NVPTXGenericToNVVM.cpp revision 59d3ae6cdc4316ad338cd848251f33a236ccb36c
1//===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Convert generic global variables into either .global or .const access based
11// on the variable's "constant" qualifier.
12//
13//===----------------------------------------------------------------------===//
14
15#include "NVPTX.h"
16#include "NVPTXUtilities.h"
17#include "MCTargetDesc/NVPTXBaseInfo.h"
18
19#include "llvm/PassManager.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/Instructions.h"
23#include "llvm/IR/Intrinsics.h"
24#include "llvm/IR/Module.h"
25#include "llvm/IR/Operator.h"
26#include "llvm/ADT/ValueMap.h"
27#include "llvm/CodeGen/MachineFunctionAnalysis.h"
28#include "llvm/CodeGen/ValueTypes.h"
29#include "llvm/IR/IRBuilder.h"
30
31using namespace llvm;
32
33namespace llvm {
34void initializeGenericToNVVMPass(PassRegistry &);
35}
36
37namespace {
38class GenericToNVVM : public ModulePass {
39public:
40  static char ID;
41
42  GenericToNVVM() : ModulePass(ID) {}
43
44  virtual bool runOnModule(Module &M);
45
46  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
47  }
48
49private:
50  Value *getOrInsertCVTA(Module *M, Function *F, GlobalVariable *GV,
51                         IRBuilder<> &Builder);
52  Value *remapConstant(Module *M, Function *F, Constant *C,
53                       IRBuilder<> &Builder);
54  Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
55                                                Constant *C,
56                                                IRBuilder<> &Builder);
57  Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
58                           IRBuilder<> &Builder);
59  void remapNamedMDNode(Module *M, NamedMDNode *N);
60  MDNode *remapMDNode(Module *M, MDNode *N);
61
62  typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
63  typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
64  GVMapTy GVMap;
65  ConstantToValueMapTy ConstantToValueMap;
66};
67}
68
69char GenericToNVVM::ID = 0;
70
71ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
72
73INITIALIZE_PASS(
74    GenericToNVVM, "generic-to-nvvm",
75    "Ensure that the global variables are in the global address space", false,
76    false)
77
78bool GenericToNVVM::runOnModule(Module &M) {
79  // Create a clone of each global variable that has the default address space.
80  // The clone is created with the global address space  specifier, and the pair
81  // of original global variable and its clone is placed in the GVMap for later
82  // use.
83
84  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
85       I != E;) {
86    GlobalVariable *GV = I++;
87    if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
88        !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
89        !GV->getName().startswith("llvm.")) {
90      GlobalVariable *NewGV = new GlobalVariable(
91          M, GV->getType()->getElementType(), GV->isConstant(),
92          GV->getLinkage(), GV->hasInitializer() ? GV->getInitializer() : NULL,
93          "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
94      NewGV->copyAttributesFrom(GV);
95      GVMap[GV] = NewGV;
96    }
97  }
98
99  // Return immediately, if every global variable has a specific address space
100  // specifier.
101  if (GVMap.empty()) {
102    return false;
103  }
104
105  // Walk through the instructions in function defitinions, and replace any use
106  // of original global variables in GVMap with a use of the corresponding
107  // copies in GVMap.  If necessary, promote constants to instructions.
108  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
109    if (I->isDeclaration()) {
110      continue;
111    }
112    IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
113    for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
114         ++BBI) {
115      for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
116           ++II) {
117        for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
118          Value *Operand = II->getOperand(i);
119          if (isa<Constant>(Operand)) {
120            II->setOperand(
121                i, remapConstant(&M, I, cast<Constant>(Operand), Builder));
122          }
123        }
124      }
125    }
126    ConstantToValueMap.clear();
127  }
128
129  // Walk through the metadata section and update the debug information
130  // associated with the global variables in the default address space.
131  for (Module::named_metadata_iterator I = M.named_metadata_begin(),
132                                       E = M.named_metadata_end();
133       I != E; I++) {
134    remapNamedMDNode(&M, I);
135  }
136
137  // Walk through the global variable  initializers, and replace any use of
138  // original global variables in GVMap with a use of the corresponding copies
139  // in GVMap.  The copies need to be bitcast to the original global variable
140  // types, as we cannot use cvta in global variable initializers.
141  for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
142    GlobalVariable *GV = I->first;
143    GlobalVariable *NewGV = I->second;
144    ++I;
145    Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
146    // At this point, the remaining uses of GV should be found only in global
147    // variable initializers, as other uses have been already been removed
148    // while walking through the instructions in function definitions.
149    for (Value::use_iterator UI = GV->use_begin(), UE = GV->use_end();
150         UI != UE;) {
151      Use &U = (UI++).getUse();
152      U.set(BitCastNewGV);
153    }
154    std::string Name = GV->getName();
155    GV->removeDeadConstantUsers();
156    GV->eraseFromParent();
157    NewGV->setName(Name);
158  }
159  GVMap.clear();
160
161  return true;
162}
163
164Value *GenericToNVVM::getOrInsertCVTA(Module *M, Function *F,
165                                      GlobalVariable *GV,
166                                      IRBuilder<> &Builder) {
167  PointerType *GVType = GV->getType();
168  Value *CVTA = NULL;
169
170  // See if the address space conversion requires the operand to be bitcast
171  // to i8 addrspace(n)* first.
