PPCISelLowering.cpp revision 00402c7ec3aaf4d6a22c1eb97b9e1c1bb3136f46
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCTargetMachine.h"
16#include "PPCPerfectShuffle.h"
17#include "llvm/ADT/VectorExtras.h"
18#include "llvm/Analysis/ScalarEvolutionExpressions.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Constants.h"
25#include "llvm/Function.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetOptions.h"
29using namespace llvm;
30
31PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
32  : TargetLowering(TM) {
33
34  // Fold away setcc operations if possible.
35  setSetCCIsExpensive();
36  setPow2DivIsCheap();
37
38  // Use _setjmp/_longjmp instead of setjmp/longjmp.
39  setUseUnderscoreSetJmpLongJmp(true);
40
41  // Set up the register classes.
42  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
43  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
44  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
45
46  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
47  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
48
49  // PowerPC has no intrinsics for these particular operations
50  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
51  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
52  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
53
54  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55  setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
56  setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58  // PowerPC has no SREM/UREM instructions
59  setOperationAction(ISD::SREM, MVT::i32, Expand);
60  setOperationAction(ISD::UREM, MVT::i32, Expand);
61
62  // We don't support sin/cos/sqrt/fmod
63  setOperationAction(ISD::FSIN , MVT::f64, Expand);
64  setOperationAction(ISD::FCOS , MVT::f64, Expand);
65  setOperationAction(ISD::FREM , MVT::f64, Expand);
66  setOperationAction(ISD::FSIN , MVT::f32, Expand);
67  setOperationAction(ISD::FCOS , MVT::f32, Expand);
68  setOperationAction(ISD::FREM , MVT::f32, Expand);
69
70  // If we're enabling GP optimizations, use hardware square root
71  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
72    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
73    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
74  }
75
76  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
77  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
78
79  // PowerPC does not have BSWAP, CTPOP or CTTZ
80  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
81  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
82  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
83
84  // PowerPC does not have ROTR
85  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
86
87  // PowerPC does not have Select
88  setOperationAction(ISD::SELECT, MVT::i32, Expand);
89  setOperationAction(ISD::SELECT, MVT::f32, Expand);
90  setOperationAction(ISD::SELECT, MVT::f64, Expand);
91
92  // PowerPC wants to turn select_cc of FP into fsel when possible.
93  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
94  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
95
96  // PowerPC wants to optimize integer setcc a bit
97  setOperationAction(ISD::SETCC, MVT::i32, Custom);
98
99  // PowerPC does not have BRCOND which requires SetCC
100  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
101
102  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
103  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
104
105  // PowerPC does not have [U|S]INT_TO_FP
106  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
107  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
108
109  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
110  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
111
112  // PowerPC does not have truncstore for i1.
113  setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
114
115  // We cannot sextinreg(i1).  Expand to shifts.
116  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
117
118
119  // Support label based line numbers.
120  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
121  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
122  // FIXME - use subtarget debug flags
123  if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
124    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
125
126  // We want to legalize GlobalAddress and ConstantPool nodes into the
127  // appropriate instructions to materialize the address.
128  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
129  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
130  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
131
132  // RET must be custom lowered, to meet ABI requirements
133  setOperationAction(ISD::RET               , MVT::Other, Custom);
134
135  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
136  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
137
138  // Use the default implementation.
139  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
140  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
141  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
142  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
143  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
144  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
145
146  // We want to custom lower some of our intrinsics.
147  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
148
149  if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
150    // They also have instructions for converting between i64 and fp.
151    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
152    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
153
154    // FIXME: disable this lowered code.  This generates 64-bit register values,
155    // and we don't model the fact that the top part is clobbered by calls.  We
156    // need to flag these together so that the value isn't live across a call.
157    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
158
159    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
160    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
161  } else {
162    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
163    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
164  }
165
166  if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
167    // 64 bit PowerPC implementations can support i64 types directly
168    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
169    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
170    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
171  } else {
172    // 32 bit PowerPC wants to expand i64 shifts itself.
173    setOperationAction(ISD::SHL, MVT::i64, Custom);
174    setOperationAction(ISD::SRL, MVT::i64, Custom);
175    setOperationAction(ISD::SRA, MVT::i64, Custom);
176  }
177
178  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
179    // First set operation action for all vector types to expand. Then we
180    // will selectively turn on ones that can be effectively codegen'd.
181    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
182         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
183      // add/sub are legal for all supported vector VT's.
184      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
185      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
186
187      // We promote all shuffles to v16i8.
188      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
189      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
190
191      // We promote all non-typed operations to v4i32.
192      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
193      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
194      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
195      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
196      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
197      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
198      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
199      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
200      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
201      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
202      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
203      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
204
205      // No other operations are legal.
206      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
207      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
208      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
209      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
210      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
211      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
212      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
213      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
214
215      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
216    }
217
218    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
219    // with merges, splats, etc.
