MipsSEISelLowering.cpp revision c385709d8397ca1535481c04564b67d07c66c619
1//===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Subclass of MipsTargetLowering specialized for mips32/64.
11//
12//===----------------------------------------------------------------------===//
13#define DEBUG_TYPE "mips-isel"
14#include "MipsSEISelLowering.h"
15#include "MipsRegisterInfo.h"
16#include "MipsTargetMachine.h"
17#include "llvm/CodeGen/MachineInstrBuilder.h"
18#include "llvm/CodeGen/MachineRegisterInfo.h"
19#include "llvm/IR/Intrinsics.h"
20#include "llvm/Support/CommandLine.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Target/TargetInstrInfo.h"
23
24using namespace llvm;
25
26static cl::opt<bool>
27EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
28                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
29
30static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
31                                   cl::desc("Expand double precision loads and "
32                                            "stores to their single precision "
33                                            "counterparts"));
34
35MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM)
36  : MipsTargetLowering(TM) {
37  // Set up the register classes
38  addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
39
40  if (HasMips64)
41    addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
42
43  if (Subtarget->hasDSP() || Subtarget->hasMSA()) {
44    // Expand all truncating stores and extending loads.
45    unsigned FirstVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
46    unsigned LastVT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
47
48    for (unsigned VT0 = FirstVT; VT0 <= LastVT; ++VT0) {
49      for (unsigned VT1 = FirstVT; VT1 <= LastVT; ++VT1)
50        setTruncStoreAction((MVT::SimpleValueType)VT0,
51                            (MVT::SimpleValueType)VT1, Expand);
52
53      setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
54      setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
55      setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT0, Expand);
56    }
57  }
58
59  if (Subtarget->hasDSP()) {
60    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
61
62    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
63      addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
64
65      // Expand all builtin opcodes.
66      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
67        setOperationAction(Opc, VecTys[i], Expand);
68
69      setOperationAction(ISD::ADD, VecTys[i], Legal);
70      setOperationAction(ISD::SUB, VecTys[i], Legal);
71      setOperationAction(ISD::LOAD, VecTys[i], Legal);
72      setOperationAction(ISD::STORE, VecTys[i], Legal);
73      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
74    }
75
76    setTargetDAGCombine(ISD::SHL);
77    setTargetDAGCombine(ISD::SRA);
78    setTargetDAGCombine(ISD::SRL);
79    setTargetDAGCombine(ISD::SETCC);
80    setTargetDAGCombine(ISD::VSELECT);
81  }
82
83  if (Subtarget->hasDSPR2())
84    setOperationAction(ISD::MUL, MVT::v2i16, Legal);
85
86  if (Subtarget->hasMSA()) {
87    addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
88    addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
89    addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
90    addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
91    addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
92    addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
93    addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
94
95    setTargetDAGCombine(ISD::AND);
96    setTargetDAGCombine(ISD::OR);
97    setTargetDAGCombine(ISD::SRA);
98    setTargetDAGCombine(ISD::VSELECT);
99    setTargetDAGCombine(ISD::XOR);
100  }
101
102  if (!Subtarget->mipsSEUsesSoftFloat()) {
103    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
104
105    // When dealing with single precision only, use libcalls
106    if (!Subtarget->isSingleFloat()) {
107      if (Subtarget->isFP64bit())
108        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
109      else
110        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
111    }
112  }
113
114  setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
115  setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
116  setOperationAction(ISD::MULHS,              MVT::i32, Custom);
117  setOperationAction(ISD::MULHU,              MVT::i32, Custom);
118
119  if (HasMips64) {
120    setOperationAction(ISD::MULHS,            MVT::i64, Custom);
121    setOperationAction(ISD::MULHU,            MVT::i64, Custom);
122    setOperationAction(ISD::MUL,              MVT::i64, Custom);
123  }
124
125  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
126  setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
127
128  setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
129  setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
130  setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
131  setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
132  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
133  setOperationAction(ISD::LOAD,               MVT::i32, Custom);
134  setOperationAction(ISD::STORE,              MVT::i32, Custom);
135
136  setTargetDAGCombine(ISD::ADDE);
137  setTargetDAGCombine(ISD::SUBE);
138  setTargetDAGCombine(ISD::MUL);
139
140  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
141  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
142  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
143
144  if (NoDPLoadStore) {
145    setOperationAction(ISD::LOAD, MVT::f64, Custom);
146    setOperationAction(ISD::STORE, MVT::f64, Custom);
147  }
148
149  computeRegisterProperties();
150}
151
152const MipsTargetLowering *
153llvm::createMipsSETargetLowering(MipsTargetMachine &TM) {
154  return new MipsSETargetLowering(TM);
155}
156
157// Enable MSA support for the given integer type and Register class.
158void MipsSETargetLowering::
159addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
160  addRegisterClass(Ty, RC);
161
162  // Expand all builtin opcodes.
163  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
164    setOperationAction(Opc, Ty, Expand);
165
166  setOperationAction(ISD::BITCAST, Ty, Legal);
167  setOperationAction(ISD::LOAD, Ty, Legal);
168  setOperationAction(ISD::STORE, Ty, Legal);
169  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
170  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
171  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
172
173  setOperationAction(ISD::ADD, Ty, Legal);
174  setOperationAction(ISD::AND, Ty, Legal);
175  setOperationAction(ISD::CTLZ, Ty, Legal);
176  setOperationAction(ISD::CTPOP, Ty, Legal);
177  setOperationAction(ISD::MUL, Ty, Legal);
178  setOperationAction(ISD::OR, Ty, Legal);
179  setOperationAction(ISD::SDIV, Ty, Legal);
180  setOperationAction(ISD::SREM, Ty, Legal);
181  setOperationAction(ISD::SHL, Ty, Legal);
182  setOperationAction(ISD::SRA, Ty, Legal);
183  setOperationAction(ISD::SRL, Ty, Legal);
184  setOperationAction(ISD::SUB, Ty, Legal);
185  setOperationAction(ISD::UDIV, Ty, Legal);
186  setOperationAction(ISD::UREM, Ty, Legal);
187  setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
188  setOperationAction(ISD::VSELECT, Ty, Legal);
189  setOperationAction(ISD::XOR, Ty, Legal);
190
191  if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
192    setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
193    setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
194    setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
195    setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
196  }
197
198  setOperationAction(ISD::SETCC, Ty, Legal);
199  setCondCodeAction(ISD::SETNE, Ty, Expand);
200  setCondCodeAction(ISD::SETGE, Ty, Expand);
201  setCondCodeAction(ISD::SETGT, Ty, Expand);
202  setCondCodeAction(ISD::SETUGE, Ty, Expand);
203  setCondCodeAction(ISD::SETUGT, Ty, Expand);
204}
205
206// Enable MSA support for the given floating-point type and Register class.
207void MipsSETargetLowering::
208addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
209  addRegisterClass(Ty, RC);
210
211  // Expand all builtin opcodes.
212  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
213    setOperationAction(Opc, Ty, Expand);
214
215  setOperationAction(ISD::LOAD, Ty, Legal);
216  setOperationAction(ISD::STORE, Ty, Legal);
217  setOperationAction(ISD::BITCAST, Ty, Legal);
218  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
219  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
220  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
221
222  if (Ty != MVT::v8f16) {
223    setOperationAction(ISD::FABS,  Ty, Legal);
224    setOperationAction(ISD::FADD,  Ty, Legal);
225    setOperationAction(ISD::FDIV,  Ty, Legal);
226    setOperationAction(ISD::FEXP2, Ty, Legal);
227    setOperationAction(ISD::FLOG2, Ty, Legal);
228    setOperationAction(ISD::FMA,   Ty, Legal);
229    setOperationAction(ISD::FMUL,  Ty, Legal);
230    setOperationAction(ISD::FRINT, Ty, Legal);
231    setOperationAction(ISD::FSQRT, Ty, Legal);
232    setOperationAction(ISD::FSUB,  Ty, Legal);
233    setOperationAction(ISD::VSELECT, Ty, Legal);
234
235    setOperationAction(ISD::SETCC, Ty, Legal);
236    setCondCodeAction(ISD::SETOGE, Ty, Expand);
237    setCondCodeAction(ISD::SETOGT, Ty, Expand);
238    setCondCodeAction(ISD::SETUGE, Ty, Expand);
239    setCondCodeAction(ISD::SETUGT, Ty, Expand);
240    setCondCodeAction(ISD::SETGE,  Ty, Expand);
241    setCondCodeAction(ISD::SETGT,  Ty, Expand);
242  }
243}
244
245bool
246MipsSETargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
247  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
248
249  switch (SVT) {
250  case MVT::i64:
251  case MVT::i32:
252    if (Fast)
253      *Fast = true;
254    return true;
255  default:
256    return false;
257  }
258}
259
260SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
261                                             SelectionDAG &DAG) const {
262  switch(Op.getOpcode()) {
263  case ISD::LOAD:  return lowerLOAD(Op, DAG);
264  case ISD::STORE: return lowerSTORE(Op, DAG);
265  case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
266  case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
267  case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
268  case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
269  case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
270  case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
271  case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
272                                          DAG);
273  case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
274  case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
275  case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
276  case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
277  case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
278  case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
279  }
280
281  return MipsTargetLowering::LowerOperation(Op, DAG);
282}
283
284// selectMADD -
285// Transforms a subgraph in CurDAG if the following pattern is found:
286//  (addc multLo, Lo0), (adde multHi, Hi0),
287// where,
288//  multHi/Lo: product of multiplication
289//  Lo0: initial value of Lo register
290//  Hi0: initial value of Hi register
291// Return true if pattern matching was successful.
292static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
293  // ADDENode's second operand must be a flag output of an ADDC node in order
294  // for the matching to be successful.
295  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
296
297  if (ADDCNode->getOpcode() != ISD::ADDC)
298    return false;
299
300  SDValue MultHi = ADDENode->getOperand(0);
301  SDValue MultLo = ADDCNode->getOperand(0);
302  SDNode *MultNode = MultHi.getNode();
303  unsigned MultOpc = MultHi.getOpcode();
304
305  // MultHi and MultLo must be generated by the same node,
306  if (MultLo.getNode() != MultNode)
307    return false;
308
309  // and it must be a multiplication.
310  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
311    return false;
312
313  // MultLo amd MultHi must be the first and second output of MultNode
314  // respectively.
315  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
316    return false;
317
318  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
319  // of the values of MultNode, in which case MultNode will be removed in later
320  // phases.
321  // If there exist users other than ADDENode or ADDCNode, this function returns
322  // here, which will result in MultNode being mapped to a single MULT
323  // instruction node rather than a pair of MULT and MADD instructions being
324  // produced.
325  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
326    return false;
327
328  SDLoc DL(ADDENode);
329
330  // Initialize accumulator.
331  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
332                                  ADDCNode->getOperand(1),
333                                  ADDENode->getOperand(1));
334
335  // create MipsMAdd(u) node
336  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
337
338  SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
339                                 MultNode->getOperand(0),// Factor 0
340                                 MultNode->getOperand(1),// Factor 1
341                                 ACCIn);
342
343  // replace uses of adde and addc here
344  if (!SDValue(ADDCNode, 0).use_empty()) {
345    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
346    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
347  }
348  if (!SDValue(ADDENode, 0).use_empty()) {
349    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
350    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
351  }
352
353  return true;
354}
355
356// selectMSUB -
357// Transforms a subgraph in CurDAG if the following pattern is found:
358//  (addc Lo0, multLo), (sube Hi0, multHi),
359// where,
360//  multHi/Lo: product of multiplication
361//  Lo0: initial value of Lo register
362//  Hi0: initial value of Hi register
363// Return true if pattern matching was successful.
364static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
365  // SUBENode's second operand must be a flag output of an SUBC node in order
366  // for the matching to be successful.
367  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
368
369  if (SUBCNode->getOpcode() != ISD::SUBC)
370    return false;
371
372  SDValue MultHi = SUBENode->getOperand(1);
373  SDValue MultLo = SUBCNode->getOperand(1);
374  SDNode *MultNode = MultHi.getNode();
375  unsigned MultOpc = MultHi.getOpcode();
376
377  // MultHi and MultLo must be generated by the same node,
378  if (MultLo.getNode() != MultNode)
379    return false;
380
381  // and it must be a multiplication.
