MipsInstrInfo.td revision dc2f79274021a590d6b72acd741117068c3e49bd
1//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the Mips implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14
15//===----------------------------------------------------------------------===//
16// Mips profiles and nodes
17//===----------------------------------------------------------------------===//
18
19def SDT_MipsJmpLink      : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
20def SDT_MipsCMov         : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
21                                                SDTCisSameAs<1, 2>,
22                                                SDTCisSameAs<3, 4>,
23                                                SDTCisInt<4>]>;
24def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
25def SDT_MipsCallSeqEnd   : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
26def SDT_MipsMAddMSub     : SDTypeProfile<0, 4,
27                                         [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
28                                          SDTCisSameAs<1, 2>,
29                                          SDTCisSameAs<2, 3>]>;
30def SDT_MipsDivRem       : SDTypeProfile<0, 2,
31                                         [SDTCisInt<0>,
32                                          SDTCisSameAs<0, 1>]>;
33
34def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
35
36def SDT_Sync             : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
37
38def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
39                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
40def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
41                                   SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
42                                   SDTCisSameAs<0, 4>]>;
43
44def SDTMipsLoadLR  : SDTypeProfile<1, 2,
45                                   [SDTCisInt<0>, SDTCisPtrTy<1>,
46                                    SDTCisSameAs<0, 2>]>;
47
48// Call
49def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
50                         [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
51                          SDNPVariadic]>;
52
53// Tail call
54def MipsTailCall : SDNode<"MipsISD::TailCall", SDT_MipsJmpLink,
55                          [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
56
57// Hi and Lo nodes are used to handle global addresses. Used on
58// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
59// static model. (nothing to do with Mips Registers Hi and Lo)
60def MipsHi    : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
61def MipsLo    : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
62def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
63
64// TlsGd node is used to handle General Dynamic TLS
65def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
66
67// TprelHi and TprelLo nodes are used to handle Local Exec TLS
68def MipsTprelHi    : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
69def MipsTprelLo    : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
70
71// Thread pointer
72def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
73
74// Return
75def MipsRet : SDNode<"MipsISD::Ret", SDTNone,
76                     [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
77
78// These are target-independent nodes, but have target-specific formats.
79def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
80                           [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
81def callseq_end   : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
82                           [SDNPHasChain, SDNPSideEffect,
83                            SDNPOptInGlue, SDNPOutGlue]>;
84
85// MAdd*/MSub* nodes
86def MipsMAdd      : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
87                           [SDNPOptInGlue, SDNPOutGlue]>;
88def MipsMAddu     : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
89                           [SDNPOptInGlue, SDNPOutGlue]>;
90def MipsMSub      : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
91                           [SDNPOptInGlue, SDNPOutGlue]>;
92def MipsMSubu     : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
93                           [SDNPOptInGlue, SDNPOutGlue]>;
94
95// DivRem(u) nodes
96def MipsDivRem    : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
97                           [SDNPOutGlue]>;
98def MipsDivRemU   : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
99                           [SDNPOutGlue]>;
100
101// Target constant nodes that are not part of any isel patterns and remain
102// unchanged can cause instructions with illegal operands to be emitted.
103// Wrapper node patterns give the instruction selector a chance to replace
104// target constant nodes that would otherwise remain unchanged with ADDiu
105// nodes. Without these wrapper node patterns, the following conditional move
106// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
107// compiled:
108//  movn  %got(d)($gp), %got(c)($gp), $4
109// This instruction is illegal since movn can take only register operands.
110
111def MipsWrapper    : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
112
113def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain,SDNPSideEffect]>;
114
115def MipsExt :  SDNode<"MipsISD::Ext", SDT_Ext>;
116def MipsIns :  SDNode<"MipsISD::Ins", SDT_Ins>;
117
118def MipsLWL : SDNode<"MipsISD::LWL", SDTMipsLoadLR,
119                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
120def MipsLWR : SDNode<"MipsISD::LWR", SDTMipsLoadLR,
121                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
122def MipsSWL : SDNode<"MipsISD::SWL", SDTStore,
123                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
124def MipsSWR : SDNode<"MipsISD::SWR", SDTStore,
125                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
126def MipsLDL : SDNode<"MipsISD::LDL", SDTMipsLoadLR,
127                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
128def MipsLDR : SDNode<"MipsISD::LDR", SDTMipsLoadLR,
129                     [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
130def MipsSDL : SDNode<"MipsISD::SDL", SDTStore,
131                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
132def MipsSDR : SDNode<"MipsISD::SDR", SDTStore,
133                     [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
134
135//===----------------------------------------------------------------------===//
136// Mips Instruction Predicate Definitions.
137//===----------------------------------------------------------------------===//
138def HasSEInReg  :     Predicate<"Subtarget.hasSEInReg()">,
139                      AssemblerPredicate<"FeatureSEInReg">;
140def HasBitCount :     Predicate<"Subtarget.hasBitCount()">,
141                      AssemblerPredicate<"FeatureBitCount">;
142def HasSwap     :     Predicate<"Subtarget.hasSwap()">,
143                      AssemblerPredicate<"FeatureSwap">;
144def HasCondMov  :     Predicate<"Subtarget.hasCondMov()">,
145                      AssemblerPredicate<"FeatureCondMov">;
146def HasFPIdx    :     Predicate<"Subtarget.hasFPIdx()">,
147                      AssemblerPredicate<"FeatureFPIdx">;
148def HasMips32    :    Predicate<"Subtarget.hasMips32()">,
149                      AssemblerPredicate<"FeatureMips32">;
150def HasMips32r2  :    Predicate<"Subtarget.hasMips32r2()">,
151                      AssemblerPredicate<"FeatureMips32r2">;
152def HasMips64    :    Predicate<"Subtarget.hasMips64()">,
153                      AssemblerPredicate<"FeatureMips64">;
154def NotMips64    :    Predicate<"!Subtarget.hasMips64()">,
155                      AssemblerPredicate<"!FeatureMips64">;
156def HasMips64r2  :    Predicate<"Subtarget.hasMips64r2()">,
157                      AssemblerPredicate<"FeatureMips64r2">;
158def IsN64       :     Predicate<"Subtarget.isABI_N64()">,
159                      AssemblerPredicate<"FeatureN64">;
160def NotN64      :     Predicate<"!Subtarget.isABI_N64()">,
161                      AssemblerPredicate<"!FeatureN64">;
162def InMips16Mode :    Predicate<"Subtarget.inMips16Mode()">,
163                      AssemblerPredicate<"FeatureMips16">;
164def RelocStatic :     Predicate<"TM.getRelocationModel() == Reloc::Static">,
165                      AssemblerPredicate<"FeatureMips32">;
166def RelocPIC    :     Predicate<"TM.getRelocationModel() == Reloc::PIC_">,
167                      AssemblerPredicate<"FeatureMips32">;
168def NoNaNsFPMath :    Predicate<"TM.Options.NoNaNsFPMath">,
169                      AssemblerPredicate<"FeatureMips32">;
170def HasStdEnc :       Predicate<"Subtarget.hasStandardEncoding()">,
171                      AssemblerPredicate<"!FeatureMips16">;
172
173class MipsPat<dag pattern, dag result> : Pat<pattern, result> {
174  let Predicates = [HasStdEnc];
175}
176
177class IsCommutable {
178  bit isCommutable = 1;
179}
180
181class IsBranch {
182  bit isBranch = 1;
183}
184
185class IsReturn {
186  bit isReturn = 1;
187}
188
189class IsCall {
190  bit isCall = 1;
191}
192
193class IsTailCall {
194  bit isCall = 1;
195  bit isTerminator = 1;
196  bit isReturn = 1;
197  bit isBarrier = 1;
198  bit hasExtraSrcRegAllocReq = 1;
199  bit isCodeGenOnly = 1;
200}
201
202class IsAsCheapAsAMove {
203  bit isAsCheapAsAMove = 1;
204}
205
206class NeverHasSideEffects {
207  bit neverHasSideEffects = 1;
208}
209
210//===----------------------------------------------------------------------===//
211// Instruction format superclass
212//===----------------------------------------------------------------------===//
213
214include "MipsInstrFormats.td"
215
216//===----------------------------------------------------------------------===//
217// Mips Operand, Complex Patterns and Transformations Definitions.