220    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
221
222    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
223    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
224    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
225    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
226    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
227    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
228
229    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
230    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
231    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
232    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
233
234    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
235    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
236    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
237    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
238
239    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
240    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
241
242    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
243    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
244    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
245    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
246  }
247
248  setSetCCResultContents(ZeroOrOneSetCCResult);
249  setStackPointerRegisterToSaveRestore(PPC::R1);
250
251  // We have target-specific dag combine patterns for the following nodes:
252  setTargetDAGCombine(ISD::SINT_TO_FP);
253  setTargetDAGCombine(ISD::STORE);
254  setTargetDAGCombine(ISD::BR_CC);
255
256  computeRegisterProperties();
257}
258
259const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
260  switch (Opcode) {
261  default: return 0;
262  case PPCISD::FSEL:          return "PPCISD::FSEL";
263  case PPCISD::FCFID:         return "PPCISD::FCFID";
264  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
265  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
266  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
267  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
268  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
269  case PPCISD::VPERM:         return "PPCISD::VPERM";
270  case PPCISD::Hi:            return "PPCISD::Hi";
271  case PPCISD::Lo:            return "PPCISD::Lo";
272  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
273  case PPCISD::SRL:           return "PPCISD::SRL";
274  case PPCISD::SRA:           return "PPCISD::SRA";
275  case PPCISD::SHL:           return "PPCISD::SHL";
276  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
277  case PPCISD::STD_32:        return "PPCISD::STD_32";
278  case PPCISD::CALL:          return "PPCISD::CALL";
279  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
280  case PPCISD::MFCR:          return "PPCISD::MFCR";
281  case PPCISD::VCMP:          return "PPCISD::VCMP";
282  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
283  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
284  }
285}
286
287//===----------------------------------------------------------------------===//
288// Node matching predicates, for use by the tblgen matching code.
289//===----------------------------------------------------------------------===//
290
291/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
292static bool isFloatingPointZero(SDOperand Op) {
293  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
294    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
295  else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
296    // Maybe this has already been legalized into the constant pool?
297    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
298      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
299        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
300  }
301  return false;
302}
303
304/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
305/// true if Op is undef or if it matches the specified value.
306static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
307  return Op.getOpcode() == ISD::UNDEF ||
308         cast<ConstantSDNode>(Op)->getValue() == Val;
309}
310
311/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
312/// VPKUHUM instruction.
313bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
314  if (!isUnary) {
315    for (unsigned i = 0; i != 16; ++i)
316      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
317        return false;
318  } else {
319    for (unsigned i = 0; i != 8; ++i)
320      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
321          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
322        return false;
323  }
324  return true;
325}
326
327/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
328/// VPKUWUM instruction.
329bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
330  if (!isUnary) {
331    for (unsigned i = 0; i != 16; i += 2)
332      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
333          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
334        return false;
335  } else {
336    for (unsigned i = 0; i != 8; i += 2)
337      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
338          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
339          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
340          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
341        return false;
342  }
343  return true;
344}
345
346/// isVMerge - Common function, used to match vmrg* shuffles.
347///
348static bool isVMerge(SDNode *N, unsigned UnitSize,
349                     unsigned LHSStart, unsigned RHSStart) {
350  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
351         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
352  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
353         "Unsupported merge size!");
354
355  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
356    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
357      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
358                             LHSStart+j+i*UnitSize) ||
359          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
360                             RHSStart+j+i*UnitSize))
361        return false;
362    }
363      return true;
364}
365
366/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
367/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
368bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
369  if (!isUnary)
370    return isVMerge(N, UnitSize, 8, 24);
371  return isVMerge(N, UnitSize, 8, 8);
372}
373
374/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
375/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
376bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
377  if (!isUnary)
378    return isVMerge(N, UnitSize, 0, 16);
379  return isVMerge(N, UnitSize, 0, 0);
380}
381
382
383/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
384/// amount, otherwise return -1.
385int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
386  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
387         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
388  // Find the first non-undef value in the shuffle mask.
389  unsigned i;
390  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
391    /*search*/;
392
393  if (i == 16) return -1;  // all undef.
394
395  // Otherwise, check to see if the rest of the elements are consequtively
396  // numbered from this value.
397  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
398  if (ShiftAmt < i) return -1;
399  ShiftAmt -= i;
400
401  if (!isUnary) {
402    // Check the rest of the elements to see if they are consequtive.
403    for (++i; i != 16; ++i)
404      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
405        return -1;
406  } else {
407    // Check the rest of the elements to see if they are consequtive.
408    for (++i; i != 16; ++i)
409      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
410        return -1;
411  }
412
413  return ShiftAmt;
414}
415
416/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
417/// specifies a splat of a single element that is suitable for input to
418/// VSPLTB/VSPLTH/VSPLTW.
419bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
420  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
421         N->getNumOperands() == 16 &&
422         (EltSize == 1 || EltSize == 2 || EltSize == 4));
423
424  // This is a splat operation if each element of the permute is the same, and
425  // if the value doesn't reference the second vector.
426  unsigned ElementBase = 0;
427  SDOperand Elt = N->getOperand(0);
428  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
429    ElementBase = EltV->getValue();
430  else
431    return false;   // FIXME: Handle UNDEF elements too!
432
433  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
434    return false;
435
436  // Check that they are consequtive.
437  for (unsigned i = 1; i != EltSize; ++i) {
438    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
439        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
440      return false;
441  }
442
443  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
444  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
445    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
446    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
447           "Invalid VECTOR_SHUFFLE mask!");
448    for (unsigned j = 0; j != EltSize; ++j)
449      if (N->getOperand(i+j) != N->getOperand(j))
450        return false;
451  }
452
453  return true;
454}
455
456/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
457/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
458unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
459  assert(isSplatShuffleMask(N, EltSize));
460  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
461}
462
463/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
464/// by using a vspltis[bhw] instruction of the specified element size, return
465/// the constant being splatted.  The ByteSize field indicates the number of
466/// bytes of each element [124] -> [bhw].
467SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
468  SDOperand OpVal(0, 0);
469
470  // If ByteSize of the splat is bigger than the element size of the
471  // build_vector, then we have a case where we are checking for a splat where
472  // multiple elements of the buildvector are folded together into a single
473  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
474  unsigned EltSize = 16/N->getNumOperands();
475  if (EltSize < ByteSize) {
476    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
477    SDOperand UniquedVals[4];
478    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
479
480    // See if all of the elements in the buildvector agree across.
481    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
482      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
483      // If the element isn't a constant, bail fully out.
484      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
485
486
487      if (UniquedVals[i&(Multiple-1)].Val == 0)
488        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
489      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
490        return SDOperand();  // no match.
491    }
492
493    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
494    // either constant or undef values that are identical for each chunk.  See
495    // if these chunks can form into a larger vspltis*.
496
497    // Check to see if all of the leading entries are either 0 or -1.  If
498    // neither, then this won't fit into the immediate field.
499    bool LeadingZero = true;
500    bool LeadingOnes = true;
501    for (unsigned i = 0; i != Multiple-1; ++i) {
502      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
503
504      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
505      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
506    }
507    // Finally, check the least significant entry.
508    if (LeadingZero) {
509      if (UniquedVals[Multiple-1].Val == 0)
510        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
511      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
512      if (Val < 16)
513        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
514    }
515    if (LeadingOnes) {
516      if (UniquedVals[Multiple-1].Val == 0)
517        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
518      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
519      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
520        return DAG.getTargetConstant(Val, MVT::i32);
521    }
522
523    return SDOperand();
524  }
525
526  // Check to see if this buildvec has a single non-undef value in its elements.
527  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
528    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
529    if (OpVal.Val == 0)
530      OpVal = N->getOperand(i);
531    else if (OpVal != N->getOperand(i))
532      return SDOperand();
533  }
534
535  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
536
537  unsigned ValSizeInBytes = 0;
538  uint64_t Value = 0;
539  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
540    Value = CN->getValue();
541    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
542  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
543    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
544    Value = FloatToBits(CN->getValue());
545    ValSizeInBytes = 4;
546  }
547
548  // If the splat value is larger than the element value, then we can never do
549  // this splat.  The only case that we could fit the replicated bits into our
550  // immediate field for would be zero, and we prefer to use vxor for it.
551  if (ValSizeInBytes < ByteSize) return SDOperand();
552
553  // If the element value is larger than the splat value, cut it in half and
554  // check to see if the two halves are equal.  Continue doing this until we
555  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
556  while (ValSizeInBytes > ByteSize) {
557    ValSizeInBytes >>= 1;
558
559    // If the top half equals the bottom half, we're still ok.
560    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
561         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
562      return SDOperand();
563  }
564
565  // Properly sign extend the value.
566  int ShAmt = (4-ByteSize)*8;
567  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
568
569  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
570  if (MaskVal == 0) return SDOperand();
571
572  // Finally, if this value fits in a 5 bit sext field, return it
573  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
574    return DAG.getTargetConstant(MaskVal, MVT::i32);
575  return SDOperand();
576}
577
578//===----------------------------------------------------------------------===//
579//  LowerOperation implementation
580//===----------------------------------------------------------------------===//
581
582static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
583  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
584  Constant *C = CP->get();
585  SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
586  SDOperand Zero = DAG.getConstant(0, MVT::i32);
587
588  const TargetMachine &TM = DAG.getTarget();
589
590  // If this is a non-darwin platform, we don't support non-static relo models
591  // yet.
