MipsSEISelLowering.cpp revision 52244da7f2b3def646900520668b859343b84a33
1//===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Subclass of MipsTargetLowering specialized for mips32/64.
11//
12//===----------------------------------------------------------------------===//
13#include "MipsSEISelLowering.h"
14#include "MipsRegisterInfo.h"
15#include "MipsTargetMachine.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
18#include "llvm/IR/Intrinsics.h"
19#include "llvm/Support/CommandLine.h"
20#include "llvm/Target/TargetInstrInfo.h"
21
22using namespace llvm;
23
24static cl::opt<bool>
25EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
26                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
27
28static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
29                                   cl::desc("Expand double precision loads and "
30                                            "stores to their single precision "
31                                            "counterparts"));
32
33MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM)
34  : MipsTargetLowering(TM) {
35  // Set up the register classes
36  addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
37
38  if (HasMips64)
39    addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
40
41  if (Subtarget->hasDSP() || Subtarget->hasMSA()) {
42    // Expand all truncating stores and extending loads.
43    unsigned FirstVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
44    unsigned LastVT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
45
46    for (unsigned VT0 = FirstVT; VT0 <= LastVT; ++VT0) {
47      for (unsigned VT1 = FirstVT; VT1 <= LastVT; ++VT1)
48        setTruncStoreAction((MVT::SimpleValueType)VT0,
49                            (MVT::SimpleValueType)VT1, Expand);
50
51      setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
52      setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
53      setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT0, Expand);
54    }
55  }
56
57  if (Subtarget->hasDSP()) {
58    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
59
60    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
61      addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
62
63      // Expand all builtin opcodes.
64      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
65        setOperationAction(Opc, VecTys[i], Expand);
66
67      setOperationAction(ISD::ADD, VecTys[i], Legal);
68      setOperationAction(ISD::SUB, VecTys[i], Legal);
69      setOperationAction(ISD::LOAD, VecTys[i], Legal);
70      setOperationAction(ISD::STORE, VecTys[i], Legal);
71      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
72    }
73
74    setTargetDAGCombine(ISD::SHL);
75    setTargetDAGCombine(ISD::SRA);
76    setTargetDAGCombine(ISD::SRL);
77    setTargetDAGCombine(ISD::SETCC);
78    setTargetDAGCombine(ISD::VSELECT);
79  }
80
81  if (Subtarget->hasDSPR2())
82    setOperationAction(ISD::MUL, MVT::v2i16, Legal);
83
84  if (Subtarget->hasMSA()) {
85    addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
86    addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
87    addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
88    addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
89    addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
90    addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
91    addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
92
93    setTargetDAGCombine(ISD::AND);
94    setTargetDAGCombine(ISD::SRA);
95    setTargetDAGCombine(ISD::VSELECT);
96    setTargetDAGCombine(ISD::XOR);
97  }
98
99  if (!Subtarget->mipsSEUsesSoftFloat()) {
100    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
101
102    // When dealing with single precision only, use libcalls
103    if (!Subtarget->isSingleFloat()) {
104      if (Subtarget->isFP64bit())
105        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
106      else
107        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
108    }
109  }
110
111  setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
112  setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
113  setOperationAction(ISD::MULHS,              MVT::i32, Custom);
114  setOperationAction(ISD::MULHU,              MVT::i32, Custom);
115
116  if (HasMips64) {
117    setOperationAction(ISD::MULHS,            MVT::i64, Custom);
118    setOperationAction(ISD::MULHU,            MVT::i64, Custom);
119    setOperationAction(ISD::MUL,              MVT::i64, Custom);
120  }
121
122  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
123  setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
124
125  setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
126  setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
127  setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
128  setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
129  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
130  setOperationAction(ISD::LOAD,               MVT::i32, Custom);
131  setOperationAction(ISD::STORE,              MVT::i32, Custom);
132
133  setTargetDAGCombine(ISD::ADDE);
134  setTargetDAGCombine(ISD::SUBE);
135  setTargetDAGCombine(ISD::MUL);
136
137  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
138  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
139  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
140
141  if (NoDPLoadStore) {
142    setOperationAction(ISD::LOAD, MVT::f64, Custom);
143    setOperationAction(ISD::STORE, MVT::f64, Custom);
144  }
145
146  computeRegisterProperties();
147}
148
149const MipsTargetLowering *
150llvm::createMipsSETargetLowering(MipsTargetMachine &TM) {
151  return new MipsSETargetLowering(TM);
152}
153
154// Enable MSA support for the given integer type and Register class.
155void MipsSETargetLowering::
156addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
157  addRegisterClass(Ty, RC);
158
159  // Expand all builtin opcodes.
160  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
161    setOperationAction(Opc, Ty, Expand);
162
163  setOperationAction(ISD::BITCAST, Ty, Legal);
164  setOperationAction(ISD::LOAD, Ty, Legal);
165  setOperationAction(ISD::STORE, Ty, Legal);
166  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
167  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
168  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
169
170  setOperationAction(ISD::ADD, Ty, Legal);
171  setOperationAction(ISD::AND, Ty, Legal);
172  setOperationAction(ISD::CTLZ, Ty, Legal);
173  setOperationAction(ISD::CTPOP, Ty, Legal);
174  setOperationAction(ISD::MUL, Ty, Legal);
175  setOperationAction(ISD::OR, Ty, Legal);
176  setOperationAction(ISD::SDIV, Ty, Legal);
177  setOperationAction(ISD::SREM, Ty, Legal);
178  setOperationAction(ISD::SHL, Ty, Legal);
179  setOperationAction(ISD::SRA, Ty, Legal);
180  setOperationAction(ISD::SRL, Ty, Legal);
181  setOperationAction(ISD::SUB, Ty, Legal);
182  setOperationAction(ISD::UDIV, Ty, Legal);
183  setOperationAction(ISD::UREM, Ty, Legal);
184  setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
185  setOperationAction(ISD::VSELECT, Ty, Legal);
186  setOperationAction(ISD::XOR, Ty, Legal);
187
188  if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
189    setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
190    setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
191    setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
192    setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
193  }
194
195  setOperationAction(ISD::SETCC, Ty, Legal);
196  setCondCodeAction(ISD::SETNE, Ty, Expand);
197  setCondCodeAction(ISD::SETGE, Ty, Expand);
198  setCondCodeAction(ISD::SETGT, Ty, Expand);
199  setCondCodeAction(ISD::SETUGE, Ty, Expand);
200  setCondCodeAction(ISD::SETUGT, Ty, Expand);
201}
202
203// Enable MSA support for the given floating-point type and Register class.
204void MipsSETargetLowering::
205addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
206  addRegisterClass(Ty, RC);
207
208  // Expand all builtin opcodes.
209  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
210    setOperationAction(Opc, Ty, Expand);
211
212  setOperationAction(ISD::LOAD, Ty, Legal);
213  setOperationAction(ISD::STORE, Ty, Legal);
214  setOperationAction(ISD::BITCAST, Ty, Legal);
215  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
216  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
217  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
218
219  if (Ty != MVT::v8f16) {
220    setOperationAction(ISD::FABS,  Ty, Legal);
221    setOperationAction(ISD::FADD,  Ty, Legal);
222    setOperationAction(ISD::FDIV,  Ty, Legal);
223    setOperationAction(ISD::FLOG2, Ty, Legal);
224    setOperationAction(ISD::FMA,   Ty, Legal);
225    setOperationAction(ISD::FMUL,  Ty, Legal);
226    setOperationAction(ISD::FRINT, Ty, Legal);
227    setOperationAction(ISD::FSQRT, Ty, Legal);
228    setOperationAction(ISD::FSUB,  Ty, Legal);
229    setOperationAction(ISD::VSELECT, Ty, Legal);
230
231    setOperationAction(ISD::SETCC, Ty, Legal);
232    setCondCodeAction(ISD::SETOGE, Ty, Expand);
233    setCondCodeAction(ISD::SETOGT, Ty, Expand);
234    setCondCodeAction(ISD::SETUGE, Ty, Expand);
235    setCondCodeAction(ISD::SETUGT, Ty, Expand);
236    setCondCodeAction(ISD::SETGE,  Ty, Expand);
237    setCondCodeAction(ISD::SETGT,  Ty, Expand);
238  }
239}
240
241bool
242MipsSETargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
243  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
244
245  switch (SVT) {
246  case MVT::i64:
247  case MVT::i32:
248    if (Fast)
249      *Fast = true;
250    return true;
251  default:
252    return false;
253  }
254}
255
256SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
257                                             SelectionDAG &DAG) const {
258  switch(Op.getOpcode()) {
259  case ISD::LOAD:  return lowerLOAD(Op, DAG);
260  case ISD::STORE: return lowerSTORE(Op, DAG);
261  case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
262  case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
263  case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
264  case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
265  case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
266  case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
267  case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
268                                          DAG);
269  case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
270  case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
271  case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
272  case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
273  case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
274  case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
275  }
276
277  return MipsTargetLowering::LowerOperation(Op, DAG);
278}
279
280// selectMADD -
281// Transforms a subgraph in CurDAG if the following pattern is found:
282//  (addc multLo, Lo0), (adde multHi, Hi0),
283// where,
284//  multHi/Lo: product of multiplication
285//  Lo0: initial value of Lo register
286//  Hi0: initial value of Hi register
287// Return true if pattern matching was successful.
288static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
289  // ADDENode's second operand must be a flag output of an ADDC node in order
290  // for the matching to be successful.
291  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
292
293  if (ADDCNode->getOpcode() != ISD::ADDC)
294    return false;
295
296  SDValue MultHi = ADDENode->getOperand(0);
297  SDValue MultLo = ADDCNode->getOperand(0);
298  SDNode *MultNode = MultHi.getNode();
299  unsigned MultOpc = MultHi.getOpcode();
300
301  // MultHi and MultLo must be generated by the same node,
302  if (MultLo.getNode() != MultNode)
303    return false;
304
305  // and it must be a multiplication.
306  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
307    return false;
308
309  // MultLo amd MultHi must be the first and second output of MultNode
310  // respectively.
311  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
312    return false;
313
314  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
315  // of the values of MultNode, in which case MultNode will be removed in later
316  // phases.
317  // If there exist users other than ADDENode or ADDCNode, this function returns
318  // here, which will result in MultNode being mapped to a single MULT
319  // instruction node rather than a pair of MULT and MADD instructions being
320  // produced.
321  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
322    return false;
323
324  SDLoc DL(ADDENode);
325
326  // Initialize accumulator.