218//===----------------------------------------------------------------------===//
219
220// Instruction operand types
221def jmptarget   : Operand<OtherVT> {
222  let EncoderMethod = "getJumpTargetOpValue";
223}
224def brtarget    : Operand<OtherVT> {
225  let EncoderMethod = "getBranchTargetOpValue";
226  let OperandType = "OPERAND_PCREL";
227  let DecoderMethod = "DecodeBranchTarget";
228}
229def calltarget  : Operand<iPTR> {
230  let EncoderMethod = "getJumpTargetOpValue";
231}
232def calltarget64: Operand<i64>;
233def simm16      : Operand<i32> {
234  let DecoderMethod= "DecodeSimm16";
235}
236
237def simm20      : Operand<i32> {
238}
239
240def simm16_64   : Operand<i64>;
241def shamt       : Operand<i32>;
242
243// Unsigned Operand
244def uimm16      : Operand<i32> {
245  let PrintMethod = "printUnsignedImm";
246}
247
248def MipsMemAsmOperand : AsmOperandClass {
249  let Name = "Mem";
250  let ParserMethod = "parseMemOperand";
251}
252
253// Address operand
254def mem : Operand<i32> {
255  let PrintMethod = "printMemOperand";
256  let MIOperandInfo = (ops CPURegs, simm16);
257  let EncoderMethod = "getMemEncoding";
258  let ParserMatchClass = MipsMemAsmOperand;
259}
260
261def mem64 : Operand<i64> {
262  let PrintMethod = "printMemOperand";
263  let MIOperandInfo = (ops CPU64Regs, simm16_64);
264  let EncoderMethod = "getMemEncoding";
265  let ParserMatchClass = MipsMemAsmOperand;
266}
267
268def mem_ea : Operand<i32> {
269  let PrintMethod = "printMemOperandEA";
270  let MIOperandInfo = (ops CPURegs, simm16);
271  let EncoderMethod = "getMemEncoding";
272}
273
274def mem_ea_64 : Operand<i64> {
275  let PrintMethod = "printMemOperandEA";
276  let MIOperandInfo = (ops CPU64Regs, simm16_64);
277  let EncoderMethod = "getMemEncoding";
278}
279
280// size operand of ext instruction
281def size_ext : Operand<i32> {
282  let EncoderMethod = "getSizeExtEncoding";
283  let DecoderMethod = "DecodeExtSize";
284}
285
286// size operand of ins instruction
287def size_ins : Operand<i32> {
288  let EncoderMethod = "getSizeInsEncoding";
289  let DecoderMethod = "DecodeInsSize";
290}
291
292// Transformation Function - get the lower 16 bits.
293def LO16 : SDNodeXForm<imm, [{
294  return getImm(N, N->getZExtValue() & 0xFFFF);
295}]>;
296
297// Transformation Function - get the higher 16 bits.
298def HI16 : SDNodeXForm<imm, [{
299  return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
300}]>;
301
302// Node immediate fits as 16-bit sign extended on target immediate.
303// e.g. addi, andi
304def immSExt8  : PatLeaf<(imm), [{ return isInt<8>(N->getSExtValue()); }]>;
305
306// Node immediate fits as 16-bit sign extended on target immediate.
307// e.g. addi, andi
308def immSExt16  : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
309
310// Node immediate fits as 15-bit sign extended on target immediate.
311// e.g. addi, andi
312def immSExt15  : PatLeaf<(imm), [{ return isInt<15>(N->getSExtValue()); }]>;
313
314// Node immediate fits as 16-bit zero extended on target immediate.
315// The LO16 param means that only the lower 16 bits of the node
316// immediate are caught.
317// e.g. addiu, sltiu
318def immZExt16  : PatLeaf<(imm), [{
319  if (N->getValueType(0) == MVT::i32)
320    return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
321  else
322    return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
323}], LO16>;
324
325// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
326def immLow16Zero : PatLeaf<(imm), [{
327  int64_t Val = N->getSExtValue();
328  return isInt<32>(Val) && !(Val & 0xffff);
329}]>;
330
331// shamt field must fit in 5 bits.
332def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
333
334// Mips Address Mode! SDNode frameindex could possibily be a match
335// since load and store instructions from stack used it.
336def addr :
337  ComplexPattern<iPTR, 2, "selectIntAddr", [frameindex], [SDNPWantParent]>;
338
339def addrRegImm :
340  ComplexPattern<iPTR, 2, "selectAddrRegImm", [frameindex], [SDNPWantParent]>;
341
342def addrDefault :
343  ComplexPattern<iPTR, 2, "selectAddrDefault", [frameindex], [SDNPWantParent]>;
344
345//===----------------------------------------------------------------------===//
346// Instructions specific format
347//===----------------------------------------------------------------------===//
348
349// Arithmetic and logical instructions with 3 register operands.
350class ArithLogicR<string opstr, RegisterOperand RO, bit isComm = 0,
351                  InstrItinClass Itin = NoItinerary,
352                  SDPatternOperator OpNode = null_frag>:
353  InstSE<(outs RO:$rd), (ins RO:$rs, RO:$rt),
354         !strconcat(opstr, "\t$rd, $rs, $rt"),
355         [(set RO:$rd, (OpNode RO:$rs, RO:$rt))], Itin, FrmR> {
356  let isCommutable = isComm;
357  let isReMaterializable = 1;
358  string BaseOpcode;
359  string Arch;
360}
361
362// Arithmetic and logical instructions with 2 register operands.