592  if (TM.getRelocationModel() == Reloc::Static ||
593      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
594    // Generate non-pic code that has direct accesses to the constant pool.
595    // The address of the global is just (hi(&g)+lo(&g)).
596    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
597    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
598    return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
599  }
600
601  SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
602  if (TM.getRelocationModel() == Reloc::PIC) {
603    // With PIC, the first instruction is actually "GR+hi(&G)".
604    Hi = DAG.getNode(ISD::ADD, MVT::i32,
605                     DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
606  }
607
608  SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
609  Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
610  return Lo;
611}
612
613static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
614  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
615  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
616  SDOperand Zero = DAG.getConstant(0, MVT::i32);
617
618  const TargetMachine &TM = DAG.getTarget();
619
620  // If this is a non-darwin platform, we don't support non-static relo models
621  // yet.
622  if (TM.getRelocationModel() == Reloc::Static ||
623      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
624    // Generate non-pic code that has direct accesses to the constant pool.
625    // The address of the global is just (hi(&g)+lo(&g)).
626    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
627    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
628    return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
629  }
630
631  SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
632  if (TM.getRelocationModel() == Reloc::PIC) {
633    // With PIC, the first instruction is actually "GR+hi(&G)".
634    Hi = DAG.getNode(ISD::ADD, MVT::i32,
635                     DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
636  }
637
638  SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
639  Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
640  return Lo;
641}
642
643static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
644  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
645  GlobalValue *GV = GSDN->getGlobal();
646  SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
647  SDOperand Zero = DAG.getConstant(0, MVT::i32);
648
649  const TargetMachine &TM = DAG.getTarget();
650
651  // If this is a non-darwin platform, we don't support non-static relo models
652  // yet.
653  if (TM.getRelocationModel() == Reloc::Static ||
654      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
655    // Generate non-pic code that has direct accesses to globals.
656    // The address of the global is just (hi(&g)+lo(&g)).
657    SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
658    SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
659    return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
660  }
661
662  SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
663  if (TM.getRelocationModel() == Reloc::PIC) {
664    // With PIC, the first instruction is actually "GR+hi(&G)".
665    Hi = DAG.getNode(ISD::ADD, MVT::i32,
666                     DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
667  }
668
669  SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
670  Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
671
672  if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
673      (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
674    return Lo;
675
676  // If the global is weak or external, we have to go through the lazy
677  // resolution stub.
678  return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
679}
680
681static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
682  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
683
684  // If we're comparing for equality to zero, expose the fact that this is
685  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
686  // fold the new nodes.
687  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
688    if (C->isNullValue() && CC == ISD::SETEQ) {
689      MVT::ValueType VT = Op.getOperand(0).getValueType();
690      SDOperand Zext = Op.getOperand(0);
691      if (VT < MVT::i32) {
692        VT = MVT::i32;
693        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
694      }
695      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
696      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
697      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
698                                  DAG.getConstant(Log2b, MVT::i32));
699      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
700    }
701    // Leave comparisons against 0 and -1 alone for now, since they're usually
702    // optimized.  FIXME: revisit this when we can custom lower all setcc
703    // optimizations.
704    if (C->isAllOnesValue() || C->isNullValue())
705      return SDOperand();
706  }
707
708  // If we have an integer seteq/setne, turn it into a compare against zero
709  // by subtracting the rhs from the lhs, which is faster than setting a
710  // condition register, reading it back out, and masking the correct bit.
711  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
712  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
713    MVT::ValueType VT = Op.getValueType();
714    SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
715                                Op.getOperand(1));
716    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
717  }
718  return SDOperand();
719}
720
721static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
722                              unsigned VarArgsFrameIndex) {
723  // vastart just stores the address of the VarArgsFrameIndex slot into the
724  // memory location argument.
725  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
726  return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
727                     Op.getOperand(1), Op.getOperand(2));
728}
729
730static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
731  SDOperand Copy;
732  switch(Op.getNumOperands()) {
733  default:
734    assert(0 && "Do not know how to return this many arguments!");
735    abort();
736  case 1:
737    return SDOperand(); // ret void is legal
738  case 2: {
739    MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
740    unsigned ArgReg;
741    if (MVT::isVector(ArgVT))
742      ArgReg = PPC::V2;
743    else if (MVT::isInteger(ArgVT))
744      ArgReg = PPC::R3;
745    else {
746      assert(MVT::isFloatingPoint(ArgVT));
747      ArgReg = PPC::F1;
748    }
749
750    Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
751                            SDOperand());
752
753    // If we haven't noted the R3/F1 are live out, do so now.
754    if (DAG.getMachineFunction().liveout_empty())
755      DAG.getMachineFunction().addLiveOut(ArgReg);
756    break;
757  }
758  case 3:
759    Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2),
760                            SDOperand());
761    Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
762    // If we haven't noted the R3+R4 are live out, do so now.
