PPCCTRLoops.cpp revision 99f823f94374917174f96a7689955b8463db6816
1//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass identifies loops where we can generate the PPC branch instructions
11// that decrement and test the count register (CTR) (bdnz and friends).
12// This pass is based on the HexagonHardwareLoops pass.
13//
14// The pattern that defines the induction variable can changed depending on
15// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
16// normalizes induction variables, and the Loop Strength Reduction pass
17// run by 'llc' may also make changes to the induction variable.
18// The pattern detected by this phase is due to running Strength Reduction.
19//
20// Criteria for CTR loops:
21//  - Countable loops (w/ ind. var for a trip count)
22//  - Assumes loops are normalized by IndVarSimplify
23//  - Try inner-most loops first
24//  - No nested CTR loops.
25//  - No function calls in loops.
26//
27//  Note: As with unconverted loops, PPCBranchSelector must be run after this
28//  pass in order to convert long-displacement jumps into jump pairs.
29//
30//===----------------------------------------------------------------------===//
31
32#define DEBUG_TYPE "ctrloops"
33#include "PPC.h"
34#include "PPCTargetMachine.h"
35#include "llvm/Constants.h"
36#include "llvm/PassSupport.h"
37#include "llvm/ADT/DenseMap.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/CodeGen/Passes.h"
40#include "llvm/CodeGen/MachineDominators.h"
41#include "llvm/CodeGen/MachineFunction.h"
42#include "llvm/CodeGen/MachineFunctionPass.h"
43#include "llvm/CodeGen/MachineInstrBuilder.h"
44#include "llvm/CodeGen/MachineLoopInfo.h"
45#include "llvm/CodeGen/MachineRegisterInfo.h"
46#include "llvm/CodeGen/RegisterScavenging.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include <algorithm>
51
52using namespace llvm;
53
54STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops");
55
56namespace {
57  class CountValue;
58  struct PPCCTRLoops : public MachineFunctionPass {
59    MachineLoopInfo       *MLI;
60    MachineRegisterInfo   *MRI;
61    const TargetInstrInfo *TII;
62
63  public:
64    static char ID;   // Pass identification, replacement for typeid
65
66    PPCCTRLoops() : MachineFunctionPass(ID) {}
67
68    virtual bool runOnMachineFunction(MachineFunction &MF);
69
70    const char *getPassName() const { return "PPC CTR Loops"; }
71
72    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
73      AU.setPreservesCFG();
74      AU.addRequired<MachineDominatorTree>();
75      AU.addPreserved<MachineDominatorTree>();
76      AU.addRequired<MachineLoopInfo>();
77      AU.addPreserved<MachineLoopInfo>();
78      MachineFunctionPass::getAnalysisUsage(AU);
79    }
80
81  private:
82    /// getCanonicalInductionVariable - Check to see if the loop has a canonical
83    /// induction variable.
84    /// Should be defined in MachineLoop. Based upon version in class Loop.
85    MachineInstr *getCanonicalInductionVariable(MachineLoop *L,
86                                                MachineInstr *&IOp) const;
87
88    /// getTripCount - Return a loop-invariant LLVM register indicating the
89    /// number of times the loop will be executed.  If the trip-count cannot
90    /// be determined, this return null.
91    CountValue *getTripCount(MachineLoop *L, bool &WordCmp,
92                             SmallVector<MachineInstr *, 2> &OldInsts) const;
93
94    /// isInductionOperation - Return true if the instruction matches the
95    /// pattern for an opertion that defines an induction variable.
96    bool isInductionOperation(const MachineInstr *MI, unsigned IVReg) const;
97
98    /// isInvalidOperation - Return true if the instruction is not valid within
99    /// a CTR loop.
100    bool isInvalidLoopOperation(const MachineInstr *MI) const;
101
102    /// containsInavlidInstruction - Return true if the loop contains an
103    /// instruction that inhibits using the CTR loop.
104    bool containsInvalidInstruction(MachineLoop *L) const;
105
106    /// converToCTRLoop - Given a loop, check if we can convert it to a
107    /// CTR loop.  If so, then perform the conversion and return true.
108    bool convertToCTRLoop(MachineLoop *L);
109
110    /// isDead - Return true if the instruction is now dead.
111    bool isDead(const MachineInstr *MI,
112                SmallVector<MachineInstr *, 1> &DeadPhis) const;
113
114    /// removeIfDead - Remove the instruction if it is now dead.
