NVPTXTargetMachine.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Top-level implementation for the NVPTX target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "NVPTXTargetMachine.h"
15#include "MCTargetDesc/NVPTXMCAsmInfo.h"
16#include "NVPTX.h"
17#include "NVPTXAllocaHoisting.h"
18#include "NVPTXLowerAggrCopies.h"
19#include "llvm/Analysis/Passes.h"
20#include "llvm/CodeGen/AsmPrinter.h"
21#include "llvm/CodeGen/MachineFunctionAnalysis.h"
22#include "llvm/CodeGen/MachineModuleInfo.h"
23#include "llvm/CodeGen/Passes.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/IRPrintingPasses.h"
26#include "llvm/IR/Verifier.h"
27#include "llvm/MC/MCAsmInfo.h"
28#include "llvm/MC/MCInstrInfo.h"
29#include "llvm/MC/MCStreamer.h"
30#include "llvm/MC/MCSubtargetInfo.h"
31#include "llvm/PassManager.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/FormattedStream.h"
35#include "llvm/Support/TargetRegistry.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetLowering.h"
39#include "llvm/Target/TargetLoweringObjectFile.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Target/TargetOptions.h"
42#include "llvm/Target/TargetRegisterInfo.h"
43#include "llvm/Target/TargetSubtargetInfo.h"
44#include "llvm/Transforms/Scalar.h"
45
46using namespace llvm;
47
48namespace llvm {
49void initializeNVVMReflectPass(PassRegistry&);
50void initializeGenericToNVVMPass(PassRegistry&);
51void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
52void initializeNVPTXFavorNonGenericAddrSpacesPass(PassRegistry &);
53}
54
55extern "C" void LLVMInitializeNVPTXTarget() {
56  // Register the target.
57  RegisterTargetMachine<NVPTXTargetMachine32> X(TheNVPTXTarget32);
58  RegisterTargetMachine<NVPTXTargetMachine64> Y(TheNVPTXTarget64);
59
60  // FIXME: This pass is really intended to be invoked during IR optimization,
61  // but it's very NVPTX-specific.
62  initializeNVVMReflectPass(*PassRegistry::getPassRegistry());
63  initializeGenericToNVVMPass(*PassRegistry::getPassRegistry());
64  initializeNVPTXAssignValidGlobalNamesPass(*PassRegistry::getPassRegistry());
65  initializeNVPTXFavorNonGenericAddrSpacesPass(
66    *PassRegistry::getPassRegistry());
67}
68
69NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, StringRef TT,
70                                       StringRef CPU, StringRef FS,
71                                       const TargetOptions &Options,
72                                       Reloc::Model RM, CodeModel::Model CM,
73                                       CodeGenOpt::Level OL, bool is64bit)
74    : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
75      Subtarget(TT, CPU, FS, *this, is64bit) {
76  initAsmInfo();
77}
78
79void NVPTXTargetMachine32::anchor() {}
80
81NVPTXTargetMachine32::NVPTXTargetMachine32(
82    const Target &T, StringRef TT, StringRef CPU, StringRef FS,
83    const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM,
84    CodeGenOpt::Level OL)
85    : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
86
87void NVPTXTargetMachine64::anchor() {}
88
89NVPTXTargetMachine64::NVPTXTargetMachine64(
90    const Target &T, StringRef TT, StringRef CPU, StringRef FS,
91    const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM,
92    CodeGenOpt::Level OL)
93    : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
94
95namespace {
96class NVPTXPassConfig : public TargetPassConfig {
97public:
98  NVPTXPassConfig(NVPTXTargetMachine *TM, PassManagerBase &PM)
99      : TargetPassConfig(TM, PM) {}
100
101  NVPTXTargetMachine &getNVPTXTargetMachine() const {
102    return getTM<NVPTXTargetMachine>();
103  }
104
105  void addIRPasses() override;
106  bool addInstSelector() override;
107  bool addPreRegAlloc() override;
108  bool addPostRegAlloc() override;
109  void addMachineSSAOptimization() override;
110
111  FunctionPass *createTargetRegisterAllocator(bool) override;
112  void addFastRegAlloc(FunctionPass *RegAllocPass) override;
113  void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override;
114};
115} // end anonymous namespace
116
117TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
118  NVPTXPassConfig *PassConfig = new NVPTXPassConfig(this, PM);
119  return PassConfig;
120}
121
122void NVPTXPassConfig::addIRPasses() {
123  // The following passes are known to not play well with virtual regs hanging
124  // around after register allocation (which in our case, is *all* registers).