363class ArithLogicI<string opstr, Operand Od, RegisterOperand RO,
364                  SDPatternOperator imm_type = null_frag,
365                  SDPatternOperator OpNode = null_frag> :
366  InstSE<(outs RO:$rt), (ins RO:$rs, Od:$imm16),
367         !strconcat(opstr, "\t$rt, $rs, $imm16"),
368         [(set RO:$rt, (OpNode RO:$rs, imm_type:$imm16))], IIAlu, FrmI> {
369  let isReMaterializable = 1;
370}
371
372// Arithmetic Multiply ADD/SUB
373class MArithR<string opstr, SDPatternOperator op = null_frag, bit isComm = 0> :
374  InstSE<(outs), (ins CPURegsOpnd:$rs, CPURegsOpnd:$rt),
375         !strconcat(opstr, "\t$rs, $rt"),
376         [(op CPURegsOpnd:$rs, CPURegsOpnd:$rt, LO, HI)], IIImul, FrmR> {
377  let Defs = [HI, LO];
378  let Uses = [HI, LO];
379  let isCommutable = isComm;
380}
381
382//  Logical
383class LogicNOR<string opstr, RegisterOperand RC>:
384  InstSE<(outs RC:$rd), (ins RC:$rs, RC:$rt),
385         !strconcat(opstr, "\t$rd, $rs, $rt"),
386         [(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu, FrmR> {
387  let isCommutable = 1;
388}
389
390// Shifts
391class shift_rotate_imm<string opstr, Operand ImmOpnd,
392                       RegisterOperand RC, SDPatternOperator OpNode = null_frag,
393                       SDPatternOperator PF = null_frag> :
394  InstSE<(outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
395         !strconcat(opstr, "\t$rd, $rt, $shamt"),
396         [(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu, FrmR>;
397
398class shift_rotate_reg<string opstr, RegisterOperand RC,
399                       SDPatternOperator OpNode = null_frag>:
400  InstSE<(outs RC:$rd), (ins CPURegsOpnd:$rs, RC:$rt),
401         !strconcat(opstr, "\t$rd, $rt, $rs"),
402         [(set RC:$rd, (OpNode RC:$rt, CPURegsOpnd:$rs))], IIAlu, FrmR>;
403
404// Load Upper Imediate
405class LoadUpper<string opstr, RegisterClass RC, Operand Imm>:
406  InstSE<(outs RC:$rt), (ins Imm:$imm16), !strconcat(opstr, "\t$rt, $imm16"),
407         [], IIAlu, FrmI>, IsAsCheapAsAMove {
408  let neverHasSideEffects = 1;
409  let isReMaterializable = 1;
410}
411
412class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
413          InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
414  bits<21> addr;
415  let Inst{25-21} = addr{20-16};
416  let Inst{15-0}  = addr{15-0};
417  let DecoderMethod = "DecodeMem";
418}
419
420// Memory Load/Store
421class Load<string opstr, SDPatternOperator OpNode, RegisterClass RC,
422           Operand MemOpnd> :
423  InstSE<(outs RC:$rt), (ins MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
424         [(set RC:$rt, (OpNode addr:$addr))], NoItinerary, FrmI> {
425  let DecoderMethod = "DecodeMem";
426  let canFoldAsLoad = 1;
427}
428
429class Store<string opstr, SDPatternOperator OpNode, RegisterClass RC,
430            Operand MemOpnd> :
431  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
432         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
433  let DecoderMethod = "DecodeMem";
434}
435
436multiclass LoadM<string opstr, RegisterClass RC,
437                 SDPatternOperator OpNode = null_frag> {
438  def NAME : Load<opstr, OpNode, RC, mem>, Requires<[NotN64, HasStdEnc]>;
439  def _P8  : Load<opstr, OpNode, RC, mem64>, Requires<[IsN64, HasStdEnc]> {
440    let DecoderNamespace = "Mips64";
441    let isCodeGenOnly = 1;
442  }
443}
444
445multiclass StoreM<string opstr, RegisterClass RC,
446                  SDPatternOperator OpNode = null_frag> {
447  def NAME : Store<opstr, OpNode, RC, mem>, Requires<[NotN64, HasStdEnc]>;
448  def _P8  : Store<opstr, OpNode, RC, mem64>, Requires<[IsN64, HasStdEnc]> {
449    let DecoderNamespace = "Mips64";
450    let isCodeGenOnly = 1;
451  }
452}
453
454// Load/Store Left/Right
455let canFoldAsLoad = 1 in
456class LoadLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
457                    Operand MemOpnd> :
458  InstSE<(outs RC:$rt), (ins MemOpnd:$addr, RC:$src),
459         !strconcat(opstr, "\t$rt, $addr"),
460         [(set RC:$rt, (OpNode addr:$addr, RC:$src))], NoItinerary, FrmI> {
461  let DecoderMethod = "DecodeMem";
462  string Constraints = "$src = $rt";
463}
464
465class StoreLeftRight<string opstr, SDNode OpNode, RegisterClass RC,
466                     Operand MemOpnd>:
467  InstSE<(outs), (ins RC:$rt, MemOpnd:$addr), !strconcat(opstr, "\t$rt, $addr"),
468         [(OpNode RC:$rt, addr:$addr)], NoItinerary, FrmI> {
469  let DecoderMethod = "DecodeMem";
470}
471
472multiclass LoadLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
473  def NAME : LoadLeftRight<opstr, OpNode, RC, mem>,
474             Requires<[NotN64, HasStdEnc]>;
475  def _P8  : LoadLeftRight<opstr, OpNode, RC, mem64>,
476             Requires<[IsN64, HasStdEnc]> {
477    let DecoderNamespace = "Mips64";
478    let isCodeGenOnly = 1;
479  }
480}
481
482multiclass StoreLeftRightM<string opstr, SDNode OpNode, RegisterClass RC> {
483  def NAME : StoreLeftRight<opstr, OpNode, RC, mem>,
484             Requires<[NotN64, HasStdEnc]>;
485  def _P8  : StoreLeftRight<opstr, OpNode, RC, mem64>,
486             Requires<[IsN64, HasStdEnc]> {
487    let DecoderNamespace = "Mips64";
488    let isCodeGenOnly = 1;
489  }
490}
491
492// Conditional Branch
493class CBranch<string opstr, PatFrag cond_op, RegisterClass RC> :
494  InstSE<(outs), (ins RC:$rs, RC:$rt, brtarget:$offset),
495         !strconcat(opstr, "\t$rs, $rt, $offset"),
496         [(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$offset)], IIBranch,
497         FrmI> {
498  let isBranch = 1;
499  let isTerminator = 1;
500  let hasDelaySlot = 1;
501  let Defs = [AT];
502}
503
504class CBranchZero<string opstr, PatFrag cond_op, RegisterClass RC> :
505  InstSE<(outs), (ins RC:$rs, brtarget:$offset),
506         !strconcat(opstr, "\t$rs, $offset"),
507         [(brcond (i32 (cond_op RC:$rs, 0)), bb:$offset)], IIBranch, FrmI> {
508  let isBranch = 1;
509  let isTerminator = 1;
510  let hasDelaySlot = 1;
511  let Defs = [AT];
512}
513
514// SetCC
515class SetCC_R<string opstr, PatFrag cond_op, RegisterClass RC> :
516  InstSE<(outs CPURegsOpnd:$rd), (ins RC:$rs, RC:$rt),
517         !strconcat(opstr, "\t$rd, $rs, $rt"),
518         [(set CPURegsOpnd:$rd, (cond_op RC:$rs, RC:$rt))], IIAlu, FrmR>;
519
520class SetCC_I<string opstr, PatFrag cond_op, Operand Od, PatLeaf imm_type,
521              RegisterClass RC>:
522  InstSE<(outs CPURegsOpnd:$rt), (ins RC:$rs, Od:$imm16),
523         !strconcat(opstr, "\t$rt, $rs, $imm16"),
524         [(set CPURegsOpnd:$rt, (cond_op RC:$rs, imm_type:$imm16))],
525         IIAlu, FrmI>;
526
527// Jump
528class JumpFJ<DAGOperand opnd, string opstr, SDPatternOperator operator,
529             SDPatternOperator targetoperator> :
530  InstSE<(outs), (ins opnd:$target), !strconcat(opstr, "\t$target"),
531         [(operator targetoperator:$target)], IIBranch, FrmJ> {
532  let isTerminator=1;
533  let isBarrier=1;
534  let hasDelaySlot = 1;
535  let DecoderMethod = "DecodeJumpTarget";
536  let Defs = [AT];
537}
538
539// Unconditional branch
540class UncondBranch<string opstr> :
541  InstSE<(outs), (ins brtarget:$offset), !strconcat(opstr, "\t$offset"),
542         [(br bb:$offset)], IIBranch, FrmI> {
543  let isBranch = 1;
544  let isTerminator = 1;
545  let isBarrier = 1;
546  let hasDelaySlot = 1;
547  let Predicates = [RelocPIC, HasStdEnc];
548  let Defs = [AT];
549}
550
551// Base class for indirect branch and return instruction classes.