382  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
383    return false;
384
385  // MultLo amd MultHi must be the first and second output of MultNode
386  // respectively.
387  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
388    return false;
389
390  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
391  // of the values of MultNode, in which case MultNode will be removed in later
392  // phases.
393  // If there exist users other than SUBENode or SUBCNode, this function returns
394  // here, which will result in MultNode being mapped to a single MULT
395  // instruction node rather than a pair of MULT and MSUB instructions being
396  // produced.
397  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
398    return false;
399
400  SDLoc DL(SUBENode);
401
402  // Initialize accumulator.
403  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
404                                  SUBCNode->getOperand(0),
405                                  SUBENode->getOperand(0));
406
407  // create MipsSub(u) node
408  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
409
410  SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
411                                 MultNode->getOperand(0),// Factor 0
412                                 MultNode->getOperand(1),// Factor 1
413                                 ACCIn);
414
415  // replace uses of sube and subc here
416  if (!SDValue(SUBCNode, 0).use_empty()) {
417    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
418    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
419  }
420  if (!SDValue(SUBENode, 0).use_empty()) {
421    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
422    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
423  }
424
425  return true;
426}
427
428static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
429                                  TargetLowering::DAGCombinerInfo &DCI,
430                                  const MipsSubtarget *Subtarget) {
431  if (DCI.isBeforeLegalize())
432    return SDValue();
433
434  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
435      selectMADD(N, &DAG))
436    return SDValue(N, 0);
437
438  return SDValue();
439}
440
441// Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
442//
443// Performs the following transformations:
444// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
445//   sign/zero-extension is completely overwritten by the new one performed by
446//   the ISD::AND.
447// - Removes redundant zero extensions performed by an ISD::AND.
448static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
449                                 TargetLowering::DAGCombinerInfo &DCI,
450                                 const MipsSubtarget *Subtarget) {
451  if (!Subtarget->hasMSA())
452    return SDValue();
453
454  SDValue Op0 = N->getOperand(0);
455  SDValue Op1 = N->getOperand(1);
456  unsigned Op0Opcode = Op0->getOpcode();
457
458  // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
459  // where $d + 1 == 2^n and n == 32
460  // or    $d + 1 == 2^n and n <= 32 and ZExt
461  // -> (MipsVExtractZExt $a, $b, $c)
462  if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
463      Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
464    ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
465
466    if (!Mask)
467      return SDValue();
468
469    int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
470
471    if (Log2IfPositive <= 0)
472      return SDValue(); // Mask+1 is not a power of 2
473
474    SDValue Op0Op2 = Op0->getOperand(2);
475    EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
476    unsigned ExtendTySize = ExtendTy.getSizeInBits();
477    unsigned Log2 = Log2IfPositive;
478
479    if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
480        Log2 == ExtendTySize) {
481      SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
482      DAG.MorphNodeTo(Op0.getNode(), MipsISD::VEXTRACT_ZEXT_ELT,
483                      Op0->getVTList(), Ops, Op0->getNumOperands());
484      return Op0;
485    }
486  }
487
488  return SDValue();
489}
490
491// Determine if the specified node is a constant vector splat.
492//
493// Returns true and sets Imm if:
494// * N is a ISD::BUILD_VECTOR representing a constant splat
495//
496// This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
497// differences are that it assumes the MSA has already been checked and the
498// arbitrary requirement for a maximum of 32-bit integers isn't applied (and
499// must not be in order for binsri.d to be selectable).
500static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
501  BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
502
503  if (Node == NULL)
504    return false;
505
506  APInt SplatValue, SplatUndef;
507  unsigned SplatBitSize;
508  bool HasAnyUndefs;
509
510  if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
511                             8, !IsLittleEndian))
512    return false;
513
514  Imm = SplatValue;
515
516  return true;
517}
518
519// Test whether the given node is an all-ones build_vector.
520static bool isVectorAllOnes(SDValue N) {
521  // Look through bitcasts. Endianness doesn't matter because we are looking
522  // for an all-ones value.
523  if (N->getOpcode() == ISD::BITCAST)
524    N = N->getOperand(0);
525
526  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
527
528  if (!BVN)
529    return false;
530
531  APInt SplatValue, SplatUndef;
532  unsigned SplatBitSize;
533  bool HasAnyUndefs;
534
535  // Endianness doesn't matter in this context because we are looking for
536  // an all-ones value.
537  if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
538    return SplatValue.isAllOnesValue();
539
540  return false;
541}
542
543// Test whether N is the bitwise inverse of OfNode.
544static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
545  if (N->getOpcode() != ISD::XOR)
546    return false;
547
548  if (isVectorAllOnes(N->getOperand(0)))
549    return N->getOperand(1) == OfNode;
550
551  if (isVectorAllOnes(N->getOperand(1)))
552    return N->getOperand(0) == OfNode;
553
554  return false;
555}
556
557// Perform combines where ISD::OR is the root node.
558//
559// Performs the following transformations:
560// - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
561//   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
562//   vector type.
563static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
564                                TargetLowering::DAGCombinerInfo &DCI,
565                                const MipsSubtarget *Subtarget) {
566  if (!Subtarget->hasMSA())
567    return SDValue();
568
569  EVT Ty = N->getValueType(0);
570
571  if (!Ty.is128BitVector())
572    return SDValue();
573
574  SDValue Op0 = N->getOperand(0);
575  SDValue Op1 = N->getOperand(1);
576
577  if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
578    SDValue Op0Op0 = Op0->getOperand(0);
579    SDValue Op0Op1 = Op0->getOperand(1);
580    SDValue Op1Op0 = Op1->getOperand(0);
581    SDValue Op1Op1 = Op1->getOperand(1);
582    bool IsLittleEndian = !Subtarget->isLittle();
583
584    SDValue IfSet, IfClr, Cond;
585    bool IsConstantMask = false;
586    APInt Mask, InvMask;
587
588    // If Op0Op0 is an appropriate mask, try to find it's inverse in either
589    // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
590    // looking.
591    // IfClr will be set if we find a valid match.
592    if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
593      Cond = Op0Op0;
594      IfSet = Op0Op1;
595
596      if (isVSplat(Op1Op0, InvMask, IsLittleEndian) && Mask == ~InvMask)
597        IfClr = Op1Op1;
598      else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) && Mask == ~InvMask)
599        IfClr = Op1Op0;
600
601      IsConstantMask = true;
602    }
603
604    // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
605    // thing again using this mask.
606    // IfClr will be set if we find a valid match.
607    if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
608      Cond = Op0Op1;
609      IfSet = Op0Op0;
610
611      if (isVSplat(Op1Op0, InvMask, IsLittleEndian) && Mask == ~InvMask)
612        IfClr = Op1Op1;
613      else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) && Mask == ~InvMask)
614        IfClr = Op1Op0;
615
616      IsConstantMask = true;
617    }
618
619    // If IfClr is not yet set, try looking for a non-constant match.
620    // IfClr will be set if we find a valid match amongst the eight
621    // possibilities.
622    if (!IfClr.getNode()) {
623      if (isBitwiseInverse(Op0Op0, Op1Op0)) {
624        Cond = Op1Op0;
625        IfSet = Op1Op1;
626        IfClr = Op0Op1;
627      } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
628        Cond = Op1Op0;
629        IfSet = Op1Op1;
630        IfClr = Op0Op0;
631      } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
632        Cond = Op1Op1;
633        IfSet = Op1Op0;
634        IfClr = Op0Op1;
635      } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
636        Cond = Op1Op1;
637        IfSet = Op1Op0;
638        IfClr = Op0Op0;
639      } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
640        Cond = Op0Op0;
641        IfSet = Op0Op1;
642        IfClr = Op1Op1;
643      } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
644        Cond = Op0Op0;
645        IfSet = Op0Op1;
646        IfClr = Op1Op0;
647      } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
648        Cond = Op0Op1;
649        IfSet = Op0Op0;
650        IfClr = Op1Op1;
651      } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
652        Cond = Op0Op1;
653        IfSet = Op0Op0;
654        IfClr = Op1Op0;
655      }
656    }
657
658    // At this point, IfClr will be set if we have a valid match.
659    if (!IfClr.getNode())
660      return SDValue();
661
662    assert(Cond.getNode() && IfSet.getNode());
663
664    // Fold degenerate cases.
665    if (IsConstantMask) {
666      if (Mask.isAllOnesValue())
667        return IfSet;
668      else if (Mask == 0)
669        return IfClr;
670    }
671
672    // Transform the DAG into an equivalent VSELECT.
673    return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfClr, IfSet);
674  }
675
676  return SDValue();
677}
678
679static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
680                                  TargetLowering::DAGCombinerInfo &DCI,
681                                  const MipsSubtarget *Subtarget) {
682  if (DCI.isBeforeLegalize())
683    return SDValue();
684
685  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
686      selectMSUB(N, &DAG))
687    return SDValue(N, 0);
688
689  return SDValue();
690}
691
692static SDValue genConstMult(SDValue X, uint64_t C, SDLoc DL, EVT VT,
693                            EVT ShiftTy, SelectionDAG &DAG) {
694  // Clear the upper (64 - VT.sizeInBits) bits.
695  C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
696
697  // Return 0.
698  if (C == 0)
699    return DAG.getConstant(0, VT);
700
701  // Return x.
702  if (C == 1)
703    return X;
704
705  // If c is power of 2, return (shl x, log2(c)).
706  if (isPowerOf2_64(C))
707    return DAG.getNode(ISD::SHL, DL, VT, X,
708                       DAG.getConstant(Log2_64(C), ShiftTy));
709
710  unsigned Log2Ceil = Log2_64_Ceil(C);
711  uint64_t Floor = 1LL << Log2_64(C);
712  uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
713
714  // If |c - floor_c| <= |c - ceil_c|,
715  // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
716  // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
717  if (C - Floor <= Ceil - C) {
718    SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
719    SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
720    return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
721  }
722
723  // If |c - floor_c| > |c - ceil_c|,
724  // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
725  SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
726  SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
727  return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
728}
729
730static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
731                                 const TargetLowering::DAGCombinerInfo &DCI,
732                                 const MipsSETargetLowering *TL) {
733  EVT VT = N->getValueType(0);
734
735  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
736    if (!VT.isVector())
737      return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N),
738                          VT, TL->getScalarShiftAmountTy(VT), DAG);
739
740  return SDValue(N, 0);
741}
742
743static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
744                                      SelectionDAG &DAG,
745                                      const MipsSubtarget *Subtarget) {
746  // See if this is a vector splat immediate node.
747  APInt SplatValue, SplatUndef;
748  unsigned SplatBitSize;
749  bool HasAnyUndefs;
750  unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
751  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
752
753  if (!BV ||
754      !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
755                           EltSize, !Subtarget->isLittle()) ||
756      (SplatBitSize != EltSize) ||
757      (SplatValue.getZExtValue() >= EltSize))
758    return SDValue();
759
760  return DAG.getNode(Opc, SDLoc(N), Ty, N->getOperand(0),
761                     DAG.getConstant(SplatValue.getZExtValue(), MVT::i32));
762}
763
764static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
765                                 TargetLowering::DAGCombinerInfo &DCI,
766                                 const MipsSubtarget *Subtarget) {
767  EVT Ty = N->getValueType(0);
768
769  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
770    return SDValue();
771
772  return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
773}
774
775// Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
776// constant splats into MipsISD::SHRA_DSP for DSPr2.
777//
778// Performs the following transformations:
779// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
780//   sign/zero-extension is completely overwritten by the new one performed by
781//   the ISD::SRA and ISD::SHL nodes.
782// - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
783//   sequence.
784//
785// See performDSPShiftCombine for more information about the transformation
786// used for DSPr2.