125  // We explicitly disable them here.  We do, however, need some functionality
126  // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
127  // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
128  disablePass(&PrologEpilogCodeInserterID);
129  disablePass(&MachineCopyPropagationID);
130  disablePass(&BranchFolderPassID);
131  disablePass(&TailDuplicateID);
132
133  addPass(createNVPTXImageOptimizerPass());
134  TargetPassConfig::addIRPasses();
135  addPass(createNVPTXAssignValidGlobalNamesPass());
136  addPass(createGenericToNVVMPass());
137  addPass(createNVPTXFavorNonGenericAddrSpacesPass());
138  addPass(createSeparateConstOffsetFromGEPPass());
139  // The SeparateConstOffsetFromGEP pass creates variadic bases that can be used
140  // by multiple GEPs. Run GVN or EarlyCSE to really reuse them. GVN generates
141  // significantly better code than EarlyCSE for some of our benchmarks.
142  if (getOptLevel() == CodeGenOpt::Aggressive)
143    addPass(createGVNPass());
144  else
145    addPass(createEarlyCSEPass());
146  // Both FavorNonGenericAddrSpaces and SeparateConstOffsetFromGEP may leave
147  // some dead code.  We could remove dead code in an ad-hoc manner, but that
148  // requires manual work and might be error-prone.
149  //
150  // The FavorNonGenericAddrSpaces pass shortcuts unnecessary addrspacecasts,
151  // and leave them unused.
152  //
153  // SeparateConstOffsetFromGEP rebuilds a new index from the old index, and the
154  // old index and some of its intermediate results may become unused.
155  addPass(createDeadCodeEliminationPass());
156}
157
158bool NVPTXPassConfig::addInstSelector() {
159  const NVPTXSubtarget &ST =
160    getTM<NVPTXTargetMachine>().getSubtarget<NVPTXSubtarget>();
161
162  addPass(createLowerAggrCopies());
163  addPass(createAllocaHoisting());
164  addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
165
166  if (!ST.hasImageHandles())
167    addPass(createNVPTXReplaceImageHandlesPass());
168
169  return false;
170}
171
172bool NVPTXPassConfig::addPreRegAlloc() { return false; }
173bool NVPTXPassConfig::addPostRegAlloc() {
174  addPass(createNVPTXPrologEpilogPass());
175  return false;
176}
177
178FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
179  return nullptr; // No reg alloc
180}
181
182void NVPTXPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) {
183  assert(!RegAllocPass && "NVPTX uses no regalloc!");
184  addPass(&PHIEliminationID);
185  addPass(&TwoAddressInstructionPassID);
186}
187
188void NVPTXPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) {
189  assert(!RegAllocPass && "NVPTX uses no regalloc!");
190
191  addPass(&ProcessImplicitDefsID);
192  addPass(&LiveVariablesID);
193  addPass(&MachineLoopInfoID);
194  addPass(&PHIEliminationID);
195
196  addPass(&TwoAddressInstructionPassID);
197  addPass(&RegisterCoalescerID);
198
199  // PreRA instruction scheduling.
200  if (addPass(&MachineSchedulerID))
201    printAndVerify("After Machine Scheduling");
202
203
204  addPass(&StackSlotColoringID);
205
206  // FIXME: Needs physical registers
207  //addPass(&PostRAMachineLICMID);
208
209  printAndVerify("After StackSlotColoring");
210}
211
212void NVPTXPassConfig::addMachineSSAOptimization() {
213  // Pre-ra tail duplication.
214  if (addPass(&EarlyTailDuplicateID))
215    printAndVerify("After Pre-RegAlloc TailDuplicate");
216
217  // Optimize PHIs before DCE: removing dead PHI cycles may make more
218  // instructions dead.
219  addPass(&OptimizePHIsID);
220
221  // This pass merges large allocas. StackSlotColoring is a different pass
222  // which merges spill slots.
223  addPass(&StackColoringID);
224
225  // If the target requests it, assign local variables to stack slots relative
226  // to one another and simplify frame index references where possible.
227  addPass(&LocalStackSlotAllocationID);
228
229  // With optimization, dead code should already be eliminated. However
230  // there is one known exception: lowered code for arguments that are only
231  // used by tail calls, where the tail calls reuse the incoming stack
232  // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
233  addPass(&DeadMachineInstructionElimID);
234  printAndVerify("After codegen DCE pass");
235
236  // Allow targets to insert passes that improve instruction level parallelism,
237  // like if-conversion. Such passes will typically need dominator trees and
238  // loop info, just like LICM and CSE below.
239  if (addILPOpts())
240    printAndVerify("After ILP optimizations");
241
242  addPass(&MachineLICMID);
243  addPass(&MachineCSEID);
244
245  addPass(&MachineSinkingID);
246  printAndVerify("After Machine LICM, CSE and Sinking passes");
247
248  addPass(&PeepholeOptimizerID);
249  printAndVerify("After codegen peephole optimization pass");
250}
251