552let isTerminator=1, isBarrier=1, hasDelaySlot = 1 in
553class JumpFR<RegisterClass RC, SDPatternOperator operator = null_frag>:
554  InstSE<(outs), (ins RC:$rs), "jr\t$rs", [(operator RC:$rs)], IIBranch, FrmR>;
555
556// Indirect branch
557class IndirectBranch<RegisterClass RC>: JumpFR<RC, brind> {
558  let isBranch = 1;
559  let isIndirectBranch = 1;
560}
561
562// Return instruction
563class RetBase<RegisterClass RC>: JumpFR<RC> {
564  let isReturn = 1;
565  let isCodeGenOnly = 1;
566  let hasCtrlDep = 1;
567  let hasExtraSrcRegAllocReq = 1;
568}
569
570// Jump and Link (Call)
571let isCall=1, hasDelaySlot=1, Defs = [RA] in {
572  class JumpLink<string opstr> :
573    InstSE<(outs), (ins calltarget:$target), !strconcat(opstr, "\t$target"),
574           [(MipsJmpLink imm:$target)], IIBranch, FrmJ> {
575    let DecoderMethod = "DecodeJumpTarget";
576  }
577
578  class JumpLinkRegPseudo<RegisterClass RC, Instruction JALRInst,
579                          Register RetReg>:
580    PseudoSE<(outs), (ins RC:$rs), [(MipsJmpLink RC:$rs)], IIBranch>,
581    PseudoInstExpansion<(JALRInst RetReg, RC:$rs)>;
582
583  class JumpLinkReg<string opstr, RegisterClass RC>:
584    InstSE<(outs RC:$rd), (ins RC:$rs), !strconcat(opstr, "\t$rd, $rs"),
585           [], IIBranch, FrmR>;
586
587  class BGEZAL_FT<string opstr, RegisterOperand RO> :
588    InstSE<(outs), (ins RO:$rs, brtarget:$offset),
589           !strconcat(opstr, "\t$rs, $offset"), [], IIBranch, FrmI>;
590
591}
592
593class BAL_FT :
594  InstSE<(outs), (ins brtarget:$offset), "bal\t$offset", [], IIBranch, FrmI> {
595  let isBranch = 1;
596  let isTerminator = 1;
597  let isBarrier = 1;
598  let hasDelaySlot = 1;
599  let Defs = [RA];
600}
601
602// Sync
603let hasSideEffects = 1 in
604class SYNC_FT :
605  InstSE<(outs), (ins i32imm:$stype), "sync $stype", [(MipsSync imm:$stype)],
606         NoItinerary, FrmOther>;
607
608// Mul, Div
609class Mult<string opstr, InstrItinClass itin, RegisterOperand RO,
610           list<Register> DefRegs> :
611  InstSE<(outs), (ins RO:$rs, RO:$rt), !strconcat(opstr, "\t$rs, $rt"), [],
612         itin, FrmR> {
613  let isCommutable = 1;
614  let Defs = DefRegs;
615  let neverHasSideEffects = 1;
616}
617
618class Div<SDNode op, string opstr, InstrItinClass itin, RegisterOperand RO,
619          list<Register> DefRegs> :
620  InstSE<(outs), (ins RO:$rs, RO:$rt),
621         !strconcat(opstr, "\t$$zero, $rs, $rt"), [(op RO:$rs, RO:$rt)], itin,
622         FrmR> {
623  let Defs = DefRegs;
624}
625
626// Move from Hi/Lo
627class MoveFromLOHI<string opstr, RegisterClass RC, list<Register> UseRegs>:
628  InstSE<(outs RC:$rd), (ins), !strconcat(opstr, "\t$rd"), [], IIHiLo, FrmR> {
629  let Uses = UseRegs;
630  let neverHasSideEffects = 1;
631}
632
633class MoveToLOHI<string opstr, RegisterClass RC, list<Register> DefRegs>:
634  InstSE<(outs), (ins RC:$rs), !strconcat(opstr, "\t$rs"), [], IIHiLo, FrmR> {
635  let Defs = DefRegs;
636  let neverHasSideEffects = 1;
637}
638
639class EffectiveAddress<string opstr, RegisterClass RC, Operand Mem> :
640  InstSE<(outs RC:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
641         [(set RC:$rt, addr:$addr)], NoItinerary, FrmI> {
642  let isCodeGenOnly = 1;
643  let DecoderMethod = "DecodeMem";
644}
645
646// Count Leading Ones/Zeros in Word
647class CountLeading0<string opstr, RegisterOperand RO>:
648  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
649         [(set RO:$rd, (ctlz RO:$rs))], IIAlu, FrmR>,
650  Requires<[HasBitCount, HasStdEnc]>;
651
652class CountLeading1<string opstr, RegisterOperand RO>:
653  InstSE<(outs RO:$rd), (ins RO:$rs), !strconcat(opstr, "\t$rd, $rs"),
654         [(set RO:$rd, (ctlz (not RO:$rs)))], IIAlu, FrmR>,
655  Requires<[HasBitCount, HasStdEnc]>;
656
657
658// Sign Extend in Register.
659class SignExtInReg<string opstr, ValueType vt, RegisterClass RC> :
660  InstSE<(outs RC:$rd), (ins RC:$rt), !strconcat(opstr, "\t$rd, $rt"),
661         [(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary, FrmR> {
662  let Predicates = [HasSEInReg, HasStdEnc];
663}
664
665// Subword Swap
666class SubwordSwap<string opstr, RegisterOperand RO>:
667  InstSE<(outs RO:$rd), (ins RO:$rt), !strconcat(opstr, "\t$rd, $rt"), [],
668         NoItinerary, FrmR> {
669  let Predicates = [HasSwap, HasStdEnc];
670  let neverHasSideEffects = 1;
671}
672
673// Read Hardware
674class ReadHardware<RegisterClass CPURegClass, RegisterOperand RO> :
675  InstSE<(outs CPURegClass:$rt), (ins RO:$rd), "rdhwr\t$rt, $rd", [],
676         IIAlu, FrmR>;
677
678// Ext and Ins
679class ExtBase<string opstr, RegisterOperand RO>:
680  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ext:$size),
681         !strconcat(opstr, " $rt, $rs, $pos, $size"),
682         [(set RO:$rt, (MipsExt RO:$rs, imm:$pos, imm:$size))], NoItinerary,
683         FrmR> {
684  let Predicates = [HasMips32r2, HasStdEnc];
685}
686
687class InsBase<string opstr, RegisterOperand RO>:
688  InstSE<(outs RO:$rt), (ins RO:$rs, uimm16:$pos, size_ins:$size, RO:$src),
689         !strconcat(opstr, " $rt, $rs, $pos, $size"),
690         [(set RO:$rt, (MipsIns RO:$rs, imm:$pos, imm:$size, RO:$src))],
691         NoItinerary, FrmR> {
692  let Predicates = [HasMips32r2, HasStdEnc];
693  let Constraints = "$src = $rt";
694}
695
696// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
697class Atomic2Ops<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
698  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
699           [(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
700
701multiclass Atomic2Ops32<PatFrag Op> {
702  def NAME : Atomic2Ops<Op, CPURegs, CPURegs>, Requires<[NotN64, HasStdEnc]>;
703  def _P8  : Atomic2Ops<Op, CPURegs, CPU64Regs>,
704             Requires<[IsN64, HasStdEnc]> {
705    let DecoderNamespace = "Mips64";
706  }
707}
708
709// Atomic Compare & Swap.