787static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
788                                 TargetLowering::DAGCombinerInfo &DCI,
789                                 const MipsSubtarget *Subtarget) {
790  EVT Ty = N->getValueType(0);
791
792  if (Subtarget->hasMSA()) {
793    SDValue Op0 = N->getOperand(0);
794    SDValue Op1 = N->getOperand(1);
795
796    // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
797    // where $d + sizeof($c) == 32
798    // or    $d + sizeof($c) <= 32 and SExt
799    // -> (MipsVExtractSExt $a, $b, $c)
800    if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
801      SDValue Op0Op0 = Op0->getOperand(0);
802      ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
803
804      if (!ShAmount)
805        return SDValue();
806
807      if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
808          Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
809        return SDValue();
810
811      EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
812      unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
813
814      if (TotalBits == 32 ||
815          (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
816           TotalBits <= 32)) {
817        SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
818                          Op0Op0->getOperand(2) };
819        DAG.MorphNodeTo(Op0Op0.getNode(), MipsISD::VEXTRACT_SEXT_ELT,
820                        Op0Op0->getVTList(), Ops, Op0Op0->getNumOperands());
821        return Op0Op0;
822      }
823    }
824  }
825
826  if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget->hasDSPR2()))
827    return SDValue();
828
829  return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
830}
831
832
833static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
834                                 TargetLowering::DAGCombinerInfo &DCI,
835                                 const MipsSubtarget *Subtarget) {
836  EVT Ty = N->getValueType(0);
837
838  if (((Ty != MVT::v2i16) || !Subtarget->hasDSPR2()) && (Ty != MVT::v4i8))
839    return SDValue();
840
841  return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
842}
843
844static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
845  bool IsV216 = (Ty == MVT::v2i16);
846
847  switch (CC) {
848  case ISD::SETEQ:
849  case ISD::SETNE:  return true;
850  case ISD::SETLT:
851  case ISD::SETLE:
852  case ISD::SETGT:
853  case ISD::SETGE:  return IsV216;
854  case ISD::SETULT:
855  case ISD::SETULE:
856  case ISD::SETUGT:
857  case ISD::SETUGE: return !IsV216;
858  default:          return false;
859  }
860}
861
862static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
863  EVT Ty = N->getValueType(0);
864
865  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
866    return SDValue();
867
868  if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
869    return SDValue();
870
871  return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
872                     N->getOperand(1), N->getOperand(2));
873}
874
875static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
876  EVT Ty = N->getValueType(0);
877
878  if (Ty.is128BitVector() && Ty.isInteger()) {
879    // Try the following combines:
880    //   (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
881    //   (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
882    //   (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
883    //   (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
884    //   (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
885    //   (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
886    //   (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
887    //   (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
888    // SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
889    // will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
890    // legalizer.
891    SDValue Op0 = N->getOperand(0);
892
893    if (Op0->getOpcode() != ISD::SETCC)
894      return SDValue();
895
896    ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
897    bool Signed;
898
899    if (CondCode == ISD::SETLT  || CondCode == ISD::SETLE)
900      Signed = true;
901    else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
902      Signed = false;
903    else
904      return SDValue();
905
906    SDValue Op1 = N->getOperand(1);
907    SDValue Op2 = N->getOperand(2);
908    SDValue Op0Op0 = Op0->getOperand(0);
909    SDValue Op0Op1 = Op0->getOperand(1);
910
911    if (Op1 == Op0Op0 && Op2 == Op0Op1)
912      return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
913                         Ty, Op1, Op2);
914    else if (Op1 == Op0Op1 && Op2 == Op0Op0)
915      return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
916                         Ty, Op1, Op2);
917  } else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
918    SDValue SetCC = N->getOperand(0);
919
920    if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
921      return SDValue();
922
923    return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
924                       SetCC.getOperand(0), SetCC.getOperand(1),
925                       N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
926  }
927
928  return SDValue();
929}
930
931static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
932                                 const MipsSubtarget *Subtarget) {
933  EVT Ty = N->getValueType(0);
934
935  if (Subtarget->hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
936    // Try the following combines:
937    //   (xor (or $a, $b), (build_vector allones))
938    //   (xor (or $a, $b), (bitcast (build_vector allones)))
939    SDValue Op0 = N->getOperand(0);
940    SDValue Op1 = N->getOperand(1);
941    SDValue NotOp;
942
943    if (ISD::isBuildVectorAllOnes(Op0.getNode()))
944      NotOp = Op1;
945    else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
946      NotOp = Op0;
947    else
948      return SDValue();
949
950    if (NotOp->getOpcode() == ISD::OR)
951      return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
952                         NotOp->getOperand(1));
953  }
954
955  return SDValue();
956}
957
958SDValue
959MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
960  SelectionDAG &DAG = DCI.DAG;
961  SDValue Val;
962
963  switch (N->getOpcode()) {
964  case ISD::ADDE:
965    return performADDECombine(N, DAG, DCI, Subtarget);
966  case ISD::AND:
967    Val = performANDCombine(N, DAG, DCI, Subtarget);
968    break;
969  case ISD::OR:
970    Val = performORCombine(N, DAG, DCI, Subtarget);
971    break;
972  case ISD::SUBE:
973    return performSUBECombine(N, DAG, DCI, Subtarget);
974  case ISD::MUL:
975    return performMULCombine(N, DAG, DCI, this);
976  case ISD::SHL:
977    return performSHLCombine(N, DAG, DCI, Subtarget);
978  case ISD::SRA:
979    return performSRACombine(N, DAG, DCI, Subtarget);
980  case ISD::SRL:
981    return performSRLCombine(N, DAG, DCI, Subtarget);
982  case ISD::VSELECT:
983    return performVSELECTCombine(N, DAG);
984  case ISD::XOR:
985    Val = performXORCombine(N, DAG, Subtarget);
986    break;
987  case ISD::SETCC:
988    Val = performSETCCCombine(N, DAG);
989    break;
990  }
991
992  if (Val.getNode()) {
993    DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
994          N->printrWithDepth(dbgs(), &DAG);
995          dbgs() << "\n=> \n";
996          Val.getNode()->printrWithDepth(dbgs(), &DAG);
997          dbgs() << "\n");
998    return Val;
999  }
1000
1001  return MipsTargetLowering::PerformDAGCombine(N, DCI);
1002}
1003
1004MachineBasicBlock *
1005MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1006                                                  MachineBasicBlock *BB) const {
1007  switch (MI->getOpcode()) {
1008  default:
1009    return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1010  case Mips::BPOSGE32_PSEUDO:
1011    return emitBPOSGE32(MI, BB);
1012  case Mips::SNZ_B_PSEUDO:
1013    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1014  case Mips::SNZ_H_PSEUDO:
1015    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1016  case Mips::SNZ_W_PSEUDO:
1017    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1018  case Mips::SNZ_D_PSEUDO:
1019    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1020  case Mips::SNZ_V_PSEUDO:
1021    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1022  case Mips::SZ_B_PSEUDO:
1023    return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1024  case Mips::SZ_H_PSEUDO:
1025    return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1026  case Mips::SZ_W_PSEUDO:
1027    return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1028  case Mips::SZ_D_PSEUDO:
1029    return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1030  case Mips::SZ_V_PSEUDO:
1031    return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1032  case Mips::COPY_FW_PSEUDO:
1033    return emitCOPY_FW(MI, BB);
1034  case Mips::COPY_FD_PSEUDO:
1035    return emitCOPY_FD(MI, BB);
1036  case Mips::INSERT_FW_PSEUDO:
1037    return emitINSERT_FW(MI, BB);
1038  case Mips::INSERT_FD_PSEUDO:
1039    return emitINSERT_FD(MI, BB);
1040  case Mips::FILL_FW_PSEUDO:
1041    return emitFILL_FW(MI, BB);
1042  case Mips::FILL_FD_PSEUDO:
1043    return emitFILL_FD(MI, BB);
1044  case Mips::FEXP2_W_1_PSEUDO:
1045    return emitFEXP2_W_1(MI, BB);
1046  case Mips::FEXP2_D_1_PSEUDO:
1047    return emitFEXP2_D_1(MI, BB);
1048  }
1049}
1050
1051bool MipsSETargetLowering::
1052isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
1053                                  unsigned NextStackOffset,
1054                                  const MipsFunctionInfo& FI) const {
1055  if (!EnableMipsTailCalls)
1056    return false;
1057
1058  // Return false if either the callee or caller has a byval argument.
1059  if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
1060    return false;
1061
1062  // Return true if the callee's argument area is no larger than the
1063  // caller's.
1064  return NextStackOffset <= FI.getIncomingArgSize();
1065}
1066
1067void MipsSETargetLowering::
1068getOpndList(SmallVectorImpl<SDValue> &Ops,
1069            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
1070            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1071            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
1072  // T9 should contain the address of the callee function if
1073  // -reloction-model=pic or it is an indirect call.
1074  if (IsPICCall || !GlobalOrExternal) {
1075    unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
1076    RegsToPass.push_front(std::make_pair(T9Reg, Callee));
1077  } else
1078    Ops.push_back(Callee);
1079
1080  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1081                                  InternalLinkage, CLI, Callee, Chain);
1082}
1083
1084SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1085  LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1086
1087  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1088    return MipsTargetLowering::lowerLOAD(Op, DAG);
1089
1090  // Replace a double precision load with two i32 loads and a buildpair64.
1091  SDLoc DL(Op);
1092  SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1093  EVT PtrVT = Ptr.getValueType();
1094
1095  // i32 load from lower address.
1096  SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
1097                           MachinePointerInfo(), Nd.isVolatile(),
1098                           Nd.isNonTemporal(), Nd.isInvariant(),
1099                           Nd.getAlignment());
1100
1101  // i32 load from higher address.
1102  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
1103  SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
1104                           MachinePointerInfo(), Nd.isVolatile(),
1105                           Nd.isNonTemporal(), Nd.isInvariant(),
1106                           std::min(Nd.getAlignment(), 4U));
1107
1108  if (!Subtarget->isLittle())
1109    std::swap(Lo, Hi);
1110
1111  SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1112  SDValue Ops[2] = {BP, Hi.getValue(1)};
1113  return DAG.getMergeValues(Ops, 2, DL);
1114}
1115
1116SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1117  StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1118
1119  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1120    return MipsTargetLowering::lowerSTORE(Op, DAG);
1121
1122  // Replace a double precision store with two extractelement64s and i32 stores.
1123  SDLoc DL(Op);
1124  SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1125  EVT PtrVT = Ptr.getValueType();
1126  SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1127                           Val, DAG.getConstant(0, MVT::i32));
1128  SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1129                           Val, DAG.getConstant(1, MVT::i32));
1130
1131  if (!Subtarget->isLittle())
1132    std::swap(Lo, Hi);
1133
1134  // i32 store to lower address.
1135  Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
1136                       Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
1137                       Nd.getTBAAInfo());
1138
1139  // i32 store to higher address.
1140  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
1141  return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1142                      Nd.isVolatile(), Nd.isNonTemporal(),
1143                      std::min(Nd.getAlignment(), 4U), Nd.getTBAAInfo());
1144}
1145
1146SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1147                                          bool HasLo, bool HasHi,
1148                                          SelectionDAG &DAG) const {
1149  EVT Ty = Op.getOperand(0).getValueType();
1150  SDLoc DL(Op);
1151  SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1152                             Op.getOperand(0), Op.getOperand(1));
1153  SDValue Lo, Hi;
1154
1155  if (HasLo)
1156    Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1157  if (HasHi)
1158    Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1159
1160  if (!HasLo || !HasHi)
1161    return HasLo ? Lo : Hi;
1162
1163  SDValue Vals[] = { Lo, Hi };
1164  return DAG.getMergeValues(Vals, 2, DL);
1165}
1166
1167
1168static SDValue initAccumulator(SDValue In, SDLoc DL, SelectionDAG &DAG) {
1169  SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1170                             DAG.getConstant(0, MVT::i32));
1171  SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1172                             DAG.getConstant(1, MVT::i32));
1173  return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1174}
1175
1176static SDValue extractLOHI(SDValue Op, SDLoc DL, SelectionDAG &DAG) {
1177  SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1178  SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1179  return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1180}
1181
1182// This function expands mips intrinsic nodes which have 64-bit input operands
1183// or output values.
