MipsSEISelLowering.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- MipsSEISelLowering.cpp - MipsSE DAG Lowering Interface --*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Subclass of MipsTargetLowering specialized for mips32/64.
11//
12//===----------------------------------------------------------------------===//
13#include "MipsSEISelLowering.h"
14#include "MipsRegisterInfo.h"
15#include "MipsTargetMachine.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
18#include "llvm/IR/Intrinsics.h"
19#include "llvm/Support/CommandLine.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Support/raw_ostream.h"
22#include "llvm/Target/TargetInstrInfo.h"
23
24using namespace llvm;
25
26#define DEBUG_TYPE "mips-isel"
27
28static cl::opt<bool>
29EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
30                    cl::desc("MIPS: Enable tail calls."), cl::init(false));
31
32static cl::opt<bool> NoDPLoadStore("mno-ldc1-sdc1", cl::init(false),
33                                   cl::desc("Expand double precision loads and "
34                                            "stores to their single precision "
35                                            "counterparts"));
36
37MipsSETargetLowering::MipsSETargetLowering(MipsTargetMachine &TM)
38  : MipsTargetLowering(TM) {
39  // Set up the register classes
40  addRegisterClass(MVT::i32, &Mips::GPR32RegClass);
41
42  if (Subtarget->isGP64bit())
43    addRegisterClass(MVT::i64, &Mips::GPR64RegClass);
44
45  if (Subtarget->hasDSP() || Subtarget->hasMSA()) {
46    // Expand all truncating stores and extending loads.
47    unsigned FirstVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
48    unsigned LastVT = (unsigned)MVT::LAST_VECTOR_VALUETYPE;
49
50    for (unsigned VT0 = FirstVT; VT0 <= LastVT; ++VT0) {
51      for (unsigned VT1 = FirstVT; VT1 <= LastVT; ++VT1)
52        setTruncStoreAction((MVT::SimpleValueType)VT0,
53                            (MVT::SimpleValueType)VT1, Expand);
54
55      setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
56      setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT0, Expand);
57      setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT0, Expand);
58    }
59  }
60
61  if (Subtarget->hasDSP()) {
62    MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
63
64    for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
65      addRegisterClass(VecTys[i], &Mips::DSPRRegClass);
66
67      // Expand all builtin opcodes.
68      for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
69        setOperationAction(Opc, VecTys[i], Expand);
70
71      setOperationAction(ISD::ADD, VecTys[i], Legal);
72      setOperationAction(ISD::SUB, VecTys[i], Legal);
73      setOperationAction(ISD::LOAD, VecTys[i], Legal);
74      setOperationAction(ISD::STORE, VecTys[i], Legal);
75      setOperationAction(ISD::BITCAST, VecTys[i], Legal);
76    }
77
78    setTargetDAGCombine(ISD::SHL);
79    setTargetDAGCombine(ISD::SRA);
80    setTargetDAGCombine(ISD::SRL);
81    setTargetDAGCombine(ISD::SETCC);
82    setTargetDAGCombine(ISD::VSELECT);
83  }
84
85  if (Subtarget->hasDSPR2())
86    setOperationAction(ISD::MUL, MVT::v2i16, Legal);
87
88  if (Subtarget->hasMSA()) {
89    addMSAIntType(MVT::v16i8, &Mips::MSA128BRegClass);
90    addMSAIntType(MVT::v8i16, &Mips::MSA128HRegClass);
91    addMSAIntType(MVT::v4i32, &Mips::MSA128WRegClass);
92    addMSAIntType(MVT::v2i64, &Mips::MSA128DRegClass);
93    addMSAFloatType(MVT::v8f16, &Mips::MSA128HRegClass);
94    addMSAFloatType(MVT::v4f32, &Mips::MSA128WRegClass);
95    addMSAFloatType(MVT::v2f64, &Mips::MSA128DRegClass);
96
97    setTargetDAGCombine(ISD::AND);
98    setTargetDAGCombine(ISD::OR);
99    setTargetDAGCombine(ISD::SRA);
100    setTargetDAGCombine(ISD::VSELECT);
101    setTargetDAGCombine(ISD::XOR);
102  }
103
104  if (!Subtarget->mipsSEUsesSoftFloat()) {
105    addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
106
107    // When dealing with single precision only, use libcalls
108    if (!Subtarget->isSingleFloat()) {
109      if (Subtarget->isFP64bit())
110        addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
111      else
112        addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
113    }
114  }
115
116  setOperationAction(ISD::SMUL_LOHI,          MVT::i32, Custom);
117  setOperationAction(ISD::UMUL_LOHI,          MVT::i32, Custom);
118  setOperationAction(ISD::MULHS,              MVT::i32, Custom);
119  setOperationAction(ISD::MULHU,              MVT::i32, Custom);
120
121  if (Subtarget->hasCnMips())
122    setOperationAction(ISD::MUL,              MVT::i64, Legal);
123  else if (Subtarget->isGP64bit())
124    setOperationAction(ISD::MUL,              MVT::i64, Custom);
125
126  if (Subtarget->isGP64bit()) {
127    setOperationAction(ISD::MULHS,            MVT::i64, Custom);
128    setOperationAction(ISD::MULHU,            MVT::i64, Custom);
129  }
130
131  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
132  setOperationAction(ISD::INTRINSIC_W_CHAIN,  MVT::i64, Custom);
133
134  setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
135  setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
136  setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
137  setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
138  setOperationAction(ISD::ATOMIC_FENCE,       MVT::Other, Custom);
139  setOperationAction(ISD::LOAD,               MVT::i32, Custom);
140  setOperationAction(ISD::STORE,              MVT::i32, Custom);
141
142  setTargetDAGCombine(ISD::ADDE);
143  setTargetDAGCombine(ISD::SUBE);
144  setTargetDAGCombine(ISD::MUL);
145
146  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
147  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
148  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
149
150  if (NoDPLoadStore) {
151    setOperationAction(ISD::LOAD, MVT::f64, Custom);
152    setOperationAction(ISD::STORE, MVT::f64, Custom);
153  }
154
155  if (Subtarget->hasMips32r6()) {
156    // MIPS32r6 replaces the accumulator-based multiplies with a three register
157    // instruction
158    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
159    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
160    setOperationAction(ISD::MUL, MVT::i32, Legal);
161    setOperationAction(ISD::MULHS, MVT::i32, Legal);
162    setOperationAction(ISD::MULHU, MVT::i32, Legal);
163
164    // MIPS32r6 replaces the accumulator-based division/remainder with separate
165    // three register division and remainder instructions.
166    setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
167    setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
168    setOperationAction(ISD::SDIV, MVT::i32, Legal);
169    setOperationAction(ISD::UDIV, MVT::i32, Legal);
170    setOperationAction(ISD::SREM, MVT::i32, Legal);
171    setOperationAction(ISD::UREM, MVT::i32, Legal);
172
173    // MIPS32r6 replaces conditional moves with an equivalent that removes the
174    // need for three GPR read ports.
175    setOperationAction(ISD::SETCC, MVT::i32, Legal);
176    setOperationAction(ISD::SELECT, MVT::i32, Legal);
177    setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
178
179    setOperationAction(ISD::SETCC, MVT::f32, Legal);
180    setOperationAction(ISD::SELECT, MVT::f32, Legal);
181    setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
182
183    assert(Subtarget->isFP64bit() && "FR=1 is required for MIPS32r6");
184    setOperationAction(ISD::SETCC, MVT::f64, Legal);
185    setOperationAction(ISD::SELECT, MVT::f64, Legal);
186    setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
187
188    setOperationAction(ISD::BRCOND, MVT::Other, Legal);
189
190    // Floating point > and >= are supported via < and <=
191    setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
192    setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
193    setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
194    setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
195
196    setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
197    setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
198    setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
199    setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
200  }
201
202  if (Subtarget->hasMips64r6()) {
203    // MIPS64r6 replaces the accumulator-based multiplies with a three register
204    // instruction
205    setOperationAction(ISD::MUL, MVT::i64, Legal);
206    setOperationAction(ISD::MULHS, MVT::i64, Legal);
207    setOperationAction(ISD::MULHU, MVT::i64, Legal);
208
209    // MIPS32r6 replaces the accumulator-based division/remainder with separate
210    // three register division and remainder instructions.
211    setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
212    setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
213    setOperationAction(ISD::SDIV, MVT::i64, Legal);
214    setOperationAction(ISD::UDIV, MVT::i64, Legal);
215    setOperationAction(ISD::SREM, MVT::i64, Legal);
216    setOperationAction(ISD::UREM, MVT::i64, Legal);
217
218    // MIPS64r6 replaces conditional moves with an equivalent that removes the
219    // need for three GPR read ports.
220    setOperationAction(ISD::SETCC, MVT::i64, Legal);
221    setOperationAction(ISD::SELECT, MVT::i64, Legal);
222    setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
223  }
224
225  computeRegisterProperties();
226}
227
228const MipsTargetLowering *
229llvm::createMipsSETargetLowering(MipsTargetMachine &TM) {
230  return new MipsSETargetLowering(TM);
231}
232
233const TargetRegisterClass *
234MipsSETargetLowering::getRepRegClassFor(MVT VT) const {
235  if (VT == MVT::Untyped)
236    return Subtarget->hasDSP() ? &Mips::ACC64DSPRegClass : &Mips::ACC64RegClass;
237
238  return TargetLowering::getRepRegClassFor(VT);
239}
240
241// Enable MSA support for the given integer type and Register class.
242void MipsSETargetLowering::
243addMSAIntType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
244  addRegisterClass(Ty, RC);
245
246  // Expand all builtin opcodes.
247  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
248    setOperationAction(Opc, Ty, Expand);
249
250  setOperationAction(ISD::BITCAST, Ty, Legal);
251  setOperationAction(ISD::LOAD, Ty, Legal);
252  setOperationAction(ISD::STORE, Ty, Legal);
253  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Custom);
254  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
255  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
256
257  setOperationAction(ISD::ADD, Ty, Legal);
258  setOperationAction(ISD::AND, Ty, Legal);
259  setOperationAction(ISD::CTLZ, Ty, Legal);
260  setOperationAction(ISD::CTPOP, Ty, Legal);
261  setOperationAction(ISD::MUL, Ty, Legal);
262  setOperationAction(ISD::OR, Ty, Legal);
263  setOperationAction(ISD::SDIV, Ty, Legal);
264  setOperationAction(ISD::SREM, Ty, Legal);
265  setOperationAction(ISD::SHL, Ty, Legal);
266  setOperationAction(ISD::SRA, Ty, Legal);
267  setOperationAction(ISD::SRL, Ty, Legal);
268  setOperationAction(ISD::SUB, Ty, Legal);
269  setOperationAction(ISD::UDIV, Ty, Legal);
270  setOperationAction(ISD::UREM, Ty, Legal);
271  setOperationAction(ISD::VECTOR_SHUFFLE, Ty, Custom);
272  setOperationAction(ISD::VSELECT, Ty, Legal);
273  setOperationAction(ISD::XOR, Ty, Legal);
274
275  if (Ty == MVT::v4i32 || Ty == MVT::v2i64) {
276    setOperationAction(ISD::FP_TO_SINT, Ty, Legal);
277    setOperationAction(ISD::FP_TO_UINT, Ty, Legal);
278    setOperationAction(ISD::SINT_TO_FP, Ty, Legal);
279    setOperationAction(ISD::UINT_TO_FP, Ty, Legal);
280  }
281
282  setOperationAction(ISD::SETCC, Ty, Legal);
283  setCondCodeAction(ISD::SETNE, Ty, Expand);
284  setCondCodeAction(ISD::SETGE, Ty, Expand);
285  setCondCodeAction(ISD::SETGT, Ty, Expand);
286  setCondCodeAction(ISD::SETUGE, Ty, Expand);
287  setCondCodeAction(ISD::SETUGT, Ty, Expand);
288}
289
290// Enable MSA support for the given floating-point type and Register class.
291void MipsSETargetLowering::
292addMSAFloatType(MVT::SimpleValueType Ty, const TargetRegisterClass *RC) {
293  addRegisterClass(Ty, RC);
294
295  // Expand all builtin opcodes.
296  for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
297    setOperationAction(Opc, Ty, Expand);
298
299  setOperationAction(ISD::LOAD, Ty, Legal);
300  setOperationAction(ISD::STORE, Ty, Legal);
301  setOperationAction(ISD::BITCAST, Ty, Legal);
302  setOperationAction(ISD::EXTRACT_VECTOR_ELT, Ty, Legal);
303  setOperationAction(ISD::INSERT_VECTOR_ELT, Ty, Legal);
304  setOperationAction(ISD::BUILD_VECTOR, Ty, Custom);
305
306  if (Ty != MVT::v8f16) {
307    setOperationAction(ISD::FABS,  Ty, Legal);
308    setOperationAction(ISD::FADD,  Ty, Legal);
309    setOperationAction(ISD::FDIV,  Ty, Legal);
310    setOperationAction(ISD::FEXP2, Ty, Legal);
311    setOperationAction(ISD::FLOG2, Ty, Legal);
312    setOperationAction(ISD::FMA,   Ty, Legal);
313    setOperationAction(ISD::FMUL,  Ty, Legal);
314    setOperationAction(ISD::FRINT, Ty, Legal);
315    setOperationAction(ISD::FSQRT, Ty, Legal);
316    setOperationAction(ISD::FSUB,  Ty, Legal);
317    setOperationAction(ISD::VSELECT, Ty, Legal);
318
319    setOperationAction(ISD::SETCC, Ty, Legal);
320    setCondCodeAction(ISD::SETOGE, Ty, Expand);
321    setCondCodeAction(ISD::SETOGT, Ty, Expand);
322    setCondCodeAction(ISD::SETUGE, Ty, Expand);
323    setCondCodeAction(ISD::SETUGT, Ty, Expand);
324    setCondCodeAction(ISD::SETGE,  Ty, Expand);
325    setCondCodeAction(ISD::SETGT,  Ty, Expand);
326  }
327}
328
329bool
330MipsSETargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
331                                                    unsigned,
332                                                    bool *Fast) const {
333  MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
334
335  if (Subtarget->systemSupportsUnalignedAccess()) {
336    // MIPS32r6/MIPS64r6 is required to support unaligned access. It's
337    // implementation defined whether this is handled by hardware, software, or
338    // a hybrid of the two but it's expected that most implementations will
339    // handle the majority of cases in hardware.
340    if (Fast)
341      *Fast = true;
342    return true;
343  }
344
345  switch (SVT) {
346  case MVT::i64:
347  case MVT::i32:
348    if (Fast)
349      *Fast = true;
350    return true;
351  default:
352    return false;
353  }
354}
355
356SDValue MipsSETargetLowering::LowerOperation(SDValue Op,
357                                             SelectionDAG &DAG) const {
358  switch(Op.getOpcode()) {
359  case ISD::LOAD:  return lowerLOAD(Op, DAG);
360  case ISD::STORE: return lowerSTORE(Op, DAG);
361  case ISD::SMUL_LOHI: return lowerMulDiv(Op, MipsISD::Mult, true, true, DAG);
362  case ISD::UMUL_LOHI: return lowerMulDiv(Op, MipsISD::Multu, true, true, DAG);
363  case ISD::MULHS:     return lowerMulDiv(Op, MipsISD::Mult, false, true, DAG);
364  case ISD::MULHU:     return lowerMulDiv(Op, MipsISD::Multu, false, true, DAG);
365  case ISD::MUL:       return lowerMulDiv(Op, MipsISD::Mult, true, false, DAG);
366  case ISD::SDIVREM:   return lowerMulDiv(Op, MipsISD::DivRem, true, true, DAG);
367  case ISD::UDIVREM:   return lowerMulDiv(Op, MipsISD::DivRemU, true, true,
368                                          DAG);
369  case ISD::INTRINSIC_WO_CHAIN: return lowerINTRINSIC_WO_CHAIN(Op, DAG);
370  case ISD::INTRINSIC_W_CHAIN:  return lowerINTRINSIC_W_CHAIN(Op, DAG);
371  case ISD::INTRINSIC_VOID:     return lowerINTRINSIC_VOID(Op, DAG);
372  case ISD::EXTRACT_VECTOR_ELT: return lowerEXTRACT_VECTOR_ELT(Op, DAG);
373  case ISD::BUILD_VECTOR:       return lowerBUILD_VECTOR(Op, DAG);
374  case ISD::VECTOR_SHUFFLE:     return lowerVECTOR_SHUFFLE(Op, DAG);
375  }
376
377  return MipsTargetLowering::LowerOperation(Op, DAG);
378}
379
380// selectMADD -
381// Transforms a subgraph in CurDAG if the following pattern is found:
382//  (addc multLo, Lo0), (adde multHi, Hi0),
383// where,
384//  multHi/Lo: product of multiplication
385//  Lo0: initial value of Lo register
386//  Hi0: initial value of Hi register
387// Return true if pattern matching was successful.
388static bool selectMADD(SDNode *ADDENode, SelectionDAG *CurDAG) {
389  // ADDENode's second operand must be a flag output of an ADDC node in order
390  // for the matching to be successful.
391  SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
392
393  if (ADDCNode->getOpcode() != ISD::ADDC)
394    return false;
395
396  SDValue MultHi = ADDENode->getOperand(0);
397  SDValue MultLo = ADDCNode->getOperand(0);
398  SDNode *MultNode = MultHi.getNode();
399  unsigned MultOpc = MultHi.getOpcode();
400
401  // MultHi and MultLo must be generated by the same node,
402  if (MultLo.getNode() != MultNode)
403    return false;
404
405  // and it must be a multiplication.
406  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
407    return false;
408
409  // MultLo amd MultHi must be the first and second output of MultNode
410  // respectively.
411  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
412    return false;
413
414  // Transform this to a MADD only if ADDENode and ADDCNode are the only users
415  // of the values of MultNode, in which case MultNode will be removed in later
416  // phases.