327  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
328                                  ADDCNode->getOperand(1),
329                                  ADDENode->getOperand(1));
330
331  // create MipsMAdd(u) node
332  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
333
334  SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
335                                 MultNode->getOperand(0),// Factor 0
336                                 MultNode->getOperand(1),// Factor 1
337                                 ACCIn);
338
339  // replace uses of adde and addc here
340  if (!SDValue(ADDCNode, 0).use_empty()) {
341    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
342    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
343  }
344  if (!SDValue(ADDENode, 0).use_empty()) {
345    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
346    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
347  }
348
349  return true;
350}
351
352// selectMSUB -
353// Transforms a subgraph in CurDAG if the following pattern is found:
354//  (addc Lo0, multLo), (sube Hi0, multHi),
355// where,
356//  multHi/Lo: product of multiplication
357//  Lo0: initial value of Lo register
358//  Hi0: initial value of Hi register
359// Return true if pattern matching was successful.
360static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
361  // SUBENode's second operand must be a flag output of an SUBC node in order
362  // for the matching to be successful.
363  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
364
365  if (SUBCNode->getOpcode() != ISD::SUBC)
366    return false;
367
368  SDValue MultHi = SUBENode->getOperand(1);
369  SDValue MultLo = SUBCNode->getOperand(1);
370  SDNode *MultNode = MultHi.getNode();
371  unsigned MultOpc = MultHi.getOpcode();
372
373  // MultHi and MultLo must be generated by the same node,
374  if (MultLo.getNode() != MultNode)
375    return false;
376
377  // and it must be a multiplication.
378  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
379    return false;
380
381  // MultLo amd MultHi must be the first and second output of MultNode
382  // respectively.
383  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
384    return false;
385
386  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
387  // of the values of MultNode, in which case MultNode will be removed in later
388  // phases.
389  // If there exist users other than SUBENode or SUBCNode, this function returns
390  // here, which will result in MultNode being mapped to a single MULT
391  // instruction node rather than a pair of MULT and MSUB instructions being
392  // produced.
393  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
394    return false;
395
396  SDLoc DL(SUBENode);
397
398  // Initialize accumulator.
399  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
400                                  SUBCNode->getOperand(0),
401                                  SUBENode->getOperand(0));
402
403  // create MipsSub(u) node
404  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
405
406  SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
407                                 MultNode->getOperand(0),// Factor 0
408                                 MultNode->getOperand(1),// Factor 1
409                                 ACCIn);
410
411  // replace uses of sube and subc here
412  if (!SDValue(SUBCNode, 0).use_empty()) {
413    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
414    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
415  }
416  if (!SDValue(SUBENode, 0).use_empty()) {
417    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
418    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
419  }
420
421  return true;
422}
423
424static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
425                                  TargetLowering::DAGCombinerInfo &DCI,
426                                  const MipsSubtarget *Subtarget) {
427  if (DCI.isBeforeLegalize())
428    return SDValue();
429
430  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
431      selectMADD(N, &DAG))
432    return SDValue(N, 0);
433
434  return SDValue();
435}
436
437// Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
438//
439// Performs the following transformations:
440// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
441//   sign/zero-extension is completely overwritten by the new one performed by
442//   the ISD::AND.
443// - Removes redundant zero extensions performed by an ISD::AND.
444static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
445                                 TargetLowering::DAGCombinerInfo &DCI,
446                                 const MipsSubtarget *Subtarget) {
447  if (!Subtarget->hasMSA())
448    return SDValue();
449
450  SDValue Op0 = N->getOperand(0);
451  SDValue Op1 = N->getOperand(1);
452  unsigned Op0Opcode = Op0->getOpcode();
453
454  // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
455  // where $d + 1 == 2^n and n == 32
456  // or    $d + 1 == 2^n and n <= 32 and ZExt
457  // -> (MipsVExtractZExt $a, $b, $c)
458  if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
459      Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
460    ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
461
462    if (!Mask)
463      return SDValue();
464
465    int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
466
467    if (Log2IfPositive <= 0)
468      return SDValue(); // Mask+1 is not a power of 2
469
470    SDValue Op0Op2 = Op0->getOperand(2);
471    EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
472    unsigned ExtendTySize = ExtendTy.getSizeInBits();
473    unsigned Log2 = Log2IfPositive;
474
475    if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
476        Log2 == ExtendTySize) {
477      SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
478      DAG.MorphNodeTo(Op0.getNode(), MipsISD::VEXTRACT_ZEXT_ELT,
479                      Op0->getVTList(), Ops, Op0->getNumOperands());
480      return Op0;
481    }
482  }
483
484  return SDValue();
485}
486
487static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
488                                  TargetLowering::DAGCombinerInfo &DCI,
489                                  const MipsSubtarget *Subtarget) {
490  if (DCI.isBeforeLegalize())
491    return SDValue();
492
493  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
494      selectMSUB(N, &DAG))
495    return SDValue(N, 0);
496
497  return SDValue();
498}
499
500static SDValue genConstMult(SDValue X, uint64_t C, SDLoc DL, EVT VT,
501                            EVT ShiftTy, SelectionDAG &DAG) {
502  // Clear the upper (64 - VT.sizeInBits) bits.
503  C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
504
505  // Return 0.
506  if (C == 0)
507    return DAG.getConstant(0, VT);
508
509  // Return x.
510  if (C == 1)
511    return X;
512
513  // If c is power of 2, return (shl x, log2(c)).
514  if (isPowerOf2_64(C))
515    return DAG.getNode(ISD::SHL, DL, VT, X,
516                       DAG.getConstant(Log2_64(C), ShiftTy));
517
518  unsigned Log2Ceil = Log2_64_Ceil(C);
519  uint64_t Floor = 1LL << Log2_64(C);
520  uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
521
522  // If |c - floor_c| <= |c - ceil_c|,
523  // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
524  // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
525  if (C - Floor <= Ceil - C) {
526    SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
527    SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
528    return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
529  }
530
531  // If |c - floor_c| > |c - ceil_c|,
532  // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
533  SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
534  SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
535  return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
536}
537
538static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
539                                 const TargetLowering::DAGCombinerInfo &DCI,
540                                 const MipsSETargetLowering *TL) {
541  EVT VT = N->getValueType(0);
542
543  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
544    if (!VT.isVector())
545      return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N),
546                          VT, TL->getScalarShiftAmountTy(VT), DAG);
547
548  return SDValue(N, 0);
549}
550
551static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
552                                      SelectionDAG &DAG,
553                                      const MipsSubtarget *Subtarget) {
554  // See if this is a vector splat immediate node.
555  APInt SplatValue, SplatUndef;
556  unsigned SplatBitSize;
557  bool HasAnyUndefs;
558  unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
559  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
560
561  if (!BV ||
562      !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
563                           EltSize, !Subtarget->isLittle()) ||
564      (SplatBitSize != EltSize) ||
565      (SplatValue.getZExtValue() >= EltSize))
566    return SDValue();
567
568  return DAG.getNode(Opc, SDLoc(N), Ty, N->getOperand(0),
569                     DAG.getConstant(SplatValue.getZExtValue(), MVT::i32));
570}
571
572static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
573                                 TargetLowering::DAGCombinerInfo &DCI,
574                                 const MipsSubtarget *Subtarget) {
575  EVT Ty = N->getValueType(0);
576
577  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
578    return SDValue();
579
580  return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
581}
582
583// Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
584// constant splats into MipsISD::SHRA_DSP for DSPr2.
585//
586// Performs the following transformations:
587// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
588//   sign/zero-extension is completely overwritten by the new one performed by
589//   the ISD::SRA and ISD::SHL nodes.
590// - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
591//   sequence.
592//
593// See performDSPShiftCombine for more information about the transformation
594// used for DSPr2.
595static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
596                                 TargetLowering::DAGCombinerInfo &DCI,
597                                 const MipsSubtarget *Subtarget) {
598  EVT Ty = N->getValueType(0);
599
600  if (Subtarget->hasMSA()) {
601    SDValue Op0 = N->getOperand(0);
602    SDValue Op1 = N->getOperand(1);
603
604    // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
605    // where $d + sizeof($c) == 32
606    // or    $d + sizeof($c) <= 32 and SExt
607    // -> (MipsVExtractSExt $a, $b, $c)
608    if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
609      SDValue Op0Op0 = Op0->getOperand(0);
610      ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
611
612      if (!ShAmount)
613        return SDValue();
614
615      if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
616          Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
617        return SDValue();
618
619      EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
620      unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
621
622      if (TotalBits == 32 ||
623          (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
624           TotalBits <= 32)) {
625        SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
626                          Op0Op0->getOperand(2) };
627        DAG.MorphNodeTo(Op0Op0.getNode(), MipsISD::VEXTRACT_SEXT_ELT,
628                        Op0Op0->getVTList(), Ops, Op0Op0->getNumOperands());
629        return Op0Op0;
630      }
631    }
632  }
633
634  if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget->hasDSPR2()))
635    return SDValue();
636
637  return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
638}
639
640
641static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
642                                 TargetLowering::DAGCombinerInfo &DCI,
643                                 const MipsSubtarget *Subtarget) {
644  EVT Ty = N->getValueType(0);
645
646  if (((Ty != MVT::v2i16) || !Subtarget->hasDSPR2()) && (Ty != MVT::v4i8))
647    return SDValue();
648
649  return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
650}
651
652static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
653  bool IsV216 = (Ty == MVT::v2i16);
654
655  switch (CC) {
656  case ISD::SETEQ:
657  case ISD::SETNE:  return true;
658  case ISD::SETLT:
659  case ISD::SETLE:
660  case ISD::SETGT:
661  case ISD::SETGE:  return IsV216;
662  case ISD::SETULT:
663  case ISD::SETULE:
664  case ISD::SETUGT:
665  case ISD::SETUGE: return !IsV216;
666  default:          return false;
667  }
668}
669
670static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
671  EVT Ty = N->getValueType(0);
672
673  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
674    return SDValue();
675
676  if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
677    return SDValue();
678
679  return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
680                     N->getOperand(1), N->getOperand(2));
681}
682
683static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
684  EVT Ty = N->getValueType(0);
685
686  if (Ty.is128BitVector() && Ty.isInteger()) {
687    // Try the following combines:
688    //   (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
689    //   (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
690    //   (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
691    //   (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
692    //   (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
693    //   (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
694    //   (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
695    //   (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
696    // SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
697    // will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
698    // legalizer.