115    void removeIfDead(MachineInstr *MI);
116  };
117
118  char PPCCTRLoops::ID = 0;
119
120
121  // CountValue class - Abstraction for a trip count of a loop. A
122  // smaller vesrsion of the MachineOperand class without the concerns
123  // of changing the operand representation.
124  class CountValue {
125  public:
126    enum CountValueType {
127      CV_Register,
128      CV_Immediate
129    };
130  private:
131    CountValueType Kind;
132    union Values {
133      unsigned RegNum;
134      int64_t ImmVal;
135      Values(unsigned r) : RegNum(r) {}
136      Values(int64_t i) : ImmVal(i) {}
137    } Contents;
138    bool isNegative;
139
140  public:
141    CountValue(unsigned r, bool neg) : Kind(CV_Register), Contents(r),
142                                       isNegative(neg) {}
143    explicit CountValue(int64_t i) : Kind(CV_Immediate), Contents(i),
144                                     isNegative(i < 0) {}
145    CountValueType getType() const { return Kind; }
146    bool isReg() const { return Kind == CV_Register; }
147    bool isImm() const { return Kind == CV_Immediate; }
148    bool isNeg() const { return isNegative; }
149
150    unsigned getReg() const {
151      assert(isReg() && "Wrong CountValue accessor");
152      return Contents.RegNum;
153    }
154    void setReg(unsigned Val) {
155      Contents.RegNum = Val;
156    }
157    int64_t getImm() const {
158      assert(isImm() && "Wrong CountValue accessor");
159      if (isNegative) {
160        return -Contents.ImmVal;
161      }
162      return Contents.ImmVal;
163    }
164    void setImm(int64_t Val) {
165      Contents.ImmVal = Val;
166    }
167
168    void print(raw_ostream &OS, const TargetMachine *TM = 0) const {
169      if (isReg()) { OS << PrintReg(getReg()); }
170      if (isImm()) { OS << getImm(); }
171    }
172  };
173} // end anonymous namespace
174
175
176/// isCompareEquals - Returns true if the instruction is a compare equals
177/// instruction with an immediate operand.
178static bool isCompareEqualsImm(const MachineInstr *MI, bool &WordCmp) {
179  if (MI->getOpcode() == PPC::CMPWI || MI->getOpcode() == PPC::CMPLWI) {
180    WordCmp = true;
181    return true;
182  } else if (MI->getOpcode() == PPC::CMPDI || MI->getOpcode() == PPC::CMPLDI) {
183    WordCmp = false;
184    return true;
185  }
186
187  return false;
188}
189
190
191/// createPPCCTRLoops - Factory for creating
192/// the CTR loop phase.
193FunctionPass *llvm::createPPCCTRLoops() {
194  return new PPCCTRLoops();
195}
196
197
198bool PPCCTRLoops::runOnMachineFunction(MachineFunction &MF) {
199  DEBUG(dbgs() << "********* PPC CTR Loops *********\n");
200
201  bool Changed = false;
202
203  // get the loop information
204  MLI = &getAnalysis<MachineLoopInfo>();
205  // get the register information
206  MRI = &MF.getRegInfo();
207  // the target specific instructio info.
208  TII = MF.getTarget().getInstrInfo();
209
210  for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
211       I != E; ++I) {
212    MachineLoop *L = *I;
213    if (!L->getParentLoop()) {
214      Changed |= convertToCTRLoop(L);
215    }
216  }
217
218  return Changed;
219}
220
221/// getCanonicalInductionVariable - Check to see if the loop has a canonical
222/// induction variable. We check for a simple recurrence pattern - an
223/// integer recurrence that decrements by one each time through the loop and
224/// ends at zero.  If so, return the phi node that corresponds to it.
225///
226/// Based upon the similar code in LoopInfo except this code is specific to
227/// the machine.
228/// This method assumes that the IndVarSimplify pass has been run by 'opt'.
229///
230MachineInstr
231*PPCCTRLoops::getCanonicalInductionVariable(MachineLoop *L,
232                                            MachineInstr *&IOp) const {
233  MachineBasicBlock *TopMBB = L->getTopBlock();
234  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
235  assert(PI != TopMBB->pred_end() &&
236         "Loop must have more than one incoming edge!");
237  MachineBasicBlock *Backedge = *PI++;
238  if (PI == TopMBB->pred_end()) return 0;  // dead loop
239  MachineBasicBlock *Incoming = *PI++;
240  if (PI != TopMBB->pred_end()) return 0;  // multiple backedges?