710class AtomicCmpSwap<PatFrag Op, RegisterClass DRC, RegisterClass PRC> :
711  PseudoSE<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
712           [(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
713
714multiclass AtomicCmpSwap32<PatFrag Op>  {
715  def NAME : AtomicCmpSwap<Op, CPURegs, CPURegs>,
716             Requires<[NotN64, HasStdEnc]>;
717  def _P8  : AtomicCmpSwap<Op, CPURegs, CPU64Regs>,
718             Requires<[IsN64, HasStdEnc]> {
719    let DecoderNamespace = "Mips64";
720  }
721}
722
723class LLBase<string opstr, RegisterOperand RO, Operand Mem> :
724  InstSE<(outs RO:$rt), (ins Mem:$addr), !strconcat(opstr, "\t$rt, $addr"),
725         [], NoItinerary, FrmI> {
726  let DecoderMethod = "DecodeMem";
727  let mayLoad = 1;
728}
729
730class SCBase<string opstr, RegisterOperand RO, Operand Mem> :
731  InstSE<(outs RO:$dst), (ins RO:$rt, Mem:$addr),
732         !strconcat(opstr, "\t$rt, $addr"), [], NoItinerary, FrmI> {
733  let DecoderMethod = "DecodeMem";
734  let mayStore = 1;
735  let Constraints = "$rt = $dst";
736}
737
738class MFC3OP<dag outs, dag ins, string asmstr> :
739  InstSE<outs, ins, asmstr, [], NoItinerary, FrmFR>;
740
741//===----------------------------------------------------------------------===//
742// Pseudo instructions
743//===----------------------------------------------------------------------===//
744
745// Return RA.
746let isReturn=1, isTerminator=1, hasDelaySlot=1, isBarrier=1, hasCtrlDep=1 in
747def RetRA : PseudoSE<(outs), (ins), [(MipsRet)]>;
748
749let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
750def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins i32imm:$amt),
751                                  [(callseq_start timm:$amt)]>;
752def ADJCALLSTACKUP   : MipsPseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
753                                  [(callseq_end timm:$amt1, timm:$amt2)]>;
754}
755
756let usesCustomInserter = 1 in {
757  defm ATOMIC_LOAD_ADD_I8   : Atomic2Ops32<atomic_load_add_8>;
758  defm ATOMIC_LOAD_ADD_I16  : Atomic2Ops32<atomic_load_add_16>;
759  defm ATOMIC_LOAD_ADD_I32  : Atomic2Ops32<atomic_load_add_32>;
760  defm ATOMIC_LOAD_SUB_I8   : Atomic2Ops32<atomic_load_sub_8>;
761  defm ATOMIC_LOAD_SUB_I16  : Atomic2Ops32<atomic_load_sub_16>;
762  defm ATOMIC_LOAD_SUB_I32  : Atomic2Ops32<atomic_load_sub_32>;
763  defm ATOMIC_LOAD_AND_I8   : Atomic2Ops32<atomic_load_and_8>;
764  defm ATOMIC_LOAD_AND_I16  : Atomic2Ops32<atomic_load_and_16>;
765  defm ATOMIC_LOAD_AND_I32  : Atomic2Ops32<atomic_load_and_32>;
766  defm ATOMIC_LOAD_OR_I8    : Atomic2Ops32<atomic_load_or_8>;
767  defm ATOMIC_LOAD_OR_I16   : Atomic2Ops32<atomic_load_or_16>;
768  defm ATOMIC_LOAD_OR_I32   : Atomic2Ops32<atomic_load_or_32>;
769  defm ATOMIC_LOAD_XOR_I8   : Atomic2Ops32<atomic_load_xor_8>;
770  defm ATOMIC_LOAD_XOR_I16  : Atomic2Ops32<atomic_load_xor_16>;
771  defm ATOMIC_LOAD_XOR_I32  : Atomic2Ops32<atomic_load_xor_32>;
772  defm ATOMIC_LOAD_NAND_I8  : Atomic2Ops32<atomic_load_nand_8>;
773  defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16>;
774  defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32>;
775
776  defm ATOMIC_SWAP_I8       : Atomic2Ops32<atomic_swap_8>;
777  defm ATOMIC_SWAP_I16      : Atomic2Ops32<atomic_swap_16>;
778  defm ATOMIC_SWAP_I32      : Atomic2Ops32<atomic_swap_32>;
779
780  defm ATOMIC_CMP_SWAP_I8   : AtomicCmpSwap32<atomic_cmp_swap_8>;
781  defm ATOMIC_CMP_SWAP_I16  : AtomicCmpSwap32<atomic_cmp_swap_16>;
782  defm ATOMIC_CMP_SWAP_I32  : AtomicCmpSwap32<atomic_cmp_swap_32>;
783}
784
785//===----------------------------------------------------------------------===//
786// Instruction definition
787//===----------------------------------------------------------------------===//
788//===----------------------------------------------------------------------===//
789// MipsI Instructions
790//===----------------------------------------------------------------------===//
791
792/// Arithmetic Instructions (ALU Immediate)
793def ADDiu : ArithLogicI<"addiu", simm16, CPURegsOpnd, immSExt16, add>,
794            ADDI_FM<0x9>, IsAsCheapAsAMove;
795def ADDi  : ArithLogicI<"addi", simm16, CPURegsOpnd>, ADDI_FM<0x8>;
796def SLTi  : SetCC_I<"slti", setlt, simm16, immSExt16, CPURegs>, SLTI_FM<0xa>;
797def SLTiu : SetCC_I<"sltiu", setult, simm16, immSExt16, CPURegs>, SLTI_FM<0xb>;
798def ANDi  : ArithLogicI<"andi", uimm16, CPURegsOpnd, immZExt16, and>,
799            ADDI_FM<0xc>;
800def ORi   : ArithLogicI<"ori", uimm16, CPURegsOpnd, immZExt16, or>,
801            ADDI_FM<0xd>;
802def XORi  : ArithLogicI<"xori", uimm16, CPURegsOpnd, immZExt16, xor>,
803            ADDI_FM<0xe>;
804def LUi   : LoadUpper<"lui", CPURegs, uimm16>, LUI_FM;
805
806/// Arithmetic Instructions (3-Operand, R-Type)
807def ADDu : ArithLogicR<"addu", CPURegsOpnd, 1, IIAlu, add>, ADD_FM<0, 0x21>;
808def SUBu : ArithLogicR<"subu", CPURegsOpnd, 0, IIAlu, sub>, ADD_FM<0, 0x23>;
809def MUL  : ArithLogicR<"mul", CPURegsOpnd, 1, IIImul, mul>, ADD_FM<0x1c, 2>;