699    SDValue Op0 = N->getOperand(0);
700
701    if (Op0->getOpcode() != ISD::SETCC)
702      return SDValue();
703
704    ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
705    bool Signed;
706
707    if (CondCode == ISD::SETLT  || CondCode == ISD::SETLE)
708      Signed = true;
709    else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
710      Signed = false;
711    else
712      return SDValue();
713
714    SDValue Op1 = N->getOperand(1);
715    SDValue Op2 = N->getOperand(2);
716    SDValue Op0Op0 = Op0->getOperand(0);
717    SDValue Op0Op1 = Op0->getOperand(1);
718
719    if (Op1 == Op0Op0 && Op2 == Op0Op1)
720      return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
721                         Ty, Op1, Op2);
722    else if (Op1 == Op0Op1 && Op2 == Op0Op0)
723      return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
724                         Ty, Op1, Op2);
725  } else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
726    SDValue SetCC = N->getOperand(0);
727
728    if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
729      return SDValue();
730
731    return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
732                       SetCC.getOperand(0), SetCC.getOperand(1),
733                       N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
734  }
735
736  return SDValue();
737}
738
739static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
740                                 const MipsSubtarget *Subtarget) {
741  EVT Ty = N->getValueType(0);
742
743  if (Subtarget->hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
744    // Try the following combines:
745    //   (xor (or $a, $b), (build_vector allones))
746    //   (xor (or $a, $b), (bitcast (build_vector allones)))
747    SDValue Op0 = N->getOperand(0);
748    SDValue Op1 = N->getOperand(1);
749    SDValue NotOp;
750
751    if (ISD::isBuildVectorAllOnes(Op0.getNode()))
752      NotOp = Op1;
753    else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
754      NotOp = Op0;
755    else
756      return SDValue();
757
758    if (NotOp->getOpcode() == ISD::OR)
759      return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
760                         NotOp->getOperand(1));
761  }
762
763  return SDValue();
764}
765
766SDValue
767MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
768  SelectionDAG &DAG = DCI.DAG;
769  SDValue Val;
770
771  switch (N->getOpcode()) {
772  case ISD::ADDE:
773    return performADDECombine(N, DAG, DCI, Subtarget);
774  case ISD::AND:
775    Val = performANDCombine(N, DAG, DCI, Subtarget);
776    break;
777  case ISD::SUBE:
778    return performSUBECombine(N, DAG, DCI, Subtarget);
779  case ISD::MUL:
780    return performMULCombine(N, DAG, DCI, this);
781  case ISD::SHL:
782    return performSHLCombine(N, DAG, DCI, Subtarget);
783  case ISD::SRA:
784    return performSRACombine(N, DAG, DCI, Subtarget);
785  case ISD::SRL:
786    return performSRLCombine(N, DAG, DCI, Subtarget);
787  case ISD::VSELECT:
788    return performVSELECTCombine(N, DAG);
789  case ISD::XOR:
790    Val = performXORCombine(N, DAG, Subtarget);
791    break;
792  case ISD::SETCC:
793    Val = performSETCCCombine(N, DAG);
794    break;
795  }
796
797  if (Val.getNode())
798    return Val;
799
800  return MipsTargetLowering::PerformDAGCombine(N, DCI);
801}
802
803MachineBasicBlock *
804MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
805                                                  MachineBasicBlock *BB) const {
806  switch (MI->getOpcode()) {
807  default:
808    return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
809  case Mips::BPOSGE32_PSEUDO:
810    return emitBPOSGE32(MI, BB);
811  case Mips::SNZ_B_PSEUDO:
812    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
813  case Mips::SNZ_H_PSEUDO:
814    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
815  case Mips::SNZ_W_PSEUDO:
816    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
817  case Mips::SNZ_D_PSEUDO:
818    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
819  case Mips::SNZ_V_PSEUDO:
820    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
821  case Mips::SZ_B_PSEUDO:
822    return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
823  case Mips::SZ_H_PSEUDO:
824    return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
825  case Mips::SZ_W_PSEUDO:
826    return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
827  case Mips::SZ_D_PSEUDO:
828    return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
829  case Mips::SZ_V_PSEUDO:
830    return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
831  case Mips::COPY_FW_PSEUDO:
832    return emitCOPY_FW(MI, BB);
833  case Mips::COPY_FD_PSEUDO:
834    return emitCOPY_FD(MI, BB);
835  case Mips::INSERT_FW_PSEUDO:
836    return emitINSERT_FW(MI, BB);
837  case Mips::INSERT_FD_PSEUDO:
838    return emitINSERT_FD(MI, BB);
839  case Mips::FILL_FW_PSEUDO:
840    return emitFILL_FW(MI, BB);
841  case Mips::FILL_FD_PSEUDO:
842    return emitFILL_FD(MI, BB);
843  }
844}
845
846bool MipsSETargetLowering::
847isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
848                                  unsigned NextStackOffset,
849                                  const MipsFunctionInfo& FI) const {
850  if (!EnableMipsTailCalls)
851    return false;
852
853  // Return false if either the callee or caller has a byval argument.
854  if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
855    return false;
856
857  // Return true if the callee's argument area is no larger than the
858  // caller's.
859  return NextStackOffset <= FI.getIncomingArgSize();
860}
861
862void MipsSETargetLowering::
863getOpndList(SmallVectorImpl<SDValue> &Ops,
864            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
865            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
866            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
867  // T9 should contain the address of the callee function if
868  // -reloction-model=pic or it is an indirect call.
869  if (IsPICCall || !GlobalOrExternal) {
870    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
871    RegsToPass.push_front(std::make_pair(T9Reg, Callee));
872  } else
873    Ops.push_back(Callee);
874
875  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
876                                  InternalLinkage, CLI, Callee, Chain);
877}
878
879SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
880  LoadSDNode &Nd = *cast<LoadSDNode>(Op);
881
882  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
883    return MipsTargetLowering::lowerLOAD(Op, DAG);
884
885  // Replace a double precision load with two i32 loads and a buildpair64.
886  SDLoc DL(Op);
887  SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
888  EVT PtrVT = Ptr.getValueType();
889
890  // i32 load from lower address.
891  SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
892                           MachinePointerInfo(), Nd.isVolatile(),
893                           Nd.isNonTemporal(), Nd.isInvariant(),
894                           Nd.getAlignment());
895
896  // i32 load from higher address.
897  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
898  SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
899                           MachinePointerInfo(), Nd.isVolatile(),
900                           Nd.isNonTemporal(), Nd.isInvariant(),
901                           std::min(Nd.getAlignment(), 4U));
902
903  if (!Subtarget->isLittle())
904    std::swap(Lo, Hi);
905
906  SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
907  SDValue Ops[2] = {BP, Hi.getValue(1)};
908  return DAG.getMergeValues(Ops, 2, DL);
909}
910
911SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
912  StoreSDNode &Nd = *cast<StoreSDNode>(Op);
913
914  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
915    return MipsTargetLowering::lowerSTORE(Op, DAG);
916
917  // Replace a double precision store with two extractelement64s and i32 stores.
918  SDLoc DL(Op);
919  SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
920  EVT PtrVT = Ptr.getValueType();
921  SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
922                           Val, DAG.getConstant(0, MVT::i32));
923  SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
924                           Val, DAG.getConstant(1, MVT::i32));
925
926  if (!Subtarget->isLittle())
927    std::swap(Lo, Hi);
928
929  // i32 store to lower address.
930  Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
931                       Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
932                       Nd.getTBAAInfo());
933
934  // i32 store to higher address.
935  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
936  return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
937                      Nd.isVolatile(), Nd.isNonTemporal(),
938                      std::min(Nd.getAlignment(), 4U), Nd.getTBAAInfo());
939}
940
941SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
942                                          bool HasLo, bool HasHi,
943                                          SelectionDAG &DAG) const {
944  EVT Ty = Op.getOperand(0).getValueType();
945  SDLoc DL(Op);
946  SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
947                             Op.getOperand(0), Op.getOperand(1));
948  SDValue Lo, Hi;
949
950  if (HasLo)
951    Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
952  if (HasHi)
953    Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
954
955  if (!HasLo || !HasHi)
956    return HasLo ? Lo : Hi;
957
958  SDValue Vals[] = { Lo, Hi };
959  return DAG.getMergeValues(Vals, 2, DL);
960}
961
962
963static SDValue initAccumulator(SDValue In, SDLoc DL, SelectionDAG &DAG) {
964  SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
965                             DAG.getConstant(0, MVT::i32));
966  SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
967                             DAG.getConstant(1, MVT::i32));
968  return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
969}
970
971static SDValue extractLOHI(SDValue Op, SDLoc DL, SelectionDAG &DAG) {
972  SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
973  SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
974  return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
975}
976
977// This function expands mips intrinsic nodes which have 64-bit input operands
978// or output values.
979//
980// out64 = intrinsic-node in64
981// =>
982// lo = copy (extract-element (in64, 0))
983// hi = copy (extract-element (in64, 1))
984// mips-specific-node
985// v0 = copy lo
986// v1 = copy hi
987// out64 = merge-values (v0, v1)
988//
989static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
990  SDLoc DL(Op);
991  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
992  SmallVector<SDValue, 3> Ops;
993  unsigned OpNo = 0;
994
995  // See if Op has a chain input.
996  if (HasChainIn)
997    Ops.push_back(Op->getOperand(OpNo++));
998
999  // The next operand is the intrinsic opcode.
1000  assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1001
1002  // See if the next operand has type i64.
1003  SDValue Opnd = Op->getOperand(++OpNo), In64;
1004
1005  if (Opnd.getValueType() == MVT::i64)
1006    In64 = initAccumulator(Opnd, DL, DAG);
1007  else
1008    Ops.push_back(Opnd);
1009
1010  // Push the remaining operands.
1011  for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1012    Ops.push_back(Op->getOperand(OpNo));
1013
1014  // Add In64 to the end of the list.
1015  if (In64.getNode())
1016    Ops.push_back(In64);
1017
1018  // Scan output.
1019  SmallVector<EVT, 2> ResTys;
1020
1021  for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
1022       I != E; ++I)
1023    ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
1024
1025  // Create node.