417  // If there exist users other than ADDENode or ADDCNode, this function returns
418  // here, which will result in MultNode being mapped to a single MULT
419  // instruction node rather than a pair of MULT and MADD instructions being
420  // produced.
421  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
422    return false;
423
424  SDLoc DL(ADDENode);
425
426  // Initialize accumulator.
427  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
428                                  ADDCNode->getOperand(1),
429                                  ADDENode->getOperand(1));
430
431  // create MipsMAdd(u) node
432  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
433
434  SDValue MAdd = CurDAG->getNode(MultOpc, DL, MVT::Untyped,
435                                 MultNode->getOperand(0),// Factor 0
436                                 MultNode->getOperand(1),// Factor 1
437                                 ACCIn);
438
439  // replace uses of adde and addc here
440  if (!SDValue(ADDCNode, 0).use_empty()) {
441    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
442    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), LoOut);
443  }
444  if (!SDValue(ADDENode, 0).use_empty()) {
445    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
446    CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), HiOut);
447  }
448
449  return true;
450}
451
452// selectMSUB -
453// Transforms a subgraph in CurDAG if the following pattern is found:
454//  (addc Lo0, multLo), (sube Hi0, multHi),
455// where,
456//  multHi/Lo: product of multiplication
457//  Lo0: initial value of Lo register
458//  Hi0: initial value of Hi register
459// Return true if pattern matching was successful.
460static bool selectMSUB(SDNode *SUBENode, SelectionDAG *CurDAG) {
461  // SUBENode's second operand must be a flag output of an SUBC node in order
462  // for the matching to be successful.
463  SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
464
465  if (SUBCNode->getOpcode() != ISD::SUBC)
466    return false;
467
468  SDValue MultHi = SUBENode->getOperand(1);
469  SDValue MultLo = SUBCNode->getOperand(1);
470  SDNode *MultNode = MultHi.getNode();
471  unsigned MultOpc = MultHi.getOpcode();
472
473  // MultHi and MultLo must be generated by the same node,
474  if (MultLo.getNode() != MultNode)
475    return false;
476
477  // and it must be a multiplication.
478  if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
479    return false;
480
481  // MultLo amd MultHi must be the first and second output of MultNode
482  // respectively.
483  if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
484    return false;
485
486  // Transform this to a MSUB only if SUBENode and SUBCNode are the only users
487  // of the values of MultNode, in which case MultNode will be removed in later
488  // phases.
489  // If there exist users other than SUBENode or SUBCNode, this function returns
490  // here, which will result in MultNode being mapped to a single MULT
491  // instruction node rather than a pair of MULT and MSUB instructions being
492  // produced.
493  if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
494    return false;
495
496  SDLoc DL(SUBENode);
497
498  // Initialize accumulator.
499  SDValue ACCIn = CurDAG->getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
500                                  SUBCNode->getOperand(0),
501                                  SUBENode->getOperand(0));
502
503  // create MipsSub(u) node
504  MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
505
506  SDValue MSub = CurDAG->getNode(MultOpc, DL, MVT::Glue,
507                                 MultNode->getOperand(0),// Factor 0
508                                 MultNode->getOperand(1),// Factor 1
509                                 ACCIn);
510
511  // replace uses of sube and subc here
512  if (!SDValue(SUBCNode, 0).use_empty()) {
513    SDValue LoOut = CurDAG->getNode(MipsISD::MFLO, DL, MVT::i32, MSub);
514    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), LoOut);
515  }
516  if (!SDValue(SUBENode, 0).use_empty()) {
517    SDValue HiOut = CurDAG->getNode(MipsISD::MFHI, DL, MVT::i32, MSub);
518    CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), HiOut);
519  }
520
521  return true;
522}
523
524static SDValue performADDECombine(SDNode *N, SelectionDAG &DAG,
525                                  TargetLowering::DAGCombinerInfo &DCI,
526                                  const MipsSubtarget *Subtarget) {
527  if (DCI.isBeforeLegalize())
528    return SDValue();
529
530  if (Subtarget->hasMips32() && !Subtarget->hasMips32r6() &&
531      N->getValueType(0) == MVT::i32 && selectMADD(N, &DAG))
532    return SDValue(N, 0);
533
534  return SDValue();
535}
536
537// Fold zero extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT
538//
539// Performs the following transformations:
540// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to zero extension if its
541//   sign/zero-extension is completely overwritten by the new one performed by
542//   the ISD::AND.
543// - Removes redundant zero extensions performed by an ISD::AND.
544static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
545                                 TargetLowering::DAGCombinerInfo &DCI,
546                                 const MipsSubtarget *Subtarget) {
547  if (!Subtarget->hasMSA())
548    return SDValue();
549
550  SDValue Op0 = N->getOperand(0);
551  SDValue Op1 = N->getOperand(1);
552  unsigned Op0Opcode = Op0->getOpcode();
553
554  // (and (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d)
555  // where $d + 1 == 2^n and n == 32
556  // or    $d + 1 == 2^n and n <= 32 and ZExt
557  // -> (MipsVExtractZExt $a, $b, $c)
558  if (Op0Opcode == MipsISD::VEXTRACT_SEXT_ELT ||
559      Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT) {
560    ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(Op1);
561
562    if (!Mask)
563      return SDValue();
564
565    int32_t Log2IfPositive = (Mask->getAPIntValue() + 1).exactLogBase2();
566
567    if (Log2IfPositive <= 0)
568      return SDValue(); // Mask+1 is not a power of 2
569
570    SDValue Op0Op2 = Op0->getOperand(2);
571    EVT ExtendTy = cast<VTSDNode>(Op0Op2)->getVT();
572    unsigned ExtendTySize = ExtendTy.getSizeInBits();
573    unsigned Log2 = Log2IfPositive;
574
575    if ((Op0Opcode == MipsISD::VEXTRACT_ZEXT_ELT && Log2 >= ExtendTySize) ||
576        Log2 == ExtendTySize) {
577      SDValue Ops[] = { Op0->getOperand(0), Op0->getOperand(1), Op0Op2 };
578      DAG.MorphNodeTo(Op0.getNode(), MipsISD::VEXTRACT_ZEXT_ELT,
579                      Op0->getVTList(),
580                      makeArrayRef(Ops, Op0->getNumOperands()));
581      return Op0;
582    }
583  }
584
585  return SDValue();
586}
587
588// Determine if the specified node is a constant vector splat.
589//
590// Returns true and sets Imm if:
591// * N is a ISD::BUILD_VECTOR representing a constant splat
592//
593// This function is quite similar to MipsSEDAGToDAGISel::selectVSplat. The
594// differences are that it assumes the MSA has already been checked and the
595// arbitrary requirement for a maximum of 32-bit integers isn't applied (and
596// must not be in order for binsri.d to be selectable).
597static bool isVSplat(SDValue N, APInt &Imm, bool IsLittleEndian) {
598  BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N.getNode());
599
600  if (!Node)
601    return false;
602
603  APInt SplatValue, SplatUndef;
604  unsigned SplatBitSize;
605  bool HasAnyUndefs;
606
607  if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
608                             8, !IsLittleEndian))
609    return false;
610
611  Imm = SplatValue;
612
613  return true;
614}
615
616// Test whether the given node is an all-ones build_vector.
617static bool isVectorAllOnes(SDValue N) {
618  // Look through bitcasts. Endianness doesn't matter because we are looking
619  // for an all-ones value.
620  if (N->getOpcode() == ISD::BITCAST)
621    N = N->getOperand(0);
622
623  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N);
624
625  if (!BVN)
626    return false;
627
628  APInt SplatValue, SplatUndef;
629  unsigned SplatBitSize;
630  bool HasAnyUndefs;
631
632  // Endianness doesn't matter in this context because we are looking for
633  // an all-ones value.
634  if (BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs))
635    return SplatValue.isAllOnesValue();
636
637  return false;
638}
639
640// Test whether N is the bitwise inverse of OfNode.
641static bool isBitwiseInverse(SDValue N, SDValue OfNode) {
642  if (N->getOpcode() != ISD::XOR)
643    return false;
644
645  if (isVectorAllOnes(N->getOperand(0)))
646    return N->getOperand(1) == OfNode;
647
648  if (isVectorAllOnes(N->getOperand(1)))
649    return N->getOperand(0) == OfNode;
650
651  return false;
652}
653
654// Perform combines where ISD::OR is the root node.
655//
656// Performs the following transformations:
657// - (or (and $a, $mask), (and $b, $inv_mask)) => (vselect $mask, $a, $b)
658//   where $inv_mask is the bitwise inverse of $mask and the 'or' has a 128-bit
659//   vector type.
660static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
661                                TargetLowering::DAGCombinerInfo &DCI,
662                                const MipsSubtarget *Subtarget) {
663  if (!Subtarget->hasMSA())
664    return SDValue();
665
666  EVT Ty = N->getValueType(0);
667
668  if (!Ty.is128BitVector())
669    return SDValue();
670
671  SDValue Op0 = N->getOperand(0);
672  SDValue Op1 = N->getOperand(1);
673
674  if (Op0->getOpcode() == ISD::AND && Op1->getOpcode() == ISD::AND) {
675    SDValue Op0Op0 = Op0->getOperand(0);
676    SDValue Op0Op1 = Op0->getOperand(1);
677    SDValue Op1Op0 = Op1->getOperand(0);
678    SDValue Op1Op1 = Op1->getOperand(1);
679    bool IsLittleEndian = !Subtarget->isLittle();
680
681    SDValue IfSet, IfClr, Cond;
682    bool IsConstantMask = false;
683    APInt Mask, InvMask;
684
685    // If Op0Op0 is an appropriate mask, try to find it's inverse in either
686    // Op1Op0, or Op1Op1. Keep track of the Cond, IfSet, and IfClr nodes, while
687    // looking.
688    // IfClr will be set if we find a valid match.
689    if (isVSplat(Op0Op0, Mask, IsLittleEndian)) {
690      Cond = Op0Op0;
691      IfSet = Op0Op1;
692
693      if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
694          Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
695        IfClr = Op1Op1;
696      else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
697               Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
698        IfClr = Op1Op0;
699
700      IsConstantMask = true;
701    }
702
703    // If IfClr is not yet set, and Op0Op1 is an appropriate mask, try the same
704    // thing again using this mask.
705    // IfClr will be set if we find a valid match.
706    if (!IfClr.getNode() && isVSplat(Op0Op1, Mask, IsLittleEndian)) {
707      Cond = Op0Op1;
708      IfSet = Op0Op0;
709
710      if (isVSplat(Op1Op0, InvMask, IsLittleEndian) &&
711          Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
712        IfClr = Op1Op1;
713      else if (isVSplat(Op1Op1, InvMask, IsLittleEndian) &&
714               Mask.getBitWidth() == InvMask.getBitWidth() && Mask == ~InvMask)
715        IfClr = Op1Op0;
716
717      IsConstantMask = true;
718    }
719
720    // If IfClr is not yet set, try looking for a non-constant match.
721    // IfClr will be set if we find a valid match amongst the eight
722    // possibilities.
723    if (!IfClr.getNode()) {
724      if (isBitwiseInverse(Op0Op0, Op1Op0)) {
725        Cond = Op1Op0;
726        IfSet = Op1Op1;
727        IfClr = Op0Op1;
728      } else if (isBitwiseInverse(Op0Op1, Op1Op0)) {
729        Cond = Op1Op0;
730        IfSet = Op1Op1;
731        IfClr = Op0Op0;
732      } else if (isBitwiseInverse(Op0Op0, Op1Op1)) {
733        Cond = Op1Op1;
734        IfSet = Op1Op0;
735        IfClr = Op0Op1;
736      } else if (isBitwiseInverse(Op0Op1, Op1Op1)) {
737        Cond = Op1Op1;
738        IfSet = Op1Op0;
739        IfClr = Op0Op0;
740      } else if (isBitwiseInverse(Op1Op0, Op0Op0)) {
741        Cond = Op0Op0;
742        IfSet = Op0Op1;
743        IfClr = Op1Op1;
744      } else if (isBitwiseInverse(Op1Op1, Op0Op0)) {
745        Cond = Op0Op0;
746        IfSet = Op0Op1;
747        IfClr = Op1Op0;
748      } else if (isBitwiseInverse(Op1Op0, Op0Op1)) {
749        Cond = Op0Op1;
750        IfSet = Op0Op0;
751        IfClr = Op1Op1;
752      } else if (isBitwiseInverse(Op1Op1, Op0Op1)) {
753        Cond = Op0Op1;
754        IfSet = Op0Op0;
755        IfClr = Op1Op0;
756      }
757    }
758
759    // At this point, IfClr will be set if we have a valid match.
760    if (!IfClr.getNode())
761      return SDValue();
762
763    assert(Cond.getNode() && IfSet.getNode());
764
765    // Fold degenerate cases.
766    if (IsConstantMask) {
767      if (Mask.isAllOnesValue())
768        return IfSet;
769      else if (Mask == 0)
770        return IfClr;
771    }
772
773    // Transform the DAG into an equivalent VSELECT.
774    return DAG.getNode(ISD::VSELECT, SDLoc(N), Ty, Cond, IfSet, IfClr);
775  }
776
777  return SDValue();
778}
779
780static SDValue performSUBECombine(SDNode *N, SelectionDAG &DAG,
781                                  TargetLowering::DAGCombinerInfo &DCI,
782                                  const MipsSubtarget *Subtarget) {
783  if (DCI.isBeforeLegalize())
784    return SDValue();
785
786  if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
787      selectMSUB(N, &DAG))
788    return SDValue(N, 0);
789
790  return SDValue();
791}
792
793static SDValue genConstMult(SDValue X, uint64_t C, SDLoc DL, EVT VT,
794                            EVT ShiftTy, SelectionDAG &DAG) {
795  // Clear the upper (64 - VT.sizeInBits) bits.
796  C &= ((uint64_t)-1) >> (64 - VT.getSizeInBits());
797
798  // Return 0.
799  if (C == 0)
800    return DAG.getConstant(0, VT);
801
802  // Return x.
803  if (C == 1)
804    return X;
805
806  // If c is power of 2, return (shl x, log2(c)).
807  if (isPowerOf2_64(C))
808    return DAG.getNode(ISD::SHL, DL, VT, X,
809                       DAG.getConstant(Log2_64(C), ShiftTy));
810
811  unsigned Log2Ceil = Log2_64_Ceil(C);
812  uint64_t Floor = 1LL << Log2_64(C);
813  uint64_t Ceil = Log2Ceil == 64 ? 0LL : 1LL << Log2Ceil;
814
815  // If |c - floor_c| <= |c - ceil_c|,
816  // where floor_c = pow(2, floor(log2(c))) and ceil_c = pow(2, ceil(log2(c))),
817  // return (add constMult(x, floor_c), constMult(x, c - floor_c)).
818  if (C - Floor <= Ceil - C) {
819    SDValue Op0 = genConstMult(X, Floor, DL, VT, ShiftTy, DAG);
820    SDValue Op1 = genConstMult(X, C - Floor, DL, VT, ShiftTy, DAG);
821    return DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
822  }
823
824  // If |c - floor_c| > |c - ceil_c|,
825  // return (sub constMult(x, ceil_c), constMult(x, ceil_c - c)).
826  SDValue Op0 = genConstMult(X, Ceil, DL, VT, ShiftTy, DAG);
827  SDValue Op1 = genConstMult(X, Ceil - C, DL, VT, ShiftTy, DAG);
828  return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
829}
830
831static SDValue performMULCombine(SDNode *N, SelectionDAG &DAG,
832                                 const TargetLowering::DAGCombinerInfo &DCI,
833                                 const MipsSETargetLowering *TL) {
834  EVT VT = N->getValueType(0);
835
836  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
837    if (!VT.isVector())
838      return genConstMult(N->getOperand(0), C->getZExtValue(), SDLoc(N),
839                          VT, TL->getScalarShiftAmountTy(VT), DAG);
840
841  return SDValue(N, 0);
842}
843
844static SDValue performDSPShiftCombine(unsigned Opc, SDNode *N, EVT Ty,
845                                      SelectionDAG &DAG,
846                                      const MipsSubtarget *Subtarget) {
847  // See if this is a vector splat immediate node.
848  APInt SplatValue, SplatUndef;
849  unsigned SplatBitSize;
850  bool HasAnyUndefs;
851  unsigned EltSize = Ty.getVectorElementType().getSizeInBits();
852  BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
853
854  if (!Subtarget->hasDSP())
855    return SDValue();
856
857  if (!BV ||
858      !BV->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
859                           EltSize, !Subtarget->isLittle()) ||
860      (SplatBitSize != EltSize) ||
861      (SplatValue.getZExtValue() >= EltSize))
862    return SDValue();
863
864  return DAG.getNode(Opc, SDLoc(N), Ty, N->getOperand(0),
865                     DAG.getConstant(SplatValue.getZExtValue(), MVT::i32));
866}
867
868static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
869                                 TargetLowering::DAGCombinerInfo &DCI,
870                                 const MipsSubtarget *Subtarget) {
871  EVT Ty = N->getValueType(0);
872
873  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
874    return SDValue();
875
876  return performDSPShiftCombine(MipsISD::SHLL_DSP, N, Ty, DAG, Subtarget);
877}
878
879// Fold sign-extensions into MipsISD::VEXTRACT_[SZ]EXT_ELT for MSA and fold
880// constant splats into MipsISD::SHRA_DSP for DSPr2.
881//
882// Performs the following transformations:
883// - Changes MipsISD::VEXTRACT_[SZ]EXT_ELT to sign extension if its
884//   sign/zero-extension is completely overwritten by the new one performed by
885//   the ISD::SRA and ISD::SHL nodes.
886// - Removes redundant sign extensions performed by an ISD::SRA and ISD::SHL
887//   sequence.
888//
889// See performDSPShiftCombine for more information about the transformation
890// used for DSPr2.