1184//
1185// out64 = intrinsic-node in64
1186// =>
1187// lo = copy (extract-element (in64, 0))
1188// hi = copy (extract-element (in64, 1))
1189// mips-specific-node
1190// v0 = copy lo
1191// v1 = copy hi
1192// out64 = merge-values (v0, v1)
1193//
1194static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1195  SDLoc DL(Op);
1196  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1197  SmallVector<SDValue, 3> Ops;
1198  unsigned OpNo = 0;
1199
1200  // See if Op has a chain input.
1201  if (HasChainIn)
1202    Ops.push_back(Op->getOperand(OpNo++));
1203
1204  // The next operand is the intrinsic opcode.
1205  assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1206
1207  // See if the next operand has type i64.
1208  SDValue Opnd = Op->getOperand(++OpNo), In64;
1209
1210  if (Opnd.getValueType() == MVT::i64)
1211    In64 = initAccumulator(Opnd, DL, DAG);
1212  else
1213    Ops.push_back(Opnd);
1214
1215  // Push the remaining operands.
1216  for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1217    Ops.push_back(Op->getOperand(OpNo));
1218
1219  // Add In64 to the end of the list.
1220  if (In64.getNode())
1221    Ops.push_back(In64);
1222
1223  // Scan output.
1224  SmallVector<EVT, 2> ResTys;
1225
1226  for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
1227       I != E; ++I)
1228    ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
1229
1230  // Create node.
1231  SDValue Val = DAG.getNode(Opc, DL, ResTys, &Ops[0], Ops.size());
1232  SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1233
1234  if (!HasChainIn)
1235    return Out;
1236
1237  assert(Val->getValueType(1) == MVT::Other);
1238  SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1239  return DAG.getMergeValues(Vals, 2, DL);
1240}
1241
1242// Lower an MSA copy intrinsic into the specified SelectionDAG node
1243static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1244  SDLoc DL(Op);
1245  SDValue Vec = Op->getOperand(1);
1246  SDValue Idx = Op->getOperand(2);
1247  EVT ResTy = Op->getValueType(0);
1248  EVT EltTy = Vec->getValueType(0).getVectorElementType();
1249
1250  SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1251                               DAG.getValueType(EltTy));
1252
1253  return Result;
1254}
1255
1256static SDValue
1257lowerMSASplatImm(SDLoc DL, EVT ResTy, SDValue ImmOp, SelectionDAG &DAG) {
1258  EVT ViaVecTy = ResTy;
1259  SmallVector<SDValue, 16> Ops;
1260  SDValue ImmHiOp;
1261
1262  if (ViaVecTy == MVT::v2i64) {
1263    ImmHiOp = DAG.getNode(ISD::SRA, DL, MVT::i32, ImmOp,
1264                          DAG.getConstant(31, MVT::i32));
1265    for (unsigned i = 0; i < ViaVecTy.getVectorNumElements(); ++i) {
1266      Ops.push_back(ImmHiOp);
1267      Ops.push_back(ImmOp);
1268    }
1269    ViaVecTy = MVT::v4i32;
1270  } else {
1271    for (unsigned i = 0; i < ResTy.getVectorNumElements(); ++i)
1272      Ops.push_back(ImmOp);
1273  }
1274
1275  SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy, &Ops[0],
1276                               Ops.size());
1277
1278  if (ResTy != ViaVecTy)
1279    Result = DAG.getNode(ISD::BITCAST, DL, ResTy, Result);
1280
1281  return Result;
1282}
1283
1284static SDValue
1285lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
1286  return lowerMSASplatImm(SDLoc(Op), Op->getValueType(0),
1287                          Op->getOperand(ImmOp), DAG);
1288}
1289
1290SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1291                                                      SelectionDAG &DAG) const {
1292  SDLoc DL(Op);
1293
1294  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
1295  default:
1296    return SDValue();
1297  case Intrinsic::mips_shilo:
1298    return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1299  case Intrinsic::mips_dpau_h_qbl:
1300    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1301  case Intrinsic::mips_dpau_h_qbr:
1302    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1303  case Intrinsic::mips_dpsu_h_qbl:
1304    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1305  case Intrinsic::mips_dpsu_h_qbr:
1306    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1307  case Intrinsic::mips_dpa_w_ph:
1308    return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1309  case Intrinsic::mips_dps_w_ph:
1310    return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1311  case Intrinsic::mips_dpax_w_ph:
1312    return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1313  case Intrinsic::mips_dpsx_w_ph:
1314    return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1315  case Intrinsic::mips_mulsa_w_ph:
1316    return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1317  case Intrinsic::mips_mult:
1318    return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1319  case Intrinsic::mips_multu:
1320    return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1321  case Intrinsic::mips_madd:
1322    return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1323  case Intrinsic::mips_maddu:
1324    return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1325  case Intrinsic::mips_msub:
1326    return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1327  case Intrinsic::mips_msubu:
1328    return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1329  case Intrinsic::mips_addv_b:
1330  case Intrinsic::mips_addv_h:
1331  case Intrinsic::mips_addv_w:
1332  case Intrinsic::mips_addv_d:
1333    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1334                       Op->getOperand(2));
1335  case Intrinsic::mips_addvi_b:
1336  case Intrinsic::mips_addvi_h:
1337  case Intrinsic::mips_addvi_w:
1338  case Intrinsic::mips_addvi_d:
1339    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1340                       lowerMSASplatImm(Op, 2, DAG));
1341  case Intrinsic::mips_and_v:
1342    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1343                       Op->getOperand(2));
1344  case Intrinsic::mips_andi_b:
1345    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1346                       lowerMSASplatImm(Op, 2, DAG));
1347  case Intrinsic::mips_binsli_b:
1348  case Intrinsic::mips_binsli_h:
1349  case Intrinsic::mips_binsli_w:
1350  case Intrinsic::mips_binsli_d: {
1351    EVT VecTy = Op->getValueType(0);
1352    EVT EltTy = VecTy.getVectorElementType();
1353    APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1354                                       Op->getConstantOperandVal(3));
1355    return DAG.getNode(ISD::VSELECT, DL, VecTy,
1356                       DAG.getConstant(Mask, VecTy, true), Op->getOperand(1),
1357                       Op->getOperand(2));
1358  }
1359  case Intrinsic::mips_binsri_b:
1360  case Intrinsic::mips_binsri_h:
1361  case Intrinsic::mips_binsri_w:
1362  case Intrinsic::mips_binsri_d: {
1363    EVT VecTy = Op->getValueType(0);
1364    EVT EltTy = VecTy.getVectorElementType();
1365    APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1366                                      Op->getConstantOperandVal(3));
1367    return DAG.getNode(ISD::VSELECT, DL, VecTy,
1368                       DAG.getConstant(Mask, VecTy, true), Op->getOperand(1),
1369                       Op->getOperand(2));
1370  }
1371  case Intrinsic::mips_bmnz_v:
1372    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1373                       Op->getOperand(2), Op->getOperand(1));
1374  case Intrinsic::mips_bmnzi_b:
1375    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1376                       lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1377                       Op->getOperand(1));
1378  case Intrinsic::mips_bmz_v:
1379    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1380                       Op->getOperand(1), Op->getOperand(2));
1381  case Intrinsic::mips_bmzi_b:
1382    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1383                       lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1384                       Op->getOperand(2));
1385  case Intrinsic::mips_bnz_b:
1386  case Intrinsic::mips_bnz_h:
1387  case Intrinsic::mips_bnz_w:
1388  case Intrinsic::mips_bnz_d:
1389    return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1390                       Op->getOperand(1));
1391  case Intrinsic::mips_bnz_v:
1392    return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1393                       Op->getOperand(1));
1394  case Intrinsic::mips_bsel_v:
1395    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1396                       Op->getOperand(1), Op->getOperand(2),
1397                       Op->getOperand(3));
1398  case Intrinsic::mips_bseli_b:
1399    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1400                       Op->getOperand(1), Op->getOperand(2),
1401                       lowerMSASplatImm(Op, 3, DAG));
1402  case Intrinsic::mips_bz_b:
1403  case Intrinsic::mips_bz_h:
1404  case Intrinsic::mips_bz_w:
1405  case Intrinsic::mips_bz_d:
1406    return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1407                       Op->getOperand(1));
1408  case Intrinsic::mips_bz_v:
1409    return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1410                       Op->getOperand(1));
1411  case Intrinsic::mips_ceq_b:
1412  case Intrinsic::mips_ceq_h:
1413  case Intrinsic::mips_ceq_w:
1414  case Intrinsic::mips_ceq_d:
1415    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1416                        Op->getOperand(2), ISD::SETEQ);
1417  case Intrinsic::mips_ceqi_b:
1418  case Intrinsic::mips_ceqi_h:
1419  case Intrinsic::mips_ceqi_w:
1420  case Intrinsic::mips_ceqi_d:
1421    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1422                        lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
1423  case Intrinsic::mips_cle_s_b:
1424  case Intrinsic::mips_cle_s_h:
1425  case Intrinsic::mips_cle_s_w:
1426  case Intrinsic::mips_cle_s_d:
1427    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1428                        Op->getOperand(2), ISD::SETLE);
1429  case Intrinsic::mips_clei_s_b:
1430  case Intrinsic::mips_clei_s_h:
1431  case Intrinsic::mips_clei_s_w:
1432  case Intrinsic::mips_clei_s_d:
1433    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1434                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
1435  case Intrinsic::mips_cle_u_b:
1436  case Intrinsic::mips_cle_u_h:
1437  case Intrinsic::mips_cle_u_w:
1438  case Intrinsic::mips_cle_u_d:
1439    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1440                        Op->getOperand(2), ISD::SETULE);
1441  case Intrinsic::mips_clei_u_b:
1442  case Intrinsic::mips_clei_u_h:
1443  case Intrinsic::mips_clei_u_w:
1444  case Intrinsic::mips_clei_u_d:
1445    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1446                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1447  case Intrinsic::mips_clt_s_b:
1448  case Intrinsic::mips_clt_s_h:
1449  case Intrinsic::mips_clt_s_w:
1450  case Intrinsic::mips_clt_s_d:
1451    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1452                        Op->getOperand(2), ISD::SETLT);
1453  case Intrinsic::mips_clti_s_b:
1454  case Intrinsic::mips_clti_s_h:
1455  case Intrinsic::mips_clti_s_w:
1456  case Intrinsic::mips_clti_s_d:
1457    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1458                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
1459  case Intrinsic::mips_clt_u_b:
1460  case Intrinsic::mips_clt_u_h:
1461  case Intrinsic::mips_clt_u_w:
1462  case Intrinsic::mips_clt_u_d:
1463    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1464                        Op->getOperand(2), ISD::SETULT);
1465  case Intrinsic::mips_clti_u_b:
1466  case Intrinsic::mips_clti_u_h:
1467  case Intrinsic::mips_clti_u_w:
1468  case Intrinsic::mips_clti_u_d:
1469    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1470                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1471  case Intrinsic::mips_copy_s_b:
1472  case Intrinsic::mips_copy_s_h:
1473  case Intrinsic::mips_copy_s_w:
1474    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1475  case Intrinsic::mips_copy_s_d:
1476    // Don't lower directly into VEXTRACT_SEXT_ELT since i64 might be illegal.
1477    // Instead lower to the generic EXTRACT_VECTOR_ELT node and let the type
1478    // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1479    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1480                       Op->getOperand(1), Op->getOperand(2));
1481  case Intrinsic::mips_copy_u_b:
1482  case Intrinsic::mips_copy_u_h:
1483  case Intrinsic::mips_copy_u_w:
1484    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1485  case Intrinsic::mips_copy_u_d:
1486    // Don't lower directly into VEXTRACT_ZEXT_ELT since i64 might be illegal.
1487    // Instead lower to the generic EXTRACT_VECTOR_ELT node and let the type
1488    // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1489    //
1490    // Note: When i64 is illegal, this results in copy_s.w instructions instead
1491    // of copy_u.w instructions. This makes no difference to the behaviour
1492    // since i64 is only illegal when the register file is 32-bit.