172  EVT ExtendedGVType = EVT::getEVT(GVType->getElementType(), true);
173  if (!ExtendedGVType.isInteger() && !ExtendedGVType.isFloatingPoint()) {
174    // A bitcast to i8 addrspace(n)* on the operand is needed.
175    LLVMContext &Context = M->getContext();
176    unsigned int AddrSpace = GVType->getAddressSpace();
177    Type *DestTy = PointerType::get(Type::getInt8Ty(Context), AddrSpace);
178    CVTA = Builder.CreateBitCast(GV, DestTy, "cvta");
179    // Insert the address space conversion.
180    Type *ResultType =
181        PointerType::get(Type::getInt8Ty(Context), llvm::ADDRESS_SPACE_GENERIC);
182    SmallVector<Type *, 2> ParamTypes;
183    ParamTypes.push_back(ResultType);
184    ParamTypes.push_back(DestTy);
185    Function *CVTAFunction = Intrinsic::getDeclaration(
186        M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
187    CVTA = Builder.CreateCall(CVTAFunction, CVTA, "cvta");
188    // Another bitcast from i8 * to <the element type of GVType> * is
189    // required.
190    DestTy =
191        PointerType::get(GVType->getElementType(), llvm::ADDRESS_SPACE_GENERIC);
192    CVTA = Builder.CreateBitCast(CVTA, DestTy, "cvta");
193  } else {
194    // A simple CVTA is enough.
195    SmallVector<Type *, 2> ParamTypes;
196    ParamTypes.push_back(PointerType::get(GVType->getElementType(),
197                                          llvm::ADDRESS_SPACE_GENERIC));
198    ParamTypes.push_back(GVType);
199    Function *CVTAFunction = Intrinsic::getDeclaration(
200        M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
201    CVTA = Builder.CreateCall(CVTAFunction, GV, "cvta");
202  }
203
204  return CVTA;
205}
206
207Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
208                                    IRBuilder<> &Builder) {
209  // If the constant C has been converted already in the given function  F, just
210  // return the converted value.
211  ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
212  if (CTII != ConstantToValueMap.end()) {
213    return CTII->second;
214  }
215
216  Value *NewValue = C;
217  if (isa<GlobalVariable>(C)) {
218    // If the constant C is a global variable and is found in  GVMap, generate a
219    // set set of instructions that convert the clone of C with the global
220    // address space specifier to a generic pointer.
221    // The constant C cannot be used here, as it will be erased from the
222    // module eventually.  And the clone of C with the global address space
223    // specifier cannot be used here either, as it will affect the types of
224    // other instructions in the function.  Hence, this address space conversion
225    // is required.
226    GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
227    if (I != GVMap.end()) {
228      NewValue = getOrInsertCVTA(M, F, I->second, Builder);
229    }
230  } else if (isa<ConstantVector>(C) || isa<ConstantArray>(C) ||
231             isa<ConstantStruct>(C)) {
232    // If any element in the constant vector or aggregate C is or uses a global
233    // variable in GVMap, the constant C needs to be reconstructed, using a set
234    // of instructions.
235    NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
236  } else if (isa<ConstantExpr>(C)) {
237    // If any operand in the constant expression C is or uses a global variable
238    // in GVMap, the constant expression C needs to be reconstructed, using a
239    // set of instructions.
240    NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
241  }
242
243  ConstantToValueMap[C] = NewValue;
244  return NewValue;
245}
246
247Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
248    Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
249  bool OperandChanged = false;
250  SmallVector<Value *, 4> NewOperands;
251  unsigned NumOperands = C->getNumOperands();
252
253  // Check if any element is or uses a global variable in  GVMap, and thus
254  // converted to another value.
255  for (unsigned i = 0; i < NumOperands; ++i) {
256    Value *Operand = C->getOperand(i);
257    Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
258    OperandChanged |= Operand != NewOperand;
259    NewOperands.push_back(NewOperand);
260  }
261
262  // If none of the elements has been modified, return C as it is.
263  if (!OperandChanged) {
264    return C;
265  }
266
267  // If any of the elements has been  modified, construct the equivalent
268  // vector or aggregate value with a set instructions and the converted
269  // elements.
270  Value *NewValue = UndefValue::get(C->getType());
271  if (isa<ConstantVector>(C)) {
272    for (unsigned i = 0; i < NumOperands; ++i) {
273      Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
274      NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
275    }
276  } else {
277    for (unsigned i = 0; i < NumOperands; ++i) {
278      NewValue =
279          Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
280    }
281  }
282
283  return NewValue;
284}
285
286Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
287                                        IRBuilder<> &Builder) {
288  bool OperandChanged = false;
289  SmallVector<Value *, 4> NewOperands;
290  unsigned NumOperands = C->getNumOperands();
291
292  // Check if any operand is or uses a global variable in  GVMap, and thus
293  // converted to another value.