891static SDValue performSRACombine(SDNode *N, SelectionDAG &DAG,
892                                 TargetLowering::DAGCombinerInfo &DCI,
893                                 const MipsSubtarget *Subtarget) {
894  EVT Ty = N->getValueType(0);
895
896  if (Subtarget->hasMSA()) {
897    SDValue Op0 = N->getOperand(0);
898    SDValue Op1 = N->getOperand(1);
899
900    // (sra (shl (MipsVExtract[SZ]Ext $a, $b, $c), imm:$d), imm:$d)
901    // where $d + sizeof($c) == 32
902    // or    $d + sizeof($c) <= 32 and SExt
903    // -> (MipsVExtractSExt $a, $b, $c)
904    if (Op0->getOpcode() == ISD::SHL && Op1 == Op0->getOperand(1)) {
905      SDValue Op0Op0 = Op0->getOperand(0);
906      ConstantSDNode *ShAmount = dyn_cast<ConstantSDNode>(Op1);
907
908      if (!ShAmount)
909        return SDValue();
910
911      if (Op0Op0->getOpcode() != MipsISD::VEXTRACT_SEXT_ELT &&
912          Op0Op0->getOpcode() != MipsISD::VEXTRACT_ZEXT_ELT)
913        return SDValue();
914
915      EVT ExtendTy = cast<VTSDNode>(Op0Op0->getOperand(2))->getVT();
916      unsigned TotalBits = ShAmount->getZExtValue() + ExtendTy.getSizeInBits();
917
918      if (TotalBits == 32 ||
919          (Op0Op0->getOpcode() == MipsISD::VEXTRACT_SEXT_ELT &&
920           TotalBits <= 32)) {
921        SDValue Ops[] = { Op0Op0->getOperand(0), Op0Op0->getOperand(1),
922                          Op0Op0->getOperand(2) };
923        DAG.MorphNodeTo(Op0Op0.getNode(), MipsISD::VEXTRACT_SEXT_ELT,
924                        Op0Op0->getVTList(),
925                        makeArrayRef(Ops, Op0Op0->getNumOperands()));
926        return Op0Op0;
927      }
928    }
929  }
930
931  if ((Ty != MVT::v2i16) && ((Ty != MVT::v4i8) || !Subtarget->hasDSPR2()))
932    return SDValue();
933
934  return performDSPShiftCombine(MipsISD::SHRA_DSP, N, Ty, DAG, Subtarget);
935}
936
937
938static SDValue performSRLCombine(SDNode *N, SelectionDAG &DAG,
939                                 TargetLowering::DAGCombinerInfo &DCI,
940                                 const MipsSubtarget *Subtarget) {
941  EVT Ty = N->getValueType(0);
942
943  if (((Ty != MVT::v2i16) || !Subtarget->hasDSPR2()) && (Ty != MVT::v4i8))
944    return SDValue();
945
946  return performDSPShiftCombine(MipsISD::SHRL_DSP, N, Ty, DAG, Subtarget);
947}
948
949static bool isLegalDSPCondCode(EVT Ty, ISD::CondCode CC) {
950  bool IsV216 = (Ty == MVT::v2i16);
951
952  switch (CC) {
953  case ISD::SETEQ:
954  case ISD::SETNE:  return true;
955  case ISD::SETLT:
956  case ISD::SETLE:
957  case ISD::SETGT:
958  case ISD::SETGE:  return IsV216;
959  case ISD::SETULT:
960  case ISD::SETULE:
961  case ISD::SETUGT:
962  case ISD::SETUGE: return !IsV216;
963  default:          return false;
964  }
965}
966
967static SDValue performSETCCCombine(SDNode *N, SelectionDAG &DAG) {
968  EVT Ty = N->getValueType(0);
969
970  if ((Ty != MVT::v2i16) && (Ty != MVT::v4i8))
971    return SDValue();
972
973  if (!isLegalDSPCondCode(Ty, cast<CondCodeSDNode>(N->getOperand(2))->get()))
974    return SDValue();
975
976  return DAG.getNode(MipsISD::SETCC_DSP, SDLoc(N), Ty, N->getOperand(0),
977                     N->getOperand(1), N->getOperand(2));
978}
979
980static SDValue performVSELECTCombine(SDNode *N, SelectionDAG &DAG) {
981  EVT Ty = N->getValueType(0);
982
983  if (Ty.is128BitVector() && Ty.isInteger()) {
984    // Try the following combines:
985    //   (vselect (setcc $a, $b, SETLT), $b, $a)) -> (vsmax $a, $b)
986    //   (vselect (setcc $a, $b, SETLE), $b, $a)) -> (vsmax $a, $b)
987    //   (vselect (setcc $a, $b, SETLT), $a, $b)) -> (vsmin $a, $b)
988    //   (vselect (setcc $a, $b, SETLE), $a, $b)) -> (vsmin $a, $b)
989    //   (vselect (setcc $a, $b, SETULT), $b, $a)) -> (vumax $a, $b)
990    //   (vselect (setcc $a, $b, SETULE), $b, $a)) -> (vumax $a, $b)
991    //   (vselect (setcc $a, $b, SETULT), $a, $b)) -> (vumin $a, $b)
992    //   (vselect (setcc $a, $b, SETULE), $a, $b)) -> (vumin $a, $b)
993    // SETGT/SETGE/SETUGT/SETUGE variants of these will show up initially but
994    // will be expanded to equivalent SETLT/SETLE/SETULT/SETULE versions by the
995    // legalizer.
996    SDValue Op0 = N->getOperand(0);
997
998    if (Op0->getOpcode() != ISD::SETCC)
999      return SDValue();
1000
1001    ISD::CondCode CondCode = cast<CondCodeSDNode>(Op0->getOperand(2))->get();
1002    bool Signed;
1003
1004    if (CondCode == ISD::SETLT  || CondCode == ISD::SETLE)
1005      Signed = true;
1006    else if (CondCode == ISD::SETULT || CondCode == ISD::SETULE)
1007      Signed = false;
1008    else
1009      return SDValue();
1010
1011    SDValue Op1 = N->getOperand(1);
1012    SDValue Op2 = N->getOperand(2);
1013    SDValue Op0Op0 = Op0->getOperand(0);
1014    SDValue Op0Op1 = Op0->getOperand(1);
1015
1016    if (Op1 == Op0Op0 && Op2 == Op0Op1)
1017      return DAG.getNode(Signed ? MipsISD::VSMIN : MipsISD::VUMIN, SDLoc(N),
1018                         Ty, Op1, Op2);
1019    else if (Op1 == Op0Op1 && Op2 == Op0Op0)
1020      return DAG.getNode(Signed ? MipsISD::VSMAX : MipsISD::VUMAX, SDLoc(N),
1021                         Ty, Op1, Op2);
1022  } else if ((Ty == MVT::v2i16) || (Ty == MVT::v4i8)) {
1023    SDValue SetCC = N->getOperand(0);
1024
1025    if (SetCC.getOpcode() != MipsISD::SETCC_DSP)
1026      return SDValue();
1027
1028    return DAG.getNode(MipsISD::SELECT_CC_DSP, SDLoc(N), Ty,
1029                       SetCC.getOperand(0), SetCC.getOperand(1),
1030                       N->getOperand(1), N->getOperand(2), SetCC.getOperand(2));
1031  }
1032
1033  return SDValue();
1034}
1035
1036static SDValue performXORCombine(SDNode *N, SelectionDAG &DAG,
1037                                 const MipsSubtarget *Subtarget) {
1038  EVT Ty = N->getValueType(0);
1039
1040  if (Subtarget->hasMSA() && Ty.is128BitVector() && Ty.isInteger()) {
1041    // Try the following combines:
1042    //   (xor (or $a, $b), (build_vector allones))
1043    //   (xor (or $a, $b), (bitcast (build_vector allones)))
1044    SDValue Op0 = N->getOperand(0);
1045    SDValue Op1 = N->getOperand(1);
1046    SDValue NotOp;
1047
1048    if (ISD::isBuildVectorAllOnes(Op0.getNode()))
1049      NotOp = Op1;
1050    else if (ISD::isBuildVectorAllOnes(Op1.getNode()))
1051      NotOp = Op0;
1052    else
1053      return SDValue();
1054
1055    if (NotOp->getOpcode() == ISD::OR)
1056      return DAG.getNode(MipsISD::VNOR, SDLoc(N), Ty, NotOp->getOperand(0),
1057                         NotOp->getOperand(1));
1058  }
1059
1060  return SDValue();
1061}
1062
1063SDValue
1064MipsSETargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1065  SelectionDAG &DAG = DCI.DAG;
1066  SDValue Val;
1067
1068  switch (N->getOpcode()) {
1069  case ISD::ADDE:
1070    return performADDECombine(N, DAG, DCI, Subtarget);
1071  case ISD::AND:
1072    Val = performANDCombine(N, DAG, DCI, Subtarget);
1073    break;
1074  case ISD::OR:
1075    Val = performORCombine(N, DAG, DCI, Subtarget);
1076    break;
1077  case ISD::SUBE:
1078    return performSUBECombine(N, DAG, DCI, Subtarget);
1079  case ISD::MUL:
1080    return performMULCombine(N, DAG, DCI, this);
1081  case ISD::SHL:
1082    return performSHLCombine(N, DAG, DCI, Subtarget);
1083  case ISD::SRA:
1084    return performSRACombine(N, DAG, DCI, Subtarget);
1085  case ISD::SRL:
1086    return performSRLCombine(N, DAG, DCI, Subtarget);
1087  case ISD::VSELECT:
1088    return performVSELECTCombine(N, DAG);
1089  case ISD::XOR:
1090    Val = performXORCombine(N, DAG, Subtarget);
1091    break;
1092  case ISD::SETCC:
1093    Val = performSETCCCombine(N, DAG);
1094    break;
1095  }
1096
1097  if (Val.getNode()) {
1098    DEBUG(dbgs() << "\nMipsSE DAG Combine:\n";
1099          N->printrWithDepth(dbgs(), &DAG);
1100          dbgs() << "\n=> \n";
1101          Val.getNode()->printrWithDepth(dbgs(), &DAG);
1102          dbgs() << "\n");
1103    return Val;
1104  }
1105
1106  return MipsTargetLowering::PerformDAGCombine(N, DCI);
1107}
1108
1109MachineBasicBlock *
1110MipsSETargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1111                                                  MachineBasicBlock *BB) const {
1112  switch (MI->getOpcode()) {
1113  default:
1114    return MipsTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1115  case Mips::BPOSGE32_PSEUDO:
1116    return emitBPOSGE32(MI, BB);
1117  case Mips::SNZ_B_PSEUDO:
1118    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_B);
1119  case Mips::SNZ_H_PSEUDO:
1120    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_H);
1121  case Mips::SNZ_W_PSEUDO:
1122    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_W);
1123  case Mips::SNZ_D_PSEUDO:
1124    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_D);
1125  case Mips::SNZ_V_PSEUDO:
1126    return emitMSACBranchPseudo(MI, BB, Mips::BNZ_V);
1127  case Mips::SZ_B_PSEUDO:
1128    return emitMSACBranchPseudo(MI, BB, Mips::BZ_B);
1129  case Mips::SZ_H_PSEUDO:
1130    return emitMSACBranchPseudo(MI, BB, Mips::BZ_H);
1131  case Mips::SZ_W_PSEUDO:
1132    return emitMSACBranchPseudo(MI, BB, Mips::BZ_W);
1133  case Mips::SZ_D_PSEUDO:
1134    return emitMSACBranchPseudo(MI, BB, Mips::BZ_D);
1135  case Mips::SZ_V_PSEUDO:
1136    return emitMSACBranchPseudo(MI, BB, Mips::BZ_V);
1137  case Mips::COPY_FW_PSEUDO:
1138    return emitCOPY_FW(MI, BB);
1139  case Mips::COPY_FD_PSEUDO:
1140    return emitCOPY_FD(MI, BB);
1141  case Mips::INSERT_FW_PSEUDO:
1142    return emitINSERT_FW(MI, BB);
1143  case Mips::INSERT_FD_PSEUDO:
1144    return emitINSERT_FD(MI, BB);
1145  case Mips::INSERT_B_VIDX_PSEUDO:
1146    return emitINSERT_DF_VIDX(MI, BB, 1, false);
1147  case Mips::INSERT_H_VIDX_PSEUDO:
1148    return emitINSERT_DF_VIDX(MI, BB, 2, false);
1149  case Mips::INSERT_W_VIDX_PSEUDO:
1150    return emitINSERT_DF_VIDX(MI, BB, 4, false);
1151  case Mips::INSERT_D_VIDX_PSEUDO:
1152    return emitINSERT_DF_VIDX(MI, BB, 8, false);
1153  case Mips::INSERT_FW_VIDX_PSEUDO:
1154    return emitINSERT_DF_VIDX(MI, BB, 4, true);
1155  case Mips::INSERT_FD_VIDX_PSEUDO:
1156    return emitINSERT_DF_VIDX(MI, BB, 8, true);
1157  case Mips::FILL_FW_PSEUDO:
1158    return emitFILL_FW(MI, BB);
1159  case Mips::FILL_FD_PSEUDO:
1160    return emitFILL_FD(MI, BB);
1161  case Mips::FEXP2_W_1_PSEUDO:
1162    return emitFEXP2_W_1(MI, BB);
1163  case Mips::FEXP2_D_1_PSEUDO:
1164    return emitFEXP2_D_1(MI, BB);
1165  }
1166}
1167
1168bool MipsSETargetLowering::
1169isEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
1170                                  unsigned NextStackOffset,
1171                                  const MipsFunctionInfo& FI) const {
1172  if (!EnableMipsTailCalls)
1173    return false;
1174
1175  // Return false if either the callee or caller has a byval argument.
1176  if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
1177    return false;
1178
1179  // Return true if the callee's argument area is no larger than the
1180  // caller's.
1181  return NextStackOffset <= FI.getIncomingArgSize();
1182}
1183
1184void MipsSETargetLowering::
1185getOpndList(SmallVectorImpl<SDValue> &Ops,
1186            std::deque< std::pair<unsigned, SDValue> > &RegsToPass,
1187            bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
1188            CallLoweringInfo &CLI, SDValue Callee, SDValue Chain) const {
1189  Ops.push_back(Callee);
1190  MipsTargetLowering::getOpndList(Ops, RegsToPass, IsPICCall, GlobalOrExternal,
1191                                  InternalLinkage, CLI, Callee, Chain);
1192}
1193
1194SDValue MipsSETargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1195  LoadSDNode &Nd = *cast<LoadSDNode>(Op);
1196
1197  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1198    return MipsTargetLowering::lowerLOAD(Op, DAG);
1199
1200  // Replace a double precision load with two i32 loads and a buildpair64.
1201  SDLoc DL(Op);
1202  SDValue Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1203  EVT PtrVT = Ptr.getValueType();
1204
1205  // i32 load from lower address.
1206  SDValue Lo = DAG.getLoad(MVT::i32, DL, Chain, Ptr,
1207                           MachinePointerInfo(), Nd.isVolatile(),
1208                           Nd.isNonTemporal(), Nd.isInvariant(),
1209                           Nd.getAlignment());
1210
1211  // i32 load from higher address.
1212  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
1213  SDValue Hi = DAG.getLoad(MVT::i32, DL, Lo.getValue(1), Ptr,
1214                           MachinePointerInfo(), Nd.isVolatile(),
1215                           Nd.isNonTemporal(), Nd.isInvariant(),
1216                           std::min(Nd.getAlignment(), 4U));
1217
1218  if (!Subtarget->isLittle())
1219    std::swap(Lo, Hi);
1220
1221  SDValue BP = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
1222  SDValue Ops[2] = {BP, Hi.getValue(1)};
1223  return DAG.getMergeValues(Ops, DL);
1224}
1225
1226SDValue MipsSETargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1227  StoreSDNode &Nd = *cast<StoreSDNode>(Op);
1228
1229  if (Nd.getMemoryVT() != MVT::f64 || !NoDPLoadStore)
1230    return MipsTargetLowering::lowerSTORE(Op, DAG);
1231
1232  // Replace a double precision store with two extractelement64s and i32 stores.
1233  SDLoc DL(Op);
1234  SDValue Val = Nd.getValue(), Ptr = Nd.getBasePtr(), Chain = Nd.getChain();
1235  EVT PtrVT = Ptr.getValueType();
1236  SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1237                           Val, DAG.getConstant(0, MVT::i32));
1238  SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
1239                           Val, DAG.getConstant(1, MVT::i32));
1240
1241  if (!Subtarget->isLittle())
1242    std::swap(Lo, Hi);
1243
1244  // i32 store to lower address.
1245  Chain = DAG.getStore(Chain, DL, Lo, Ptr, MachinePointerInfo(),
1246                       Nd.isVolatile(), Nd.isNonTemporal(), Nd.getAlignment(),
1247                       Nd.getTBAAInfo());
1248
1249  // i32 store to higher address.
1250  Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Ptr, DAG.getConstant(4, PtrVT));
1251  return DAG.getStore(Chain, DL, Hi, Ptr, MachinePointerInfo(),
1252                      Nd.isVolatile(), Nd.isNonTemporal(),
1253                      std::min(Nd.getAlignment(), 4U), Nd.getTBAAInfo());
1254}
1255
1256SDValue MipsSETargetLowering::lowerMulDiv(SDValue Op, unsigned NewOpc,
1257                                          bool HasLo, bool HasHi,
1258                                          SelectionDAG &DAG) const {
1259  // MIPS32r6/MIPS64r6 removed accumulator based multiplies.