1493    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1494                       Op->getOperand(1), Op->getOperand(2));
1495  case Intrinsic::mips_div_s_b:
1496  case Intrinsic::mips_div_s_h:
1497  case Intrinsic::mips_div_s_w:
1498  case Intrinsic::mips_div_s_d:
1499    return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1500                       Op->getOperand(2));
1501  case Intrinsic::mips_div_u_b:
1502  case Intrinsic::mips_div_u_h:
1503  case Intrinsic::mips_div_u_w:
1504  case Intrinsic::mips_div_u_d:
1505    return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1506                       Op->getOperand(2));
1507  case Intrinsic::mips_fadd_w:
1508  case Intrinsic::mips_fadd_d:
1509    return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1510                       Op->getOperand(2));
1511  // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1512  case Intrinsic::mips_fceq_w:
1513  case Intrinsic::mips_fceq_d:
1514    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1515                        Op->getOperand(2), ISD::SETOEQ);
1516  case Intrinsic::mips_fcle_w:
1517  case Intrinsic::mips_fcle_d:
1518    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1519                        Op->getOperand(2), ISD::SETOLE);
1520  case Intrinsic::mips_fclt_w:
1521  case Intrinsic::mips_fclt_d:
1522    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1523                        Op->getOperand(2), ISD::SETOLT);
1524  case Intrinsic::mips_fcne_w:
1525  case Intrinsic::mips_fcne_d:
1526    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1527                        Op->getOperand(2), ISD::SETONE);
1528  case Intrinsic::mips_fcor_w:
1529  case Intrinsic::mips_fcor_d:
1530    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1531                        Op->getOperand(2), ISD::SETO);
1532  case Intrinsic::mips_fcueq_w:
1533  case Intrinsic::mips_fcueq_d:
1534    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1535                        Op->getOperand(2), ISD::SETUEQ);
1536  case Intrinsic::mips_fcule_w:
1537  case Intrinsic::mips_fcule_d:
1538    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1539                        Op->getOperand(2), ISD::SETULE);
1540  case Intrinsic::mips_fcult_w:
1541  case Intrinsic::mips_fcult_d:
1542    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1543                        Op->getOperand(2), ISD::SETULT);
1544  case Intrinsic::mips_fcun_w:
1545  case Intrinsic::mips_fcun_d:
1546    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1547                        Op->getOperand(2), ISD::SETUO);
1548  case Intrinsic::mips_fcune_w:
1549  case Intrinsic::mips_fcune_d:
1550    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1551                        Op->getOperand(2), ISD::SETUNE);
1552  case Intrinsic::mips_fdiv_w:
1553  case Intrinsic::mips_fdiv_d:
1554    return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1555                       Op->getOperand(2));
1556  case Intrinsic::mips_ffint_u_w:
1557  case Intrinsic::mips_ffint_u_d:
1558    return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1559                       Op->getOperand(1));
1560  case Intrinsic::mips_ffint_s_w:
1561  case Intrinsic::mips_ffint_s_d:
1562    return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1563                       Op->getOperand(1));
1564  case Intrinsic::mips_fill_b:
1565  case Intrinsic::mips_fill_h:
1566  case Intrinsic::mips_fill_w:
1567  case Intrinsic::mips_fill_d: {
1568    SmallVector<SDValue, 16> Ops;
1569    EVT ResTy = Op->getValueType(0);
1570
1571    for (unsigned i = 0; i < ResTy.getVectorNumElements(); ++i)
1572      Ops.push_back(Op->getOperand(1));
1573
1574    // If ResTy is v2i64 then the type legalizer will break this node down into
1575    // an equivalent v4i32.
1576    return DAG.getNode(ISD::BUILD_VECTOR, DL, ResTy, &Ops[0], Ops.size());
1577  }
1578  case Intrinsic::mips_fexp2_w:
1579  case Intrinsic::mips_fexp2_d: {
1580    EVT ResTy = Op->getValueType(0);
1581    return DAG.getNode(
1582        ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1583        DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1584  }
1585  case Intrinsic::mips_flog2_w:
1586  case Intrinsic::mips_flog2_d:
1587    return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1588  case Intrinsic::mips_fmadd_w:
1589  case Intrinsic::mips_fmadd_d:
1590    return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1591                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1592  case Intrinsic::mips_fmul_w:
1593  case Intrinsic::mips_fmul_d:
1594    return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1595                       Op->getOperand(2));
1596  case Intrinsic::mips_fmsub_w:
1597  case Intrinsic::mips_fmsub_d: {
1598    EVT ResTy = Op->getValueType(0);
1599    return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
1600                       DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
1601                                   Op->getOperand(2), Op->getOperand(3)));
1602  }
1603  case Intrinsic::mips_frint_w:
1604  case Intrinsic::mips_frint_d:
1605    return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1606  case Intrinsic::mips_fsqrt_w:
1607  case Intrinsic::mips_fsqrt_d:
1608    return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1609  case Intrinsic::mips_fsub_w:
1610  case Intrinsic::mips_fsub_d:
1611    return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1612                       Op->getOperand(2));
1613  case Intrinsic::mips_ftrunc_u_w:
1614  case Intrinsic::mips_ftrunc_u_d:
1615    return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1616                       Op->getOperand(1));
1617  case Intrinsic::mips_ftrunc_s_w:
1618  case Intrinsic::mips_ftrunc_s_d:
1619    return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1620                       Op->getOperand(1));
1621  case Intrinsic::mips_ilvev_b:
1622  case Intrinsic::mips_ilvev_h:
1623  case Intrinsic::mips_ilvev_w:
1624  case Intrinsic::mips_ilvev_d:
1625    return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1626                       Op->getOperand(1), Op->getOperand(2));
1627  case Intrinsic::mips_ilvl_b:
1628  case Intrinsic::mips_ilvl_h:
1629  case Intrinsic::mips_ilvl_w:
1630  case Intrinsic::mips_ilvl_d:
1631    return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1632                       Op->getOperand(1), Op->getOperand(2));
1633  case Intrinsic::mips_ilvod_b:
1634  case Intrinsic::mips_ilvod_h:
1635  case Intrinsic::mips_ilvod_w:
1636  case Intrinsic::mips_ilvod_d:
1637    return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1638                       Op->getOperand(1), Op->getOperand(2));
1639  case Intrinsic::mips_ilvr_b:
1640  case Intrinsic::mips_ilvr_h:
1641  case Intrinsic::mips_ilvr_w:
1642  case Intrinsic::mips_ilvr_d:
1643    return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1644                       Op->getOperand(1), Op->getOperand(2));
1645  case Intrinsic::mips_insert_b:
1646  case Intrinsic::mips_insert_h:
1647  case Intrinsic::mips_insert_w:
1648  case Intrinsic::mips_insert_d:
1649    return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1650                       Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1651  case Intrinsic::mips_ldi_b:
1652  case Intrinsic::mips_ldi_h:
1653  case Intrinsic::mips_ldi_w:
1654  case Intrinsic::mips_ldi_d:
1655    return lowerMSASplatImm(Op, 1, DAG);
1656  case Intrinsic::mips_lsa: {
1657    EVT ResTy = Op->getValueType(0);
1658    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1659                       DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1660                                   Op->getOperand(2), Op->getOperand(3)));
1661  }
1662  case Intrinsic::mips_maddv_b:
1663  case Intrinsic::mips_maddv_h:
1664  case Intrinsic::mips_maddv_w:
1665  case Intrinsic::mips_maddv_d: {
1666    EVT ResTy = Op->getValueType(0);
1667    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1668                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1669                                   Op->getOperand(2), Op->getOperand(3)));
1670  }
1671  case Intrinsic::mips_max_s_b:
1672  case Intrinsic::mips_max_s_h:
1673  case Intrinsic::mips_max_s_w:
1674  case Intrinsic::mips_max_s_d:
1675    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1676                       Op->getOperand(1), Op->getOperand(2));
1677  case Intrinsic::mips_max_u_b:
1678  case Intrinsic::mips_max_u_h:
1679  case Intrinsic::mips_max_u_w:
1680  case Intrinsic::mips_max_u_d:
1681    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1682                       Op->getOperand(1), Op->getOperand(2));
1683  case Intrinsic::mips_maxi_s_b:
1684  case Intrinsic::mips_maxi_s_h:
1685  case Intrinsic::mips_maxi_s_w:
1686  case Intrinsic::mips_maxi_s_d:
1687    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1688                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1689  case Intrinsic::mips_maxi_u_b:
1690  case Intrinsic::mips_maxi_u_h:
1691  case Intrinsic::mips_maxi_u_w:
1692  case Intrinsic::mips_maxi_u_d:
1693    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1694                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1695  case Intrinsic::mips_min_s_b:
1696  case Intrinsic::mips_min_s_h:
1697  case Intrinsic::mips_min_s_w:
1698  case Intrinsic::mips_min_s_d:
1699    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
1700                       Op->getOperand(1), Op->getOperand(2));
1701  case Intrinsic::mips_min_u_b:
1702  case Intrinsic::mips_min_u_h:
1703  case Intrinsic::mips_min_u_w:
1704  case Intrinsic::mips_min_u_d:
1705    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
1706                       Op->getOperand(1), Op->getOperand(2));
1707  case Intrinsic::mips_mini_s_b:
1708  case Intrinsic::mips_mini_s_h:
1709  case Intrinsic::mips_mini_s_w:
1710  case Intrinsic::mips_mini_s_d:
1711    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
1712                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1713  case Intrinsic::mips_mini_u_b:
1714  case Intrinsic::mips_mini_u_h:
1715  case Intrinsic::mips_mini_u_w:
1716  case Intrinsic::mips_mini_u_d:
1717    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
1718                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1719  case Intrinsic::mips_mod_s_b:
1720  case Intrinsic::mips_mod_s_h:
1721  case Intrinsic::mips_mod_s_w:
1722  case Intrinsic::mips_mod_s_d:
1723    return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
1724                       Op->getOperand(2));
1725  case Intrinsic::mips_mod_u_b:
1726  case Intrinsic::mips_mod_u_h:
1727  case Intrinsic::mips_mod_u_w:
1728  case Intrinsic::mips_mod_u_d:
1729    return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
1730                       Op->getOperand(2));
1731  case Intrinsic::mips_mulv_b:
1732  case Intrinsic::mips_mulv_h:
1733  case Intrinsic::mips_mulv_w:
1734  case Intrinsic::mips_mulv_d:
1735    return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
1736                       Op->getOperand(2));
1737  case Intrinsic::mips_msubv_b:
1738  case Intrinsic::mips_msubv_h:
1739  case Intrinsic::mips_msubv_w:
1740  case Intrinsic::mips_msubv_d: {
1741    EVT ResTy = Op->getValueType(0);
1742    return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
1743                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1744                                   Op->getOperand(2), Op->getOperand(3)));
1745  }
1746  case Intrinsic::mips_nlzc_b:
1747  case Intrinsic::mips_nlzc_h:
1748  case Intrinsic::mips_nlzc_w:
1749  case Intrinsic::mips_nlzc_d:
1750    return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
1751  case Intrinsic::mips_nor_v: {
1752    SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
1753                              Op->getOperand(1), Op->getOperand(2));
1754    return DAG.getNOT(DL, Res, Res->getValueType(0));
1755  }
1756  case Intrinsic::mips_nori_b: {
1757    SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
1758                               Op->getOperand(1),
1759                               lowerMSASplatImm(Op, 2, DAG));
1760    return DAG.getNOT(DL, Res, Res->getValueType(0));
1761  }
1762  case Intrinsic::mips_or_v:
1763    return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
1764                       Op->getOperand(2));
1765  case Intrinsic::mips_ori_b:
1766    return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
1767                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1768  case Intrinsic::mips_pckev_b:
1769  case Intrinsic::mips_pckev_h:
1770  case Intrinsic::mips_pckev_w:
1771  case Intrinsic::mips_pckev_d:
1772    return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
1773                       Op->getOperand(1), Op->getOperand(2));
1774  case Intrinsic::mips_pckod_b:
1775  case Intrinsic::mips_pckod_h:
1776  case Intrinsic::mips_pckod_w:
1777  case Intrinsic::mips_pckod_d:
1778    return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
1779                       Op->getOperand(1), Op->getOperand(2));
1780  case Intrinsic::mips_pcnt_b:
1781  case Intrinsic::mips_pcnt_h:
1782  case Intrinsic::mips_pcnt_w:
1783  case Intrinsic::mips_pcnt_d:
1784    return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
1785  case Intrinsic::mips_shf_b:
1786  case Intrinsic::mips_shf_h:
1787  case Intrinsic::mips_shf_w:
1788    return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
1789                       Op->getOperand(2), Op->getOperand(1));
1790  case Intrinsic::mips_sll_b:
1791  case Intrinsic::mips_sll_h:
1792  case Intrinsic::mips_sll_w:
1793  case Intrinsic::mips_sll_d:
1794    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
1795                       Op->getOperand(2));
1796  case Intrinsic::mips_slli_b:
1797  case Intrinsic::mips_slli_h:
1798  case Intrinsic::mips_slli_w:
1799  case Intrinsic::mips_slli_d:
1800    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
1801                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1802  case Intrinsic::mips_splat_b:
1803  case Intrinsic::mips_splat_h:
1804  case Intrinsic::mips_splat_w:
1805  case Intrinsic::mips_splat_d:
1806    // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
1807    // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
1808    // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
1809    // Instead we lower to MipsISD::VSHF and match from there.