810def ADD  : ArithLogicR<"add", CPURegsOpnd>, ADD_FM<0, 0x20>;
811def SUB  : ArithLogicR<"sub", CPURegsOpnd>, ADD_FM<0, 0x22>;
812def SLT  : SetCC_R<"slt", setlt, CPURegs>, ADD_FM<0, 0x2a>;
813def SLTu : SetCC_R<"sltu", setult, CPURegs>, ADD_FM<0, 0x2b>;
814def AND  : ArithLogicR<"and", CPURegsOpnd, 1, IIAlu, and>, ADD_FM<0, 0x24>;
815def OR   : ArithLogicR<"or", CPURegsOpnd, 1, IIAlu, or>, ADD_FM<0, 0x25>;
816def XOR  : ArithLogicR<"xor", CPURegsOpnd, 1, IIAlu, xor>, ADD_FM<0, 0x26>;
817def NOR  : LogicNOR<"nor", CPURegsOpnd>, ADD_FM<0, 0x27>;
818
819/// Shift Instructions
820def SLL  : shift_rotate_imm<"sll", shamt, CPURegsOpnd, shl, immZExt5>,
821           SRA_FM<0, 0>;
822def SRL  : shift_rotate_imm<"srl", shamt, CPURegsOpnd, srl, immZExt5>,
823           SRA_FM<2, 0>;
824def SRA  : shift_rotate_imm<"sra", shamt, CPURegsOpnd, sra, immZExt5>,
825           SRA_FM<3, 0>;
826def SLLV : shift_rotate_reg<"sllv", CPURegsOpnd, shl>, SRLV_FM<4, 0>;
827def SRLV : shift_rotate_reg<"srlv", CPURegsOpnd, srl>, SRLV_FM<6, 0>;
828def SRAV : shift_rotate_reg<"srav", CPURegsOpnd, sra>, SRLV_FM<7, 0>;
829
830// Rotate Instructions
831let Predicates = [HasMips32r2, HasStdEnc] in {
832  def ROTR  : shift_rotate_imm<"rotr", shamt, CPURegsOpnd, rotr, immZExt5>,
833              SRA_FM<2, 1>;
834  def ROTRV : shift_rotate_reg<"rotrv", CPURegsOpnd, rotr>, SRLV_FM<6, 1>;
835}
836
837/// Load and Store Instructions
838///  aligned
839defm LB  : LoadM<"lb", CPURegs, sextloadi8>, LW_FM<0x20>;
840defm LBu : LoadM<"lbu", CPURegs, zextloadi8>, LW_FM<0x24>;
841defm LH  : LoadM<"lh", CPURegs, sextloadi16>, LW_FM<0x21>;
842defm LHu : LoadM<"lhu", CPURegs, zextloadi16>, LW_FM<0x25>;
843defm LW  : LoadM<"lw", CPURegs, load>, LW_FM<0x23>;
844defm SB  : StoreM<"sb", CPURegs, truncstorei8>, LW_FM<0x28>;
845defm SH  : StoreM<"sh", CPURegs, truncstorei16>, LW_FM<0x29>;
846defm SW  : StoreM<"sw", CPURegs, store>, LW_FM<0x2b>;
847
848/// load/store left/right
849defm LWL : LoadLeftRightM<"lwl", MipsLWL, CPURegs>, LW_FM<0x22>;
850defm LWR : LoadLeftRightM<"lwr", MipsLWR, CPURegs>, LW_FM<0x26>;
851defm SWL : StoreLeftRightM<"swl", MipsSWL, CPURegs>, LW_FM<0x2a>;
852defm SWR : StoreLeftRightM<"swr", MipsSWR, CPURegs>, LW_FM<0x2e>;
853
854def SYNC : SYNC_FT, SYNC_FM;
855
856/// Load-linked, Store-conditional
857let Predicates = [NotN64, HasStdEnc] in {
858  def LL : LLBase<"ll", CPURegsOpnd, mem>, LW_FM<0x30>;
859  def SC : SCBase<"sc", CPURegsOpnd, mem>, LW_FM<0x38>;
860}
861
862let Predicates = [IsN64, HasStdEnc], DecoderNamespace = "Mips64" in {
863  def LL_P8 : LLBase<"ll", CPURegsOpnd, mem64>, LW_FM<0x30>;
864  def SC_P8 : SCBase<"sc", CPURegsOpnd, mem64>, LW_FM<0x38>;
865}
866
867/// Jump and Branch Instructions
868def J       : JumpFJ<jmptarget, "j", br, bb>, FJ<2>,
869              Requires<[RelocStatic, HasStdEnc]>, IsBranch;
870def JR      : IndirectBranch<CPURegs>, MTLO_FM<8>;
871def B       : UncondBranch<"b">, B_FM;
872def BEQ     : CBranch<"beq", seteq, CPURegs>, BEQ_FM<4>;
873def BNE     : CBranch<"bne", setne, CPURegs>, BEQ_FM<5>;
874def BGEZ    : CBranchZero<"bgez", setge, CPURegs>, BGEZ_FM<1, 1>;
875def BGTZ    : CBranchZero<"bgtz", setgt, CPURegs>, BGEZ_FM<7, 0>;
876def BLEZ    : CBranchZero<"blez", setle, CPURegs>, BGEZ_FM<6, 0>;
877def BLTZ    : CBranchZero<"bltz", setlt, CPURegs>, BGEZ_FM<1, 0>;
878
879def BAL_BR: BAL_FT, BAL_FM;
880
881def JAL  : JumpLink<"jal">, FJ<3>;
882def JALR : JumpLinkReg<"jalr", CPURegs>, JALR_FM;
883def JALRPseudo : JumpLinkRegPseudo<CPURegs, JALR, RA>;
884def BGEZAL : BGEZAL_FT<"bgezal", CPURegsOpnd>, BGEZAL_FM<0x11>;
885def BLTZAL : BGEZAL_FT<"bltzal", CPURegsOpnd>, BGEZAL_FM<0x10>;
886def TAILCALL : JumpFJ<calltarget, "j", MipsTailCall, imm>, FJ<2>, IsTailCall;
887def TAILCALL_R : JumpFR<CPURegs, MipsTailCall>, MTLO_FM<8>, IsTailCall;
888
889def RET : RetBase<CPURegs>, MTLO_FM<8>;
890
891// Exception handling related node and instructions.
892// The conversion sequence is:
893// ISD::EH_RETURN -> MipsISD::EH_RETURN ->
894// MIPSeh_return -> (stack change + indirect branch)
895//
896// MIPSeh_return takes the place of regular return instruction
897// but takes two arguments (V1, V0) which are used for storing
898// the offset and return address respectively.
899def SDT_MipsEHRET : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisPtrTy<1>]>;
900
901def MIPSehret : SDNode<"MipsISD::EH_RETURN", SDT_MipsEHRET,
902                      [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
903
904let Uses = [V0, V1], isTerminator = 1, isReturn = 1, isBarrier = 1 in {
905  def MIPSeh_return32 : MipsPseudo<(outs), (ins CPURegs:$spoff, CPURegs:$dst),
906                                [(MIPSehret CPURegs:$spoff, CPURegs:$dst)]>;
907  def MIPSeh_return64 : MipsPseudo<(outs), (ins CPU64Regs:$spoff,
908                                                CPU64Regs:$dst),
909                                [(MIPSehret CPU64Regs:$spoff, CPU64Regs:$dst)]>;
910}
911
912/// Multiply and Divide Instructions.