1260  assert(!Subtarget->hasMips32r6());
1261
1262  EVT Ty = Op.getOperand(0).getValueType();
1263  SDLoc DL(Op);
1264  SDValue Mult = DAG.getNode(NewOpc, DL, MVT::Untyped,
1265                             Op.getOperand(0), Op.getOperand(1));
1266  SDValue Lo, Hi;
1267
1268  if (HasLo)
1269    Lo = DAG.getNode(MipsISD::MFLO, DL, Ty, Mult);
1270  if (HasHi)
1271    Hi = DAG.getNode(MipsISD::MFHI, DL, Ty, Mult);
1272
1273  if (!HasLo || !HasHi)
1274    return HasLo ? Lo : Hi;
1275
1276  SDValue Vals[] = { Lo, Hi };
1277  return DAG.getMergeValues(Vals, DL);
1278}
1279
1280
1281static SDValue initAccumulator(SDValue In, SDLoc DL, SelectionDAG &DAG) {
1282  SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1283                             DAG.getConstant(0, MVT::i32));
1284  SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, In,
1285                             DAG.getConstant(1, MVT::i32));
1286  return DAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped, InLo, InHi);
1287}
1288
1289static SDValue extractLOHI(SDValue Op, SDLoc DL, SelectionDAG &DAG) {
1290  SDValue Lo = DAG.getNode(MipsISD::MFLO, DL, MVT::i32, Op);
1291  SDValue Hi = DAG.getNode(MipsISD::MFHI, DL, MVT::i32, Op);
1292  return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
1293}
1294
1295// This function expands mips intrinsic nodes which have 64-bit input operands
1296// or output values.
1297//
1298// out64 = intrinsic-node in64
1299// =>
1300// lo = copy (extract-element (in64, 0))
1301// hi = copy (extract-element (in64, 1))
1302// mips-specific-node
1303// v0 = copy lo
1304// v1 = copy hi
1305// out64 = merge-values (v0, v1)
1306//
1307static SDValue lowerDSPIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1308  SDLoc DL(Op);
1309  bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
1310  SmallVector<SDValue, 3> Ops;
1311  unsigned OpNo = 0;
1312
1313  // See if Op has a chain input.
1314  if (HasChainIn)
1315    Ops.push_back(Op->getOperand(OpNo++));
1316
1317  // The next operand is the intrinsic opcode.
1318  assert(Op->getOperand(OpNo).getOpcode() == ISD::TargetConstant);
1319
1320  // See if the next operand has type i64.
1321  SDValue Opnd = Op->getOperand(++OpNo), In64;
1322
1323  if (Opnd.getValueType() == MVT::i64)
1324    In64 = initAccumulator(Opnd, DL, DAG);
1325  else
1326    Ops.push_back(Opnd);
1327
1328  // Push the remaining operands.
1329  for (++OpNo ; OpNo < Op->getNumOperands(); ++OpNo)
1330    Ops.push_back(Op->getOperand(OpNo));
1331
1332  // Add In64 to the end of the list.
1333  if (In64.getNode())
1334    Ops.push_back(In64);
1335
1336  // Scan output.
1337  SmallVector<EVT, 2> ResTys;
1338
1339  for (SDNode::value_iterator I = Op->value_begin(), E = Op->value_end();
1340       I != E; ++I)
1341    ResTys.push_back((*I == MVT::i64) ? MVT::Untyped : *I);
1342
1343  // Create node.
1344  SDValue Val = DAG.getNode(Opc, DL, ResTys, Ops);
1345  SDValue Out = (ResTys[0] == MVT::Untyped) ? extractLOHI(Val, DL, DAG) : Val;
1346
1347  if (!HasChainIn)
1348    return Out;
1349
1350  assert(Val->getValueType(1) == MVT::Other);
1351  SDValue Vals[] = { Out, SDValue(Val.getNode(), 1) };
1352  return DAG.getMergeValues(Vals, DL);
1353}
1354
1355// Lower an MSA copy intrinsic into the specified SelectionDAG node
1356static SDValue lowerMSACopyIntr(SDValue Op, SelectionDAG &DAG, unsigned Opc) {
1357  SDLoc DL(Op);
1358  SDValue Vec = Op->getOperand(1);
1359  SDValue Idx = Op->getOperand(2);
1360  EVT ResTy = Op->getValueType(0);
1361  EVT EltTy = Vec->getValueType(0).getVectorElementType();
1362
1363  SDValue Result = DAG.getNode(Opc, DL, ResTy, Vec, Idx,
1364                               DAG.getValueType(EltTy));
1365
1366  return Result;
1367}
1368
1369static SDValue lowerMSASplatZExt(SDValue Op, unsigned OpNr, SelectionDAG &DAG) {
1370  EVT ResVecTy = Op->getValueType(0);
1371  EVT ViaVecTy = ResVecTy;
1372  SDLoc DL(Op);
1373
1374  // When ResVecTy == MVT::v2i64, LaneA is the upper 32 bits of the lane and
1375  // LaneB is the lower 32-bits. Otherwise LaneA and LaneB are alternating
1376  // lanes.
1377  SDValue LaneA;
1378  SDValue LaneB = Op->getOperand(2);
1379
1380  if (ResVecTy == MVT::v2i64) {
1381    LaneA = DAG.getConstant(0, MVT::i32);
1382    ViaVecTy = MVT::v4i32;
1383  } else
1384    LaneA = LaneB;
1385
1386  SDValue Ops[16] = { LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB,
1387                      LaneA, LaneB, LaneA, LaneB, LaneA, LaneB, LaneA, LaneB };
1388
1389  SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
1390                       makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1391
1392  if (ViaVecTy != ResVecTy)
1393    Result = DAG.getNode(ISD::BITCAST, DL, ResVecTy, Result);
1394
1395  return Result;
1396}
1397
1398static SDValue lowerMSASplatImm(SDValue Op, unsigned ImmOp, SelectionDAG &DAG) {
1399  return DAG.getConstant(Op->getConstantOperandVal(ImmOp), Op->getValueType(0));
1400}
1401
1402static SDValue getBuildVectorSplat(EVT VecTy, SDValue SplatValue,
1403                                   bool BigEndian, SelectionDAG &DAG) {
1404  EVT ViaVecTy = VecTy;
1405  SDValue SplatValueA = SplatValue;
1406  SDValue SplatValueB = SplatValue;
1407  SDLoc DL(SplatValue);
1408
1409  if (VecTy == MVT::v2i64) {
1410    // v2i64 BUILD_VECTOR must be performed via v4i32 so split into i32's.
1411    ViaVecTy = MVT::v4i32;
1412
1413    SplatValueA = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValue);
1414    SplatValueB = DAG.getNode(ISD::SRL, DL, MVT::i64, SplatValue,
1415                              DAG.getConstant(32, MVT::i32));
1416    SplatValueB = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, SplatValueB);
1417  }
1418
1419  // We currently hold the parts in little endian order. Swap them if
1420  // necessary.
1421  if (BigEndian)
1422    std::swap(SplatValueA, SplatValueB);
1423
1424  SDValue Ops[16] = { SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1425                      SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1426                      SplatValueA, SplatValueB, SplatValueA, SplatValueB,
1427                      SplatValueA, SplatValueB, SplatValueA, SplatValueB };
1428
1429  SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, DL, ViaVecTy,
1430                       makeArrayRef(Ops, ViaVecTy.getVectorNumElements()));
1431
1432  if (VecTy != ViaVecTy)
1433    Result = DAG.getNode(ISD::BITCAST, DL, VecTy, Result);
1434
1435  return Result;
1436}
1437
1438static SDValue lowerMSABinaryBitImmIntr(SDValue Op, SelectionDAG &DAG,
1439                                        unsigned Opc, SDValue Imm,
1440                                        bool BigEndian) {
1441  EVT VecTy = Op->getValueType(0);
1442  SDValue Exp2Imm;
1443  SDLoc DL(Op);
1444
1445  // The DAG Combiner can't constant fold bitcasted vectors yet so we must do it
1446  // here for now.
1447  if (VecTy == MVT::v2i64) {
1448    if (ConstantSDNode *CImm = dyn_cast<ConstantSDNode>(Imm)) {
1449      APInt BitImm = APInt(64, 1) << CImm->getAPIntValue();
1450
1451      SDValue BitImmHiOp = DAG.getConstant(BitImm.lshr(32).trunc(32), MVT::i32);
1452      SDValue BitImmLoOp = DAG.getConstant(BitImm.trunc(32), MVT::i32);
1453
1454      if (BigEndian)
1455        std::swap(BitImmLoOp, BitImmHiOp);
1456
1457      Exp2Imm =
1458          DAG.getNode(ISD::BITCAST, DL, MVT::v2i64,
1459                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v4i32, BitImmLoOp,
1460                                  BitImmHiOp, BitImmLoOp, BitImmHiOp));
1461    }
1462  }
1463
1464  if (!Exp2Imm.getNode()) {
1465    // We couldnt constant fold, do a vector shift instead
1466
1467    // Extend i32 to i64 if necessary. Sign or zero extend doesn't matter since
1468    // only values 0-63 are valid.
1469    if (VecTy == MVT::v2i64)
1470      Imm = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Imm);
1471
1472    Exp2Imm = getBuildVectorSplat(VecTy, Imm, BigEndian, DAG);
1473
1474    Exp2Imm =
1475        DAG.getNode(ISD::SHL, DL, VecTy, DAG.getConstant(1, VecTy), Exp2Imm);
1476  }
1477
1478  return DAG.getNode(Opc, DL, VecTy, Op->getOperand(1), Exp2Imm);
1479}
1480
1481static SDValue lowerMSABitClear(SDValue Op, SelectionDAG &DAG) {
1482  EVT ResTy = Op->getValueType(0);
1483  SDLoc DL(Op);
1484  SDValue One = DAG.getConstant(1, ResTy);
1485  SDValue Bit = DAG.getNode(ISD::SHL, DL, ResTy, One, Op->getOperand(2));
1486
1487  return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1),
1488                     DAG.getNOT(DL, Bit, ResTy));
1489}
1490
1491static SDValue lowerMSABitClearImm(SDValue Op, SelectionDAG &DAG) {
1492  SDLoc DL(Op);
1493  EVT ResTy = Op->getValueType(0);
1494  APInt BitImm = APInt(ResTy.getVectorElementType().getSizeInBits(), 1)
1495                 << cast<ConstantSDNode>(Op->getOperand(2))->getAPIntValue();
1496  SDValue BitMask = DAG.getConstant(~BitImm, ResTy);
1497
1498  return DAG.getNode(ISD::AND, DL, ResTy, Op->getOperand(1), BitMask);
1499}
1500
1501SDValue MipsSETargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
1502                                                      SelectionDAG &DAG) const {
1503  SDLoc DL(Op);
1504
1505  switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
1506  default:
1507    return SDValue();
1508  case Intrinsic::mips_shilo:
1509    return lowerDSPIntr(Op, DAG, MipsISD::SHILO);
1510  case Intrinsic::mips_dpau_h_qbl:
1511    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL);
1512  case Intrinsic::mips_dpau_h_qbr:
1513    return lowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR);
1514  case Intrinsic::mips_dpsu_h_qbl:
1515    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL);
1516  case Intrinsic::mips_dpsu_h_qbr:
1517    return lowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR);
1518  case Intrinsic::mips_dpa_w_ph:
1519    return lowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH);
1520  case Intrinsic::mips_dps_w_ph:
1521    return lowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH);
1522  case Intrinsic::mips_dpax_w_ph:
1523    return lowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH);
1524  case Intrinsic::mips_dpsx_w_ph:
1525    return lowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH);
1526  case Intrinsic::mips_mulsa_w_ph:
1527    return lowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH);
1528  case Intrinsic::mips_mult:
1529    return lowerDSPIntr(Op, DAG, MipsISD::Mult);
1530  case Intrinsic::mips_multu:
1531    return lowerDSPIntr(Op, DAG, MipsISD::Multu);
1532  case Intrinsic::mips_madd:
1533    return lowerDSPIntr(Op, DAG, MipsISD::MAdd);
1534  case Intrinsic::mips_maddu:
1535    return lowerDSPIntr(Op, DAG, MipsISD::MAddu);
1536  case Intrinsic::mips_msub:
1537    return lowerDSPIntr(Op, DAG, MipsISD::MSub);
1538  case Intrinsic::mips_msubu:
1539    return lowerDSPIntr(Op, DAG, MipsISD::MSubu);
1540  case Intrinsic::mips_addv_b:
1541  case Intrinsic::mips_addv_h:
1542  case Intrinsic::mips_addv_w:
1543  case Intrinsic::mips_addv_d:
1544    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1545                       Op->getOperand(2));
1546  case Intrinsic::mips_addvi_b:
1547  case Intrinsic::mips_addvi_h:
1548  case Intrinsic::mips_addvi_w:
1549  case Intrinsic::mips_addvi_d:
1550    return DAG.getNode(ISD::ADD, DL, Op->getValueType(0), Op->getOperand(1),
1551                       lowerMSASplatImm(Op, 2, DAG));
1552  case Intrinsic::mips_and_v:
1553    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1554                       Op->getOperand(2));
1555  case Intrinsic::mips_andi_b:
1556    return DAG.getNode(ISD::AND, DL, Op->getValueType(0), Op->getOperand(1),
1557                       lowerMSASplatImm(Op, 2, DAG));
1558  case Intrinsic::mips_bclr_b:
1559  case Intrinsic::mips_bclr_h:
1560  case Intrinsic::mips_bclr_w:
1561  case Intrinsic::mips_bclr_d:
1562    return lowerMSABitClear(Op, DAG);
1563  case Intrinsic::mips_bclri_b:
1564  case Intrinsic::mips_bclri_h:
1565  case Intrinsic::mips_bclri_w:
1566  case Intrinsic::mips_bclri_d:
1567    return lowerMSABitClearImm(Op, DAG);
1568  case Intrinsic::mips_binsli_b:
1569  case Intrinsic::mips_binsli_h:
1570  case Intrinsic::mips_binsli_w:
1571  case Intrinsic::mips_binsli_d: {
1572    // binsli_x(IfClear, IfSet, nbits) -> (vselect LBitsMask, IfSet, IfClear)
1573    EVT VecTy = Op->getValueType(0);
1574    EVT EltTy = VecTy.getVectorElementType();
1575    APInt Mask = APInt::getHighBitsSet(EltTy.getSizeInBits(),
1576                                       Op->getConstantOperandVal(3));
1577    return DAG.getNode(ISD::VSELECT, DL, VecTy,
1578                       DAG.getConstant(Mask, VecTy, true), Op->getOperand(2),
1579                       Op->getOperand(1));
1580  }
1581  case Intrinsic::mips_binsri_b:
1582  case Intrinsic::mips_binsri_h:
1583  case Intrinsic::mips_binsri_w:
1584  case Intrinsic::mips_binsri_d: {
1585    // binsri_x(IfClear, IfSet, nbits) -> (vselect RBitsMask, IfSet, IfClear)
1586    EVT VecTy = Op->getValueType(0);
1587    EVT EltTy = VecTy.getVectorElementType();
1588    APInt Mask = APInt::getLowBitsSet(EltTy.getSizeInBits(),
1589                                      Op->getConstantOperandVal(3));
1590    return DAG.getNode(ISD::VSELECT, DL, VecTy,
1591                       DAG.getConstant(Mask, VecTy, true), Op->getOperand(2),
1592                       Op->getOperand(1));
1593  }
1594  case Intrinsic::mips_bmnz_v:
1595    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1596                       Op->getOperand(2), Op->getOperand(1));
1597  case Intrinsic::mips_bmnzi_b:
1598    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1599                       lowerMSASplatImm(Op, 3, DAG), Op->getOperand(2),
1600                       Op->getOperand(1));
1601  case Intrinsic::mips_bmz_v:
1602    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0), Op->getOperand(3),
1603                       Op->getOperand(1), Op->getOperand(2));
1604  case Intrinsic::mips_bmzi_b:
1605    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1606                       lowerMSASplatImm(Op, 3, DAG), Op->getOperand(1),
1607                       Op->getOperand(2));
1608  case Intrinsic::mips_bneg_b:
1609  case Intrinsic::mips_bneg_h:
1610  case Intrinsic::mips_bneg_w:
1611  case Intrinsic::mips_bneg_d: {
1612    EVT VecTy = Op->getValueType(0);
1613    SDValue One = DAG.getConstant(1, VecTy);
1614
1615    return DAG.getNode(ISD::XOR, DL, VecTy, Op->getOperand(1),
1616                       DAG.getNode(ISD::SHL, DL, VecTy, One,
1617                                   Op->getOperand(2)));
1618  }
1619  case Intrinsic::mips_bnegi_b:
1620  case Intrinsic::mips_bnegi_h:
1621  case Intrinsic::mips_bnegi_w:
1622  case Intrinsic::mips_bnegi_d:
1623    return lowerMSABinaryBitImmIntr(Op, DAG, ISD::XOR, Op->getOperand(2),
1624                                    !Subtarget->isLittle());
1625  case Intrinsic::mips_bnz_b:
1626  case Intrinsic::mips_bnz_h:
1627  case Intrinsic::mips_bnz_w:
1628  case Intrinsic::mips_bnz_d:
1629    return DAG.getNode(MipsISD::VALL_NONZERO, DL, Op->getValueType(0),
1630                       Op->getOperand(1));
1631  case Intrinsic::mips_bnz_v:
1632    return DAG.getNode(MipsISD::VANY_NONZERO, DL, Op->getValueType(0),
1633                       Op->getOperand(1));
1634  case Intrinsic::mips_bsel_v:
1635    // bsel_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1636    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1637                       Op->getOperand(1), Op->getOperand(3),
1638                       Op->getOperand(2));
1639  case Intrinsic::mips_bseli_b:
1640    // bseli_v(Mask, IfClear, IfSet) -> (vselect Mask, IfSet, IfClear)
1641    return DAG.getNode(ISD::VSELECT, DL, Op->getValueType(0),
1642                       Op->getOperand(1), lowerMSASplatImm(Op, 3, DAG),
1643                       Op->getOperand(2));
1644  case Intrinsic::mips_bset_b:
1645  case Intrinsic::mips_bset_h:
1646  case Intrinsic::mips_bset_w:
1647  case Intrinsic::mips_bset_d: {
1648    EVT VecTy = Op->getValueType(0);
1649    SDValue One = DAG.getConstant(1, VecTy);
1650
1651    return DAG.getNode(ISD::OR, DL, VecTy, Op->getOperand(1),
1652                       DAG.getNode(ISD::SHL, DL, VecTy, One,
1653                                   Op->getOperand(2)));
1654  }
1655  case Intrinsic::mips_bseti_b:
1656  case Intrinsic::mips_bseti_h:
1657  case Intrinsic::mips_bseti_w:
1658  case Intrinsic::mips_bseti_d:
1659    return lowerMSABinaryBitImmIntr(Op, DAG, ISD::OR, Op->getOperand(2),
1660                                    !Subtarget->isLittle());
1661  case Intrinsic::mips_bz_b:
1662  case Intrinsic::mips_bz_h:
1663  case Intrinsic::mips_bz_w:
1664  case Intrinsic::mips_bz_d:
1665    return DAG.getNode(MipsISD::VALL_ZERO, DL, Op->getValueType(0),
1666                       Op->getOperand(1));
1667  case Intrinsic::mips_bz_v:
1668    return DAG.getNode(MipsISD::VANY_ZERO, DL, Op->getValueType(0),
1669                       Op->getOperand(1));
1670  case Intrinsic::mips_ceq_b:
1671  case Intrinsic::mips_ceq_h:
1672  case Intrinsic::mips_ceq_w:
1673  case Intrinsic::mips_ceq_d:
1674    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1675                        Op->getOperand(2), ISD::SETEQ);
1676  case Intrinsic::mips_ceqi_b:
1677  case Intrinsic::mips_ceqi_h:
1678  case Intrinsic::mips_ceqi_w:
1679  case Intrinsic::mips_ceqi_d:
1680    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1681                        lowerMSASplatImm(Op, 2, DAG), ISD::SETEQ);
1682  case Intrinsic::mips_cle_s_b:
1683  case Intrinsic::mips_cle_s_h:
1684  case Intrinsic::mips_cle_s_w:
1685  case Intrinsic::mips_cle_s_d:
1686    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1687                        Op->getOperand(2), ISD::SETLE);
1688  case Intrinsic::mips_clei_s_b:
1689  case Intrinsic::mips_clei_s_h:
1690  case Intrinsic::mips_clei_s_w:
1691  case Intrinsic::mips_clei_s_d:
1692    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1693                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLE);
1694  case Intrinsic::mips_cle_u_b:
1695  case Intrinsic::mips_cle_u_h:
1696  case Intrinsic::mips_cle_u_w:
1697  case Intrinsic::mips_cle_u_d:
1698    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1699                        Op->getOperand(2), ISD::SETULE);
1700  case Intrinsic::mips_clei_u_b:
1701  case Intrinsic::mips_clei_u_h:
1702  case Intrinsic::mips_clei_u_w:
1703  case Intrinsic::mips_clei_u_d:
1704    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1705                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULE);
1706  case Intrinsic::mips_clt_s_b:
1707  case Intrinsic::mips_clt_s_h:
1708  case Intrinsic::mips_clt_s_w:
1709  case Intrinsic::mips_clt_s_d:
1710    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1711                        Op->getOperand(2), ISD::SETLT);
1712  case Intrinsic::mips_clti_s_b:
1713  case Intrinsic::mips_clti_s_h:
1714  case Intrinsic::mips_clti_s_w:
1715  case Intrinsic::mips_clti_s_d:
1716    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1717                        lowerMSASplatImm(Op, 2, DAG), ISD::SETLT);
1718  case Intrinsic::mips_clt_u_b:
1719  case Intrinsic::mips_clt_u_h:
1720  case Intrinsic::mips_clt_u_w:
1721  case Intrinsic::mips_clt_u_d:
1722    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1723                        Op->getOperand(2), ISD::SETULT);
1724  case Intrinsic::mips_clti_u_b:
1725  case Intrinsic::mips_clti_u_h:
1726  case Intrinsic::mips_clti_u_w:
1727  case Intrinsic::mips_clti_u_d:
1728    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1729                        lowerMSASplatImm(Op, 2, DAG), ISD::SETULT);
1730  case Intrinsic::mips_copy_s_b:
1731  case Intrinsic::mips_copy_s_h:
1732  case Intrinsic::mips_copy_s_w:
1733    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1734  case Intrinsic::mips_copy_s_d:
1735    if (Subtarget->hasMips64())
1736      // Lower directly into VEXTRACT_SEXT_ELT since i64 is legal on Mips64.