763    if (DAG.getMachineFunction().liveout_empty()) {
764      DAG.getMachineFunction().addLiveOut(PPC::R3);
765      DAG.getMachineFunction().addLiveOut(PPC::R4);
766    }
767    break;
768  }
769  return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
770}
771
772/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
773/// possible.
774static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
775  // Not FP? Not a fsel.
776  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
777      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
778    return SDOperand();
779
780  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
781
782  // Cannot handle SETEQ/SETNE.
783  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
784
785  MVT::ValueType ResVT = Op.getValueType();
786  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
787  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
788  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
789
790  // If the RHS of the comparison is a 0.0, we don't need to do the
791  // subtraction at all.
792  if (isFloatingPointZero(RHS))
793    switch (CC) {
794    default: break;       // SETUO etc aren't handled by fsel.
795    case ISD::SETULT:
796    case ISD::SETLT:
797      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
798    case ISD::SETUGE:
799    case ISD::SETGE:
800      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
801        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
802      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
803    case ISD::SETUGT:
804    case ISD::SETGT:
805      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
806    case ISD::SETULE:
807    case ISD::SETLE:
808      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
809        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
810      return DAG.getNode(PPCISD::FSEL, ResVT,
811                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
812    }
813
814      SDOperand Cmp;
815  switch (CC) {
816  default: break;       // SETUO etc aren't handled by fsel.
817  case ISD::SETULT:
818  case ISD::SETLT:
819    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
820    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
821      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
822      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
823  case ISD::SETUGE:
824  case ISD::SETGE:
825    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
826    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
827      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
828      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
829  case ISD::SETUGT:
830  case ISD::SETGT:
831    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
832    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
833      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
834      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
835  case ISD::SETULE:
836  case ISD::SETLE:
837    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
838    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
839      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
840      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
841  }
842  return SDOperand();
843}
844
845static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
846  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
847  SDOperand Src = Op.getOperand(0);
848  if (Src.getValueType() == MVT::f32)
849    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
850
851  SDOperand Tmp;
852  switch (Op.getValueType()) {
853  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
854  case MVT::i32:
855    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
856    break;
857  case MVT::i64:
858    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
859    break;
860  }
861
862  // Convert the FP value to an int value through memory.
863  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
864  if (Op.getValueType() == MVT::i32)
865    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
866  return Bits;
867}
868
869static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
870  if (Op.getOperand(0).getValueType() == MVT::i64) {
871    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
872    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
873    if (Op.getValueType() == MVT::f32)
874      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
875    return FP;
876  }
877
878  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
879         "Unhandled SINT_TO_FP type in custom expander!");
880  // Since we only generate this in 64-bit mode, we can take advantage of
881  // 64-bit registers.  In particular, sign extend the input value into the
882  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
883  // then lfd it and fcfid it.
884  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
885  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
886  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
887
888  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
889                                Op.getOperand(0));
890
891  // STD the extended value into the stack slot.
892  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
893                                DAG.getEntryNode(), Ext64, FIdx,
894                                DAG.getSrcValue(NULL));
895  // Load the value as a double.
896  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
897
898  // FCFID it and return it.
899  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
900  if (Op.getValueType() == MVT::f32)
901    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
902  return FP;
903}
904
905static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) {
906  assert(Op.getValueType() == MVT::i64 &&
907         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
908  // The generic code does a fine job expanding shift by a constant.
909  if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
910
911  // Otherwise, expand into a bunch of logical ops.  Note that these ops
912  // depend on the PPC behavior for oversized shift amounts.
913  SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
914                             DAG.getConstant(0, MVT::i32));
915  SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
916                             DAG.getConstant(1, MVT::i32));
917  SDOperand Amt = Op.getOperand(1);
918
919  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
920                               DAG.getConstant(32, MVT::i32), Amt);
921  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
922  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
923  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
924  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
925                               DAG.getConstant(-32U, MVT::i32));
926  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
927  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
928  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
929  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
930}
931
932static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) {
933  assert(Op.getValueType() == MVT::i64 &&
934         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
935  // The generic code does a fine job expanding shift by a constant.
936  if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
937
938  // Otherwise, expand into a bunch of logical ops.  Note that these ops
939  // depend on the PPC behavior for oversized shift amounts.
940  SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
941                             DAG.getConstant(0, MVT::i32));
942  SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
943                             DAG.getConstant(1, MVT::i32));
944  SDOperand Amt = Op.getOperand(1);
945
946  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
947                               DAG.getConstant(32, MVT::i32), Amt);
948  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
949  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
950  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
951  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
952                               DAG.getConstant(-32U, MVT::i32));
953  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
954  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
955  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
956  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
957}
958
959static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) {
960  assert(Op.getValueType() == MVT::i64 &&
961         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
962  // The generic code does a fine job expanding shift by a constant.