294  for (unsigned i = 0; i < NumOperands; ++i) {
295    Value *Operand = C->getOperand(i);
296    Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
297    OperandChanged |= Operand != NewOperand;
298    NewOperands.push_back(NewOperand);
299  }
300
301  // If none of the operands has been modified, return C as it is.
302  if (!OperandChanged) {
303    return C;
304  }
305
306  // If any of the operands has been modified, construct the instruction with
307  // the converted operands.
308  unsigned Opcode = C->getOpcode();
309  switch (Opcode) {
310  case Instruction::ICmp:
311    // CompareConstantExpr (icmp)
312    return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
313                              NewOperands[0], NewOperands[1]);
314  case Instruction::FCmp:
315    // CompareConstantExpr (fcmp)
316    assert(false && "Address space conversion should have no effect "
317                    "on float point CompareConstantExpr (fcmp)!");
318    return C;
319  case Instruction::ExtractElement:
320    // ExtractElementConstantExpr
321    return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
322  case Instruction::InsertElement:
323    // InsertElementConstantExpr
324    return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
325                                       NewOperands[2]);
326  case Instruction::ShuffleVector:
327    // ShuffleVector
328    return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
329                                       NewOperands[2]);
330  case Instruction::ExtractValue:
331    // ExtractValueConstantExpr
332    return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
333  case Instruction::InsertValue:
334    // InsertValueConstantExpr
335    return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
336                                     C->getIndices());
337  case Instruction::GetElementPtr:
338    // GetElementPtrConstantExpr
339    return cast<GEPOperator>(C)->isInBounds()
340               ? Builder.CreateGEP(
341                     NewOperands[0],
342                     makeArrayRef(&NewOperands[1], NumOperands - 1))
343               : Builder.CreateInBoundsGEP(
344                     NewOperands[0],
345                     makeArrayRef(&NewOperands[1], NumOperands - 1));
346  case Instruction::Select:
347    // SelectConstantExpr
348    return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
349  default:
350    // BinaryConstantExpr
351    if (Instruction::isBinaryOp(Opcode)) {
352      return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
353                                 NewOperands[0], NewOperands[1]);
354    }
355    // UnaryConstantExpr
356    if (Instruction::isCast(Opcode)) {
357      return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
358                                NewOperands[0], C->getType());
359    }
360    assert(false && "GenericToNVVM encountered an unsupported ConstantExpr");
361    return C;
362  }
363}
364
365void GenericToNVVM::remapNamedMDNode(Module *M, NamedMDNode *N) {
366
367  bool OperandChanged = false;
368  SmallVector<MDNode *, 16> NewOperands;
369  unsigned NumOperands = N->getNumOperands();
370
371  // Check if any operand is or contains a global variable in  GVMap, and thus
372  // converted to another value.
373  for (unsigned i = 0; i < NumOperands; ++i) {
374    MDNode *Operand = N->getOperand(i);
375    MDNode *NewOperand = remapMDNode(M, Operand);
376    OperandChanged |= Operand != NewOperand;
377    NewOperands.push_back(NewOperand);
378  }
379
380  // If none of the operands has been modified, return immediately.
381  if (!OperandChanged) {
382    return;
383  }
384
385  // Replace the old operands with the new operands.
386  N->dropAllReferences();
387  for (SmallVectorImpl<MDNode *>::iterator I = NewOperands.begin(),
388                                           E = NewOperands.end();
389       I != E; ++I) {
390    N->addOperand(*I);
391  }
392}
393
394MDNode *GenericToNVVM::remapMDNode(Module *M, MDNode *N) {
395
396  bool OperandChanged = false;
397  SmallVector<Value *, 8> NewOperands;
398  unsigned NumOperands = N->getNumOperands();
399
400  // Check if any operand is or contains a global variable in  GVMap, and thus
401  // converted to another value.
402  for (unsigned i = 0; i < NumOperands; ++i) {
403    Value *Operand = N->getOperand(i);
404    Value *NewOperand = Operand;
405    if (Operand) {
406      if (isa<GlobalVariable>(Operand)) {
407        GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(Operand));
408        if (I != GVMap.end()) {
409          NewOperand = I->second;
410          if (++i < NumOperands) {
411            NewOperands.push_back(NewOperand);
412            // Address space of the global variable follows the global variable
413            // in the global variable debug info (see createGlobalVariable in
414            // lib/Analysis/DIBuilder.cpp).
415            NewOperand =
416                ConstantInt::get(Type::getInt32Ty(M->getContext()),
417                                 I->second->getType()->getAddressSpace());
418          }
419        }
420      } else if (isa<MDNode>(Operand)) {
421        NewOperand = remapMDNode(M, cast<MDNode>(Operand));
422      }
423    }
424    OperandChanged |= Operand != NewOperand;
425    NewOperands.push_back(NewOperand);
426  }
427
428  // If none of the operands has been modified, return N as it is.
429  if (!OperandChanged) {
430    return N;
431  }
432
433  // If any of the operands has been modified, create a new MDNode with the new
434  // operands.
435  return MDNode::get(M->getContext(), makeArrayRef(NewOperands));
436}
437