1810    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
1811                       lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
1812                       Op->getOperand(1));
1813  case Intrinsic::mips_splati_b:
1814  case Intrinsic::mips_splati_h:
1815  case Intrinsic::mips_splati_w:
1816  case Intrinsic::mips_splati_d:
1817    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
1818                       lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
1819                       Op->getOperand(1));
1820  case Intrinsic::mips_sra_b:
1821  case Intrinsic::mips_sra_h:
1822  case Intrinsic::mips_sra_w:
1823  case Intrinsic::mips_sra_d:
1824    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
1825                       Op->getOperand(2));
1826  case Intrinsic::mips_srai_b:
1827  case Intrinsic::mips_srai_h:
1828  case Intrinsic::mips_srai_w:
1829  case Intrinsic::mips_srai_d:
1830    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
1831                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1832  case Intrinsic::mips_srl_b:
1833  case Intrinsic::mips_srl_h:
1834  case Intrinsic::mips_srl_w:
1835  case Intrinsic::mips_srl_d:
1836    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
1837                       Op->getOperand(2));
1838  case Intrinsic::mips_srli_b:
1839  case Intrinsic::mips_srli_h:
1840  case Intrinsic::mips_srli_w:
1841  case Intrinsic::mips_srli_d:
1842    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
1843                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1844  case Intrinsic::mips_subv_b:
1845  case Intrinsic::mips_subv_h:
1846  case Intrinsic::mips_subv_w:
1847  case Intrinsic::mips_subv_d:
1848    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
1849                       Op->getOperand(2));
1850  case Intrinsic::mips_subvi_b:
1851  case Intrinsic::mips_subvi_h:
1852  case Intrinsic::mips_subvi_w:
1853  case Intrinsic::mips_subvi_d:
1854    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
1855                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1856  case Intrinsic::mips_vshf_b:
1857  case Intrinsic::mips_vshf_h:
1858  case Intrinsic::mips_vshf_w:
1859  case Intrinsic::mips_vshf_d:
1860    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
1861                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1862  case Intrinsic::mips_xor_v:
1863    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
1864                       Op->getOperand(2));
1865  case Intrinsic::mips_xori_b:
1866    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
1867                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1868  }
1869}
1870
1871static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
1872  SDLoc DL(Op);
1873  SDValue ChainIn = Op->getOperand(0);
1874  SDValue Address = Op->getOperand(2);
1875  SDValue Offset  = Op->getOperand(3);
1876  EVT ResTy = Op->getValueType(0);
1877  EVT PtrTy = Address->getValueType(0);
1878
1879  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
1880
1881  return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
1882                     false, false, 16);
1883}
1884
1885SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
1886                                                     SelectionDAG &DAG) const {
1887  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
1888  switch (Intr) {
1889  default:
1890    return SDValue();
1891  case Intrinsic::mips_extp:
1892    return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
1893  case Intrinsic::mips_extpdp:
1894    return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
1895  case Intrinsic::mips_extr_w:
1896    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
1897  case Intrinsic::mips_extr_r_w:
1898    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
1899  case Intrinsic::mips_extr_rs_w:
1900    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
1901  case Intrinsic::mips_extr_s_h:
1902    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
1903  case Intrinsic::mips_mthlip:
1904    return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
1905  case Intrinsic::mips_mulsaq_s_w_ph:
1906    return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
1907  case Intrinsic::mips_maq_s_w_phl:
1908    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
1909  case Intrinsic::mips_maq_s_w_phr:
1910    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
1911  case Intrinsic::mips_maq_sa_w_phl:
1912    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
1913  case Intrinsic::mips_maq_sa_w_phr:
1914    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
1915  case Intrinsic::mips_dpaq_s_w_ph:
1916    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
1917  case Intrinsic::mips_dpsq_s_w_ph:
1918    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
1919  case Intrinsic::mips_dpaq_sa_l_w:
1920    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
1921  case Intrinsic::mips_dpsq_sa_l_w:
1922    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
1923  case Intrinsic::mips_dpaqx_s_w_ph:
1924    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
1925  case Intrinsic::mips_dpaqx_sa_w_ph:
1926    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
1927  case Intrinsic::mips_dpsqx_s_w_ph:
1928    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
1929  case Intrinsic::mips_dpsqx_sa_w_ph:
1930    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
1931  case Intrinsic::mips_ld_b:
1932  case Intrinsic::mips_ld_h:
1933  case Intrinsic::mips_ld_w:
1934  case Intrinsic::mips_ld_d:
1935   return lowerMSALoadIntr(Op, DAG, Intr);
1936  }
1937}
1938
1939static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
1940  SDLoc DL(Op);
1941  SDValue ChainIn = Op->getOperand(0);
1942  SDValue Value   = Op->getOperand(2);
1943  SDValue Address = Op->getOperand(3);
1944  SDValue Offset  = Op->getOperand(4);
1945  EVT PtrTy = Address->getValueType(0);
1946
1947  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
1948
1949  return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
1950                      false, 16);
1951}
1952
1953SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
1954                                                  SelectionDAG &DAG) const {
1955  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
1956  switch (Intr) {
1957  default:
1958    return SDValue();
1959  case Intrinsic::mips_st_b:
1960  case Intrinsic::mips_st_h:
1961  case Intrinsic::mips_st_w:
1962  case Intrinsic::mips_st_d:
1963    return lowerMSAStoreIntr(Op, DAG, Intr);
1964  }
1965}
1966
1967/// \brief Check if the given BuildVectorSDNode is a splat.
1968/// This method currently relies on DAG nodes being reused when equivalent,
1969/// so it's possible for this to return false even when isConstantSplat returns
1970/// true.
1971static bool isSplatVector(const BuildVectorSDNode *N) {
1972  unsigned int nOps = N->getNumOperands();
1973  assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
1974
1975  SDValue Operand0 = N->getOperand(0);
1976
1977  for (unsigned int i = 1; i < nOps; ++i) {
1978    if (N->getOperand(i) != Operand0)
1979      return false;
1980  }
1981
1982  return true;
1983}
1984
1985// Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
1986//
1987// The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
1988// choose to sign-extend but we could have equally chosen zero-extend. The
1989// DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
1990// result into this node later (possibly changing it to a zero-extend in the
1991// process).
1992SDValue MipsSETargetLowering::
1993lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
1994  SDLoc DL(Op);
1995  EVT ResTy = Op->getValueType(0);
1996  SDValue Op0 = Op->getOperand(0);
1997  EVT VecTy = Op0->getValueType(0);
1998
1999  if (!VecTy.is128BitVector())
2000    return SDValue();
2001
2002  if (ResTy.isInteger()) {
2003    SDValue Op1 = Op->getOperand(1);
2004    EVT EltTy = VecTy.getVectorElementType();
2005    return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2006                       DAG.getValueType(EltTy));
2007  }
2008
2009  return Op;
2010}
2011
2012static bool isConstantOrUndef(const SDValue Op) {
2013  if (Op->getOpcode() == ISD::UNDEF)
2014    return true;
2015  if (dyn_cast<ConstantSDNode>(Op))
2016    return true;
2017  if (dyn_cast<ConstantFPSDNode>(Op))
2018    return true;
2019  return false;
2020}
2021
2022static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2023  for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2024    if (isConstantOrUndef(Op->getOperand(i)))
2025      return true;
2026  return false;
2027}
2028
2029// Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2030// backend.
2031//
2032// Lowers according to the following rules:
2033// - Constant splats are legal as-is as long as the SplatBitSize is a power of
2034//   2 less than or equal to 64 and the value fits into a signed 10-bit
2035//   immediate
2036// - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2037//   is a power of 2 less than or equal to 64 and the value does not fit into a
2038//   signed 10-bit immediate
2039// - Non-constant splats are legal as-is.
2040// - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2041// - All others are illegal and must be expanded.
2042SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2043                                                SelectionDAG &DAG) const {
2044  BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2045  EVT ResTy = Op->getValueType(0);
2046  SDLoc DL(Op);
2047  APInt SplatValue, SplatUndef;
2048  unsigned SplatBitSize;
2049  bool HasAnyUndefs;
2050
2051  if (!Subtarget->hasMSA() || !ResTy.is128BitVector())
2052    return SDValue();
2053
2054  if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2055                            HasAnyUndefs, 8,
2056                            !Subtarget->isLittle()) && SplatBitSize <= 64) {
2057    // We can only cope with 8, 16, 32, or 64-bit elements
2058    if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2059        SplatBitSize != 64)
2060      return SDValue();
2061
2062    // If the value fits into a simm10 then we can use ldi.[bhwd]
2063    if (SplatValue.isSignedIntN(10))
2064      return Op;
2065
2066    EVT ViaVecTy;
2067
2068    switch (SplatBitSize) {
2069    default:
2070      return SDValue();
2071    case 8:
2072      ViaVecTy = MVT::v16i8;
2073      break;
2074    case 16:
2075      ViaVecTy = MVT::v8i16;
2076      break;
2077    case 32:
2078      ViaVecTy = MVT::v4i32;
2079      break;
2080    case 64:
2081      // There's no fill.d to fall back on for 64-bit values
2082      return SDValue();
2083    }
2084
2085    SmallVector<SDValue, 16> Ops;
2086    SDValue Constant = DAG.getConstant(SplatValue.sextOrSelf(32), MVT::i32);
2087
2088    for (unsigned i = 0; i < ViaVecTy.getVectorNumElements(); ++i)
2089      Ops.push_back(Constant);
2090
2091    SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Node), ViaVecTy,
2092                                 &Ops[0], Ops.size());
2093
2094    if (ViaVecTy != ResTy)
2095      Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2096
2097    return Result;
2098  } else if (isSplatVector(Node))
2099    return Op;
2100  else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2101    // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2102    // The resulting code is the same length as the expansion, but it doesn't
2103    // use memory operations
2104    EVT ResTy = Node->getValueType(0);
2105
2106    assert(ResTy.isVector());
2107
2108    unsigned NumElts = ResTy.getVectorNumElements();
2109    SDValue Vector = DAG.getUNDEF(ResTy);
2110    for (unsigned i = 0; i < NumElts; ++i) {
2111      Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2112                           Node->getOperand(i),
2113                           DAG.getConstant(i, MVT::i32));
2114    }
2115    return Vector;
2116  }
2117
2118  return SDValue();
2119}
2120
2121// Lower VECTOR_SHUFFLE into SHF (if possible).
2122//
2123// SHF splits the vector into blocks of four elements, then shuffles these
2124// elements according to a <4 x i2> constant (encoded as an integer immediate).