1737      return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_SEXT_ELT);
1738    else {
1739      // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1740      // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1741      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1742                         Op->getValueType(0), Op->getOperand(1),
1743                         Op->getOperand(2));
1744    }
1745  case Intrinsic::mips_copy_u_b:
1746  case Intrinsic::mips_copy_u_h:
1747  case Intrinsic::mips_copy_u_w:
1748    return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1749  case Intrinsic::mips_copy_u_d:
1750    if (Subtarget->hasMips64())
1751      // Lower directly into VEXTRACT_ZEXT_ELT since i64 is legal on Mips64.
1752      return lowerMSACopyIntr(Op, DAG, MipsISD::VEXTRACT_ZEXT_ELT);
1753    else {
1754      // Lower into the generic EXTRACT_VECTOR_ELT node and let the type
1755      // legalizer and EXTRACT_VECTOR_ELT lowering sort it out.
1756      // Note: When i64 is illegal, this results in copy_s.w instructions
1757      // instead of copy_u.w instructions. This makes no difference to the
1758      // behaviour since i64 is only illegal when the register file is 32-bit.
1759      return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op),
1760                         Op->getValueType(0), Op->getOperand(1),
1761                         Op->getOperand(2));
1762    }
1763  case Intrinsic::mips_div_s_b:
1764  case Intrinsic::mips_div_s_h:
1765  case Intrinsic::mips_div_s_w:
1766  case Intrinsic::mips_div_s_d:
1767    return DAG.getNode(ISD::SDIV, DL, Op->getValueType(0), Op->getOperand(1),
1768                       Op->getOperand(2));
1769  case Intrinsic::mips_div_u_b:
1770  case Intrinsic::mips_div_u_h:
1771  case Intrinsic::mips_div_u_w:
1772  case Intrinsic::mips_div_u_d:
1773    return DAG.getNode(ISD::UDIV, DL, Op->getValueType(0), Op->getOperand(1),
1774                       Op->getOperand(2));
1775  case Intrinsic::mips_fadd_w:
1776  case Intrinsic::mips_fadd_d:
1777    return DAG.getNode(ISD::FADD, DL, Op->getValueType(0), Op->getOperand(1),
1778                       Op->getOperand(2));
1779  // Don't lower mips_fcaf_[wd] since LLVM folds SETFALSE condcodes away
1780  case Intrinsic::mips_fceq_w:
1781  case Intrinsic::mips_fceq_d:
1782    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1783                        Op->getOperand(2), ISD::SETOEQ);
1784  case Intrinsic::mips_fcle_w:
1785  case Intrinsic::mips_fcle_d:
1786    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1787                        Op->getOperand(2), ISD::SETOLE);
1788  case Intrinsic::mips_fclt_w:
1789  case Intrinsic::mips_fclt_d:
1790    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1791                        Op->getOperand(2), ISD::SETOLT);
1792  case Intrinsic::mips_fcne_w:
1793  case Intrinsic::mips_fcne_d:
1794    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1795                        Op->getOperand(2), ISD::SETONE);
1796  case Intrinsic::mips_fcor_w:
1797  case Intrinsic::mips_fcor_d:
1798    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1799                        Op->getOperand(2), ISD::SETO);
1800  case Intrinsic::mips_fcueq_w:
1801  case Intrinsic::mips_fcueq_d:
1802    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1803                        Op->getOperand(2), ISD::SETUEQ);
1804  case Intrinsic::mips_fcule_w:
1805  case Intrinsic::mips_fcule_d:
1806    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1807                        Op->getOperand(2), ISD::SETULE);
1808  case Intrinsic::mips_fcult_w:
1809  case Intrinsic::mips_fcult_d:
1810    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1811                        Op->getOperand(2), ISD::SETULT);
1812  case Intrinsic::mips_fcun_w:
1813  case Intrinsic::mips_fcun_d:
1814    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1815                        Op->getOperand(2), ISD::SETUO);
1816  case Intrinsic::mips_fcune_w:
1817  case Intrinsic::mips_fcune_d:
1818    return DAG.getSetCC(DL, Op->getValueType(0), Op->getOperand(1),
1819                        Op->getOperand(2), ISD::SETUNE);
1820  case Intrinsic::mips_fdiv_w:
1821  case Intrinsic::mips_fdiv_d:
1822    return DAG.getNode(ISD::FDIV, DL, Op->getValueType(0), Op->getOperand(1),
1823                       Op->getOperand(2));
1824  case Intrinsic::mips_ffint_u_w:
1825  case Intrinsic::mips_ffint_u_d:
1826    return DAG.getNode(ISD::UINT_TO_FP, DL, Op->getValueType(0),
1827                       Op->getOperand(1));
1828  case Intrinsic::mips_ffint_s_w:
1829  case Intrinsic::mips_ffint_s_d:
1830    return DAG.getNode(ISD::SINT_TO_FP, DL, Op->getValueType(0),
1831                       Op->getOperand(1));
1832  case Intrinsic::mips_fill_b:
1833  case Intrinsic::mips_fill_h:
1834  case Intrinsic::mips_fill_w:
1835  case Intrinsic::mips_fill_d: {
1836    SmallVector<SDValue, 16> Ops;
1837    EVT ResTy = Op->getValueType(0);
1838
1839    for (unsigned i = 0; i < ResTy.getVectorNumElements(); ++i)
1840      Ops.push_back(Op->getOperand(1));
1841
1842    // If ResTy is v2i64 then the type legalizer will break this node down into
1843    // an equivalent v4i32.
1844    return DAG.getNode(ISD::BUILD_VECTOR, DL, ResTy, Ops);
1845  }
1846  case Intrinsic::mips_fexp2_w:
1847  case Intrinsic::mips_fexp2_d: {
1848    EVT ResTy = Op->getValueType(0);
1849    return DAG.getNode(
1850        ISD::FMUL, SDLoc(Op), ResTy, Op->getOperand(1),
1851        DAG.getNode(ISD::FEXP2, SDLoc(Op), ResTy, Op->getOperand(2)));
1852  }
1853  case Intrinsic::mips_flog2_w:
1854  case Intrinsic::mips_flog2_d:
1855    return DAG.getNode(ISD::FLOG2, DL, Op->getValueType(0), Op->getOperand(1));
1856  case Intrinsic::mips_fmadd_w:
1857  case Intrinsic::mips_fmadd_d:
1858    return DAG.getNode(ISD::FMA, SDLoc(Op), Op->getValueType(0),
1859                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
1860  case Intrinsic::mips_fmul_w:
1861  case Intrinsic::mips_fmul_d:
1862    return DAG.getNode(ISD::FMUL, DL, Op->getValueType(0), Op->getOperand(1),
1863                       Op->getOperand(2));
1864  case Intrinsic::mips_fmsub_w:
1865  case Intrinsic::mips_fmsub_d: {
1866    EVT ResTy = Op->getValueType(0);
1867    return DAG.getNode(ISD::FSUB, SDLoc(Op), ResTy, Op->getOperand(1),
1868                       DAG.getNode(ISD::FMUL, SDLoc(Op), ResTy,
1869                                   Op->getOperand(2), Op->getOperand(3)));
1870  }
1871  case Intrinsic::mips_frint_w:
1872  case Intrinsic::mips_frint_d:
1873    return DAG.getNode(ISD::FRINT, DL, Op->getValueType(0), Op->getOperand(1));
1874  case Intrinsic::mips_fsqrt_w:
1875  case Intrinsic::mips_fsqrt_d:
1876    return DAG.getNode(ISD::FSQRT, DL, Op->getValueType(0), Op->getOperand(1));
1877  case Intrinsic::mips_fsub_w:
1878  case Intrinsic::mips_fsub_d:
1879    return DAG.getNode(ISD::FSUB, DL, Op->getValueType(0), Op->getOperand(1),
1880                       Op->getOperand(2));
1881  case Intrinsic::mips_ftrunc_u_w:
1882  case Intrinsic::mips_ftrunc_u_d:
1883    return DAG.getNode(ISD::FP_TO_UINT, DL, Op->getValueType(0),
1884                       Op->getOperand(1));
1885  case Intrinsic::mips_ftrunc_s_w:
1886  case Intrinsic::mips_ftrunc_s_d:
1887    return DAG.getNode(ISD::FP_TO_SINT, DL, Op->getValueType(0),
1888                       Op->getOperand(1));
1889  case Intrinsic::mips_ilvev_b:
1890  case Intrinsic::mips_ilvev_h:
1891  case Intrinsic::mips_ilvev_w:
1892  case Intrinsic::mips_ilvev_d:
1893    return DAG.getNode(MipsISD::ILVEV, DL, Op->getValueType(0),
1894                       Op->getOperand(1), Op->getOperand(2));
1895  case Intrinsic::mips_ilvl_b:
1896  case Intrinsic::mips_ilvl_h:
1897  case Intrinsic::mips_ilvl_w:
1898  case Intrinsic::mips_ilvl_d:
1899    return DAG.getNode(MipsISD::ILVL, DL, Op->getValueType(0),
1900                       Op->getOperand(1), Op->getOperand(2));
1901  case Intrinsic::mips_ilvod_b:
1902  case Intrinsic::mips_ilvod_h:
1903  case Intrinsic::mips_ilvod_w:
1904  case Intrinsic::mips_ilvod_d:
1905    return DAG.getNode(MipsISD::ILVOD, DL, Op->getValueType(0),
1906                       Op->getOperand(1), Op->getOperand(2));
1907  case Intrinsic::mips_ilvr_b:
1908  case Intrinsic::mips_ilvr_h:
1909  case Intrinsic::mips_ilvr_w:
1910  case Intrinsic::mips_ilvr_d:
1911    return DAG.getNode(MipsISD::ILVR, DL, Op->getValueType(0),
1912                       Op->getOperand(1), Op->getOperand(2));
1913  case Intrinsic::mips_insert_b:
1914  case Intrinsic::mips_insert_h:
1915  case Intrinsic::mips_insert_w:
1916  case Intrinsic::mips_insert_d:
1917    return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Op), Op->getValueType(0),
1918                       Op->getOperand(1), Op->getOperand(3), Op->getOperand(2));
1919  case Intrinsic::mips_insve_b:
1920  case Intrinsic::mips_insve_h:
1921  case Intrinsic::mips_insve_w:
1922  case Intrinsic::mips_insve_d:
1923    return DAG.getNode(MipsISD::INSVE, DL, Op->getValueType(0),
1924                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3),
1925                       DAG.getConstant(0, MVT::i32));
1926  case Intrinsic::mips_ldi_b:
1927  case Intrinsic::mips_ldi_h:
1928  case Intrinsic::mips_ldi_w:
1929  case Intrinsic::mips_ldi_d:
1930    return lowerMSASplatImm(Op, 1, DAG);
1931  case Intrinsic::mips_lsa:
1932  case Intrinsic::mips_dlsa: {
1933    EVT ResTy = Op->getValueType(0);
1934    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1935                       DAG.getNode(ISD::SHL, SDLoc(Op), ResTy,
1936                                   Op->getOperand(2), Op->getOperand(3)));
1937  }
1938  case Intrinsic::mips_maddv_b:
1939  case Intrinsic::mips_maddv_h:
1940  case Intrinsic::mips_maddv_w:
1941  case Intrinsic::mips_maddv_d: {
1942    EVT ResTy = Op->getValueType(0);
1943    return DAG.getNode(ISD::ADD, SDLoc(Op), ResTy, Op->getOperand(1),
1944                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
1945                                   Op->getOperand(2), Op->getOperand(3)));
1946  }
1947  case Intrinsic::mips_max_s_b:
1948  case Intrinsic::mips_max_s_h:
1949  case Intrinsic::mips_max_s_w:
1950  case Intrinsic::mips_max_s_d:
1951    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1952                       Op->getOperand(1), Op->getOperand(2));
1953  case Intrinsic::mips_max_u_b:
1954  case Intrinsic::mips_max_u_h:
1955  case Intrinsic::mips_max_u_w:
1956  case Intrinsic::mips_max_u_d:
1957    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1958                       Op->getOperand(1), Op->getOperand(2));
1959  case Intrinsic::mips_maxi_s_b:
1960  case Intrinsic::mips_maxi_s_h:
1961  case Intrinsic::mips_maxi_s_w:
1962  case Intrinsic::mips_maxi_s_d:
1963    return DAG.getNode(MipsISD::VSMAX, DL, Op->getValueType(0),
1964                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1965  case Intrinsic::mips_maxi_u_b:
1966  case Intrinsic::mips_maxi_u_h:
1967  case Intrinsic::mips_maxi_u_w:
1968  case Intrinsic::mips_maxi_u_d:
1969    return DAG.getNode(MipsISD::VUMAX, DL, Op->getValueType(0),
1970                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1971  case Intrinsic::mips_min_s_b:
1972  case Intrinsic::mips_min_s_h:
1973  case Intrinsic::mips_min_s_w:
1974  case Intrinsic::mips_min_s_d:
1975    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
1976                       Op->getOperand(1), Op->getOperand(2));
1977  case Intrinsic::mips_min_u_b:
1978  case Intrinsic::mips_min_u_h:
1979  case Intrinsic::mips_min_u_w:
1980  case Intrinsic::mips_min_u_d:
1981    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
1982                       Op->getOperand(1), Op->getOperand(2));
1983  case Intrinsic::mips_mini_s_b:
1984  case Intrinsic::mips_mini_s_h:
1985  case Intrinsic::mips_mini_s_w:
1986  case Intrinsic::mips_mini_s_d:
1987    return DAG.getNode(MipsISD::VSMIN, DL, Op->getValueType(0),
1988                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1989  case Intrinsic::mips_mini_u_b:
1990  case Intrinsic::mips_mini_u_h:
1991  case Intrinsic::mips_mini_u_w:
1992  case Intrinsic::mips_mini_u_d:
1993    return DAG.getNode(MipsISD::VUMIN, DL, Op->getValueType(0),
1994                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
1995  case Intrinsic::mips_mod_s_b:
1996  case Intrinsic::mips_mod_s_h:
1997  case Intrinsic::mips_mod_s_w:
1998  case Intrinsic::mips_mod_s_d:
1999    return DAG.getNode(ISD::SREM, DL, Op->getValueType(0), Op->getOperand(1),
2000                       Op->getOperand(2));
2001  case Intrinsic::mips_mod_u_b:
2002  case Intrinsic::mips_mod_u_h:
2003  case Intrinsic::mips_mod_u_w:
2004  case Intrinsic::mips_mod_u_d:
2005    return DAG.getNode(ISD::UREM, DL, Op->getValueType(0), Op->getOperand(1),
2006                       Op->getOperand(2));
2007  case Intrinsic::mips_mulv_b:
2008  case Intrinsic::mips_mulv_h:
2009  case Intrinsic::mips_mulv_w:
2010  case Intrinsic::mips_mulv_d:
2011    return DAG.getNode(ISD::MUL, DL, Op->getValueType(0), Op->getOperand(1),
2012                       Op->getOperand(2));
2013  case Intrinsic::mips_msubv_b:
2014  case Intrinsic::mips_msubv_h:
2015  case Intrinsic::mips_msubv_w:
2016  case Intrinsic::mips_msubv_d: {
2017    EVT ResTy = Op->getValueType(0);
2018    return DAG.getNode(ISD::SUB, SDLoc(Op), ResTy, Op->getOperand(1),
2019                       DAG.getNode(ISD::MUL, SDLoc(Op), ResTy,
2020                                   Op->getOperand(2), Op->getOperand(3)));
2021  }
2022  case Intrinsic::mips_nlzc_b:
2023  case Intrinsic::mips_nlzc_h:
2024  case Intrinsic::mips_nlzc_w:
2025  case Intrinsic::mips_nlzc_d:
2026    return DAG.getNode(ISD::CTLZ, DL, Op->getValueType(0), Op->getOperand(1));
2027  case Intrinsic::mips_nor_v: {
2028    SDValue Res = DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2029                              Op->getOperand(1), Op->getOperand(2));
2030    return DAG.getNOT(DL, Res, Res->getValueType(0));
2031  }
2032  case Intrinsic::mips_nori_b: {
2033    SDValue Res =  DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2034                               Op->getOperand(1),
2035                               lowerMSASplatImm(Op, 2, DAG));
2036    return DAG.getNOT(DL, Res, Res->getValueType(0));
2037  }
2038  case Intrinsic::mips_or_v:
2039    return DAG.getNode(ISD::OR, DL, Op->getValueType(0), Op->getOperand(1),
2040                       Op->getOperand(2));
2041  case Intrinsic::mips_ori_b:
2042    return DAG.getNode(ISD::OR, DL, Op->getValueType(0),
2043                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2044  case Intrinsic::mips_pckev_b:
2045  case Intrinsic::mips_pckev_h:
2046  case Intrinsic::mips_pckev_w:
2047  case Intrinsic::mips_pckev_d:
2048    return DAG.getNode(MipsISD::PCKEV, DL, Op->getValueType(0),
2049                       Op->getOperand(1), Op->getOperand(2));
2050  case Intrinsic::mips_pckod_b:
2051  case Intrinsic::mips_pckod_h:
2052  case Intrinsic::mips_pckod_w:
2053  case Intrinsic::mips_pckod_d:
2054    return DAG.getNode(MipsISD::PCKOD, DL, Op->getValueType(0),
2055                       Op->getOperand(1), Op->getOperand(2));
2056  case Intrinsic::mips_pcnt_b:
2057  case Intrinsic::mips_pcnt_h:
2058  case Intrinsic::mips_pcnt_w:
2059  case Intrinsic::mips_pcnt_d:
2060    return DAG.getNode(ISD::CTPOP, DL, Op->getValueType(0), Op->getOperand(1));
2061  case Intrinsic::mips_shf_b:
2062  case Intrinsic::mips_shf_h:
2063  case Intrinsic::mips_shf_w:
2064    return DAG.getNode(MipsISD::SHF, DL, Op->getValueType(0),
2065                       Op->getOperand(2), Op->getOperand(1));
2066  case Intrinsic::mips_sll_b:
2067  case Intrinsic::mips_sll_h:
2068  case Intrinsic::mips_sll_w:
2069  case Intrinsic::mips_sll_d:
2070    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0), Op->getOperand(1),
2071                       Op->getOperand(2));
2072  case Intrinsic::mips_slli_b:
2073  case Intrinsic::mips_slli_h:
2074  case Intrinsic::mips_slli_w:
2075  case Intrinsic::mips_slli_d:
2076    return DAG.getNode(ISD::SHL, DL, Op->getValueType(0),
2077                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2078  case Intrinsic::mips_splat_b:
2079  case Intrinsic::mips_splat_h:
2080  case Intrinsic::mips_splat_w:
2081  case Intrinsic::mips_splat_d:
2082    // We can't lower via VECTOR_SHUFFLE because it requires constant shuffle
2083    // masks, nor can we lower via BUILD_VECTOR & EXTRACT_VECTOR_ELT because
2084    // EXTRACT_VECTOR_ELT can't extract i64's on MIPS32.
