTRV : shift_rotate_reg<"rotrv", rotr, CPURegs>, SRLV_FM<6, 1>;
947}
948
949/// Load and Store Instructions
950///  aligned
951defm LB      : LoadM32<0x20, "lb",  sextloadi8>;
952defm LBu     : LoadM32<0x24, "lbu", zextloadi8>;
953defm LH      : LoadM32<0x21, "lh",  sextloadi16>;
954defm LHu     : LoadM32<0x25, "lhu", zextloadi16>;
955defm LW      : LoadM32<0x23, "lw",  load>;
956defm SB      : StoreM32<0x28, "sb", truncstorei8>;
957defm SH      : StoreM32<0x29, "sh", truncstorei16>;
958defm SW      : StoreM32<0x2b, "sw", store>;
959
960/// load/store left/right
961defm LWL : LoadLeftRightM32<0x22, "lwl", MipsLWL>;
962defm LWR : LoadLeftRightM32<0x26, "lwr", MipsLWR>;
963defm SWL : StoreLeftRightM32<0x2a, "swl", MipsSWL>;
964defm SWR : StoreLeftRightM32<0x2e, "swr", MipsSWR>;
965
966let hasSideEffects = 1 in
967def SYNC : InstSE<(outs), (ins i32imm:$stype), "sync $stype",
968                  [(MipsSync imm:$stype)], NoItinerary, FrmOther>
969{
970  bits<5> stype;
971  let Opcode = 0;
972  let Inst{25-11} = 0;
973  let Inst{10-6} = stype;
974  let Inst{5-0} = 15;
975}
976
977/// Load-linked, Store-conditional
978def LL    : LLBase<0x30, "ll", CPURegs, mem>,
979            Requires<[NotN64, HasStdEnc]>;
980def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>,
981            Requires<[IsN64, HasStdEnc]> {
982  let DecoderNamespace = "Mips64";
983}
984
985def SC    : SCBase<0x38, "sc", CPURegs, mem>,
986            Requires<[NotN64, HasStdEnc]>;
987def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>,
988            Requires<[IsN64, HasStdEnc]> {
989  let DecoderNamespace = "Mips64";
990}
991
992/// Jump and Branch Instructions
993def J       : JumpFJ<0x02, jmptarget, "j", br, bb>,
994              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
995def JR      : IndirectBranch<CPURegs>;
996def B       : UncondBranch<0x04, "b">;
997def BEQ     : CBranch<0x04, "beq", seteq, CPURegs>;
998def BNE     : CBranch<0x05, "bne", setne, CPURegs>;
999def BGEZ    : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
1000def BGTZ    : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
1001def BLEZ    : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
1002def BLTZ    : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
1003
1004let rt = 0, rs = 0, isBranch = 1, isTerminator = 1, isBarrier = 1,
1005    hasDelaySlot = 1, Defs = [RA] in
1006def BAL_BR: FI<0x1, (outs), (ins brtarget:$imm16), "bal\t$imm16", [], IIBranch>;
1007
1008def JAL  : JumpLink<0x03, "jal">;
1009def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
1010def BGEZAL  : BranchLink<"bgezal", 0x11, CPURegs>;
1011def BLTZAL  : BranchLink<"bltzal", 0x10, CPURegs>;
1012def TAILCALL : JumpFJ<0x02, calltarget, "j", MipsTailCall, imm>, IsTailCall;
1013def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, IsTailCall;
1014
1015def RET : RetBase<CPURegs>;
1016
1017/// Multiply and Divide Instructions.
1018def MULT    : Mult32<0x18, "mult", IIImul>;
1019def MULTu   : Mult32<0x19, "multu", IIImul>;
1020def SDIV    : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
1021def UDIV    : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
1022
1023def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
1024def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
1025def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
1026def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
1027
1028/// Sign Ext In Register Instructions.
1029def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
1030def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
1031
1032/// Count Leading
1033def CLZ : CountLeading0<0x20, "clz", CPURegs>;
1034def CLO : CountLeading1<0x21, "clo", CPURegs>;
1035
1036/// Word Swap Bytes Within Halfwords
1037def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
1038
1039/// No operation
1040let addr=0 in
1041  def NOP   : FJ<0, (outs), (ins), "nop", [], IIAlu>;
1042
1043// FrameIndexes are legalized when they are operands from load/store
1044// instructions. The same not happens for stack address copies, so an
1045// add op with mem ComplexPattern is used and the stack address copy
1046// can be matched. It's similar to Sparc LEA_ADDRi
1047def LEA_ADDiu : EffectiveAddress<0x09,"addiu\t$rt, $addr", CPURegs, mem_ea>;
1048
1049// MADD*/MSUB*
1050def MADD  : MArithR<0, "madd", MipsMAdd, 1>;
1051def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
1052def MSUB  : MArithR<4, "msub", MipsMSub>;
1053def MSUBU : MArithR<5, "msubu", MipsMSubu>;
1054
1055// MUL is a assembly macro in the current used ISAs. In recent ISA's
1056// it is a real instruction.