241
242  // make sure there is one incoming and one backedge and determine which
243  // is which.
244  if (L->contains(Incoming)) {
245    if (L->contains(Backedge))
246      return 0;
247    std::swap(Incoming, Backedge);
248  } else if (!L->contains(Backedge))
249    return 0;
250
251  // Loop over all of the PHI nodes, looking for a canonical induction variable:
252  //   - The PHI node is "reg1 = PHI reg2, BB1, reg3, BB2".
253  //   - The recurrence comes from the backedge.
254  //   - the definition is an induction operatio.n
255  for (MachineBasicBlock::iterator I = TopMBB->begin(), E = TopMBB->end();
256       I != E && I->isPHI(); ++I) {
257    MachineInstr *MPhi = &*I;
258    unsigned DefReg = MPhi->getOperand(0).getReg();
259    for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
260      // Check each operand for the value from the backedge.
261      MachineBasicBlock *MBB = MPhi->getOperand(i+1).getMBB();
262      if (L->contains(MBB)) { // operands comes from the backedge
263        // Check if the definition is an induction operation.
264        MachineInstr *DI = MRI->getVRegDef(MPhi->getOperand(i).getReg());
265        if (isInductionOperation(DI, DefReg)) {
266          IOp = DI;
267          return MPhi;
268        }
269      }
270    }
271  }
272  return 0;
273}
274
275/// getTripCount - Return a loop-invariant LLVM value indicating the
276/// number of times the loop will be executed.  The trip count can
277/// be either a register or a constant value.  If the trip-count
278/// cannot be determined, this returns null.
279///
280/// We find the trip count from the phi instruction that defines the
281/// induction variable.  We follow the links to the CMP instruction
282/// to get the trip count.
283///
284/// Based upon getTripCount in LoopInfo.
285///
286CountValue *PPCCTRLoops::getTripCount(MachineLoop *L, bool &WordCmp,
287                           SmallVector<MachineInstr *, 2> &OldInsts) const {
288  // Check that the loop has a induction variable.
289  MachineInstr *IOp;
290  MachineInstr *IV_Inst = getCanonicalInductionVariable(L, IOp);
291  if (IV_Inst == 0) return 0;
292
293  // Canonical loops will end with a 'cmpwi/cmpdi cr, IV, Imm',
294  //  if Imm is 0, get the count from the PHI opnd
295  //  if Imm is -M, than M is the count
296  //  Otherwise, Imm is the count
297  MachineOperand *IV_Opnd;
298  const MachineOperand *InitialValue;
299  if (!L->contains(IV_Inst->getOperand(2).getMBB())) {
300    InitialValue = &IV_Inst->getOperand(1);
301    IV_Opnd = &IV_Inst->getOperand(3);
302  } else {
303    InitialValue = &IV_Inst->getOperand(3);
304    IV_Opnd = &IV_Inst->getOperand(1);
305  }
306
307  // Look for the cmp instruction to determine if we
308  // can get a useful trip count.  The trip count can
309  // be either a register or an immediate.  The location
310  // of the value depends upon the type (reg or imm).
311  while ((IV_Opnd = IV_Opnd->getNextOperandForReg())) {
312    MachineInstr *MI = IV_Opnd->getParent();
313    if (L->contains(MI) && isCompareEqualsImm(MI, WordCmp)) {
314      OldInsts.push_back(MI);
315      OldInsts.push_back(IOp);
316
317      const MachineOperand &MO = MI->getOperand(2);
318      assert(MO.isImm() && "IV Cmp Operand should be an immediate");
319      int64_t ImmVal = MO.getImm();
320
321      const MachineInstr *IV_DefInstr = MRI->getVRegDef(IV_Opnd->getReg());
322      assert(L->contains(IV_DefInstr->getParent()) &&
323             "IV definition should occurs in loop");
324      int64_t iv_value = IV_DefInstr->getOperand(2).getImm();
325
326      if (ImmVal == 0) {
327        // Make sure the induction variable changes by one on each iteration.
328        if (iv_value != 1 && iv_value != -1) {
329          return 0;
330        }
331        return new CountValue(InitialValue->getReg(), iv_value > 0);
332      } else {
333        assert(InitialValue->isReg() && "Expecting register for init value");
334        const MachineInstr *DefInstr = MRI->getVRegDef(InitialValue->getReg());
335
336        // Here we need to look for an immediate load (an li or lis/ori pair).