913def MULT  : Mult<"mult", IIImul, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x18>;
914def MULTu : Mult<"multu", IIImul, CPURegsOpnd, [HI, LO]>, MULT_FM<0, 0x19>;
915def SDIV  : Div<MipsDivRem, "div", IIIdiv, CPURegsOpnd, [HI, LO]>,
916            MULT_FM<0, 0x1a>;
917def UDIV  : Div<MipsDivRemU, "divu", IIIdiv, CPURegsOpnd, [HI, LO]>,
918            MULT_FM<0, 0x1b>;
919
920def MTHI : MoveToLOHI<"mthi", CPURegs, [HI]>, MTLO_FM<0x11>;
921def MTLO : MoveToLOHI<"mtlo", CPURegs, [LO]>, MTLO_FM<0x13>;
922def MFHI : MoveFromLOHI<"mfhi", CPURegs, [HI]>, MFLO_FM<0x10>;
923def MFLO : MoveFromLOHI<"mflo", CPURegs, [LO]>, MFLO_FM<0x12>;
924
925/// Sign Ext In Register Instructions.
926def SEB : SignExtInReg<"seb", i8, CPURegs>, SEB_FM<0x10, 0x20>;
927def SEH : SignExtInReg<"seh", i16, CPURegs>, SEB_FM<0x18, 0x20>;
928
929/// Count Leading
930def CLZ : CountLeading0<"clz", CPURegsOpnd>, CLO_FM<0x20>;
931def CLO : CountLeading1<"clo", CPURegsOpnd>, CLO_FM<0x21>;
932
933/// Word Swap Bytes Within Halfwords
934def WSBH : SubwordSwap<"wsbh", CPURegsOpnd>, SEB_FM<2, 0x20>;
935
936/// No operation.
937def NOP : PseudoSE<(outs), (ins), []>, PseudoInstExpansion<(SLL ZERO, ZERO, 0)>;
938
939// FrameIndexes are legalized when they are operands from load/store
940// instructions. The same not happens for stack address copies, so an
941// add op with mem ComplexPattern is used and the stack address copy
942// can be matched. It's similar to Sparc LEA_ADDRi
943def LEA_ADDiu : EffectiveAddress<"addiu", CPURegs, mem_ea>, LW_FM<9>;
944
945// MADD*/MSUB*
946def MADD  : MArithR<"madd", MipsMAdd, 1>, MULT_FM<0x1c, 0>;
947def MADDU : MArithR<"maddu", MipsMAddu, 1>, MULT_FM<0x1c, 1>;
948def MSUB  : MArithR<"msub", MipsMSub>, MULT_FM<0x1c, 4>;
949def MSUBU : MArithR<"msubu", MipsMSubu>, MULT_FM<0x1c, 5>;
950
951def RDHWR : ReadHardware<CPURegs, HWRegsOpnd>, RDHWR_FM;
952
953def EXT : ExtBase<"ext", CPURegsOpnd>, EXT_FM<0>;
954def INS : InsBase<"ins", CPURegsOpnd>, EXT_FM<4>;
955
956/// Move Control Registers From/To CPU Registers
957def MFC0_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
958                      (ins CPURegsOpnd:$rd, uimm16:$sel),
959                      "mfc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 0>;
960
961def MTC0_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
962                      (ins CPURegsOpnd:$rt),
963                      "mtc0\t$rt, $rd, $sel">, MFC3OP_FM<0x10, 4>;
964
965def MFC2_3OP : MFC3OP<(outs CPURegsOpnd:$rt),
966                      (ins CPURegsOpnd:$rd, uimm16:$sel),
967                      "mfc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 0>;
968
969def MTC2_3OP : MFC3OP<(outs CPURegsOpnd:$rd, uimm16:$sel),
970                      (ins CPURegsOpnd:$rt),
971                      "mtc2\t$rt, $rd, $sel">, MFC3OP_FM<0x12, 4>;
972
973//===----------------------------------------------------------------------===//
974// Instruction aliases
975//===----------------------------------------------------------------------===//
976def : InstAlias<"move $dst, $src",
977                (ADDu CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 1>,
978      Requires<[NotMips64]>;
979def : InstAlias<"move $dst, $src",
980                (OR CPURegsOpnd:$dst, CPURegsOpnd:$src,ZERO), 0>,
981      Requires<[NotMips64]>;
982def : InstAlias<"bal $offset", (BGEZAL RA, brtarget:$offset), 1>;
983def : InstAlias<"addu $rs, $rt, $imm",
984                (ADDiu CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
985def : InstAlias<"add $rs, $rt, $imm",
986                (ADDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
987def : InstAlias<"and $rs, $rt, $imm",
988                (ANDi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>;
989def : InstAlias<"j $rs", (JR CPURegs:$rs), 0>,
990      Requires<[NotMips64]>;
991def : InstAlias<"jalr $rs", (JALR RA, CPURegs:$rs)>, Requires<[NotMips64]>;
992def : InstAlias<"not $rt, $rs",
993                (NOR CPURegsOpnd:$rt, CPURegsOpnd:$rs, ZERO), 1>;
994def : InstAlias<"neg $rt, $rs",
995                (SUB CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
996def : InstAlias<"negu $rt, $rs",
997                (SUBu CPURegsOpnd:$rt, ZERO, CPURegsOpnd:$rs), 1>;
998def : InstAlias<"slt $rs, $rt, $imm",
999                (SLTi CPURegsOpnd:$rs, CPURegs:$rt, simm16:$imm), 0>;
1000def : InstAlias<"xor $rs, $rt, $imm",
1001                (XORi CPURegsOpnd:$rs, CPURegsOpnd:$rt, simm16:$imm), 0>,
1002      Requires<[NotMips64]>;
1003def : InstAlias<"nop", (SLL ZERO, ZERO, 0), 1>;
1004def : InstAlias<"mfc0 $rt, $rd",
1005                (MFC0_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
1006def : InstAlias<"mtc0 $rt, $rd",
1007                (MTC0_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
1008def : InstAlias<"mfc2 $rt, $rd",
1009                (MFC2_3OP CPURegsOpnd:$rt, CPURegsOpnd:$rd, 0), 0>;
1010def : InstAlias<"mtc2 $rt, $rd",
1011                (MTC2_3OP CPURegsOpnd:$rd, 0, CPURegsOpnd:$rt), 0>;
1012
1013//===----------------------------------------------------------------------===//
1014// Assembler Pseudo Instructions
1015//===----------------------------------------------------------------------===//
1016
1017class LoadImm32< string instr_asm, Operand Od, RegisterOperand RO> :
1018  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1019                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1020def LoadImm32Reg : LoadImm32<"li", shamt,CPURegsOpnd>;
1021
1022class LoadAddress<string instr_asm, Operand MemOpnd, RegisterOperand RO> :
1023  MipsAsmPseudoInst<(outs RO:$rt), (ins MemOpnd:$addr),
1024                     !strconcat(instr_asm, "\t$rt, $addr")> ;
1025def LoadAddr32Reg : LoadAddress<"la", mem, CPURegsOpnd>;
1026
1027class LoadAddressImm<string instr_asm, Operand Od, RegisterOperand RO> :
1028  MipsAsmPseudoInst<(outs RO:$rt), (ins Od:$imm32),
1029                     !strconcat(instr_asm, "\t$rt, $imm32")> ;
1030def LoadAddr32Imm : LoadAddressImm<"la", shamt,CPURegsOpnd>;
1031
1032
1033
1034//===----------------------------------------------------------------------===//
1035//  Arbitrary patterns that map to one or more instructions
1036//===----------------------------------------------------------------------===//
1037
1038// Small immediates
1039def : MipsPat<(i32 immSExt16:$in),
1040              (ADDiu ZERO, imm:$in)>;
1041def : MipsPat<(i32 immZExt16:$in),
1042              (ORi ZERO, imm:$in)>;
1043def : MipsPat<(i32 immLow16Zero:$in),
1044              (LUi (HI16 imm:$in))>;
1045
1046// Arbitrary immediates
1047def : MipsPat<(i32 imm:$imm),
1048          (ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
1049
1050// Carry MipsPatterns
1051def : MipsPat<(subc CPURegs:$lhs, CPURegs:$rhs),
1052              (SUBu CPURegs:$lhs, CPURegs:$rhs)>;
1053def : MipsPat<(addc CPURegs:$lhs, CPURegs:$rhs),
1054              (ADDu CPURegs:$lhs, CPURegs:$rhs)>;
1055def : MipsPat<(addc  CPURegs:$src, immSExt16:$imm),
1056              (ADDiu CPURegs:$src, imm:$imm)>;
1057
1058// Call
1059def : MipsPat<(MipsJmpLink (i32 tglobaladdr:$dst)),
1060              (JAL tglobaladdr:$dst)>;
1061def : MipsPat<(MipsJmpLink (i32 texternalsym:$dst)),
1062              (JAL texternalsym:$dst)>;
1063//def : MipsPat<(MipsJmpLink CPURegs:$dst),
1064//              (JALR CPURegs:$dst)>;
1065
1066// Tail call
1067def : MipsPat<(MipsTailCall (iPTR tglobaladdr:$dst)),
1068              (TAILCALL tglobaladdr:$dst)>;
1069def : MipsPat<(MipsTailCall (iPTR texternalsym:$dst)),