2085    // Instead we lower to MipsISD::VSHF and match from there.
2086    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2087                       lowerMSASplatZExt(Op, 2, DAG), Op->getOperand(1),
2088                       Op->getOperand(1));
2089  case Intrinsic::mips_splati_b:
2090  case Intrinsic::mips_splati_h:
2091  case Intrinsic::mips_splati_w:
2092  case Intrinsic::mips_splati_d:
2093    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2094                       lowerMSASplatImm(Op, 2, DAG), Op->getOperand(1),
2095                       Op->getOperand(1));
2096  case Intrinsic::mips_sra_b:
2097  case Intrinsic::mips_sra_h:
2098  case Intrinsic::mips_sra_w:
2099  case Intrinsic::mips_sra_d:
2100    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0), Op->getOperand(1),
2101                       Op->getOperand(2));
2102  case Intrinsic::mips_srai_b:
2103  case Intrinsic::mips_srai_h:
2104  case Intrinsic::mips_srai_w:
2105  case Intrinsic::mips_srai_d:
2106    return DAG.getNode(ISD::SRA, DL, Op->getValueType(0),
2107                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2108  case Intrinsic::mips_srl_b:
2109  case Intrinsic::mips_srl_h:
2110  case Intrinsic::mips_srl_w:
2111  case Intrinsic::mips_srl_d:
2112    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0), Op->getOperand(1),
2113                       Op->getOperand(2));
2114  case Intrinsic::mips_srli_b:
2115  case Intrinsic::mips_srli_h:
2116  case Intrinsic::mips_srli_w:
2117  case Intrinsic::mips_srli_d:
2118    return DAG.getNode(ISD::SRL, DL, Op->getValueType(0),
2119                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2120  case Intrinsic::mips_subv_b:
2121  case Intrinsic::mips_subv_h:
2122  case Intrinsic::mips_subv_w:
2123  case Intrinsic::mips_subv_d:
2124    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0), Op->getOperand(1),
2125                       Op->getOperand(2));
2126  case Intrinsic::mips_subvi_b:
2127  case Intrinsic::mips_subvi_h:
2128  case Intrinsic::mips_subvi_w:
2129  case Intrinsic::mips_subvi_d:
2130    return DAG.getNode(ISD::SUB, DL, Op->getValueType(0),
2131                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2132  case Intrinsic::mips_vshf_b:
2133  case Intrinsic::mips_vshf_h:
2134  case Intrinsic::mips_vshf_w:
2135  case Intrinsic::mips_vshf_d:
2136    return DAG.getNode(MipsISD::VSHF, DL, Op->getValueType(0),
2137                       Op->getOperand(1), Op->getOperand(2), Op->getOperand(3));
2138  case Intrinsic::mips_xor_v:
2139    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0), Op->getOperand(1),
2140                       Op->getOperand(2));
2141  case Intrinsic::mips_xori_b:
2142    return DAG.getNode(ISD::XOR, DL, Op->getValueType(0),
2143                       Op->getOperand(1), lowerMSASplatImm(Op, 2, DAG));
2144  }
2145}
2146
2147static SDValue lowerMSALoadIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
2148  SDLoc DL(Op);
2149  SDValue ChainIn = Op->getOperand(0);
2150  SDValue Address = Op->getOperand(2);
2151  SDValue Offset  = Op->getOperand(3);
2152  EVT ResTy = Op->getValueType(0);
2153  EVT PtrTy = Address->getValueType(0);
2154
2155  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2156
2157  return DAG.getLoad(ResTy, DL, ChainIn, Address, MachinePointerInfo(), false,
2158                     false, false, 16);
2159}
2160
2161SDValue MipsSETargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
2162                                                     SelectionDAG &DAG) const {
2163  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2164  switch (Intr) {
2165  default:
2166    return SDValue();
2167  case Intrinsic::mips_extp:
2168    return lowerDSPIntr(Op, DAG, MipsISD::EXTP);
2169  case Intrinsic::mips_extpdp:
2170    return lowerDSPIntr(Op, DAG, MipsISD::EXTPDP);
2171  case Intrinsic::mips_extr_w:
2172    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_W);
2173  case Intrinsic::mips_extr_r_w:
2174    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W);
2175  case Intrinsic::mips_extr_rs_w:
2176    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W);
2177  case Intrinsic::mips_extr_s_h:
2178    return lowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H);
2179  case Intrinsic::mips_mthlip:
2180    return lowerDSPIntr(Op, DAG, MipsISD::MTHLIP);
2181  case Intrinsic::mips_mulsaq_s_w_ph:
2182    return lowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH);
2183  case Intrinsic::mips_maq_s_w_phl:
2184    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL);
2185  case Intrinsic::mips_maq_s_w_phr:
2186    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR);
2187  case Intrinsic::mips_maq_sa_w_phl:
2188    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL);
2189  case Intrinsic::mips_maq_sa_w_phr:
2190    return lowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR);
2191  case Intrinsic::mips_dpaq_s_w_ph:
2192    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH);
2193  case Intrinsic::mips_dpsq_s_w_ph:
2194    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH);
2195  case Intrinsic::mips_dpaq_sa_l_w:
2196    return lowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W);
2197  case Intrinsic::mips_dpsq_sa_l_w:
2198    return lowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W);
2199  case Intrinsic::mips_dpaqx_s_w_ph:
2200    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH);
2201  case Intrinsic::mips_dpaqx_sa_w_ph:
2202    return lowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH);
2203  case Intrinsic::mips_dpsqx_s_w_ph:
2204    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH);
2205  case Intrinsic::mips_dpsqx_sa_w_ph:
2206    return lowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH);
2207  case Intrinsic::mips_ld_b:
2208  case Intrinsic::mips_ld_h:
2209  case Intrinsic::mips_ld_w:
2210  case Intrinsic::mips_ld_d:
2211   return lowerMSALoadIntr(Op, DAG, Intr);
2212  }
2213}
2214
2215static SDValue lowerMSAStoreIntr(SDValue Op, SelectionDAG &DAG, unsigned Intr) {
2216  SDLoc DL(Op);
2217  SDValue ChainIn = Op->getOperand(0);
2218  SDValue Value   = Op->getOperand(2);
2219  SDValue Address = Op->getOperand(3);
2220  SDValue Offset  = Op->getOperand(4);
2221  EVT PtrTy = Address->getValueType(0);
2222
2223  Address = DAG.getNode(ISD::ADD, DL, PtrTy, Address, Offset);
2224
2225  return DAG.getStore(ChainIn, DL, Value, Address, MachinePointerInfo(), false,
2226                      false, 16);
2227}
2228
2229SDValue MipsSETargetLowering::lowerINTRINSIC_VOID(SDValue Op,
2230                                                  SelectionDAG &DAG) const {
2231  unsigned Intr = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
2232  switch (Intr) {
2233  default:
2234    return SDValue();
2235  case Intrinsic::mips_st_b:
2236  case Intrinsic::mips_st_h:
2237  case Intrinsic::mips_st_w:
2238  case Intrinsic::mips_st_d:
2239    return lowerMSAStoreIntr(Op, DAG, Intr);
2240  }
2241}
2242
2243/// \brief Check if the given BuildVectorSDNode is a splat.
2244/// This method currently relies on DAG nodes being reused when equivalent,
2245/// so it's possible for this to return false even when isConstantSplat returns
2246/// true.
2247static bool isSplatVector(const BuildVectorSDNode *N) {
2248  unsigned int nOps = N->getNumOperands();
2249  assert(nOps > 1 && "isSplatVector has 0 or 1 sized build vector");
2250
2251  SDValue Operand0 = N->getOperand(0);
2252
2253  for (unsigned int i = 1; i < nOps; ++i) {
2254    if (N->getOperand(i) != Operand0)
2255      return false;
2256  }
2257
2258  return true;
2259}
2260
2261// Lower ISD::EXTRACT_VECTOR_ELT into MipsISD::VEXTRACT_SEXT_ELT.
2262//
2263// The non-value bits resulting from ISD::EXTRACT_VECTOR_ELT are undefined. We
2264// choose to sign-extend but we could have equally chosen zero-extend. The
2265// DAGCombiner will fold any sign/zero extension of the ISD::EXTRACT_VECTOR_ELT
2266// result into this node later (possibly changing it to a zero-extend in the
2267// process).
2268SDValue MipsSETargetLowering::
2269lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
2270  SDLoc DL(Op);
2271  EVT ResTy = Op->getValueType(0);
2272  SDValue Op0 = Op->getOperand(0);
2273  EVT VecTy = Op0->getValueType(0);
2274
2275  if (!VecTy.is128BitVector())
2276    return SDValue();
2277
2278  if (ResTy.isInteger()) {
2279    SDValue Op1 = Op->getOperand(1);
2280    EVT EltTy = VecTy.getVectorElementType();
2281    return DAG.getNode(MipsISD::VEXTRACT_SEXT_ELT, DL, ResTy, Op0, Op1,
2282                       DAG.getValueType(EltTy));
2283  }
2284
2285  return Op;
2286}
2287
2288static bool isConstantOrUndef(const SDValue Op) {
2289  if (Op->getOpcode() == ISD::UNDEF)
2290    return true;
2291  if (dyn_cast<ConstantSDNode>(Op))
2292    return true;
2293  if (dyn_cast<ConstantFPSDNode>(Op))
2294    return true;
2295  return false;
2296}
2297
2298static bool isConstantOrUndefBUILD_VECTOR(const BuildVectorSDNode *Op) {
2299  for (unsigned i = 0; i < Op->getNumOperands(); ++i)
2300    if (isConstantOrUndef(Op->getOperand(i)))
2301      return true;
2302  return false;
2303}
2304
2305// Lowers ISD::BUILD_VECTOR into appropriate SelectionDAG nodes for the
2306// backend.
2307//
2308// Lowers according to the following rules:
2309// - Constant splats are legal as-is as long as the SplatBitSize is a power of
2310//   2 less than or equal to 64 and the value fits into a signed 10-bit
2311//   immediate
2312// - Constant splats are lowered to bitconverted BUILD_VECTORs if SplatBitSize
2313//   is a power of 2 less than or equal to 64 and the value does not fit into a
2314//   signed 10-bit immediate
2315// - Non-constant splats are legal as-is.
2316// - Non-constant non-splats are lowered to sequences of INSERT_VECTOR_ELT.
2317// - All others are illegal and must be expanded.
2318SDValue MipsSETargetLowering::lowerBUILD_VECTOR(SDValue Op,
2319                                                SelectionDAG &DAG) const {
2320  BuildVectorSDNode *Node = cast<BuildVectorSDNode>(Op);
2321  EVT ResTy = Op->getValueType(0);
2322  SDLoc DL(Op);
2323  APInt SplatValue, SplatUndef;
2324  unsigned SplatBitSize;
2325  bool HasAnyUndefs;
2326
2327  if (!Subtarget->hasMSA() || !ResTy.is128BitVector())
2328    return SDValue();
2329
2330  if (Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2331                            HasAnyUndefs, 8,
2332                            !Subtarget->isLittle()) && SplatBitSize <= 64) {
2333    // We can only cope with 8, 16, 32, or 64-bit elements
2334    if (SplatBitSize != 8 && SplatBitSize != 16 && SplatBitSize != 32 &&
2335        SplatBitSize != 64)
2336      return SDValue();
2337
2338    // If the value fits into a simm10 then we can use ldi.[bhwd]
2339    // However, if it isn't an integer type we will have to bitcast from an
2340    // integer type first. Also, if there are any undefs, we must lower them
2341    // to defined values first.
2342    if (ResTy.isInteger() && !HasAnyUndefs && SplatValue.isSignedIntN(10))
2343      return Op;
2344
2345    EVT ViaVecTy;
2346
2347    switch (SplatBitSize) {
2348    default:
2349      return SDValue();
2350    case 8:
2351      ViaVecTy = MVT::v16i8;
2352      break;
2353    case 16:
2354      ViaVecTy = MVT::v8i16;
2355      break;
2356    case 32:
2357      ViaVecTy = MVT::v4i32;
2358      break;
2359    case 64:
2360      // There's no fill.d to fall back on for 64-bit values
2361      return SDValue();
2362    }
2363
2364    // SelectionDAG::getConstant will promote SplatValue appropriately.
2365    SDValue Result = DAG.getConstant(SplatValue, ViaVecTy);
2366
2367    // Bitcast to the type we originally wanted
2368    if (ViaVecTy != ResTy)
2369      Result = DAG.getNode(ISD::BITCAST, SDLoc(Node), ResTy, Result);
2370
2371    return Result;
2372  } else if (isSplatVector(Node))
2373    return Op;
2374  else if (!isConstantOrUndefBUILD_VECTOR(Node)) {
2375    // Use INSERT_VECTOR_ELT operations rather than expand to stores.