2125//
2126// It is therefore possible to lower into SHF when the mask takes the form:
2127//   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2128// When undef's appear they are treated as if they were whatever value is
2129// necessary in order to fit the above form.
2130//
2131// For example:
2132//   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2133//                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2134//                                 i32 7, i32 6, i32 5, i32 4>
2135// is lowered to:
2136//   (SHF_H $w0, $w1, 27)
2137// where the 27 comes from:
2138//   3 + (2 << 2) + (1 << 4) + (0 << 6)
2139static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2140                                       SmallVector<int, 16> Indices,
2141                                       SelectionDAG &DAG) {
2142  int SHFIndices[4] = { -1, -1, -1, -1 };
2143
2144  if (Indices.size() < 4)
2145    return SDValue();
2146
2147  for (unsigned i = 0; i < 4; ++i) {
2148    for (unsigned j = i; j < Indices.size(); j += 4) {
2149      int Idx = Indices[j];
2150
2151      // Convert from vector index to 4-element subvector index
2152      // If an index refers to an element outside of the subvector then give up
2153      if (Idx != -1) {
2154        Idx -= 4 * (j / 4);
2155        if (Idx < 0 || Idx >= 4)
2156          return SDValue();
2157      }
2158
2159      // If the mask has an undef, replace it with the current index.
2160      // Note that it might still be undef if the current index is also undef
2161      if (SHFIndices[i] == -1)
2162        SHFIndices[i] = Idx;
2163
2164      // Check that non-undef values are the same as in the mask. If they
2165      // aren't then give up
2166      if (!(Idx == -1 || Idx == SHFIndices[i]))
2167        return SDValue();
2168    }
2169  }
2170
2171  // Calculate the immediate. Replace any remaining undefs with zero
2172  APInt Imm(32, 0);
2173  for (int i = 3; i >= 0; --i) {
2174    int Idx = SHFIndices[i];
2175
2176    if (Idx == -1)
2177      Idx = 0;
2178
2179    Imm <<= 2;
2180    Imm |= Idx & 0x3;
2181  }
2182
2183  return DAG.getNode(MipsISD::SHF, SDLoc(Op), ResTy,
2184                     DAG.getConstant(Imm, MVT::i32), Op->getOperand(0));
2185}
2186
2187// Lower VECTOR_SHUFFLE into ILVEV (if possible).
2188//
2189// ILVEV interleaves the even elements from each vector.
2190//
2191// It is possible to lower into ILVEV when the mask takes the form:
2192//   <0, n, 2, n+2, 4, n+4, ...>
2193// where n is the number of elements in the vector.
2194//
2195// When undef's appear in the mask they are treated as if they were whatever
2196// value is necessary in order to fit the above form.
2197static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2198                                         SmallVector<int, 16> Indices,
2199                                         SelectionDAG &DAG) {
2200  assert ((Indices.size() % 2) == 0);
2201  int WsIdx = 0;
2202  int WtIdx = ResTy.getVectorNumElements();
2203
2204  for (unsigned i = 0; i < Indices.size(); i += 2) {
2205    if (Indices[i] != -1 && Indices[i] != WsIdx)
2206      return SDValue();
2207    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2208      return SDValue();
2209    WsIdx += 2;
2210    WtIdx += 2;
2211  }
2212
2213  return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Op->getOperand(0),
2214                     Op->getOperand(1));
2215}
2216
2217// Lower VECTOR_SHUFFLE into ILVOD (if possible).
2218//
2219// ILVOD interleaves the odd elements from each vector.
2220//
2221// It is possible to lower into ILVOD when the mask takes the form:
2222//   <1, n+1, 3, n+3, 5, n+5, ...>
2223// where n is the number of elements in the vector.
2224//
2225// When undef's appear in the mask they are treated as if they were whatever
2226// value is necessary in order to fit the above form.
2227static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2228                                         SmallVector<int, 16> Indices,
2229                                         SelectionDAG &DAG) {
2230  assert ((Indices.size() % 2) == 0);
2231  int WsIdx = 1;
2232  int WtIdx = ResTy.getVectorNumElements() + 1;
2233
2234  for (unsigned i = 0; i < Indices.size(); i += 2) {
2235    if (Indices[i] != -1 && Indices[i] != WsIdx)
2236      return SDValue();
2237    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2238      return SDValue();
2239    WsIdx += 2;
2240    WtIdx += 2;
2241  }
2242
2243  return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Op->getOperand(0),
2244                     Op->getOperand(1));
2245}
2246
2247// Lower VECTOR_SHUFFLE into ILVL (if possible).
2248//
2249// ILVL interleaves consecutive elements from the left half of each vector.
2250//
2251// It is possible to lower into ILVL when the mask takes the form:
2252//   <0, n, 1, n+1, 2, n+2, ...>
2253// where n is the number of elements in the vector.
2254//
2255// When undef's appear in the mask they are treated as if they were whatever
2256// value is necessary in order to fit the above form.
2257static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2258                                        SmallVector<int, 16> Indices,
2259                                        SelectionDAG &DAG) {
2260  assert ((Indices.size() % 2) == 0);
2261  int WsIdx = 0;
2262  int WtIdx = ResTy.getVectorNumElements();
2263
2264  for (unsigned i = 0; i < Indices.size(); i += 2) {
2265    if (Indices[i] != -1 && Indices[i] != WsIdx)
2266      return SDValue();
2267    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2268      return SDValue();
2269    WsIdx ++;
2270    WtIdx ++;
2271  }
2272
2273  return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Op->getOperand(0),
2274                     Op->getOperand(1));
2275}
2276
2277// Lower VECTOR_SHUFFLE into ILVR (if possible).
2278//
2279// ILVR interleaves consecutive elements from the right half of each vector.
2280//
2281// It is possible to lower into ILVR when the mask takes the form:
2282//   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2283// where n is the number of elements in the vector and x is half n.
2284//
2285// When undef's appear in the mask they are treated as if they were whatever
2286// value is necessary in order to fit the above form.
2287static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2288                                        SmallVector<int, 16> Indices,
2289                                        SelectionDAG &DAG) {
2290  assert ((Indices.size() % 2) == 0);
2291  unsigned NumElts = ResTy.getVectorNumElements();
2292  int WsIdx = NumElts / 2;
2293  int WtIdx = NumElts + NumElts / 2;
2294
2295  for (unsigned i = 0; i < Indices.size(); i += 2) {
2296    if (Indices[i] != -1 && Indices[i] != WsIdx)
2297      return SDValue();
2298    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2299      return SDValue();
2300    WsIdx ++;
2301    WtIdx ++;
2302  }
2303
2304  return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Op->getOperand(0),
2305                     Op->getOperand(1));
2306}
2307
2308// Lower VECTOR_SHUFFLE into PCKEV (if possible).
2309//
2310// PCKEV copies the even elements of each vector into the result vector.
2311//
2312// It is possible to lower into PCKEV when the mask takes the form:
2313//   <0, 2, 4, ..., n, n+2, n+4, ...>
2314// where n is the number of elements in the vector.
2315//
2316// When undef's appear in the mask they are treated as if they were whatever
2317// value is necessary in order to fit the above form.
2318static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2319                                         SmallVector<int, 16> Indices,
2320                                         SelectionDAG &DAG) {
2321  assert ((Indices.size() % 2) == 0);
2322  int Idx = 0;
2323
2324  for (unsigned i = 0; i < Indices.size(); ++i) {
2325    if (Indices[i] != -1 && Indices[i] != Idx)
2326      return SDValue();
2327    Idx += 2;
2328  }
2329
2330  return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Op->getOperand(0),
2331                     Op->getOperand(1));
2332}
2333
2334// Lower VECTOR_SHUFFLE into PCKOD (if possible).
2335//
2336// PCKOD copies the odd elements of each vector into the result vector.
2337//
2338// It is possible to lower into PCKOD when the mask takes the form:
2339//   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2340// where n is the number of elements in the vector.
2341//
2342// When undef's appear in the mask they are treated as if they were whatever
2343// value is necessary in order to fit the above form.
2344static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2345                                         SmallVector<int, 16> Indices,
2346                                         SelectionDAG &DAG) {
2347  assert ((Indices.size() % 2) == 0);
2348  int Idx = 1;
2349
2350  for (unsigned i = 0; i < Indices.size(); ++i) {
2351    if (Indices[i] != -1 && Indices[i] != Idx)
2352      return SDValue();
2353    Idx += 2;
2354  }
2355
2356  return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Op->getOperand(0),
2357                     Op->getOperand(1));
2358}
2359
2360// Lower VECTOR_SHUFFLE into VSHF.
2361//
2362// This mostly consists of converting the shuffle indices in Indices into a
2363// BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2364// also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2365// if the type is v8i16 and all the indices are less than 8 then the second
2366// operand is unused and can be replaced with anything. We choose to replace it
2367// with the used operand since this reduces the number of instructions overall.
2368static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2369                                        SmallVector<int, 16> Indices,
2370                                        SelectionDAG &DAG) {
2371  SmallVector<SDValue, 16> Ops;
2372  SDValue Op0;
2373  SDValue Op1;
2374  EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2375  EVT MaskEltTy = MaskVecTy.getVectorElementType();
2376  bool Using1stVec = false;
2377  bool Using2ndVec = false;
2378  SDLoc DL(Op);
2379  int ResTyNumElts = ResTy.getVectorNumElements();
2380
2381  for (int i = 0; i < ResTyNumElts; ++i) {
2382    // Idx == -1 means UNDEF
2383    int Idx = Indices[i];
2384
2385    if (0 <= Idx && Idx < ResTyNumElts)
2386      Using1stVec = true;
2387    if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2388      Using2ndVec = true;
2389  }
2390
2391  for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
2392       ++I)
2393    Ops.push_back(DAG.getTargetConstant(*I, MaskEltTy));
2394
2395  SDValue MaskVec = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecTy, &Ops[0],
2396                                Ops.size());
2397
2398  if (Using1stVec && Using2ndVec) {
2399    Op0 = Op->getOperand(0);
2400    Op1 = Op->getOperand(1);
2401  } else if (Using1stVec)
2402    Op0 = Op1 = Op->getOperand(0);
2403  else if (Using2ndVec)
2404    Op0 = Op1 = Op->getOperand(1);
2405  else
2406    llvm_unreachable("shuffle vector mask references neither vector operand?");
2407
2408  return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op0, Op1);
2409}
2410
2411// Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2412// indices in the shuffle.
2413SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2414                                                  SelectionDAG &DAG) const {
2415  ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2416  EVT ResTy = Op->getValueType(0);
2417
2418  if (!ResTy.is128BitVector())
2419    return SDValue();
2420
2421  int ResTyNumElts = ResTy.getVectorNumElements();
2422  SmallVector<int, 16> Indices;
2423
2424  for (int i = 0; i < ResTyNumElts; ++i)
2425    Indices.push_back(Node->getMaskElt(i));
2426
2427  SDValue Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG);
2428  if (Result.getNode())
2429    return Result;
2430  Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG);
2431  if (Result.getNode())
2432    return Result;
2433  Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG);
2434  if (Result.getNode())
2435    return Result;
2436  Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG);
2437  if (Result.getNode())
2438    return Result;
2439  Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG);
2440  if (Result.getNode())
2441    return Result;
2442  Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG);
2443  if (Result.getNode())
2444    return Result;
2445  Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG);
2446  if (Result.getNode())
2447    return Result;
2448  return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2449}
2450
2451MachineBasicBlock * MipsSETargetLowering::
2452emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
2453  // $bb:
2454  //  bposge32_pseudo $vr0
2455  //  =>
2456  // $bb:
2457  //  bposge32 $tbb
2458  // $fbb:
2459  //  li $vr2, 0
2460  //  b $sink
2461  // $tbb:
2462  //  li $vr1, 1
2463  // $sink:
2464  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
2465
2466  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2467  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2468  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2469  DebugLoc DL = MI->getDebugLoc();
2470  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2471  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
2472  MachineFunction *F = BB->getParent();
2473  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2474  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2475  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2476  F->insert(It, FBB);
2477  F->insert(It, TBB);
2478  F->insert(It, Sink);
2479
2480  // Transfer the remainder of BB and its successor edges to Sink.