1026  SDValue Val = DAG.getNode(Opc, DL, ResTys, &Ops[0], Ops.size());
1027  SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1028
1029  if (!HasChainIn)
1030    return Out;
1031
1032  assert(Val->getValueType(1) == MVT::Other);
1033  SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1034  return DAG.getMergeValues(Vals, 2, DL);
1035}
1036
1037// Lower an MSA copy intrinsic into the specified SelectionDAG node
1038static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1039  SDLoc DL(Op);
1040  SDValue Vec = Op->getOperand(1);
1041  SDValue Idx = Op->getOperand(2);
1042  EVT ResTy = Op->getValueType(0);
1043  EVT EltTy = Vec->getValueType(0).getVectorElementType();
1044
1045  SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1046                               DAG.getValueType(EltTy));
1047
1048  return Result;
1049}
1050
1051static SDValue
1052lowerMSASplatImm(SDLoc DL, EVT ResTy, SDValue ImmOp, SelectionDAG &DAG) {
1053  EVT ViaVecTy = ResTy;
1054  SmallVector<SDValue, 16> Ops;
1055  SDValue ImmHiOp;
1056
1057  if (ViaVecTy == MVT::v2i64) {
1058    ImmHiOp = DAG.getNode(ISD::SRA, DL, MVT::i32, ImmOp,
1059                          DAG.getConstant(31, MVT::i32));
1060    for (unsigned i = 0; i < ViaVecTy.getVectorNumElements(); ++i) {
1061      Ops.push_back(ImmHiOp);
1062      Ops.push_back(ImmOp);
1063    }
1064    ViaVecTy = MVT::v4i32;
1065  } else {
1066    for (unsigned i = 0; i < ResTy.getVectorNumElements(); ++i)
1067      Ops.push_back(ImmOp);
1068  }
1069
1070  SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy, &Ops[0],
1071                               Ops.size());
1072
1073  if (ResTy != ViaVecTy)
1074    Result = DAG.getNode(ISD::BITCAST, DL, ResTy, Result);
1075
1076  return Result;
1077}
1078
1079static SDValue
1080lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
1081  return lowerMSASplatImm(SDLoc(Op), Op->getValueType(0),
1082                          Op->getOperand(ImmOp), DAG);
1083}
1084
1085SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1086                                                      SelectionDAG &DAG) const {
1087  SDLoc DL(Op);
1088
1089  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
1090  default:
1091    return SDValue();
1092  case Intrinsic::mips_shilo:
1093    return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1094  case Intrinsic::mips_dpau_h_qbl:
1095    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1096  case Intrinsic::mips_dpau_h_qbr:
1097    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1098  case Intrinsic::mips_dpsu_h_qbl:
1099    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1100  case Intrinsic::mips_dpsu_h_qbr:
1101    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1102  case Intrinsic::mips_dpa_w_ph:
1103    return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1104  case Intrinsic::mips_dps_w_ph:
1105    return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1106  case Intrinsic::mips_dpax_w_ph:
1107    return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1108  case Intrinsic::mips_dpsx_w_ph:
1109    return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1110  case Intrinsic::mips_mulsa_w_ph:
1111    return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1112  case Intrinsic::mips_mult:
1113    return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1114  case Intrinsic::mips_multu:
1115    return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1116  case Intrinsic::mips_madd:
1117    return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1118  case Intrinsic::mips_maddu:
1119    return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1120  case Intrinsic::mips_msub:
1121    return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1122  case Intrinsic::mips_msubu:
1123    return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1124  case Intrinsic::mips_addv_b:
1125  case Intrinsic::mips_addv_h:
1126  case Intrinsic::mips_addv_w:
1127  case Intrinsic::mips_addv_d:
1128    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1129                       Op->getOperand(2));
1130  case Intrinsic::mips_addvi_b:
1131  case Intrinsic::mips_addvi_h:
1132  case Intrinsic::mips_addvi_w:
1133  case Intrinsic::mips_addvi_d:
1134    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1135                       lowerMSASplatImm(Op, 2, DAG));
1136  case Intrinsic::mips_and_v:
1137    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1138                       Op->getOperand(2));
1139  case Intrinsic::mips_andi_b:
1140    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1141                       lowerMSASplatImm(Op, 2, DAG));
1142  case Intrinsic::mips_bnz_b:
1143  case Intrinsic::mips_bnz_h:
1144  case Intrinsic::mips_bnz_w:
1145  case Intrinsic::mips_bnz_d:
1146    return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1147                       Op->getOperand(1));
1148  case Intrinsic::mips_bnz_v:
1149    return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1150                       Op->getOperand(1));
1151  case Intrinsic::mips_bsel_v:
1152    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1153                       Op->getOperand(1), Op->getOperand(2),
1154                       Op->getOperand(3));
1155  case Intrinsic::mips_bseli_b:
1156    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1157                       Op->getOperand(1), Op->getOperand(2),
1158                       lowerMSASplatImm(Op, 3, DAG));
1159  case Intrinsic::mips_bz_b:
1160  case Intrinsic::mips_bz_h:
1161  case Intrinsic::mips_bz_w:
1162  case Intrinsic::mips_bz_d:
1163    return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1164                       Op->getOperand(1));
1165  case Intrinsic::mips_bz_v:
1166    return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1167                       Op->getOperand(1));
1168  case Intrinsic::mips_ceq_b:
1169  case Intrinsic::mips_ceq_h:
1170  case Intrinsic::mips_ceq_w:
1171  case Intrinsic::mips_ceq_d:
1172    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1173                        Op->getOperand(2), ISD::SETEQ);
1174  case Intrinsic::mips_ceqi_b:
1175  case Intrinsic::mips_ceqi_h:
1176  case Intrinsic::mips_ceqi_w:
1177  case Intrinsic::mips_ceqi_d:
1178    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1179                        lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
1180  case Intrinsic::mips_cle_s_b:
1181  case Intrinsic::mips_cle_s_h:
1182  case Intrinsic::mips_cle_s_w:
1183  case Intrinsic::mips_cle_s_d:
1184    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1185                        Op->getOperand(2), ISD::SETLE);
1186  case Intrinsic::mips_clei_s_b:
1187  case Intrinsic::mips_clei_s_h:
1188  case Intrinsic::mips_clei_s_w:
1189  case Intrinsic::mips_clei_s_d:
1190    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1191                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
1192  case Intrinsic::mips_cle_u_b:
1193  case Intrinsic::mips_cle_u_h:
1194  case Intrinsic::mips_cle_u_w:
1195  case Intrinsic::mips_cle_u_d:
1196    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1197                        Op->getOperand(2), ISD::SETULE);
1198  case Intrinsic::mips_clei_u_b:
1199  case Intrinsic::mips_clei_u_h:
1200  case Intrinsic::mips_clei_u_w:
1201  case Intrinsic::mips_clei_u_d:
1202    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1203                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1204  case Intrinsic::mips_clt_s_b:
1205  case Intrinsic::mips_clt_s_h:
1206  case Intrinsic::mips_clt_s_w:
1207  case Intrinsic::mips_clt_s_d:
1208    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1209                        Op->getOperand(2), ISD::SETLT);
1210  case Intrinsic::mips_clti_s_b:
1211  case Intrinsic::mips_clti_s_h:
1212  case Intrinsic::mips_clti_s_w:
1213  case Intrinsic::mips_clti_s_d:
1214    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1215                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
1216  case Intrinsic::mips_clt_u_b:
1217  case Intrinsic::mips_clt_u_h:
1218  case Intrinsic::mips_clt_u_w:
1219  case Intrinsic::mips_clt_u_d:
1220    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1221                        Op->getOperand(2), ISD::SETULT);
1222  case Intrinsic::mips_clti_u_b:
1223  case Intrinsic::mips_clti_u_h:
1224  case Intrinsic::mips_clti_u_w:
1225  case Intrinsic::mips_clti_u_d:
1226    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1227                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1228  case Intrinsic::mips_copy_s_b:
1229  case Intrinsic::mips_copy_s_h:
1230  case Intrinsic::mips_copy_s_w:
1231    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1232  case Intrinsic::mips_copy_s_d:
1233    // Don't lower directly into VEXTRACT_SEXT_ELT since i64 might be illegal.
1234    // Instead lower to the generic EXTRACT_VECTOR_ELT node and let the type
1235    // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1236    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1237                       Op->getOperand(1), Op->getOperand(2));
1238  case Intrinsic::mips_copy_u_b:
1239  case Intrinsic::mips_copy_u_h:
1240  case Intrinsic::mips_copy_u_w:
1241    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1242  case Intrinsic::mips_copy_u_d:
1243    // Don't lower directly into VEXTRACT_ZEXT_ELT since i64 might be illegal.
1244    // Instead lower to the generic EXTRACT_VECTOR_ELT node and let the type
1245    // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1246    //
1247    // Note: When i64 is illegal, this results in copy_s.w instructions instead
1248    // of copy_u.w instructions. This makes no difference to the behaviour
1249    // since i64 is only illegal when the register file is 32-bit.
1250    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1251                       Op->getOperand(1), Op->getOperand(2));
1252  case Intrinsic::mips_div_s_b:
1253  case Intrinsic::mips_div_s_h:
1254  case Intrinsic::mips_div_s_w:
1255  case Intrinsic::mips_div_s_d:
1256    return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1257                       Op->getOperand(2));
1258  case Intrinsic::mips_div_u_b:
1259  case Intrinsic::mips_div_u_h:
1260  case Intrinsic::mips_div_u_w:
1261  case Intrinsic::mips_div_u_d:
1262    return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1263                       Op->getOperand(2));
1264  case Intrinsic::mips_fadd_w:
1265  case Intrinsic::mips_fadd_d:
1266    return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1267                       Op->getOperand(2));
1268  // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1269  case Intrinsic::mips_fceq_w:
1270  case Intrinsic::mips_fceq_d:
1271    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1272                        Op->getOperand(2), ISD::SETOEQ);
1273  case Intrinsic::mips_fcle_w:
1274  case Intrinsic::mips_fcle_d:
1275    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1276                        Op->getOperand(2), ISD::SETOLE);
1277  case Intrinsic::mips_fclt_w:
1278  case Intrinsic::mips_fclt_d:
1279    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1280                        Op->getOperand(2), ISD::SETOLT);
1281  case Intrinsic::mips_fcne_w:
1282  case Intrinsic::mips_fcne_d:
1283    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1284                        Op->getOperand(2), ISD::SETONE);
1285  case Intrinsic::mips_fcor_w:
1286  case Intrinsic::mips_fcor_d:
1287    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1288                        Op->getOperand(2), ISD::SETO);
1289  case Intrinsic::mips_fcueq_w:
1290  case Intrinsic::mips_fcueq_d:
1291    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1292                        Op->getOperand(2), ISD::SETUEQ);
1293  case Intrinsic::mips_fcule_w:
1294  case Intrinsic::mips_fcule_d:
1295    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1296                        Op->getOperand(2), ISD::SETULE);
1297  case Intrinsic::mips_fcult_w:
1298  case Intrinsic::mips_fcult_d:
1299    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1300                        Op->getOperand(2), ISD::SETULT);
1301  case Intrinsic::mips_fcun_w:
1302  case Intrinsic::mips_fcun_d:
1303    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1304                        Op->getOperand(2), ISD::SETUO);
1305  case Intrinsic::mips_fcune_w:
1306  case Intrinsic::mips_fcune_d:
1307    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1308                        Op->getOperand(2), ISD::SETUNE);
1309  case Intrinsic::mips_fdiv_w:
1310  case Intrinsic::mips_fdiv_d:
1311    return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1312                       Op->getOperand(2));
1313  case Intrinsic::mips_ffint_u_w:
1314  case Intrinsic::mips_ffint_u_d:
1315    return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1316                       Op->getOperand(1));
1317  case Intrinsic::mips_ffint_s_w:
1318  case Intrinsic::mips_ffint_s_d:
1319    return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1320                       Op->getOperand(1));
1321  case Intrinsic::mips_fill_b:
1322  case Intrinsic::mips_fill_h:
1323  case Intrinsic::mips_fill_w:
1324  case Intrinsic::mips_fill_d: {
1325    SmallVector<SDValue, 16> Ops;
1326    EVT ResTy = Op->getValueType(0);
1327
1328    for (unsigned i = 0; i < ResTy.getVectorNumElements(); ++i)
1329      Ops.push_back(Op->getOperand(1));
1330
1331    // If ResTy is v2i64 then the type legalizer will break this node down into
1332    // an equivalent v4i32.