963  if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
964
965  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
966  SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
967                             DAG.getConstant(0, MVT::i32));
968  SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
969                             DAG.getConstant(1, MVT::i32));
970  SDOperand Amt = Op.getOperand(1);
971
972  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
973                               DAG.getConstant(32, MVT::i32), Amt);
974  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
975  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
976  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
977  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
978                               DAG.getConstant(-32U, MVT::i32));
979  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
980  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
981  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
982                                    Tmp4, Tmp6, ISD::SETLE);
983  return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
984}
985
986//===----------------------------------------------------------------------===//
987// Vector related lowering.
988//
989
990// If this is a vector of constants or undefs, get the bits.  A bit in
991// UndefBits is set if the corresponding element of the vector is an
992// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
993// zero.   Return true if this is not an array of constants, false if it is.
994//
995static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
996                                       uint64_t UndefBits[2]) {
997  // Start with zero'd results.
998  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
999
1000  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1001  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1002    SDOperand OpVal = BV->getOperand(i);
1003
1004    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
1005    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
1006
1007    uint64_t EltBits = 0;
1008    if (OpVal.getOpcode() == ISD::UNDEF) {
1009      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1010      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1011      continue;
1012    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1013      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1014    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1015      assert(CN->getValueType(0) == MVT::f32 &&
1016             "Only one legal FP vector type!");
1017      EltBits = FloatToBits(CN->getValue());
1018    } else {
1019      // Nonconstant element.
1020      return true;
1021    }
1022
1023    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1024  }
1025
1026  //printf("%llx %llx  %llx %llx\n",
1027  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1028  return false;
1029}
1030
1031// If this is a splat (repetition) of a value across the whole vector, return
1032// the smallest size that splats it.  For example, "0x01010101010101..." is a
1033// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1034// SplatSize = 1 byte.
1035static bool isConstantSplat(const uint64_t Bits128[2],
1036                            const uint64_t Undef128[2],
1037                            unsigned &SplatBits, unsigned &SplatUndef,
1038                            unsigned &SplatSize) {
1039
1040  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
1041  // the same as the lower 64-bits, ignoring undefs.
1042  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1043    return false;  // Can't be a splat if two pieces don't match.
1044
1045  uint64_t Bits64  = Bits128[0] | Bits128[1];
1046  uint64_t Undef64 = Undef128[0] & Undef128[1];
1047
1048  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1049  // undefs.
1050  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1051    return false;  // Can't be a splat if two pieces don't match.
1052
1053  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1054  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1055
1056  // If the top 16-bits are different than the lower 16-bits, ignoring
1057  // undefs, we have an i32 splat.
1058  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1059    SplatBits = Bits32;
1060    SplatUndef = Undef32;
1061    SplatSize = 4;
1062    return true;
1063  }
1064
1065  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
1066  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1067
1068  // If the top 8-bits are different than the lower 8-bits, ignoring
1069  // undefs, we have an i16 splat.
1070  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1071    SplatBits = Bits16;
1072    SplatUndef = Undef16;
1073    SplatSize = 2;
1074    return true;
1075  }
1076
1077  // Otherwise, we have an 8-bit splat.
1078  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
1079  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1080  SplatSize = 1;
1081  return true;
1082}
1083
1084/// BuildSplatI - Build a canonical splati of Val with an element size of
1085/// SplatSize.  Cast the result to VT.
1086static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1087                             SelectionDAG &DAG) {
1088  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
1089
1090  // Force vspltis[hw] -1 to vspltisb -1.
1091  if (Val == -1) SplatSize = 1;
1092
1093  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1094    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1095  };
1096  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1097
1098  // Build a canonical splat for this value.
1099  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1100  std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
1101  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
1102  return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1103}
1104
1105/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
1106/// specified intrinsic ID.
1107static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1108                                  SelectionDAG &DAG,
1109                                  MVT::ValueType DestVT = MVT::Other) {
1110  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1111  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1112                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
1113}
1114
1115/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1116/// specified intrinsic ID.
1117static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1118                                  SDOperand Op2, SelectionDAG &DAG,
1119                                  MVT::ValueType DestVT = MVT::Other) {
1120  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1121  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1122                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1123}
1124
1125
1126/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1127/// amount.  The result has the specified value type.
1128static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1129                             MVT::ValueType VT, SelectionDAG &DAG) {
1130  // Force LHS/RHS to be the right type.
1131  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
1132  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
1133
1134  std::vector<SDOperand> Ops;
1135  for (unsigned i = 0; i != 16; ++i)
1136    Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
1137  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
1138                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1139  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
1140}
1141
1142// If this is a case we can't handle, return null and let the default
1143// expansion code take care of it.  If we CAN select this case, and if it
1144// selects to a single instruction, return Op.  Otherwise, if we can codegen
1145// this case more efficiently than a constant pool load, lower it to the
1146// sequence of ops that should be used.