337        if (DefInstr && (DefInstr->getOpcode() == PPC::ORI8 ||
338                         DefInstr->getOpcode() == PPC::ORI)) {
339          int64_t start = DefInstr->getOperand(2).getImm();
340          const MachineInstr *DefInstr2 =
341            MRI->getVRegDef(DefInstr->getOperand(0).getReg());
342          if (DefInstr2 && (DefInstr2->getOpcode() == PPC::LIS8 ||
343                            DefInstr2->getOpcode() == PPC::LIS)) {
344            start |= DefInstr2->getOperand(1).getImm() << 16;
345
346            int64_t count = ImmVal - start;
347            if ((count % iv_value) != 0) {
348              return 0;
349            }
350            return new CountValue(count/iv_value);
351          }
352        } else if (DefInstr && (DefInstr->getOpcode() == PPC::LI8 ||
353                                DefInstr->getOpcode() == PPC::LI)) {
354          int64_t count = ImmVal - DefInstr->getOperand(1).getImm();
355          if ((count % iv_value) != 0) {
356            return 0;
357          }
358          return new CountValue(count/iv_value);
359        }
360      }
361    }
362  }
363  return 0;
364}
365
366/// isInductionOperation - return true if the operation is matches the
367/// pattern that defines an induction variable:
368///    addi iv, c
369///
370bool
371PPCCTRLoops::isInductionOperation(const MachineInstr *MI,
372                                           unsigned IVReg) const {
373  return ((MI->getOpcode() == PPC::ADDI || MI->getOpcode() == PPC::ADDI8) &&
374          MI->getOperand(1).getReg() == IVReg);
375}
376
377/// isInvalidOperation - Return true if the operation is invalid within
378/// CTR loop.
379bool
380PPCCTRLoops::isInvalidLoopOperation(const MachineInstr *MI) const {
381
382  // call is not allowed because the callee may use a CTR loop
383  if (MI->getDesc().isCall()) {
384    return true;
385  }
386  // check if the instruction defines a CTR loop register
387  // (this will also catch nested CTR loops)
388  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
389    const MachineOperand &MO = MI->getOperand(i);
390    if (MO.isReg() && MO.isDef() &&
391        (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) {
392      return true;
393    }
394  }
395  return false;
396}
397
398/// containsInvalidInstruction - Return true if the loop contains
399/// an instruction that inhibits the use of the CTR loop function.
400///
401bool PPCCTRLoops::containsInvalidInstruction(MachineLoop *L) const {
402  const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
403  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
404    MachineBasicBlock *MBB = Blocks[i];
405    for (MachineBasicBlock::iterator
406           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
407      const MachineInstr *MI = &*MII;
408      if (isInvalidLoopOperation(MI)) {
409        return true;
410      }
411    }
412  }
413  return false;
414}
415
416/// isDead returns true if the instruction is dead
417/// (this was essentially copied from DeadMachineInstructionElim::isDead, but
418/// with special cases for inline asm, physical registers and instructions with
419/// side effects removed)
420bool PPCCTRLoops::isDead(const MachineInstr *MI,
421                         SmallVector<MachineInstr *, 1> &DeadPhis) const {
422  // Examine each operand.
423  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
424    const MachineOperand &MO = MI->getOperand(i);
425    if (MO.isReg() && MO.isDef()) {
426      unsigned Reg = MO.getReg();
427      if (!MRI->use_nodbg_empty(Reg)) {
428        // This instruction has users, but if the only user is the phi node for the
429        // parent block, and the only use of that phi node is this instruction, then
430        // this instruction is dead: both it (and the phi node) can be removed.
431        MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg);
432        if (llvm::next(I) == MRI->use_end() &&
433            I.getOperand().getParent()->isPHI()) {
434          MachineInstr *OnePhi = I.getOperand().getParent();
435
436          for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
437            const MachineOperand &OPO = OnePhi->getOperand(j);
438            if (OPO.isReg() && OPO.isDef()) {
439              unsigned OPReg = OPO.getReg();
440
441              MachineRegisterInfo::use_iterator nextJ;
442              for (MachineRegisterInfo::use_iterator J = MRI->use_begin(OPReg),
443                   E = MRI->use_end(); J!=E; J=nextJ) {
444                nextJ = llvm::next(J);
445                MachineOperand& Use = J.getOperand();
446                MachineInstr *UseMI = Use.getParent();
447
448                if (MI != UseMI) {
449                  // The phi node has a user that is not MI, bail...