1333    return DAG.getNode(ISD::BUILD_VECTOR, DL, ResTy, &Ops[0], Ops.size());
1334  }
1335  case Intrinsic::mips_flog2_w:
1336  case Intrinsic::mips_flog2_d:
1337    return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1338  case Intrinsic::mips_fmadd_w:
1339  case Intrinsic::mips_fmadd_d:
1340    return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1341                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1342  case Intrinsic::mips_fmul_w:
1343  case Intrinsic::mips_fmul_d:
1344    return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1345                       Op->getOperand(2));
1346  case Intrinsic::mips_fmsub_w:
1347  case Intrinsic::mips_fmsub_d: {
1348    EVT ResTy = Op->getValueType(0);
1349    return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
1350                       DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
1351                                   Op->getOperand(2), Op->getOperand(3)));
1352  }
1353  case Intrinsic::mips_frint_w:
1354  case Intrinsic::mips_frint_d:
1355    return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1356  case Intrinsic::mips_fsqrt_w:
1357  case Intrinsic::mips_fsqrt_d:
1358    return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1359  case Intrinsic::mips_fsub_w:
1360  case Intrinsic::mips_fsub_d:
1361    return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1362                       Op->getOperand(2));
1363  case Intrinsic::mips_ftrunc_u_w:
1364  case Intrinsic::mips_ftrunc_u_d:
1365    return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1366                       Op->getOperand(1));
1367  case Intrinsic::mips_ftrunc_s_w:
1368  case Intrinsic::mips_ftrunc_s_d:
1369    return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1370                       Op->getOperand(1));
1371  case Intrinsic::mips_ilvev_b:
1372  case Intrinsic::mips_ilvev_h:
1373  case Intrinsic::mips_ilvev_w:
1374  case Intrinsic::mips_ilvev_d:
1375    return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1376                       Op->getOperand(1), Op->getOperand(2));
1377  case Intrinsic::mips_ilvl_b:
1378  case Intrinsic::mips_ilvl_h:
1379  case Intrinsic::mips_ilvl_w:
1380  case Intrinsic::mips_ilvl_d:
1381    return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1382                       Op->getOperand(1), Op->getOperand(2));
1383  case Intrinsic::mips_ilvod_b:
1384  case Intrinsic::mips_ilvod_h:
1385  case Intrinsic::mips_ilvod_w:
1386  case Intrinsic::mips_ilvod_d:
1387    return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1388                       Op->getOperand(1), Op->getOperand(2));
1389  case Intrinsic::mips_ilvr_b:
1390  case Intrinsic::mips_ilvr_h:
1391  case Intrinsic::mips_ilvr_w:
1392  case Intrinsic::mips_ilvr_d:
1393    return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1394                       Op->getOperand(1), Op->getOperand(2));
1395  case Intrinsic::mips_insert_b:
1396  case Intrinsic::mips_insert_h:
1397  case Intrinsic::mips_insert_w:
1398  case Intrinsic::mips_insert_d:
1399    return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1400                       Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1401  case Intrinsic::mips_ldi_b:
1402  case Intrinsic::mips_ldi_h:
1403  case Intrinsic::mips_ldi_w:
1404  case Intrinsic::mips_ldi_d:
1405    return lowerMSASplatImm(Op, 1, DAG);
1406  case Intrinsic::mips_lsa: {
1407    EVT ResTy = Op->getValueType(0);
1408    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1409                       DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1410                                   Op->getOperand(2), Op->getOperand(3)));
1411  }
1412  case Intrinsic::mips_maddv_b:
1413  case Intrinsic::mips_maddv_h:
1414  case Intrinsic::mips_maddv_w:
1415  case Intrinsic::mips_maddv_d: {
1416    EVT ResTy = Op->getValueType(0);
1417    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1418                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1419                                   Op->getOperand(2), Op->getOperand(3)));
1420  }
1421  case Intrinsic::mips_max_s_b:
1422  case Intrinsic::mips_max_s_h:
1423  case Intrinsic::mips_max_s_w:
1424  case Intrinsic::mips_max_s_d:
1425    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1426                       Op->getOperand(1), Op->getOperand(2));
1427  case Intrinsic::mips_max_u_b:
1428  case Intrinsic::mips_max_u_h:
1429  case Intrinsic::mips_max_u_w:
1430  case Intrinsic::mips_max_u_d:
1431    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1432                       Op->getOperand(1), Op->getOperand(2));
1433  case Intrinsic::mips_maxi_s_b:
1434  case Intrinsic::mips_maxi_s_h:
1435  case Intrinsic::mips_maxi_s_w:
1436  case Intrinsic::mips_maxi_s_d:
1437    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1438                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1439  case Intrinsic::mips_maxi_u_b:
1440  case Intrinsic::mips_maxi_u_h:
1441  case Intrinsic::mips_maxi_u_w:
1442  case Intrinsic::mips_maxi_u_d:
1443    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1444                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1445  case Intrinsic::mips_min_s_b:
1446  case Intrinsic::mips_min_s_h:
1447  case Intrinsic::mips_min_s_w:
1448  case Intrinsic::mips_min_s_d:
1449    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
1450                       Op->getOperand(1), Op->getOperand(2));
1451  case Intrinsic::mips_min_u_b:
1452  case Intrinsic::mips_min_u_h:
1453  case Intrinsic::mips_min_u_w:
1454  case Intrinsic::mips_min_u_d:
1455    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
1456                       Op->getOperand(1), Op->getOperand(2));
1457  case Intrinsic::mips_mini_s_b:
1458  case Intrinsic::mips_mini_s_h:
1459  case Intrinsic::mips_mini_s_w:
1460  case Intrinsic::mips_mini_s_d:
1461    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
1462                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1463  case Intrinsic::mips_mini_u_b:
1464  case Intrinsic::mips_mini_u_h:
1465  case Intrinsic::mips_mini_u_w:
1466  case Intrinsic::mips_mini_u_d:
1467    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
1468                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1469  case Intrinsic::mips_mod_s_b:
1470  case Intrinsic::mips_mod_s_h:
1471  case Intrinsic::mips_mod_s_w:
1472  case Intrinsic::mips_mod_s_d:
1473    return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
1474                       Op->getOperand(2));
1475  case Intrinsic::mips_mod_u_b:
1476  case Intrinsic::mips_mod_u_h:
1477  case Intrinsic::mips_mod_u_w:
1478  case Intrinsic::mips_mod_u_d:
1479    return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
1480                       Op->getOperand(2));
1481  case Intrinsic::mips_mulv_b:
1482  case Intrinsic::mips_mulv_h:
1483  case Intrinsic::mips_mulv_w:
1484  case Intrinsic::mips_mulv_d:
1485    return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
1486                       Op->getOperand(2));
1487  case Intrinsic::mips_msubv_b:
1488  case Intrinsic::mips_msubv_h:
1489  case Intrinsic::mips_msubv_w:
1490  case Intrinsic::mips_msubv_d: {
1491    EVT ResTy = Op->getValueType(0);
1492    return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
1493                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1494                                   Op->getOperand(2), Op->getOperand(3)));
1495  }
1496  case Intrinsic::mips_nlzc_b:
1497  case Intrinsic::mips_nlzc_h:
1498  case Intrinsic::mips_nlzc_w:
1499  case Intrinsic::mips_nlzc_d:
1500    return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
1501  case Intrinsic::mips_nor_v: {
1502    SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
1503                              Op->getOperand(1), Op->getOperand(2));
1504    return DAG.getNOT(DL, Res, Res->getValueType(0));
1505  }
1506  case Intrinsic::mips_nori_b: {
1507    SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
1508                               Op->getOperand(1),
1509                               lowerMSASplatImm(Op, 2, DAG));
1510    return DAG.getNOT(DL, Res, Res->getValueType(0));
1511  }
1512  case Intrinsic::mips_or_v:
1513    return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
1514                       Op->getOperand(2));
1515  case Intrinsic::mips_ori_b:
1516    return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
1517                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1518  case Intrinsic::mips_pckev_b:
1519  case Intrinsic::mips_pckev_h:
1520  case Intrinsic::mips_pckev_w:
1521  case Intrinsic::mips_pckev_d:
1522    return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
1523                       Op->getOperand(1), Op->getOperand(2));
1524  case Intrinsic::mips_pckod_b:
1525  case Intrinsic::mips_pckod_h:
1526  case Intrinsic::mips_pckod_w:
1527  case Intrinsic::mips_pckod_d:
1528    return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
1529                       Op->getOperand(1), Op->getOperand(2));
1530  case Intrinsic::mips_pcnt_b:
1531  case Intrinsic::mips_pcnt_h:
1532  case Intrinsic::mips_pcnt_w:
1533  case Intrinsic::mips_pcnt_d:
1534    return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
1535  case Intrinsic::mips_shf_b:
1536  case Intrinsic::mips_shf_h:
1537  case Intrinsic::mips_shf_w:
1538    return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
1539                       Op->getOperand(2), Op->getOperand(1));
1540  case Intrinsic::mips_sll_b:
1541  case Intrinsic::mips_sll_h:
1542  case Intrinsic::mips_sll_w:
1543  case Intrinsic::mips_sll_d:
1544    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
1545                       Op->getOperand(2));
1546  case Intrinsic::mips_slli_b:
1547  case Intrinsic::mips_slli_h:
1548  case Intrinsic::mips_slli_w:
1549  case Intrinsic::mips_slli_d:
1550    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
1551                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1552  case Intrinsic::mips_splati_b:
1553  case Intrinsic::mips_splati_h:
1554  case Intrinsic::mips_splati_w:
1555  case Intrinsic::mips_splati_d:
1556    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
1557                       lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
1558                       Op->getOperand(1));
1559  case Intrinsic::mips_sra_b:
1560  case Intrinsic::mips_sra_h:
1561  case Intrinsic::mips_sra_w:
1562  case Intrinsic::mips_sra_d:
1563    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
1564                       Op->getOperand(2));
1565  case Intrinsic::mips_srai_b:
1566  case Intrinsic::mips_srai_h:
1567  case Intrinsic::mips_srai_w:
1568  case Intrinsic::mips_srai_d:
1569    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
1570                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1571  case Intrinsic::mips_srl_b:
1572  case Intrinsic::mips_srl_h:
1573  case Intrinsic::mips_srl_w:
1574  case Intrinsic::mips_srl_d:
1575    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
1576                       Op->getOperand(2));
1577  case Intrinsic::mips_srli_b:
1578  case Intrinsic::mips_srli_h:
1579  case Intrinsic::mips_srli_w:
1580  case Intrinsic::mips_srli_d:
1581    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
1582                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1583  case Intrinsic::mips_subv_b:
1584  case Intrinsic::mips_subv_h:
1585  case Intrinsic::mips_subv_w:
1586  case Intrinsic::mips_subv_d:
1587    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
1588                       Op->getOperand(2));
1589  case Intrinsic::mips_subvi_b:
1590  case Intrinsic::mips_subvi_h:
1591  case Intrinsic::mips_subvi_w:
1592  case Intrinsic::mips_subvi_d:
1593    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
1594                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1595  case Intrinsic::mips_vshf_b:
1596  case Intrinsic::mips_vshf_h:
1597  case Intrinsic::mips_vshf_w:
1598  case Intrinsic::mips_vshf_d:
1599    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
1600                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1601  case Intrinsic::mips_xor_v:
1602    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
1603                       Op->getOperand(2));
1604  case Intrinsic::mips_xori_b:
1605    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
1606                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1607  }
1608}
1609
1610static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
1611  SDLoc DL(Op);
1612  SDValue ChainIn = Op->getOperand(0);
1613  SDValue Address = Op->getOperand(2);
1614  SDValue Offset  = Op->getOperand(3);
1615  EVT ResTy = Op->getValueType(0);
1616  EVT PtrTy = Address->getValueType(0);
1617
1618  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
1619
1620  return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
1621                     false, false, 16);
1622}
1623
1624SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
1625                                                     SelectionDAG &DAG) const {
1626  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
1627  switch (Intr) {
1628  default:
1629    return SDValue();
1630  case Intrinsic::mips_extp:
1631    return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
1632  case Intrinsic::mips_extpdp:
1633    return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
1634  case Intrinsic::mips_extr_w:
1635    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
1636  case Intrinsic::mips_extr_r_w:
1637    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
1638  case Intrinsic::mips_extr_rs_w:
1639    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
1640  case Intrinsic::mips_extr_s_h:
1641    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
1642  case Intrinsic::mips_mthlip:
1643    return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
1644  case Intrinsic::mips_mulsaq_s_w_ph:
1645    return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
1646  case Intrinsic::mips_maq_s_w_phl:
1647    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
1648  case Intrinsic::mips_maq_s_w_phr:
1649    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
1650  case Intrinsic::mips_maq_sa_w_phl:
1651    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
1652  case Intrinsic::mips_maq_sa_w_phr:
1653    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
1654  case Intrinsic::mips_dpaq_s_w_ph:
1655    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
1656  case Intrinsic::mips_dpsq_s_w_ph:
1657    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
1658  case Intrinsic::mips_dpaq_sa_l_w:
1659    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
1660  case Intrinsic::mips_dpsq_sa_l_w:
1661    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
1662  case Intrinsic::mips_dpaqx_s_w_ph:
1663    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
1664  case Intrinsic::mips_dpaqx_sa_w_ph:
1665    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
1666  case Intrinsic::mips_dpsqx_s_w_ph:
1667    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
1668  case Intrinsic::mips_dpsqx_sa_w_ph:
1669    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
1670  case Intrinsic::mips_ld_b:
1671  case Intrinsic::mips_ld_h:
1672  case Intrinsic::mips_ld_w:
1673  case Intrinsic::mips_ld_d:
1674   return lowerMSALoadIntr(Op, DAG, Intr);
1675  }
1676}
1677
1678static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
1679  SDLoc DL(Op);
1680  SDValue ChainIn = Op->getOperand(0);
1681  SDValue Value   = Op->getOperand(2);
1682  SDValue Address = Op->getOperand(3);
1683  SDValue Offset  = Op->getOperand(4);
1684  EVT PtrTy = Address->getValueType(0);
1685
1686  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
1687
1688  return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
1689                      false, 16);
1690}
1691
1692SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
1693                                                  SelectionDAG &DAG) const {
1694  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
1695  switch (Intr) {
1696  default:
1697    return SDValue();
1698  case Intrinsic::mips_st_b:
1699  case Intrinsic::mips_st_h:
1700  case Intrinsic::mips_st_w:
1701  case Intrinsic::mips_st_d:
1702    return lowerMSAStoreIntr(Op, DAG, Intr);
1703  }
1704}
1705
1706/// \brief Check if the given BuildVectorSDNode is a splat.
1707/// This method currently relies on DAG nodes being reused when equivalent,
1708/// so it's possible for this to return false even when isConstantSplat returns
1709/// true.
1710static bool isSplatVector(const BuildVectorSDNode *N) {
1711  unsigned int nOps = N->getNumOperands();
1712  assert(nOps > 1 && "isSplat has 0 or 1 sized build vector");
1713
1714  SDValue Operand0 = N->getOperand(0);
1715
1716  for (unsigned int i = 1; i < nOps; ++i) {
1717    if (N->getOperand(i) != Operand0)
1718      return false;
1719  }
1720
1721  return true;
1722}
1723
1724// Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
1725//
1726// The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
1727// choose to sign-extend but we could have equally chosen zero-extend. The
1728// DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
1729// result into this node later (possibly changing it to a zero-extend in the
1730// process).
1731SDValue MipsSETargetLowering::
1732lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
1733  SDLoc DL(Op);
1734  EVT ResTy = Op->getValueType(0);
1735  SDValue Op0 = Op->getOperand(0);
1736  EVT VecTy = Op0->getValueType(0);
1737
1738  if (!VecTy.is128BitVector())
1739    return SDValue();
1740
1741  if (ResTy.isInteger()) {
1742    SDValue Op1 = Op->getOperand(1);
1743    EVT EltTy = VecTy.getVectorElementType();
1744    return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
1745                       DAG.getValueType(EltTy));
1746  }
1747
1748  return Op;
1749}
1750
1751static bool isConstantOrUndef(const SDValue Op) {
1752  if (Op->getOpcode() == ISD::UNDEF)
1753    return true;
1754  if (dyn_cast<ConstantSDNode>(Op))
1755    return true;
1756  if (dyn_cast<ConstantFPSDNode>(Op))
1757    return true;
1758  return false;
1759}
1760
1761static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
1762  for (unsigned i = 0; i < Op->getNumOperands(); ++i)
1763    if (isConstantOrUndef(Op->getOperand(i)))
1764      return true;
1765  return false;
1766}
1767
1768// Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
1769// backend.
1770//
1771// Lowers according to the following rules:
1772// - Constant splats are legal as-is as long as the SplatBitSize is a power of
1773//   2 less than or equal to 64 and the value fits into a signed 10-bit
1774//   immediate
1775// - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
1776//   is a power of 2 less than or equal to 64 and the value does not fit into a
1777//   signed 10-bit immediate
1778// - Non-constant splats are legal as-is.
1779// - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
1780// - All others are illegal and must be expanded.
1781SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
1782                                                SelectionDAG &DAG) const {
1783  BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
1784  EVT ResTy = Op->getValueType(0);
1785  SDLoc DL(Op);
1786  APInt SplatValue, SplatUndef;
1787  unsigned SplatBitSize;
1788  bool HasAnyUndefs;
1789
1790  if (!Subtarget->hasMSA() || !ResTy.is128BitVector())
1791    return SDValue();
1792
1793  if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
1794                            HasAnyUndefs, 8,
1795                            !Subtarget->isLittle()) && SplatBitSize <= 64) {
1796    // We can only cope with 8, 16, 32, or 64-bit elements
1797    if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
1798        SplatBitSize != 64)
1799      return SDValue();
1800
1801    // If the value fits into a simm10 then we can use ldi.[bhwd]
1802    if (SplatValue.isSignedIntN(10))
1803      return Op;
1804
1805    EVT ViaVecTy;
1806
1807    switch (SplatBitSize) {
1808    default:
1809      return SDValue();
1810    case 8:
1811      ViaVecTy = MVT::v16i8;
1812      break;
1813    case 16:
1814      ViaVecTy = MVT::v8i16;
1815      break;
1816    case 32:
1817      ViaVecTy = MVT::v4i32;
1818      break;
1819    case 64:
1820      // There's no fill.d to fall back on for 64-bit values
1821      return SDValue();
1822    }
1823
1824    SmallVector<SDValue, 16> Ops;
1825    SDValue Constant = DAG.getConstant(SplatValue.sextOrSelf(32), MVT::i32);
1826
1827    for (unsigned i = 0; i < ViaVecTy.getVectorNumElements(); ++i)
1828      Ops.push_back(Constant);
1829
1830    SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Node), ViaVecTy,
1831                                 &Ops[0], Ops.size());
1832
1833    if (ViaVecTy != ResTy)
1834      Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
1835
1836    return Result;
1837  } else if (isSplatVector(Node))
1838    return Op;
1839  else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
1840    // Use INSERT_VECTOR_ELT operations rather than expand to stores.
1841    // The resulting code is the same length as the expansion, but it doesn't
1842    // use memory operations
1843    EVT ResTy = Node->getValueType(0);
1844
1845    assert(ResTy.isVector());
1846
1847    unsigned NumElts = ResTy.getVectorNumElements();
1848    SDValue Vector = DAG.getUNDEF(ResTy);
1849    for (unsigned i = 0; i < NumElts; ++i) {
1850      Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
1851                           Node->getOperand(i),
1852                           DAG.getConstant(i, MVT::i32));
1853    }
1854    return Vector;
1855  }
1856
1857  return SDValue();
1858}
1859
1860// Lower VECTOR_SHUFFLE into SHF (if possible).
1861//
1862// SHF splits the vector into blocks of four elements, then shuffles these
1863// elements according to a <4 x i2> constant (encoded as an integer immediate).
1864//
1865// It is therefore possible to lower into SHF when the mask takes the form:
1866//   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
1867// When undef's appear they are treated as if they were whatever value is
1868// necessary in order to fit the above form.