2376    // The resulting code is the same length as the expansion, but it doesn't
2377    // use memory operations
2378    EVT ResTy = Node->getValueType(0);
2379
2380    assert(ResTy.isVector());
2381
2382    unsigned NumElts = ResTy.getVectorNumElements();
2383    SDValue Vector = DAG.getUNDEF(ResTy);
2384    for (unsigned i = 0; i < NumElts; ++i) {
2385      Vector = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ResTy, Vector,
2386                           Node->getOperand(i),
2387                           DAG.getConstant(i, MVT::i32));
2388    }
2389    return Vector;
2390  }
2391
2392  return SDValue();
2393}
2394
2395// Lower VECTOR_SHUFFLE into SHF (if possible).
2396//
2397// SHF splits the vector into blocks of four elements, then shuffles these
2398// elements according to a <4 x i2> constant (encoded as an integer immediate).
2399//
2400// It is therefore possible to lower into SHF when the mask takes the form:
2401//   <a, b, c, d, a+4, b+4, c+4, d+4, a+8, b+8, c+8, d+8, ...>
2402// When undef's appear they are treated as if they were whatever value is
2403// necessary in order to fit the above form.
2404//
2405// For example:
2406//   %2 = shufflevector <8 x i16> %0, <8 x i16> undef,
2407//                      <8 x i32> <i32 3, i32 2, i32 1, i32 0,
2408//                                 i32 7, i32 6, i32 5, i32 4>
2409// is lowered to:
2410//   (SHF_H $w0, $w1, 27)
2411// where the 27 comes from:
2412//   3 + (2 << 2) + (1 << 4) + (0 << 6)
2413static SDValue lowerVECTOR_SHUFFLE_SHF(SDValue Op, EVT ResTy,
2414                                       SmallVector<int, 16> Indices,
2415                                       SelectionDAG &DAG) {
2416  int SHFIndices[4] = { -1, -1, -1, -1 };
2417
2418  if (Indices.size() < 4)
2419    return SDValue();
2420
2421  for (unsigned i = 0; i < 4; ++i) {
2422    for (unsigned j = i; j < Indices.size(); j += 4) {
2423      int Idx = Indices[j];
2424
2425      // Convert from vector index to 4-element subvector index
2426      // If an index refers to an element outside of the subvector then give up
2427      if (Idx != -1) {
2428        Idx -= 4 * (j / 4);
2429        if (Idx < 0 || Idx >= 4)
2430          return SDValue();
2431      }
2432
2433      // If the mask has an undef, replace it with the current index.
2434      // Note that it might still be undef if the current index is also undef
2435      if (SHFIndices[i] == -1)
2436        SHFIndices[i] = Idx;
2437
2438      // Check that non-undef values are the same as in the mask. If they
2439      // aren't then give up
2440      if (!(Idx == -1 || Idx == SHFIndices[i]))
2441        return SDValue();
2442    }
2443  }
2444
2445  // Calculate the immediate. Replace any remaining undefs with zero
2446  APInt Imm(32, 0);
2447  for (int i = 3; i >= 0; --i) {
2448    int Idx = SHFIndices[i];
2449
2450    if (Idx == -1)
2451      Idx = 0;
2452
2453    Imm <<= 2;
2454    Imm |= Idx & 0x3;
2455  }
2456
2457  return DAG.getNode(MipsISD::SHF, SDLoc(Op), ResTy,
2458                     DAG.getConstant(Imm, MVT::i32), Op->getOperand(0));
2459}
2460
2461// Lower VECTOR_SHUFFLE into ILVEV (if possible).
2462//
2463// ILVEV interleaves the even elements from each vector.
2464//
2465// It is possible to lower into ILVEV when the mask takes the form:
2466//   <0, n, 2, n+2, 4, n+4, ...>
2467// where n is the number of elements in the vector.
2468//
2469// When undef's appear in the mask they are treated as if they were whatever
2470// value is necessary in order to fit the above form.
2471static SDValue lowerVECTOR_SHUFFLE_ILVEV(SDValue Op, EVT ResTy,
2472                                         SmallVector<int, 16> Indices,
2473                                         SelectionDAG &DAG) {
2474  assert ((Indices.size() % 2) == 0);
2475  int WsIdx = 0;
2476  int WtIdx = ResTy.getVectorNumElements();
2477
2478  for (unsigned i = 0; i < Indices.size(); i += 2) {
2479    if (Indices[i] != -1 && Indices[i] != WsIdx)
2480      return SDValue();
2481    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2482      return SDValue();
2483    WsIdx += 2;
2484    WtIdx += 2;
2485  }
2486
2487  return DAG.getNode(MipsISD::ILVEV, SDLoc(Op), ResTy, Op->getOperand(0),
2488                     Op->getOperand(1));
2489}
2490
2491// Lower VECTOR_SHUFFLE into ILVOD (if possible).
2492//
2493// ILVOD interleaves the odd elements from each vector.
2494//
2495// It is possible to lower into ILVOD when the mask takes the form:
2496//   <1, n+1, 3, n+3, 5, n+5, ...>
2497// where n is the number of elements in the vector.
2498//
2499// When undef's appear in the mask they are treated as if they were whatever
2500// value is necessary in order to fit the above form.
2501static SDValue lowerVECTOR_SHUFFLE_ILVOD(SDValue Op, EVT ResTy,
2502                                         SmallVector<int, 16> Indices,
2503                                         SelectionDAG &DAG) {
2504  assert ((Indices.size() % 2) == 0);
2505  int WsIdx = 1;
2506  int WtIdx = ResTy.getVectorNumElements() + 1;
2507
2508  for (unsigned i = 0; i < Indices.size(); i += 2) {
2509    if (Indices[i] != -1 && Indices[i] != WsIdx)
2510      return SDValue();
2511    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2512      return SDValue();
2513    WsIdx += 2;
2514    WtIdx += 2;
2515  }
2516
2517  return DAG.getNode(MipsISD::ILVOD, SDLoc(Op), ResTy, Op->getOperand(0),
2518                     Op->getOperand(1));
2519}
2520
2521// Lower VECTOR_SHUFFLE into ILVL (if possible).
2522//
2523// ILVL interleaves consecutive elements from the left half of each vector.
2524//
2525// It is possible to lower into ILVL when the mask takes the form:
2526//   <0, n, 1, n+1, 2, n+2, ...>
2527// where n is the number of elements in the vector.
2528//
2529// When undef's appear in the mask they are treated as if they were whatever
2530// value is necessary in order to fit the above form.
2531static SDValue lowerVECTOR_SHUFFLE_ILVL(SDValue Op, EVT ResTy,
2532                                        SmallVector<int, 16> Indices,
2533                                        SelectionDAG &DAG) {
2534  assert ((Indices.size() % 2) == 0);
2535  int WsIdx = 0;
2536  int WtIdx = ResTy.getVectorNumElements();
2537
2538  for (unsigned i = 0; i < Indices.size(); i += 2) {
2539    if (Indices[i] != -1 && Indices[i] != WsIdx)
2540      return SDValue();
2541    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2542      return SDValue();
2543    WsIdx ++;
2544    WtIdx ++;
2545  }
2546
2547  return DAG.getNode(MipsISD::ILVL, SDLoc(Op), ResTy, Op->getOperand(0),
2548                     Op->getOperand(1));
2549}
2550
2551// Lower VECTOR_SHUFFLE into ILVR (if possible).
2552//
2553// ILVR interleaves consecutive elements from the right half of each vector.
2554//
2555// It is possible to lower into ILVR when the mask takes the form:
2556//   <x, n+x, x+1, n+x+1, x+2, n+x+2, ...>
2557// where n is the number of elements in the vector and x is half n.
2558//
2559// When undef's appear in the mask they are treated as if they were whatever
2560// value is necessary in order to fit the above form.
2561static SDValue lowerVECTOR_SHUFFLE_ILVR(SDValue Op, EVT ResTy,
2562                                        SmallVector<int, 16> Indices,
2563                                        SelectionDAG &DAG) {
2564  assert ((Indices.size() % 2) == 0);
2565  unsigned NumElts = ResTy.getVectorNumElements();
2566  int WsIdx = NumElts / 2;
2567  int WtIdx = NumElts + NumElts / 2;
2568
2569  for (unsigned i = 0; i < Indices.size(); i += 2) {
2570    if (Indices[i] != -1 && Indices[i] != WsIdx)
2571      return SDValue();
2572    if (Indices[i+1] != -1 && Indices[i+1] != WtIdx)
2573      return SDValue();
2574    WsIdx ++;
2575    WtIdx ++;
2576  }
2577
2578  return DAG.getNode(MipsISD::ILVR, SDLoc(Op), ResTy, Op->getOperand(0),
2579                     Op->getOperand(1));
2580}
2581
2582// Lower VECTOR_SHUFFLE into PCKEV (if possible).
2583//
2584// PCKEV copies the even elements of each vector into the result vector.
2585//
2586// It is possible to lower into PCKEV when the mask takes the form:
2587//   <0, 2, 4, ..., n, n+2, n+4, ...>
2588// where n is the number of elements in the vector.
2589//
2590// When undef's appear in the mask they are treated as if they were whatever
2591// value is necessary in order to fit the above form.
2592static SDValue lowerVECTOR_SHUFFLE_PCKEV(SDValue Op, EVT ResTy,
2593                                         SmallVector<int, 16> Indices,
2594                                         SelectionDAG &DAG) {
2595  assert ((Indices.size() % 2) == 0);
2596  int Idx = 0;
2597
2598  for (unsigned i = 0; i < Indices.size(); ++i) {
2599    if (Indices[i] != -1 && Indices[i] != Idx)
2600      return SDValue();
2601    Idx += 2;
2602  }
2603
2604  return DAG.getNode(MipsISD::PCKEV, SDLoc(Op), ResTy, Op->getOperand(0),
2605                     Op->getOperand(1));
2606}
2607
2608// Lower VECTOR_SHUFFLE into PCKOD (if possible).
2609//
2610// PCKOD copies the odd elements of each vector into the result vector.
2611//
2612// It is possible to lower into PCKOD when the mask takes the form:
2613//   <1, 3, 5, ..., n+1, n+3, n+5, ...>
2614// where n is the number of elements in the vector.
2615//
2616// When undef's appear in the mask they are treated as if they were whatever
2617// value is necessary in order to fit the above form.
2618static SDValue lowerVECTOR_SHUFFLE_PCKOD(SDValue Op, EVT ResTy,
2619                                         SmallVector<int, 16> Indices,
2620                                         SelectionDAG &DAG) {
2621  assert ((Indices.size() % 2) == 0);
2622  int Idx = 1;
2623
2624  for (unsigned i = 0; i < Indices.size(); ++i) {
2625    if (Indices[i] != -1 && Indices[i] != Idx)
2626      return SDValue();
2627    Idx += 2;
2628  }
2629
2630  return DAG.getNode(MipsISD::PCKOD, SDLoc(Op), ResTy, Op->getOperand(0),
2631                     Op->getOperand(1));
2632}
2633
2634// Lower VECTOR_SHUFFLE into VSHF.
2635//
2636// This mostly consists of converting the shuffle indices in Indices into a
2637// BUILD_VECTOR and adding it as an operand to the resulting VSHF. There is
2638// also code to eliminate unused operands of the VECTOR_SHUFFLE. For example,
2639// if the type is v8i16 and all the indices are less than 8 then the second
2640// operand is unused and can be replaced with anything. We choose to replace it
2641// with the used operand since this reduces the number of instructions overall.
2642static SDValue lowerVECTOR_SHUFFLE_VSHF(SDValue Op, EVT ResTy,
2643                                        SmallVector<int, 16> Indices,
2644                                        SelectionDAG &DAG) {
2645  SmallVector<SDValue, 16> Ops;
2646  SDValue Op0;
2647  SDValue Op1;
2648  EVT MaskVecTy = ResTy.changeVectorElementTypeToInteger();
2649  EVT MaskEltTy = MaskVecTy.getVectorElementType();
2650  bool Using1stVec = false;
2651  bool Using2ndVec = false;
2652  SDLoc DL(Op);
2653  int ResTyNumElts = ResTy.getVectorNumElements();
2654
2655  for (int i = 0; i < ResTyNumElts; ++i) {
2656    // Idx == -1 means UNDEF
2657    int Idx = Indices[i];
2658
2659    if (0 <= Idx && Idx < ResTyNumElts)
2660      Using1stVec = true;
2661    if (ResTyNumElts <= Idx && Idx < ResTyNumElts * 2)
2662      Using2ndVec = true;
2663  }
2664
2665  for (SmallVector<int, 16>::iterator I = Indices.begin(); I != Indices.end();
2666       ++I)
2667    Ops.push_back(DAG.getTargetConstant(*I, MaskEltTy));
2668
2669  SDValue MaskVec = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskVecTy, Ops);
2670
2671  if (Using1stVec && Using2ndVec) {
2672    Op0 = Op->getOperand(0);
2673    Op1 = Op->getOperand(1);
2674  } else if (Using1stVec)
2675    Op0 = Op1 = Op->getOperand(0);
2676  else if (Using2ndVec)
2677    Op0 = Op1 = Op->getOperand(1);
2678  else
2679    llvm_unreachable("shuffle vector mask references neither vector operand?");
2680
2681  // VECTOR_SHUFFLE concatenates the vectors in an vectorwise fashion.
2682  // <0b00, 0b01> + <0b10, 0b11> -> <0b00, 0b01, 0b10, 0b11>
2683  // VSHF concatenates the vectors in a bitwise fashion:
2684  // <0b00, 0b01> + <0b10, 0b11> ->
2685  // 0b0100       + 0b1110       -> 0b01001110
2686  //                                <0b10, 0b11, 0b00, 0b01>
2687  // We must therefore swap the operands to get the correct result.
2688  return DAG.getNode(MipsISD::VSHF, DL, ResTy, MaskVec, Op1, Op0);
2689}
2690
2691// Lower VECTOR_SHUFFLE into one of a number of instructions depending on the
2692// indices in the shuffle.
2693SDValue MipsSETargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
2694                                                  SelectionDAG &DAG) const {
2695  ShuffleVectorSDNode *Node = cast<ShuffleVectorSDNode>(Op);
2696  EVT ResTy = Op->getValueType(0);
2697
2698  if (!ResTy.is128BitVector())
2699    return SDValue();
2700
2701  int ResTyNumElts = ResTy.getVectorNumElements();
2702  SmallVector<int, 16> Indices;
2703
2704  for (int i = 0; i < ResTyNumElts; ++i)
2705    Indices.push_back(Node->getMaskElt(i));
2706
2707  SDValue Result = lowerVECTOR_SHUFFLE_SHF(Op, ResTy, Indices, DAG);
2708  if (Result.getNode())
2709    return Result;
2710  Result = lowerVECTOR_SHUFFLE_ILVEV(Op, ResTy, Indices, DAG);
2711  if (Result.getNode())
2712    return Result;
2713  Result = lowerVECTOR_SHUFFLE_ILVOD(Op, ResTy, Indices, DAG);
2714  if (Result.getNode())
2715    return Result;
2716  Result = lowerVECTOR_SHUFFLE_ILVL(Op, ResTy, Indices, DAG);
2717  if (Result.getNode())
2718    return Result;
2719  Result = lowerVECTOR_SHUFFLE_ILVR(Op, ResTy, Indices, DAG);
2720  if (Result.getNode())
2721    return Result;
2722  Result = lowerVECTOR_SHUFFLE_PCKEV(Op, ResTy, Indices, DAG);
2723  if (Result.getNode())
2724    return Result;
2725  Result = lowerVECTOR_SHUFFLE_PCKOD(Op, ResTy, Indices, DAG);
2726  if (Result.getNode())
2727    return Result;
2728  return lowerVECTOR_SHUFFLE_VSHF(Op, ResTy, Indices, DAG);
2729}
2730
2731MachineBasicBlock * MipsSETargetLowering::
2732emitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
2733  // $bb:
2734  //  bposge32_pseudo $vr0
2735  //  =>
2736  // $bb:
2737  //  bposge32 $tbb
2738  // $fbb:
2739  //  li $vr2, 0
2740  //  b $sink
2741  // $tbb:
2742  //  li $vr1, 1
2743  // $sink:
2744  //  $vr0 = phi($vr2, $fbb, $vr1, $tbb)
2745
2746  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2747  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2748  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2749  DebugLoc DL = MI->getDebugLoc();
2750  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2751  MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
2752  MachineFunction *F = BB->getParent();
2753  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2754  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2755  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2756  F->insert(It, FBB);
2757  F->insert(It, TBB);
2758  F->insert(It, Sink);
2759
2760  // Transfer the remainder of BB and its successor edges to Sink.
2761  Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
2762               BB->end());
2763  Sink->transferSuccessorsAndUpdatePHIs(BB);
2764
2765  // Add successors.
2766  BB->addSuccessor(FBB);
2767  BB->addSuccessor(TBB);
2768  FBB->addSuccessor(Sink);
2769  TBB->addSuccessor(Sink);
2770
2771  // Insert the real bposge32 instruction to $BB.
2772  BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
2773
2774  // Fill $FBB.
2775  unsigned VR2 = RegInfo.createVirtualRegister(RC);
2776  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
2777    .addReg(Mips::ZERO).addImm(0);
2778  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2779
2780  // Fill $TBB.
2781  unsigned VR1 = RegInfo.createVirtualRegister(RC);
2782  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
2783    .addReg(Mips::ZERO).addImm(1);
2784
2785  // Insert phi function to $Sink.