1057def MUL   : ArithLogicR<"mul", IIImul, CPURegs, 1, mul>, ADD_FM<0x1c, 0x02>;
1058
1059def RDHWR : ReadHardware<CPURegs, HWRegs>;
1060
1061def EXT : ExtBase<0, "ext", CPURegs>;
1062def INS : InsBase<4, "ins", CPURegs>;
1063
1064//===----------------------------------------------------------------------===//
1065// Instruction aliases
1066//===----------------------------------------------------------------------===//
1067def : InstAlias<"move $dst,$src", (ADD CPURegs:$dst,CPURegs:$src,ZERO)>;
1068def : InstAlias<"bal $offset", (BGEZAL RA,brtarget:$offset)>;
1069def : InstAlias<"addu $rs,$rt,$imm",
1070                (ADDiu CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1071def : InstAlias<"add $rs,$rt,$imm",
1072                (ADDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1073def : InstAlias<"and $rs,$rt,$imm",
1074                (ANDi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1075def : InstAlias<"j $rs", (JR CPURegs:$rs)>;
1076def : InstAlias<"not $rt,$rs", (NOR CPURegs:$rt,CPURegs:$rs,ZERO)>;
1077def : InstAlias<"neg $rt,$rs", (SUB CPURegs:$rt,ZERO,CPURegs:$rs)>;
1078def : InstAlias<"negu $rt,$rs", (SUBu CPURegs:$rt,ZERO,CPURegs:$rs)>;
1079def : InstAlias<"slt $rs,$rt,$imm",
1080                (SLTi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1081def : InstAlias<"xor $rs,$rt,$imm",
1082                (XORi CPURegs:$rs,CPURegs:$rt,simm16:$imm)>;
1083
1084//===----------------------------------------------------------------------===//
1085//  Arbitrary patterns that map to one or more instructions
1086//===----------------------------------------------------------------------===//
1087
1088// Small immediates
1089def : MipsPat<(i32 immSExt16:$in),
1090              (ADDiu ZERO, imm:$in)>;
1091def : MipsPat<(i32 immZExt16:$in),
1092              (ORi ZERO, imm:$in)>;
1093def : MipsPat<(i32 immLow16Zero:$in),
1094              (LUi (HI16 imm:$in))>;
1095
1096// Arbitrary immediates
1097def : MipsPat<(i32 imm:$imm),
1098          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1099
1100// Carry MipsPatterns
1101def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1102              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1103def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1104              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1105def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1106              (ADDiu CPURegs:$src, imm:$imm)>;
1107
1108// Call
1109def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1110              (JAL tglobaladdr:$dst)>;
1111def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1112              (JAL texternalsym:$dst)>;
1113//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1114//              (JALR CPURegs:$dst)>;
1115
1116// Tail call
1117def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1118              (TAILCALL tglobaladdr:$dst)>;
1119def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1120              (TAILCALL texternalsym:$dst)>;
1121// hi/lo relocs
1122def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1123def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1124def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1125def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1126def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1127def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1128
1129def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1130def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1131def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1132def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1133def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1134def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1135
1136def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1137              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1138def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1139              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1140def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1141              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1142def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1143              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1144def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1145              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1146
1147// gp_rel relocs
1148def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1149              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1150def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1151              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1152
1153// wrapper_pic
1154class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1155      MipsPat<(MipsWrapper RC:$gp, node:$in),
1156              (ADDiuOp RC:$gp, node:$in)>;
1157
1158def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1159def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1160def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1161def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1162def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1163def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1164
1165// Mips does not have "not", so we expand our way
1166def : MipsPat<(not CPURegs:$in),
1167              (NOR CPURegs:$in, ZERO)>;
1168
1169// extended loads
1170let Predicates = [NotN64, HasStdEnc] in {
1171  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1172  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1173  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1174}
1175let Predicates = [IsN64, HasStdEnc] in {
1176  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1177  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1178  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1179}
1180
1181// peepholes
1182let Predicates = [NotN64, HasStdEnc] in {
1183  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1184}
1185let Predicates = [IsN64, HasStdEnc] in {
1186  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1187}
1188
1189// brcond patterns
1190multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1191                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1192                      Instruction SLTiuOp, Register ZEROReg> {
1193def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1194              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1195def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1196              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1197
1198def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1199              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1200def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1201              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1202def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1203              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1204def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1205              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1206
1207def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1208              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1209def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1210              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1211
1212def : MipsPat<(brcond RC:$cond, bb:$dst),
1213              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1214}
1215
1216defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1217
1218// setcc patterns
1219multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1220                     Instruction SLTuOp, Register ZEROReg> {
1221  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1222                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1223  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1224                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1225}
1226
1227multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1228  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1229                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1230  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1231                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1232}
1233
1234multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1235  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1236                (SLTOp RC:$rhs, RC:$lhs)>;
1237  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1238                (SLTuOp RC:$rhs, RC:$lhs)>;
1239}
1240
1241multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1242  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1243                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1244  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1245                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1246}
1247
1248multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1249                        Instruction SLTiuOp> {
1250  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1251                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1252  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1253                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1254}
1255
1256defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1257defm : SetlePats<CPURegs, SLT, SLTu>;
1258defm : SetgtPats<CPURegs, SLT, SLTu>;
1259defm : SetgePats<CPURegs, SLT, SLTu>;
1260defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1261
1262// bswap pattern
1263def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1264
1265//===----------------------------------------------------------------------===//
1266// Floating Point Support
1267//===----------------------------------------------------------------------===//
1268
1269include "MipsInstrFPU.td"
1270include "Mips64InstrInfo.td"
1271include "MipsCondMov.td"
1272
1273//
1274// Mips16
1275
1276include "Mips16InstrFormats.td"
1277include "Mips16InstrInfo.td"
1278
1279// DSP
1280include "MipsDSPInstrFormats.td"
1281include "MipsDSPInstrInfo.td"
1282
1283