1070              (TAILCALL texternalsym:$dst)>;
1071// hi/lo relocs
1072def : MipsPat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
1073def : MipsPat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
1074def : MipsPat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
1075def : MipsPat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
1076def : MipsPat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
1077def : MipsPat<(MipsHi texternalsym:$in), (LUi texternalsym:$in)>;
1078
1079def : MipsPat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
1080def : MipsPat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
1081def : MipsPat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
1082def : MipsPat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
1083def : MipsPat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
1084def : MipsPat<(MipsLo texternalsym:$in), (ADDiu ZERO, texternalsym:$in)>;
1085
1086def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
1087              (ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
1088def : MipsPat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
1089              (ADDiu CPURegs:$hi, tblockaddress:$lo)>;
1090def : MipsPat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
1091              (ADDiu CPURegs:$hi, tjumptable:$lo)>;
1092def : MipsPat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
1093              (ADDiu CPURegs:$hi, tconstpool:$lo)>;
1094def : MipsPat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
1095              (ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
1096
1097// gp_rel relocs
1098def : MipsPat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
1099              (ADDiu CPURegs:$gp, tglobaladdr:$in)>;
1100def : MipsPat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
1101              (ADDiu CPURegs:$gp, tconstpool:$in)>;
1102
1103// wrapper_pic
1104class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
1105      MipsPat<(MipsWrapper RC:$gp, node:$in),
1106              (ADDiuOp RC:$gp, node:$in)>;
1107
1108def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
1109def : WrapperPat<tconstpool, ADDiu, CPURegs>;
1110def : WrapperPat<texternalsym, ADDiu, CPURegs>;
1111def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
1112def : WrapperPat<tjumptable, ADDiu, CPURegs>;
1113def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
1114
1115// Mips does not have "not", so we expand our way
1116def : MipsPat<(not CPURegs:$in),
1117              (NOR CPURegsOpnd:$in, ZERO)>;
1118
1119// extended loads
1120let Predicates = [NotN64, HasStdEnc] in {
1121  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu addr:$src)>;
1122  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu addr:$src)>;
1123  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu addr:$src)>;
1124}
1125let Predicates = [IsN64, HasStdEnc] in {
1126  def : MipsPat<(i32 (extloadi1  addr:$src)), (LBu_P8 addr:$src)>;
1127  def : MipsPat<(i32 (extloadi8  addr:$src)), (LBu_P8 addr:$src)>;
1128  def : MipsPat<(i32 (extloadi16 addr:$src)), (LHu_P8 addr:$src)>;
1129}
1130
1131// peepholes
1132let Predicates = [NotN64, HasStdEnc] in {
1133  def : MipsPat<(store (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
1134}
1135let Predicates = [IsN64, HasStdEnc] in {
1136  def : MipsPat<(store (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
1137}
1138
1139// brcond patterns
1140multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
1141                      Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
1142                      Instruction SLTiuOp, Register ZEROReg> {
1143def : MipsPat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
1144              (BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
1145def : MipsPat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
1146              (BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
1147
1148def : MipsPat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
1149              (BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1150def : MipsPat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
1151              (BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
1152def : MipsPat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1153              (BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1154def : MipsPat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
1155              (BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
1156
1157def : MipsPat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
1158              (BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1159def : MipsPat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
1160              (BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
1161
1162def : MipsPat<(brcond RC:$cond, bb:$dst),
1163              (BNEOp RC:$cond, ZEROReg, bb:$dst)>;
1164}
1165
1166defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
1167
1168// setcc patterns
1169multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
1170                     Instruction SLTuOp, Register ZEROReg> {
1171  def : MipsPat<(seteq RC:$lhs, RC:$rhs),
1172                (SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
1173  def : MipsPat<(setne RC:$lhs, RC:$rhs),
1174                (SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
1175}
1176
1177multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1178  def : MipsPat<(setle RC:$lhs, RC:$rhs),
1179                (XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
1180  def : MipsPat<(setule RC:$lhs, RC:$rhs),
1181                (XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
1182}
1183
1184multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1185  def : MipsPat<(setgt RC:$lhs, RC:$rhs),
1186                (SLTOp RC:$rhs, RC:$lhs)>;
1187  def : MipsPat<(setugt RC:$lhs, RC:$rhs),
1188                (SLTuOp RC:$rhs, RC:$lhs)>;
1189}
1190
1191multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
1192  def : MipsPat<(setge RC:$lhs, RC:$rhs),
1193                (XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
1194  def : MipsPat<(setuge RC:$lhs, RC:$rhs),
1195                (XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
1196}
1197
1198multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
1199                        Instruction SLTiuOp> {
1200  def : MipsPat<(setge RC:$lhs, immSExt16:$rhs),
1201                (XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
1202  def : MipsPat<(setuge RC:$lhs, immSExt16:$rhs),
1203                (XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
1204}
1205
1206defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
1207defm : SetlePats<CPURegs, SLT, SLTu>;
1208defm : SetgtPats<CPURegs, SLT, SLTu>;
1209defm : SetgePats<CPURegs, SLT, SLTu>;
1210defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
1211
1212// bswap pattern
1213def : MipsPat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
1214
1215//===----------------------------------------------------------------------===//
1216// Floating Point Support
1217//===----------------------------------------------------------------------===//
1218
1219include "MipsInstrFPU.td"
1220include "Mips64InstrInfo.td"
1221include "MipsCondMov.td"
1222
1223//
1224// Mips16
1225
1226include "Mips16InstrFormats.td"
1227include "Mips16InstrInfo.td"
1228
1229// DSP
1230include "MipsDSPInstrFormats.td"
1231include "MipsDSPInstrInfo.td"
1232
1233