1869//
1870// For example:
1871//   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
1872//                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
1873//                                 i32 7, i32 6, i32 5, i32 4>
1874// is lowered to:
1875//   (SHF_H $w0, $w1, 27)
1876// where the 27 comes from:
1877//   3 + (2 << 2) + (1 << 4) + (0 << 6)
1878static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
1879                                       SmallVector<int, 16> Indices,
1880                                       SelectionDAG &DAG) {
1881  int SHFIndices[4] = { -1, -1, -1, -1 };
1882
1883  if (Indices.size() < 4)
1884    return SDValue();
1885
1886  for (unsigned i = 0; i < 4; ++i) {
1887    for (unsigned j = i; j < Indices.size(); j += 4) {
1888      int Idx = Indices[j];
1889
1890      // Convert from vector index to 4-element subvector index
1891      // If an index refers to an element outside of the subvector then give up
1892      if (Idx != -1) {
1893        Idx -= 4 * (j / 4);
1894        if (Idx < 0 || Idx >= 4)
1895          return SDValue();
1896      }
1897
1898      // If the mask has an undef, replace it with the current index.
1899      // Note that it might still be undef if the current index is also undef
1900      if (SHFIndices[i] == -1)
1901        SHFIndices[i] = Idx;
1902
1903      // Check that non-undef values are the same as in the mask. If they
1904      // aren't then give up
1905      if (!(Idx == -1 || Idx == SHFIndices[i]))
1906        return SDValue();
1907    }
1908  }
1909
1910  // Calculate the immediate. Replace any remaining undefs with zero
1911  APInt Imm(32, 0);
1912  for (int i = 3; i >= 0; --i) {
1913    int Idx = SHFIndices[i];
1914
1915    if (Idx == -1)
1916      Idx = 0;
1917
1918    Imm <<= 2;
1919    Imm |= Idx & 0x3;
1920  }
1921
1922  return DAG.getNode(MipsISD::SHF, SDLoc(Op), ResTy,
1923                     DAG.getConstant(Imm, MVT::i32), Op->getOperand(0));
1924}
1925
1926// Lower VECTOR_SHUFFLE into ILVEV (if possible).
1927//
1928// ILVEV interleaves the even elements from each vector.
1929//
1930// It is possible to lower into ILVEV when the mask takes the form:
1931//   <0, n, 2, n+2, 4, n+4, ...>
1932// where n is the number of elements in the vector.
1933//
1934// When undef's appear in the mask they are treated as if they were whatever
1935// value is necessary in order to fit the above form.
1936static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
1937                                         SmallVector<int, 16> Indices,
1938                                         SelectionDAG &DAG) {
1939  assert ((Indices.size() % 2) == 0);
1940  int WsIdx = 0;
1941  int WtIdx = ResTy.getVectorNumElements();
1942
1943  for (unsigned i = 0; i < Indices.size(); i += 2) {
1944    if (Indices[i] != -1 && Indices[i] != WsIdx)
1945      return SDValue();
1946    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
1947      return SDValue();
1948    WsIdx += 2;
1949    WtIdx += 2;
1950  }
1951
1952  return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Op->getOperand(0),
1953                     Op->getOperand(1));
1954}
1955
1956// Lower VECTOR_SHUFFLE into ILVOD (if possible).
1957//
1958// ILVOD interleaves the odd elements from each vector.
1959//
1960// It is possible to lower into ILVOD when the mask takes the form:
1961//   <1, n+1, 3, n+3, 5, n+5, ...>
1962// where n is the number of elements in the vector.
1963//
1964// When undef's appear in the mask they are treated as if they were whatever
1965// value is necessary in order to fit the above form.
1966static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
1967                                         SmallVector<int, 16> Indices,
1968                                         SelectionDAG &DAG) {
1969  assert ((Indices.size() % 2) == 0);
1970  int WsIdx = 1;
1971  int WtIdx = ResTy.getVectorNumElements() + 1;
1972
1973  for (unsigned i = 0; i < Indices.size(); i += 2) {
1974    if (Indices[i] != -1 && Indices[i] != WsIdx)
1975      return SDValue();
1976    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
1977      return SDValue();
1978    WsIdx += 2;
1979    WtIdx += 2;
1980  }
1981
1982  return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Op->getOperand(0),
1983                     Op->getOperand(1));
1984}
1985
1986// Lower VECTOR_SHUFFLE into ILVL (if possible).
1987//
1988// ILVL interleaves consecutive elements from the left half of each vector.
1989//
1990// It is possible to lower into ILVL when the mask takes the form:
1991//   <0, n, 1, n+1, 2, n+2, ...>
1992// where n is the number of elements in the vector.
1993//
1994// When undef's appear in the mask they are treated as if they were whatever
1995// value is necessary in order to fit the above form.
1996static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
1997                                        SmallVector<int, 16> Indices,
1998                                        SelectionDAG &DAG) {
1999  assert ((Indices.size() % 2) == 0);
2000  int WsIdx = 0;
2001  int WtIdx = ResTy.getVectorNumElements();
2002
2003  for (unsigned i = 0; i < Indices.size(); i += 2) {
2004    if (Indices[i] != -1 && Indices[i] != WsIdx)
2005      return SDValue();
2006    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2007      return SDValue();
2008    WsIdx ++;
2009    WtIdx ++;
2010  }
2011
2012  return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Op->getOperand(0),
2013                     Op->getOperand(1));
2014}
2015
2016// Lower VECTOR_SHUFFLE into ILVR (if possible).
2017//
2018// ILVR interleaves consecutive elements from the right half of each vector.
2019//
2020// It is possible to lower into ILVR when the mask takes the form:
2021//   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2022// where n is the number of elements in the vector and x is half n.
2023//
2024// When undef's appear in the mask they are treated as if they were whatever
2025// value is necessary in order to fit the above form.
2026static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2027                                        SmallVector<int, 16> Indices,
2028                                        SelectionDAG &DAG) {
2029  assert ((Indices.size() % 2) == 0);
2030  unsigned NumElts = ResTy.getVectorNumElements();
2031  int WsIdx = NumElts / 2;
2032  int WtIdx = NumElts + NumElts / 2;
2033
2034  for (unsigned i = 0; i < Indices.size(); i += 2) {
2035    if (Indices[i] != -1 && Indices[i] != WsIdx)
2036      return SDValue();
2037    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2038      return SDValue();
2039    WsIdx ++;
2040    WtIdx ++;
2041  }
2042
2043  return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Op->getOperand(0),
2044                     Op->getOperand(1));
2045}
2046
2047// Lower VECTOR_SHUFFLE into PCKEV (if possible).
2048//
2049// PCKEV copies the even elements of each vector into the result vector.
2050//
2051// It is possible to lower into PCKEV when the mask takes the form:
2052//   <0, 2, 4, ..., n, n+2, n+4, ...>
2053// where n is the number of elements in the vector.
2054//
2055// When undef's appear in the mask they are treated as if they were whatever
2056// value is necessary in order to fit the above form.
2057static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2058                                         SmallVector<int, 16> Indices,
2059                                         SelectionDAG &DAG) {
2060  assert ((Indices.size() % 2) == 0);
2061  int Idx = 0;
2062
2063  for (unsigned i = 0; i < Indices.size(); ++i) {
2064    if (Indices[i] != -1 && Indices[i] != Idx)
2065      return SDValue();
2066    Idx += 2;
2067  }
2068
2069  return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Op->getOperand(0),
2070                     Op->getOperand(1));
2071}
2072
2073// Lower VECTOR_SHUFFLE into PCKOD (if possible).
2074//
2075// PCKOD copies the odd elements of each vector into the result vector.
2076//
2077// It is possible to lower into PCKOD when the mask takes the form:
2078//   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2079// where n is the number of elements in the vector.
2080//
2081// When undef's appear in the mask they are treated as if they were whatever
2082// value is necessary in order to fit the above form.
2083static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2084                                         SmallVector<int, 16> Indices,
2085                                         SelectionDAG &DAG) {
2086  assert ((Indices.size() % 2) == 0);
2087  int Idx = 1;
2088
2089  for (unsigned i = 0; i < Indices.size(); ++i) {
2090    if (Indices[i] != -1 && Indices[i] != Idx)
2091      return SDValue();
2092    Idx += 2;
2093  }
2094
2095  return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Op->getOperand(0),
2096                     Op->getOperand(1));
2097}
2098
2099// Lower VECTOR_SHUFFLE into VSHF.
2100//
2101// This mostly consists of converting the shuffle indices in Indices into a
2102// BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2103// also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2104// if the type is v8i16 and all the indices are less than 8 then the second
2105// operand is unused and can be replaced with anything. We choose to replace it
2106// with the used operand since this reduces the number of instructions overall.
2107static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2108                                        SmallVector<int, 16> Indices,
2109                                        SelectionDAG &DAG) {
2110  SmallVector<SDValue, 16> Ops;
2111  SDValue Op0;
2112  SDValue Op1;
2113  EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2114  EVT MaskEltTy = MaskVecTy.getVectorElementType();
2115  bool Using1stVec = false;
2116  bool Using2ndVec = false;
2117  SDLoc DL(Op);
2118  int ResTyNumElts = ResTy.getVectorNumElements();
2119
2120  for (int i = 0; i < ResTyNumElts; ++i) {
2121    // Idx == -1 means UNDEF
2122    int Idx = Indices[i];
2123
2124    if (0 <= Idx && Idx < ResTyNumElts)
2125      Using1stVec = true;
2126    if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2127      Using2ndVec = true;
2128  }
2129
2130  for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
2131       ++I)
2132    Ops.push_back(DAG.getTargetConstant(*I, MaskEltTy));
2133
2134  SDValue MaskVec = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecTy, &Ops[0],
2135                                Ops.size());
2136
2137  if (Using1stVec && Using2ndVec) {
2138    Op0 = Op->getOperand(0);
2139    Op1 = Op->getOperand(1);
2140  } else if (Using1stVec)
2141    Op0 = Op1 = Op->getOperand(0);
2142  else if (Using2ndVec)
2143    Op0 = Op1 = Op->getOperand(1);
2144  else
2145    llvm_unreachable("shuffle vector mask references neither vector operand?");
2146
2147  return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op0, Op1);
2148}
2149
2150// Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2151// indices in the shuffle.
2152SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2153                                                  SelectionDAG &DAG) const {
2154  ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2155  EVT ResTy = Op->getValueType(0);
2156
2157  if (!ResTy.is128BitVector())
2158    return SDValue();
2159
2160  int ResTyNumElts = ResTy.getVectorNumElements();
2161  SmallVector<int, 16> Indices;
2162
2163  for (int i = 0; i < ResTyNumElts; ++i)
2164    Indices.push_back(Node->getMaskElt(i));
2165
2166  SDValue Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG);
2167  if (Result.getNode())
2168    return Result;
2169  Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG);
2170  if (Result.getNode())
2171    return Result;
2172  Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG);
2173  if (Result.getNode())
2174    return Result;
2175  Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG);
2176  if (Result.getNode())
2177    return Result;
2178  Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG);
2179  if (Result.getNode())
2180    return Result;
2181  Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG);
2182  if (Result.getNode())
2183    return Result;
2184  Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG);
2185  if (Result.getNode())
2186    return Result;
2187  return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2188}
2189
2190MachineBasicBlock * MipsSETargetLowering::
2191emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
2192  // $bb:
2193  //  bposge32_pseudo $vr0
2194  //  =>
2195  // $bb:
2196  //  bposge32 $tbb
2197  // $fbb:
2198  //  li $vr2, 0
2199  //  b $sink
2200  // $tbb:
2201  //  li $vr1, 1
2202  // $sink:
2203  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
2204
2205  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2206  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2207  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2208  DebugLoc DL = MI->getDebugLoc();
2209  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2210  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
2211  MachineFunction *F = BB->getParent();
2212  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2213  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2214  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2215  F->insert(It, FBB);
2216  F->insert(It, TBB);
2217  F->insert(It, Sink);
2218
2219  // Transfer the remainder of BB and its successor edges to Sink.