1147static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1148  // If this is a vector of constants or undefs, get the bits.  A bit in
1149  // UndefBits is set if the corresponding element of the vector is an
1150  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1151  // zero.
1152  uint64_t VectorBits[2];
1153  uint64_t UndefBits[2];
1154  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1155    return SDOperand();   // Not a constant vector.
1156
1157  // If this is a splat (repetition) of a value across the whole vector, return
1158  // the smallest size that splats it.  For example, "0x01010101010101..." is a
1159  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1160  // SplatSize = 1 byte.
1161  unsigned SplatBits, SplatUndef, SplatSize;
1162  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1163    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1164
1165    // First, handle single instruction cases.
1166
1167    // All zeros?
1168    if (SplatBits == 0) {
1169      // Canonicalize all zero vectors to be v4i32.
1170      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1171        SDOperand Z = DAG.getConstant(0, MVT::i32);
1172        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1173        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1174      }
1175      return Op;
1176    }
1177
1178    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1179    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
1180    if (SextVal >= -16 && SextVal <= 15)
1181      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
1182
1183
1184    // Two instruction sequences.
1185
1186    // If this value is in the range [-32,30] and is even, use:
1187    //    tmp = VSPLTI[bhw], result = add tmp, tmp
1188    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1189      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
1190      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
1191    }
1192
1193    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
1194    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
1195    // for fneg/fabs.
1196    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
1197      // Make -1 and vspltisw -1:
1198      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
1199
1200      // Make the VSLW intrinsic, computing 0x8000_0000.
1201      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
1202                                       OnesV, DAG);
1203
1204      // xor by OnesV to invert it.
1205      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
1206      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
1207    }
1208
1209    // Check to see if this is a wide variety of vsplti*, binop self cases.
1210    unsigned SplatBitSize = SplatSize*8;
1211    static const char SplatCsts[] = {
1212      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
1213      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
1214    };
1215    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
1216      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
1217      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
1218      int i = SplatCsts[idx];
1219
1220      // Figure out what shift amount will be used by altivec if shifted by i in
1221      // this splat size.
1222      unsigned TypeShiftAmt = i & (SplatBitSize-1);
1223
1224      // vsplti + shl self.
1225      if (SextVal == (i << (int)TypeShiftAmt)) {
1226        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1227        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1228          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
1229          Intrinsic::ppc_altivec_vslw
1230        };
1231        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1232      }
1233
1234      // vsplti + srl self.
1235      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1236        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1237        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1238          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
1239          Intrinsic::ppc_altivec_vsrw
1240        };
1241        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1242      }
1243
1244      // vsplti + sra self.
1245      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1246        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1247        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1248          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
1249          Intrinsic::ppc_altivec_vsraw
1250        };
1251        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1252      }
1253
1254      // vsplti + rol self.
1255      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
1256                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
1257        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1258        static const unsigned IIDs[] = { // Intrinsic to use for each size.
1259          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
1260          Intrinsic::ppc_altivec_vrlw
1261        };
1262        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1263      }
1264
1265      // t = vsplti c, result = vsldoi t, t, 1
1266      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
1267        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1268        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
1269      }
1270      // t = vsplti c, result = vsldoi t, t, 2
1271      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
1272        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1273        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
1274      }
1275      // t = vsplti c, result = vsldoi t, t, 3
1276      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
1277        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1278        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
1279      }
1280    }
1281
1282    // Three instruction sequences.
1283
1284    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
1285    if (SextVal >= 0 && SextVal <= 31) {
1286      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
1287      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1288      return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
1289    }
1290    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
1291    if (SextVal >= -31 && SextVal <= 0) {
1292      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
1293      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1294      return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
1295    }
1296  }
1297
1298  return SDOperand();
1299}
1300
1301/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
1302/// the specified operations to build the shuffle.