2481  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
2482               BB->end());
2483  Sink->transferSuccessorsAndUpdatePHIs(BB);
2484
2485  // Add successors.
2486  BB->addSuccessor(FBB);
2487  BB->addSuccessor(TBB);
2488  FBB->addSuccessor(Sink);
2489  TBB->addSuccessor(Sink);
2490
2491  // Insert the real bposge32 instruction to $BB.
2492  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
2493
2494  // Fill $FBB.
2495  unsigned VR2 = RegInfo.createVirtualRegister(RC);
2496  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
2497    .addReg(Mips::ZERO).addImm(0);
2498  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2499
2500  // Fill $TBB.
2501  unsigned VR1 = RegInfo.createVirtualRegister(RC);
2502  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
2503    .addReg(Mips::ZERO).addImm(1);
2504
2505  // Insert phi function to $Sink.
2506  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2507          MI->getOperand(0).getReg())
2508    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
2509
2510  MI->eraseFromParent();   // The pseudo instruction is gone now.
2511  return Sink;
2512}
2513
2514MachineBasicBlock * MipsSETargetLowering::
2515emitMSACBranchPseudo(MachineInstr *MI, MachineBasicBlock *BB,
2516                     unsigned BranchOp) const{
2517  // $bb:
2518  //  vany_nonzero $rd, $ws
2519  //  =>
2520  // $bb:
2521  //  bnz.b $ws, $tbb
2522  //  b $fbb
2523  // $fbb:
2524  //  li $rd1, 0
2525  //  b $sink
2526  // $tbb:
2527  //  li $rd2, 1
2528  // $sink:
2529  //  $rd = phi($rd1, $fbb, $rd2, $tbb)
2530
2531  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2532  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2533  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2534  DebugLoc DL = MI->getDebugLoc();
2535  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2536  MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
2537  MachineFunction *F = BB->getParent();
2538  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2539  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2540  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2541  F->insert(It, FBB);
2542  F->insert(It, TBB);
2543  F->insert(It, Sink);
2544
2545  // Transfer the remainder of BB and its successor edges to Sink.
2546  Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
2547               BB->end());
2548  Sink->transferSuccessorsAndUpdatePHIs(BB);
2549
2550  // Add successors.
2551  BB->addSuccessor(FBB);
2552  BB->addSuccessor(TBB);
2553  FBB->addSuccessor(Sink);
2554  TBB->addSuccessor(Sink);
2555
2556  // Insert the real bnz.b instruction to $BB.
2557  BuildMI(BB, DL, TII->get(BranchOp))
2558    .addReg(MI->getOperand(1).getReg())
2559    .addMBB(TBB);
2560
2561  // Fill $FBB.
2562  unsigned RD1 = RegInfo.createVirtualRegister(RC);
2563  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
2564    .addReg(Mips::ZERO).addImm(0);
2565  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2566
2567  // Fill $TBB.
2568  unsigned RD2 = RegInfo.createVirtualRegister(RC);
2569  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
2570    .addReg(Mips::ZERO).addImm(1);
2571
2572  // Insert phi function to $Sink.
2573  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2574          MI->getOperand(0).getReg())
2575    .addReg(RD1).addMBB(FBB).addReg(RD2).addMBB(TBB);
2576
2577  MI->eraseFromParent();   // The pseudo instruction is gone now.
2578  return Sink;
2579}
2580
2581// Emit the COPY_FW pseudo instruction.
2582//
2583// copy_fw_pseudo $fd, $ws, n
2584// =>
2585// copy_u_w $rt, $ws, $n
2586// mtc1     $rt, $fd
2587//
2588// When n is zero, the equivalent operation can be performed with (potentially)
2589// zero instructions due to register overlaps. This optimization is never valid
2590// for lane 1 because it would require FR=0 mode which isn't supported by MSA.
2591MachineBasicBlock * MipsSETargetLowering::
2592emitCOPY_FW(MachineInstr *MI, MachineBasicBlock *BB) const{
2593  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2594  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2595  DebugLoc DL = MI->getDebugLoc();
2596  unsigned Fd = MI->getOperand(0).getReg();
2597  unsigned Ws = MI->getOperand(1).getReg();
2598  unsigned Lane = MI->getOperand(2).getImm();
2599
2600  if (Lane == 0)
2601    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_lo);
2602  else {
2603    unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2604
2605    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(1);
2606    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
2607  }
2608
2609  MI->eraseFromParent();   // The pseudo instruction is gone now.
2610  return BB;
2611}
2612
2613// Emit the COPY_FD pseudo instruction.
2614//
2615// copy_fd_pseudo $fd, $ws, n
2616// =>
2617// splati.d $wt, $ws, $n
2618// copy $fd, $wt:sub_64
2619//
2620// When n is zero, the equivalent operation can be performed with (potentially)
2621// zero instructions due to register overlaps. This optimization is always
2622// valid because FR=1 mode which is the only supported mode in MSA.
2623MachineBasicBlock * MipsSETargetLowering::
2624emitCOPY_FD(MachineInstr *MI, MachineBasicBlock *BB) const{
2625  assert(Subtarget->isFP64bit());
2626
2627  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2628  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2629  unsigned Fd  = MI->getOperand(0).getReg();
2630  unsigned Ws  = MI->getOperand(1).getReg();
2631  unsigned Lane = MI->getOperand(2).getImm() * 2;
2632  DebugLoc DL = MI->getDebugLoc();
2633
2634  if (Lane == 0)
2635    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
2636  else {
2637    unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2638
2639    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
2640    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
2641  }
2642
2643  MI->eraseFromParent();   // The pseudo instruction is gone now.
2644  return BB;
2645}
2646
2647// Emit the INSERT_FW pseudo instruction.
2648//
2649// insert_fw_pseudo $wd, $wd_in, $n, $fs
2650// =>
2651// subreg_to_reg $wt:sub_lo, $fs
2652// insve_w $wd[$n], $wd_in, $wt[0]
2653MachineBasicBlock *
2654MipsSETargetLowering::emitINSERT_FW(MachineInstr *MI,
2655                                    MachineBasicBlock *BB) const {
2656  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2657  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2658  DebugLoc DL = MI->getDebugLoc();
2659  unsigned Wd = MI->getOperand(0).getReg();
2660  unsigned Wd_in = MI->getOperand(1).getReg();
2661  unsigned Lane = MI->getOperand(2).getImm();
2662  unsigned Fs = MI->getOperand(3).getReg();
2663  unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2664
2665  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
2666      .addImm(0)
2667      .addReg(Fs)
2668      .addImm(Mips::sub_lo);
2669  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
2670      .addReg(Wd_in)
2671      .addImm(Lane)
2672      .addReg(Wt);
2673
2674  MI->eraseFromParent(); // The pseudo instruction is gone now.
2675  return BB;
2676}
2677
2678// Emit the INSERT_FD pseudo instruction.
2679//
2680// insert_fd_pseudo $wd, $fs, n
2681// =>
2682// subreg_to_reg $wt:sub_64, $fs
2683// insve_d $wd[$n], $wd_in, $wt[0]
2684MachineBasicBlock *
2685MipsSETargetLowering::emitINSERT_FD(MachineInstr *MI,
2686                                    MachineBasicBlock *BB) const {
2687  assert(Subtarget->isFP64bit());
2688
2689  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2690  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2691  DebugLoc DL = MI->getDebugLoc();
2692  unsigned Wd = MI->getOperand(0).getReg();
2693  unsigned Wd_in = MI->getOperand(1).getReg();
2694  unsigned Lane = MI->getOperand(2).getImm();
2695  unsigned Fs = MI->getOperand(3).getReg();
2696  unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2697
2698  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
2699      .addImm(0)
2700      .addReg(Fs)
2701      .addImm(Mips::sub_64);
2702  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
2703      .addReg(Wd_in)
2704      .addImm(Lane)
2705      .addReg(Wt);
2706
2707  MI->eraseFromParent(); // The pseudo instruction is gone now.
2708  return BB;
2709}
2710
2711// Emit the FILL_FW pseudo instruction.
2712//
2713// fill_fw_pseudo $wd, $fs
2714// =>
2715// implicit_def $wt1
2716// insert_subreg $wt2:subreg_lo, $wt1, $fs
2717// splati.w $wd, $wt2[0]
2718MachineBasicBlock *
2719MipsSETargetLowering::emitFILL_FW(MachineInstr *MI,
2720                                  MachineBasicBlock *BB) const {
2721  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2722  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2723  DebugLoc DL = MI->getDebugLoc();
2724  unsigned Wd = MI->getOperand(0).getReg();
2725  unsigned Fs = MI->getOperand(1).getReg();
2726  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2727  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2728
2729  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
2730  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
2731      .addReg(Wt1)
2732      .addReg(Fs)
2733      .addImm(Mips::sub_lo);
2734  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
2735
2736  MI->eraseFromParent(); // The pseudo instruction is gone now.
2737  return BB;
2738}
2739
2740// Emit the FILL_FD pseudo instruction.
2741//
2742// fill_fd_pseudo $wd, $fs
2743// =>
2744// implicit_def $wt1
2745// insert_subreg $wt2:subreg_64, $wt1, $fs
2746// splati.d $wd, $wt2[0]
2747MachineBasicBlock *
2748MipsSETargetLowering::emitFILL_FD(MachineInstr *MI,
2749                                  MachineBasicBlock *BB) const {
2750  assert(Subtarget->isFP64bit());
2751
2752  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2753  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2754  DebugLoc DL = MI->getDebugLoc();
2755  unsigned Wd = MI->getOperand(0).getReg();
2756  unsigned Fs = MI->getOperand(1).getReg();
2757  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2758  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2759
2760  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
2761  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
2762      .addReg(Wt1)
2763      .addReg(Fs)
2764      .addImm(Mips::sub_64);
2765  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
2766
2767  MI->eraseFromParent();   // The pseudo instruction is gone now.
2768  return BB;
2769}
2770
2771// Emit the FEXP2_W_1 pseudo instructions.
2772//
2773// fexp2_w_1_pseudo $wd, $wt
2774// =>
2775// ldi.w $ws, 1
2776// fexp2.w $wd, $ws, $wt
2777MachineBasicBlock *
2778MipsSETargetLowering::emitFEXP2_W_1(MachineInstr *MI,
2779                                    MachineBasicBlock *BB) const {
2780  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2781  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2782  const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
2783  unsigned Ws1 = RegInfo.createVirtualRegister(RC);
2784  unsigned Ws2 = RegInfo.createVirtualRegister(RC);
2785  DebugLoc DL = MI->getDebugLoc();
2786
2787  // Splat 1.0 into a vector
2788  BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
2789  BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
2790
2791  // Emit 1.0 * fexp2(Wt)
2792  BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI->getOperand(0).getReg())
2793      .addReg(Ws2)
2794      .addReg(MI->getOperand(1).getReg());
2795
2796  MI->eraseFromParent(); // The pseudo instruction is gone now.
2797  return BB;
2798}
2799
2800// Emit the FEXP2_D_1 pseudo instructions.
2801//
2802// fexp2_d_1_pseudo $wd, $wt
2803// =>
2804// ldi.d $ws, 1
2805// fexp2.d $wd, $ws, $wt
2806MachineBasicBlock *
2807MipsSETargetLowering::emitFEXP2_D_1(MachineInstr *MI,
2808                                    MachineBasicBlock *BB) const {
2809  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2810  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2811  const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
2812  unsigned Ws1 = RegInfo.createVirtualRegister(RC);
2813  unsigned Ws2 = RegInfo.createVirtualRegister(RC);
2814  DebugLoc DL = MI->getDebugLoc();
2815
2816  // Splat 1.0 into a vector
2817  BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
2818  BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
2819
2820  // Emit 1.0 * fexp2(Wt)
2821  BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI->getOperand(0).getReg())
2822      .addReg(Ws2)
2823      .addReg(MI->getOperand(1).getReg());
2824
2825  MI->eraseFromParent(); // The pseudo instruction is gone now.
2826  return BB;
2827}
2828