450                  return false;
451                }
452              }
453            }
454          }
455
456          DeadPhis.push_back(OnePhi);
457        } else {
458          // This def has a non-debug use. Don't delete the instruction!
459          return false;
460        }
461      }
462    }
463  }
464
465  // If there are no defs with uses, the instruction is dead.
466  return true;
467}
468
469void PPCCTRLoops::removeIfDead(MachineInstr *MI) {
470  // This procedure was essentially copied from DeadMachineInstructionElim
471
472  SmallVector<MachineInstr *, 1> DeadPhis;
473  if (isDead(MI, DeadPhis)) {
474    DEBUG(dbgs() << "CTR looping will remove: " << *MI);
475
476    // It is possible that some DBG_VALUE instructions refer to this
477    // instruction.  Examine each def operand for such references;
478    // if found, mark the DBG_VALUE as undef (but don't delete it).
479    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
480      const MachineOperand &MO = MI->getOperand(i);
481      if (!MO.isReg() || !MO.isDef())
482        continue;
483      unsigned Reg = MO.getReg();
484      MachineRegisterInfo::use_iterator nextI;
485      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
486           E = MRI->use_end(); I!=E; I=nextI) {
487        nextI = llvm::next(I);  // I is invalidated by the setReg
488        MachineOperand& Use = I.getOperand();
489        MachineInstr *UseMI = Use.getParent();
490        if (UseMI==MI)
491          continue;
492        if (Use.isDebug()) // this might also be a instr -> phi -> instr case
493                           // which can also be removed.
494          UseMI->getOperand(0).setReg(0U);
495      }
496    }
497
498    MI->eraseFromParent();
499    for (unsigned i = 0; i < DeadPhis.size(); ++i) {
500      DeadPhis[i]->eraseFromParent();
501    }
502  }
503}
504
505/// converToCTRLoop - check if the loop is a candidate for
506/// converting to a CTR loop.  If so, then perform the
507/// transformation.
508///
509/// This function works on innermost loops first.  A loop can
510/// be converted if it is a counting loop; either a register
511/// value or an immediate.
512///
513/// The code makes several assumptions about the representation
514/// of the loop in llvm.
515bool PPCCTRLoops::convertToCTRLoop(MachineLoop *L) {
516  bool Changed = false;
517  // Process nested loops first.
518  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
519    Changed |= convertToCTRLoop(*I);
520  }
521  // If a nested loop has been converted, then we can't convert this loop.
522  if (Changed) {
523    return Changed;
524  }
525
526  bool WordCmp;
527  SmallVector<MachineInstr *, 2> OldInsts;
528  // Are we able to determine the trip count for the loop?
529  CountValue *TripCount = getTripCount(L, WordCmp, OldInsts);
530  if (TripCount == 0) {
531    DEBUG(dbgs() << "failed to get trip count!\n");
532    return false;
533  }
534  // Does the loop contain any invalid instructions?
535  if (containsInvalidInstruction(L)) {
536    return false;
537  }
538  MachineBasicBlock *Preheader = L->getLoopPreheader();
539  // No preheader means there's not place for the loop instr.
540  if (Preheader == 0) {
541    return false;
542  }
543  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
544
545  DebugLoc dl;
546  if (InsertPos != Preheader->end())
547    dl = InsertPos->getDebugLoc();
548
549  MachineBasicBlock *LastMBB = L->getExitingBlock();
550  // Don't generate CTR loop if the loop has more than one exit.
551  if (LastMBB == 0) {
552    return false;
553  }
554  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
555
556  // Determine the loop start.
557  MachineBasicBlock *LoopStart = L->getTopBlock();
558  if (L->getLoopLatch() != LastMBB) {
559    // When the exit and latch are not the same, use the latch block as the
560    // start.
561    // The loop start address is used only after the 1st iteration, and the loop
562    // latch may contains instrs. that need to be executed after the 1st iter.
563    LoopStart = L->getLoopLatch();
564    // Make sure the latch is a successor of the exit, otherwise it won't work.
565    if (!LastMBB->isSuccessor(LoopStart)) {
566      return false;
567    }
568  }
569
570  // Convert the loop to a CTR loop
571  DEBUG(dbgs() << "Change to CTR loop at "; L->dump());
572
573  MachineFunction *MF = LastMBB->getParent();
574  const PPCSubtarget &Subtarget = MF->getTarget().getSubtarget<PPCSubtarget>();
575  bool isPPC64 = Subtarget.isPPC64();
576
577  unsigned CountReg;
578  if (TripCount->isReg()) {
579    // Create a copy of the loop count register.