2220  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
2221               BB->end());
2222  Sink->transferSuccessorsAndUpdatePHIs(BB);
2223
2224  // Add successors.
2225  BB->addSuccessor(FBB);
2226  BB->addSuccessor(TBB);
2227  FBB->addSuccessor(Sink);
2228  TBB->addSuccessor(Sink);
2229
2230  // Insert the real bposge32 instruction to $BB.
2231  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
2232
2233  // Fill $FBB.
2234  unsigned VR2 = RegInfo.createVirtualRegister(RC);
2235  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
2236    .addReg(Mips::ZERO).addImm(0);
2237  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2238
2239  // Fill $TBB.
2240  unsigned VR1 = RegInfo.createVirtualRegister(RC);
2241  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
2242    .addReg(Mips::ZERO).addImm(1);
2243
2244  // Insert phi function to $Sink.
2245  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2246          MI->getOperand(0).getReg())
2247    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
2248
2249  MI->eraseFromParent();   // The pseudo instruction is gone now.
2250  return Sink;
2251}
2252
2253MachineBasicBlock * MipsSETargetLowering::
2254emitMSACBranchPseudo(MachineInstr *MI, MachineBasicBlock *BB,
2255                     unsigned BranchOp) const{
2256  // $bb:
2257  //  vany_nonzero $rd, $ws
2258  //  =>
2259  // $bb:
2260  //  bnz.b $ws, $tbb
2261  //  b $fbb
2262  // $fbb:
2263  //  li $rd1, 0
2264  //  b $sink
2265  // $tbb:
2266  //  li $rd2, 1
2267  // $sink:
2268  //  $rd = phi($rd1, $fbb, $rd2, $tbb)
2269
2270  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2271  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2272  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2273  DebugLoc DL = MI->getDebugLoc();
2274  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2275  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
2276  MachineFunction *F = BB->getParent();
2277  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2278  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2279  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2280  F->insert(It, FBB);
2281  F->insert(It, TBB);
2282  F->insert(It, Sink);
2283
2284  // Transfer the remainder of BB and its successor edges to Sink.
2285  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
2286               BB->end());
2287  Sink->transferSuccessorsAndUpdatePHIs(BB);
2288
2289  // Add successors.
2290  BB->addSuccessor(FBB);
2291  BB->addSuccessor(TBB);
2292  FBB->addSuccessor(Sink);
2293  TBB->addSuccessor(Sink);
2294
2295  // Insert the real bnz.b instruction to $BB.
2296  BuildMI(BB, DL, TII->get(BranchOp))
2297    .addReg(MI->getOperand(1).getReg())
2298    .addMBB(TBB);
2299
2300  // Fill $FBB.
2301  unsigned RD1 = RegInfo.createVirtualRegister(RC);
2302  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
2303    .addReg(Mips::ZERO).addImm(0);
2304  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2305
2306  // Fill $TBB.
2307  unsigned RD2 = RegInfo.createVirtualRegister(RC);
2308  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
2309    .addReg(Mips::ZERO).addImm(1);
2310
2311  // Insert phi function to $Sink.
2312  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2313          MI->getOperand(0).getReg())
2314    .addReg(RD1).addMBB(FBB).addReg(RD2).addMBB(TBB);
2315
2316  MI->eraseFromParent();   // The pseudo instruction is gone now.
2317  return Sink;
2318}
2319
2320// Emit the COPY_FW pseudo instruction.
2321//
2322// copy_fw_pseudo $fd, $ws, n
2323// =>
2324// copy_u_w $rt, $ws, $n
2325// mtc1     $rt, $fd
2326//
2327// When n is zero, the equivalent operation can be performed with (potentially)
2328// zero instructions due to register overlaps. This optimization is never valid
2329// for lane 1 because it would require FR=0 mode which isn't supported by MSA.
2330MachineBasicBlock * MipsSETargetLowering::
2331emitCOPY_FW(MachineInstr *MI, MachineBasicBlock *BB) const{
2332  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2333  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2334  DebugLoc DL = MI->getDebugLoc();
2335  unsigned Fd = MI->getOperand(0).getReg();
2336  unsigned Ws = MI->getOperand(1).getReg();
2337  unsigned Lane = MI->getOperand(2).getImm();
2338
2339  if (Lane == 0)
2340    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_lo);
2341  else {
2342    unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2343
2344    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(1);
2345    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
2346  }
2347
2348  MI->eraseFromParent();   // The pseudo instruction is gone now.
2349  return BB;
2350}
2351
2352// Emit the COPY_FD pseudo instruction.
2353//
2354// copy_fd_pseudo $fd, $ws, n
2355// =>
2356// splati.d $wt, $ws, $n
2357// copy $fd, $wt:sub_64
2358//
2359// When n is zero, the equivalent operation can be performed with (potentially)
2360// zero instructions due to register overlaps. This optimization is always
2361// valid because FR=1 mode which is the only supported mode in MSA.
2362MachineBasicBlock * MipsSETargetLowering::
2363emitCOPY_FD(MachineInstr *MI, MachineBasicBlock *BB) const{
2364  assert(Subtarget->isFP64bit());
2365
2366  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2367  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2368  unsigned Fd  = MI->getOperand(0).getReg();
2369  unsigned Ws  = MI->getOperand(1).getReg();
2370  unsigned Lane = MI->getOperand(2).getImm() * 2;
2371  DebugLoc DL = MI->getDebugLoc();
2372
2373  if (Lane == 0)
2374    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
2375  else {
2376    unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2377
2378    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
2379    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
2380  }
2381
2382  MI->eraseFromParent();   // The pseudo instruction is gone now.
2383  return BB;
2384}
2385
2386// Emit the INSERT_FW pseudo instruction.
2387//
2388// insert_fw_pseudo $wd, $wd_in, $n, $fs
2389// =>
2390// subreg_to_reg $wt:sub_lo, $fs
2391// insve_w $wd[$n], $wd_in, $wt[0]
2392MachineBasicBlock *
2393MipsSETargetLowering::emitINSERT_FW(MachineInstr *MI,
2394                                    MachineBasicBlock *BB) const {
2395  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2396  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2397  DebugLoc DL = MI->getDebugLoc();
2398  unsigned Wd = MI->getOperand(0).getReg();
2399  unsigned Wd_in = MI->getOperand(1).getReg();
2400  unsigned Lane = MI->getOperand(2).getImm();
2401  unsigned Fs = MI->getOperand(3).getReg();
2402  unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2403
2404  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
2405      .addImm(0)
2406      .addReg(Fs)
2407      .addImm(Mips::sub_lo);
2408  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
2409      .addReg(Wd_in)
2410      .addImm(Lane)
2411      .addReg(Wt);
2412
2413  MI->eraseFromParent(); // The pseudo instruction is gone now.
2414  return BB;
2415}
2416
2417// Emit the INSERT_FD pseudo instruction.
2418//
2419// insert_fd_pseudo $wd, $fs, n
2420// =>
2421// subreg_to_reg $wt:sub_64, $fs
2422// insve_d $wd[$n], $wd_in, $wt[0]
2423MachineBasicBlock *
2424MipsSETargetLowering::emitINSERT_FD(MachineInstr *MI,
2425                                    MachineBasicBlock *BB) const {
2426  assert(Subtarget->isFP64bit());
2427
2428  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2429  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2430  DebugLoc DL = MI->getDebugLoc();
2431  unsigned Wd = MI->getOperand(0).getReg();
2432  unsigned Wd_in = MI->getOperand(1).getReg();
2433  unsigned Lane = MI->getOperand(2).getImm();
2434  unsigned Fs = MI->getOperand(3).getReg();
2435  unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2436
2437  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
2438      .addImm(0)
2439      .addReg(Fs)
2440      .addImm(Mips::sub_64);
2441  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
2442      .addReg(Wd_in)
2443      .addImm(Lane)
2444      .addReg(Wt);
2445
2446  MI->eraseFromParent(); // The pseudo instruction is gone now.
2447  return BB;
2448}
2449
2450// Emit the FILL_FW pseudo instruction.
2451//
2452// fill_fw_pseudo $wd, $fs
2453// =>
2454// implicit_def $wt1
2455// insert_subreg $wt2:subreg_lo, $wt1, $fs
2456// splati.w $wd, $wt2[0]
2457MachineBasicBlock *
2458MipsSETargetLowering::emitFILL_FW(MachineInstr *MI,
2459                                  MachineBasicBlock *BB) const {
2460  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2461  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2462  DebugLoc DL = MI->getDebugLoc();
2463  unsigned Wd = MI->getOperand(0).getReg();
2464  unsigned Fs = MI->getOperand(1).getReg();
2465  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2466  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2467
2468  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
2469  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
2470      .addReg(Wt1)
2471      .addReg(Fs)
2472      .addImm(Mips::sub_lo);
2473  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
2474
2475  MI->eraseFromParent(); // The pseudo instruction is gone now.
2476  return BB;
2477}
2478
2479// Emit the FILL_FD pseudo instruction.
2480//
2481// fill_fd_pseudo $wd, $fs
2482// =>
2483// implicit_def $wt1
2484// insert_subreg $wt2:subreg_64, $wt1, $fs
2485// splati.d $wd, $wt2[0]
2486MachineBasicBlock *
2487MipsSETargetLowering::emitFILL_FD(MachineInstr *MI,
2488                                  MachineBasicBlock *BB) const {
2489  assert(Subtarget->isFP64bit());
2490
2491  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2492  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2493  DebugLoc DL = MI->getDebugLoc();
2494  unsigned Wd = MI->getOperand(0).getReg();
2495  unsigned Fs = MI->getOperand(1).getReg();
2496  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2497  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2498
2499  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
2500  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
2501      .addReg(Wt1)
2502      .addReg(Fs)
2503      .addImm(Mips::sub_64);
2504  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
2505
2506  MI->eraseFromParent();   // The pseudo instruction is gone now.
2507  return BB;
2508}
2509