2786  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2787          MI->getOperand(0).getReg())
2788    .addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
2789
2790  MI->eraseFromParent();   // The pseudo instruction is gone now.
2791  return Sink;
2792}
2793
2794MachineBasicBlock * MipsSETargetLowering::
2795emitMSACBranchPseudo(MachineInstr *MI, MachineBasicBlock *BB,
2796                     unsigned BranchOp) const{
2797  // $bb:
2798  //  vany_nonzero $rd, $ws
2799  //  =>
2800  // $bb:
2801  //  bnz.b $ws, $tbb
2802  //  b $fbb
2803  // $fbb:
2804  //  li $rd1, 0
2805  //  b $sink
2806  // $tbb:
2807  //  li $rd2, 1
2808  // $sink:
2809  //  $rd = phi($rd1, $fbb, $rd2, $tbb)
2810
2811  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2812  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2813  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
2814  DebugLoc DL = MI->getDebugLoc();
2815  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2816  MachineFunction::iterator It = std::next(MachineFunction::iterator(BB));
2817  MachineFunction *F = BB->getParent();
2818  MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
2819  MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
2820  MachineBasicBlock *Sink  = F->CreateMachineBasicBlock(LLVM_BB);
2821  F->insert(It, FBB);
2822  F->insert(It, TBB);
2823  F->insert(It, Sink);
2824
2825  // Transfer the remainder of BB and its successor edges to Sink.
2826  Sink->splice(Sink->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
2827               BB->end());
2828  Sink->transferSuccessorsAndUpdatePHIs(BB);
2829
2830  // Add successors.
2831  BB->addSuccessor(FBB);
2832  BB->addSuccessor(TBB);
2833  FBB->addSuccessor(Sink);
2834  TBB->addSuccessor(Sink);
2835
2836  // Insert the real bnz.b instruction to $BB.
2837  BuildMI(BB, DL, TII->get(BranchOp))
2838    .addReg(MI->getOperand(1).getReg())
2839    .addMBB(TBB);
2840
2841  // Fill $FBB.
2842  unsigned RD1 = RegInfo.createVirtualRegister(RC);
2843  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), RD1)
2844    .addReg(Mips::ZERO).addImm(0);
2845  BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
2846
2847  // Fill $TBB.
2848  unsigned RD2 = RegInfo.createVirtualRegister(RC);
2849  BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), RD2)
2850    .addReg(Mips::ZERO).addImm(1);
2851
2852  // Insert phi function to $Sink.
2853  BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
2854          MI->getOperand(0).getReg())
2855    .addReg(RD1).addMBB(FBB).addReg(RD2).addMBB(TBB);
2856
2857  MI->eraseFromParent();   // The pseudo instruction is gone now.
2858  return Sink;
2859}
2860
2861// Emit the COPY_FW pseudo instruction.
2862//
2863// copy_fw_pseudo $fd, $ws, n
2864// =>
2865// copy_u_w $rt, $ws, $n
2866// mtc1     $rt, $fd
2867//
2868// When n is zero, the equivalent operation can be performed with (potentially)
2869// zero instructions due to register overlaps. This optimization is never valid
2870// for lane 1 because it would require FR=0 mode which isn't supported by MSA.
2871MachineBasicBlock * MipsSETargetLowering::
2872emitCOPY_FW(MachineInstr *MI, MachineBasicBlock *BB) const{
2873  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2874  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2875  DebugLoc DL = MI->getDebugLoc();
2876  unsigned Fd = MI->getOperand(0).getReg();
2877  unsigned Ws = MI->getOperand(1).getReg();
2878  unsigned Lane = MI->getOperand(2).getImm();
2879
2880  if (Lane == 0)
2881    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_lo);
2882  else {
2883    unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2884
2885    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wt).addReg(Ws).addImm(Lane);
2886    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_lo);
2887  }
2888
2889  MI->eraseFromParent();   // The pseudo instruction is gone now.
2890  return BB;
2891}
2892
2893// Emit the COPY_FD pseudo instruction.
2894//
2895// copy_fd_pseudo $fd, $ws, n
2896// =>
2897// splati.d $wt, $ws, $n
2898// copy $fd, $wt:sub_64
2899//
2900// When n is zero, the equivalent operation can be performed with (potentially)
2901// zero instructions due to register overlaps. This optimization is always
2902// valid because FR=1 mode which is the only supported mode in MSA.
2903MachineBasicBlock * MipsSETargetLowering::
2904emitCOPY_FD(MachineInstr *MI, MachineBasicBlock *BB) const{
2905  assert(Subtarget->isFP64bit());
2906
2907  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2908  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2909  unsigned Fd  = MI->getOperand(0).getReg();
2910  unsigned Ws  = MI->getOperand(1).getReg();
2911  unsigned Lane = MI->getOperand(2).getImm() * 2;
2912  DebugLoc DL = MI->getDebugLoc();
2913
2914  if (Lane == 0)
2915    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Ws, 0, Mips::sub_64);
2916  else {
2917    unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2918
2919    BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wt).addReg(Ws).addImm(1);
2920    BuildMI(*BB, MI, DL, TII->get(Mips::COPY), Fd).addReg(Wt, 0, Mips::sub_64);
2921  }
2922
2923  MI->eraseFromParent();   // The pseudo instruction is gone now.
2924  return BB;
2925}
2926
2927// Emit the INSERT_FW pseudo instruction.
2928//
2929// insert_fw_pseudo $wd, $wd_in, $n, $fs
2930// =>
2931// subreg_to_reg $wt:sub_lo, $fs
2932// insve_w $wd[$n], $wd_in, $wt[0]
2933MachineBasicBlock *
2934MipsSETargetLowering::emitINSERT_FW(MachineInstr *MI,
2935                                    MachineBasicBlock *BB) const {
2936  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2937  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2938  DebugLoc DL = MI->getDebugLoc();
2939  unsigned Wd = MI->getOperand(0).getReg();
2940  unsigned Wd_in = MI->getOperand(1).getReg();
2941  unsigned Lane = MI->getOperand(2).getImm();
2942  unsigned Fs = MI->getOperand(3).getReg();
2943  unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
2944
2945  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
2946      .addImm(0)
2947      .addReg(Fs)
2948      .addImm(Mips::sub_lo);
2949  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_W), Wd)
2950      .addReg(Wd_in)
2951      .addImm(Lane)
2952      .addReg(Wt)
2953      .addImm(0);
2954
2955  MI->eraseFromParent(); // The pseudo instruction is gone now.
2956  return BB;
2957}
2958
2959// Emit the INSERT_FD pseudo instruction.
2960//
2961// insert_fd_pseudo $wd, $fs, n
2962// =>
2963// subreg_to_reg $wt:sub_64, $fs
2964// insve_d $wd[$n], $wd_in, $wt[0]
2965MachineBasicBlock *
2966MipsSETargetLowering::emitINSERT_FD(MachineInstr *MI,
2967                                    MachineBasicBlock *BB) const {
2968  assert(Subtarget->isFP64bit());
2969
2970  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2971  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
2972  DebugLoc DL = MI->getDebugLoc();
2973  unsigned Wd = MI->getOperand(0).getReg();
2974  unsigned Wd_in = MI->getOperand(1).getReg();
2975  unsigned Lane = MI->getOperand(2).getImm();
2976  unsigned Fs = MI->getOperand(3).getReg();
2977  unsigned Wt = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
2978
2979  BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
2980      .addImm(0)
2981      .addReg(Fs)
2982      .addImm(Mips::sub_64);
2983  BuildMI(*BB, MI, DL, TII->get(Mips::INSVE_D), Wd)
2984      .addReg(Wd_in)
2985      .addImm(Lane)
2986      .addReg(Wt)
2987      .addImm(0);
2988
2989  MI->eraseFromParent(); // The pseudo instruction is gone now.
2990  return BB;
2991}
2992
2993// Emit the INSERT_([BHWD]|F[WD])_VIDX pseudo instruction.
2994//
2995// For integer:
2996// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $rs)
2997// =>
2998// (SLL $lanetmp1, $lane, <log2size)
2999// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3000// (INSERT_[BHWD], $wdtmp2, $wdtmp1, 0, $rs)
3001// (NEG $lanetmp2, $lanetmp1)
3002// (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3003//
3004// For floating point:
3005// (INSERT_([BHWD]|F[WD])_PSEUDO $wd, $wd_in, $n, $fs)
3006// =>
3007// (SUBREG_TO_REG $wt, $fs, <subreg>)
3008// (SLL $lanetmp1, $lane, <log2size)
3009// (SLD_B $wdtmp1, $wd_in, $wd_in, $lanetmp1)
3010// (INSVE_[WD], $wdtmp2, 0, $wdtmp1, 0)
3011// (NEG $lanetmp2, $lanetmp1)
3012// (SLD_B $wd, $wdtmp2, $wdtmp2,  $lanetmp2)
3013MachineBasicBlock *
3014MipsSETargetLowering::emitINSERT_DF_VIDX(MachineInstr *MI,
3015                                         MachineBasicBlock *BB,
3016                                         unsigned EltSizeInBytes,
3017                                         bool IsFP) const {
3018  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3019  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3020  DebugLoc DL = MI->getDebugLoc();
3021  unsigned Wd = MI->getOperand(0).getReg();
3022  unsigned SrcVecReg = MI->getOperand(1).getReg();
3023  unsigned LaneReg = MI->getOperand(2).getReg();
3024  unsigned SrcValReg = MI->getOperand(3).getReg();
3025
3026  const TargetRegisterClass *VecRC = nullptr;
3027  const TargetRegisterClass *GPRRC =
3028      Subtarget->isGP64bit() ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
3029  unsigned EltLog2Size;
3030  unsigned InsertOp = 0;
3031  unsigned InsveOp = 0;
3032  switch (EltSizeInBytes) {
3033  default:
3034    llvm_unreachable("Unexpected size");
3035  case 1:
3036    EltLog2Size = 0;
3037    InsertOp = Mips::INSERT_B;
3038    InsveOp = Mips::INSVE_B;
3039    VecRC = &Mips::MSA128BRegClass;
3040    break;
3041  case 2:
3042    EltLog2Size = 1;
3043    InsertOp = Mips::INSERT_H;
3044    InsveOp = Mips::INSVE_H;
3045    VecRC = &Mips::MSA128HRegClass;
3046    break;
3047  case 4:
3048    EltLog2Size = 2;
3049    InsertOp = Mips::INSERT_W;
3050    InsveOp = Mips::INSVE_W;
3051    VecRC = &Mips::MSA128WRegClass;
3052    break;
3053  case 8:
3054    EltLog2Size = 3;
3055    InsertOp = Mips::INSERT_D;
3056    InsveOp = Mips::INSVE_D;
3057    VecRC = &Mips::MSA128DRegClass;
3058    break;
3059  }
3060
3061  if (IsFP) {
3062    unsigned Wt = RegInfo.createVirtualRegister(VecRC);
3063    BuildMI(*BB, MI, DL, TII->get(Mips::SUBREG_TO_REG), Wt)
3064        .addImm(0)
3065        .addReg(SrcValReg)
3066        .addImm(EltSizeInBytes == 8 ? Mips::sub_64 : Mips::sub_lo);
3067    SrcValReg = Wt;
3068  }
3069
3070  // Convert the lane index into a byte index
3071  if (EltSizeInBytes != 1) {
3072    unsigned LaneTmp1 = RegInfo.createVirtualRegister(GPRRC);
3073    BuildMI(*BB, MI, DL, TII->get(Mips::SLL), LaneTmp1)
3074        .addReg(LaneReg)
3075        .addImm(EltLog2Size);
3076    LaneReg = LaneTmp1;
3077  }
3078
3079  // Rotate bytes around so that the desired lane is element zero
3080  unsigned WdTmp1 = RegInfo.createVirtualRegister(VecRC);
3081  BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), WdTmp1)
3082      .addReg(SrcVecReg)
3083      .addReg(SrcVecReg)
3084      .addReg(LaneReg);
3085
3086  unsigned WdTmp2 = RegInfo.createVirtualRegister(VecRC);
3087  if (IsFP) {
3088    // Use insve.df to insert to element zero
3089    BuildMI(*BB, MI, DL, TII->get(InsveOp), WdTmp2)
3090        .addReg(WdTmp1)
3091        .addImm(0)
3092        .addReg(SrcValReg)
3093        .addImm(0);
3094  } else {
3095    // Use insert.df to insert to element zero
3096    BuildMI(*BB, MI, DL, TII->get(InsertOp), WdTmp2)
3097        .addReg(WdTmp1)
3098        .addReg(SrcValReg)
3099        .addImm(0);
3100  }
3101
3102  // Rotate elements the rest of the way for a full rotation.
3103  // sld.df inteprets $rt modulo the number of columns so we only need to negate
3104  // the lane index to do this.
3105  unsigned LaneTmp2 = RegInfo.createVirtualRegister(GPRRC);
3106  BuildMI(*BB, MI, DL, TII->get(Mips::SUB), LaneTmp2)
3107      .addReg(Mips::ZERO)
3108      .addReg(LaneReg);
3109  BuildMI(*BB, MI, DL, TII->get(Mips::SLD_B), Wd)
3110      .addReg(WdTmp2)
3111      .addReg(WdTmp2)
3112      .addReg(LaneTmp2);
3113
3114  MI->eraseFromParent(); // The pseudo instruction is gone now.
3115  return BB;
3116}
3117
3118// Emit the FILL_FW pseudo instruction.
3119//
3120// fill_fw_pseudo $wd, $fs
3121// =>
3122// implicit_def $wt1
3123// insert_subreg $wt2:subreg_lo, $wt1, $fs
3124// splati.w $wd, $wt2[0]
3125MachineBasicBlock *
3126MipsSETargetLowering::emitFILL_FW(MachineInstr *MI,
3127                                  MachineBasicBlock *BB) const {
3128  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3129  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3130  DebugLoc DL = MI->getDebugLoc();
3131  unsigned Wd = MI->getOperand(0).getReg();
3132  unsigned Fs = MI->getOperand(1).getReg();
3133  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3134  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128WRegClass);
3135
3136  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3137  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3138      .addReg(Wt1)
3139      .addReg(Fs)
3140      .addImm(Mips::sub_lo);
3141  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_W), Wd).addReg(Wt2).addImm(0);
3142
3143  MI->eraseFromParent(); // The pseudo instruction is gone now.
3144  return BB;
3145}
3146
3147// Emit the FILL_FD pseudo instruction.
3148//
3149// fill_fd_pseudo $wd, $fs
3150// =>
3151// implicit_def $wt1
3152// insert_subreg $wt2:subreg_64, $wt1, $fs
3153// splati.d $wd, $wt2[0]
3154MachineBasicBlock *
3155MipsSETargetLowering::emitFILL_FD(MachineInstr *MI,
3156                                  MachineBasicBlock *BB) const {
3157  assert(Subtarget->isFP64bit());
3158
3159  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3160  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3161  DebugLoc DL = MI->getDebugLoc();
3162  unsigned Wd = MI->getOperand(0).getReg();
3163  unsigned Fs = MI->getOperand(1).getReg();
3164  unsigned Wt1 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3165  unsigned Wt2 = RegInfo.createVirtualRegister(&Mips::MSA128DRegClass);
3166
3167  BuildMI(*BB, MI, DL, TII->get(Mips::IMPLICIT_DEF), Wt1);
3168  BuildMI(*BB, MI, DL, TII->get(Mips::INSERT_SUBREG), Wt2)
3169      .addReg(Wt1)
3170      .addReg(Fs)
3171      .addImm(Mips::sub_64);
3172  BuildMI(*BB, MI, DL, TII->get(Mips::SPLATI_D), Wd).addReg(Wt2).addImm(0);
3173
3174  MI->eraseFromParent();   // The pseudo instruction is gone now.
3175  return BB;
3176}
3177
3178// Emit the FEXP2_W_1 pseudo instructions.
3179//
3180// fexp2_w_1_pseudo $wd, $wt
3181// =>
3182// ldi.w $ws, 1
3183// fexp2.w $wd, $ws, $wt
3184MachineBasicBlock *
3185MipsSETargetLowering::emitFEXP2_W_1(MachineInstr *MI,
3186                                    MachineBasicBlock *BB) const {
3187  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3188  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3189  const TargetRegisterClass *RC = &Mips::MSA128WRegClass;
3190  unsigned Ws1 = RegInfo.createVirtualRegister(RC);
3191  unsigned Ws2 = RegInfo.createVirtualRegister(RC);
3192  DebugLoc DL = MI->getDebugLoc();
3193
3194  // Splat 1.0 into a vector
3195  BuildMI(*BB, MI, DL, TII->get(Mips::LDI_W), Ws1).addImm(1);
3196  BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_W), Ws2).addReg(Ws1);
3197
3198  // Emit 1.0 * fexp2(Wt)
3199  BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_W), MI->getOperand(0).getReg())
3200      .addReg(Ws2)
3201      .addReg(MI->getOperand(1).getReg());
3202
3203  MI->eraseFromParent(); // The pseudo instruction is gone now.
3204  return BB;
3205}
3206
3207// Emit the FEXP2_D_1 pseudo instructions.
3208//
3209// fexp2_d_1_pseudo $wd, $wt
3210// =>
3211// ldi.d $ws, 1
3212// fexp2.d $wd, $ws, $wt
3213MachineBasicBlock *
3214MipsSETargetLowering::emitFEXP2_D_1(MachineInstr *MI,
3215                                    MachineBasicBlock *BB) const {
3216  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3217  MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
3218  const TargetRegisterClass *RC = &Mips::MSA128DRegClass;
3219  unsigned Ws1 = RegInfo.createVirtualRegister(RC);
3220  unsigned Ws2 = RegInfo.createVirtualRegister(RC);
3221  DebugLoc DL = MI->getDebugLoc();
3222
3223  // Splat 1.0 into a vector
3224  BuildMI(*BB, MI, DL, TII->get(Mips::LDI_D), Ws1).addImm(1);
3225  BuildMI(*BB, MI, DL, TII->get(Mips::FFINT_U_D), Ws2).addReg(Ws1);
3226
3227  // Emit 1.0 * fexp2(Wt)
3228  BuildMI(*BB, MI, DL, TII->get(Mips::FEXP2_D), MI->getOperand(0).getReg())
3229      .addReg(Ws2)
3230      .addReg(MI->getOperand(1).getReg());
3231
3232  MI->eraseFromParent(); // The pseudo instruction is gone now.
3233  return BB;
3234}
3235