580    const TargetRegisterClass *RC =
581      MF->getRegInfo().getRegClass(TripCount->getReg());
582    CountReg = MF->getRegInfo().createVirtualRegister(RC);
583    BuildMI(*Preheader, InsertPos, dl,
584            TII->get(TargetOpcode::COPY), CountReg).addReg(TripCount->getReg());
585    if (TripCount->isNeg()) {
586      unsigned CountReg1 = CountReg;
587      CountReg = MF->getRegInfo().createVirtualRegister(RC);
588      BuildMI(*Preheader, InsertPos, dl,
589              TII->get(isPPC64 ? PPC::NEG8 : PPC::NEG),
590                       CountReg).addReg(CountReg1);
591    }
592
593    // On a 64-bit system, if the original comparison was only 32-bit, then
594    // mask out the higher-order part of the count.
595    if (isPPC64 && WordCmp) {
596       unsigned CountReg1 = CountReg;
597       CountReg = MF->getRegInfo().createVirtualRegister(RC);
598       BuildMI(*Preheader, InsertPos, dl,
599               TII->get(PPC::RLDICL), CountReg).addReg(CountReg1
600              ).addImm(0).addImm(32);
601    }
602  } else {
603    assert(TripCount->isImm() && "Expecting immedate vaule for trip count");
604    // Put the trip count in a register for transfer into the count register.
605    const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
606    const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
607    const TargetRegisterClass *RC = isPPC64 ? G8RC : GPRC;
608
609    int64_t CountImm = TripCount->getImm();
610    if (TripCount->isNeg())
611      CountImm = -CountImm;
612
613    CountReg = MF->getRegInfo().createVirtualRegister(RC);
614    if (CountImm > 0xFFFF) {
615      BuildMI(*Preheader, InsertPos, dl,
616              TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS),
617              CountReg).addImm(CountImm >> 16);
618      unsigned CountReg1 = CountReg;
619      CountReg = MF->getRegInfo().createVirtualRegister(RC);
620      BuildMI(*Preheader, InsertPos, dl,
621              TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
622              CountReg).addReg(CountReg1).addImm(CountImm & 0xFFFF);
623    } else {
624      BuildMI(*Preheader, InsertPos, dl,
625              TII->get(isPPC64 ? PPC::LI8 : PPC::LI),
626              CountReg).addImm(CountImm);
627    }
628  }
629
630  // Add the mtctr instruction to the beginning of the loop.
631  BuildMI(*Preheader, InsertPos, dl,
632          TII->get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(CountReg,
633            TripCount->isImm() ? RegState::Kill : 0);
634
635  // Make sure the loop start always has a reference in the CFG.  We need to
636  // create a BlockAddress operand to get this mechanism to work both the
637  // MachineBasicBlock and BasicBlock objects need the flag set.
638  LoopStart->setHasAddressTaken();
639  // This line is needed to set the hasAddressTaken flag on the BasicBlock
640  // object
641  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
642
643  // Replace the loop branch with a bdnz instruction.
644  dl = LastI->getDebugLoc();
645  const std::vector<MachineBasicBlock*> Blocks = L->getBlocks();
646  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
647    MachineBasicBlock *MBB = Blocks[i];
648    if (MBB != Preheader)
649      MBB->addLiveIn(isPPC64 ? PPC::CTR8 : PPC::CTR);
650  }
651
652  // The loop ends with either:
653  //  - a conditional branch followed by an unconditional branch, or
654  //  - a conditional branch to the loop start.
655  assert(LastI->getOpcode() == PPC::BCC &&
656         "loop end must start with a BCC instruction");
657  // Either the BCC branches to the beginning of the loop, or it
658  // branches out of the loop and there is an unconditional branch
659  // to the start of the loop.
660  MachineBasicBlock *BranchTarget = LastI->getOperand(2).getMBB();
661  BuildMI(*LastMBB, LastI, dl,
662        TII->get((BranchTarget == LoopStart) ?
663                 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
664                 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(BranchTarget);
665
666  // Conditional branch; just delete it.
667  LastMBB->erase(LastI);
668
669  delete TripCount;
670
671  // The induction operation (add) and the comparison (cmpwi) may now be
672  // unneeded. If these are unneeded, then remove them.
673  for (unsigned i = 0; i < OldInsts.size(); ++i)
674    removeIfDead(OldInsts[i]);
675
676  ++NumCTRLoops;
677  return true;
678}
679
680