1303static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
1304                                        SDOperand RHS, SelectionDAG &DAG) {
1305  unsigned OpNum = (PFEntry >> 26) & 0x0F;
1306  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
1307  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
1308
1309  enum {
1310    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
1311    OP_VMRGHW,
1312    OP_VMRGLW,
1313    OP_VSPLTISW0,
1314    OP_VSPLTISW1,
1315    OP_VSPLTISW2,
1316    OP_VSPLTISW3,
1317    OP_VSLDOI4,
1318    OP_VSLDOI8,
1319    OP_VSLDOI12,
1320  };
1321
1322  if (OpNum == OP_COPY) {
1323    if (LHSID == (1*9+2)*9+3) return LHS;
1324    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
1325    return RHS;
1326  }
1327
1328  SDOperand OpLHS, OpRHS;
1329  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
1330  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
1331
1332  unsigned ShufIdxs[16];
1333  switch (OpNum) {
1334  default: assert(0 && "Unknown i32 permute!");
1335  case OP_VMRGHW:
1336    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
1337    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
1338    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
1339    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
1340    break;
1341  case OP_VMRGLW:
1342    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
1343    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
1344    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
1345    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
1346    break;
1347  case OP_VSPLTISW0:
1348    for (unsigned i = 0; i != 16; ++i)
1349      ShufIdxs[i] = (i&3)+0;
1350    break;
1351  case OP_VSPLTISW1:
1352    for (unsigned i = 0; i != 16; ++i)
1353      ShufIdxs[i] = (i&3)+4;
1354    break;
1355  case OP_VSPLTISW2:
1356    for (unsigned i = 0; i != 16; ++i)
1357      ShufIdxs[i] = (i&3)+8;
1358    break;
1359  case OP_VSPLTISW3:
1360    for (unsigned i = 0; i != 16; ++i)
1361      ShufIdxs[i] = (i&3)+12;
1362    break;
1363  case OP_VSLDOI4:
1364    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
1365  case OP_VSLDOI8:
1366    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
1367  case OP_VSLDOI12:
1368    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
1369  }
1370  std::vector<SDOperand> Ops;
1371  for (unsigned i = 0; i != 16; ++i)
1372    Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
1373
1374  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
1375                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1376}
1377
1378/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
1379/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
1380/// return the code it can be lowered into.  Worst case, it can always be
1381/// lowered into a vperm.
1382static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
1383  SDOperand V1 = Op.getOperand(0);
1384  SDOperand V2 = Op.getOperand(1);
1385  SDOperand PermMask = Op.getOperand(2);
1386
1387  // Cases that are handled by instructions that take permute immediates
1388  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
1389  // selected by the instruction selector.
1390  if (V2.getOpcode() == ISD::UNDEF) {
1391    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
1392        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
1393        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
1394        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
1395        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
1396        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
1397        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
1398        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
1399        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
1400        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
1401        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
1402        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
1403      return Op;
1404    }
1405  }
1406
1407  // Altivec has a variety of "shuffle immediates" that take two vector inputs
1408  // and produce a fixed permutation.  If any of these match, do not lower to
1409  // VPERM.
1410  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
1411      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
1412      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
1413      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
1414      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
1415      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
1416      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
1417      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
1418      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
1419    return Op;
1420
1421  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
1422  // perfect shuffle table to emit an optimal matching sequence.
1423  unsigned PFIndexes[4];
1424  bool isFourElementShuffle = true;
1425  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
1426    unsigned EltNo = 8;   // Start out undef.
1427    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
1428      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
1429        continue;   // Undef, ignore it.
1430
1431      unsigned ByteSource =
1432        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
1433      if ((ByteSource & 3) != j) {
1434        isFourElementShuffle = false;
1435        break;
1436      }
1437
1438      if (EltNo == 8) {
1439        EltNo = ByteSource/4;
1440      } else if (EltNo != ByteSource/4) {
1441        isFourElementShuffle = false;
1442        break;
1443      }
1444    }
1445    PFIndexes[i] = EltNo;
1446  }
1447
1448  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
1449  // perfect shuffle vector to determine if it is cost effective to do this as
1450  // discrete instructions, or whether we should use a vperm.
1451  if (isFourElementShuffle) {
1452    // Compute the index in the perfect shuffle table.
1453    unsigned PFTableIndex =
1454      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
1455
1456    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
1457    unsigned Cost  = (PFEntry >> 30);
1458
1459    // Determining when to avoid vperm is tricky.  Many things affect the cost
1460    // of vperm, particularly how many times the perm mask needs to be computed.
1461    // For example, if the perm mask can be hoisted out of a loop or is already
1462    // used (perhaps because there are multiple permutes with the same shuffle
1463    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
1464    // the loop requires an extra register.
1465    //
1466    // As a compromise, we only emit discrete instructions if the shuffle can be
1467    // generated in 3 or fewer operations.  When we have loop information
1468    // available, if this block is within a loop, we should avoid using vperm
1469    // for 3-operation perms and use a constant pool load instead.
1470    if (Cost < 3)
1471      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
1472  }
1473
1474  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
1475  // vector that will get spilled to the constant pool.
1476  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
1477
1478  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
1479  // that it is in input element units, not in bytes.  Convert now.
1480  MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
1481  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
1482
1483  std::vector<SDOperand> ResultMask;
1484  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
1485    unsigned SrcElt;
1486    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
1487      SrcElt = 0;
1488    else
1489      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
1490
1491    for (unsigned j = 0; j != BytesPerElement; ++j)
1492      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
1493                                           MVT::i8));
1494  }
1495
1496  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
1497  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
1498}
1499
1500/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
1501/// altivec comparison.  If it is, return true and fill in Opc/isDot with
1502/// information about the intrinsic.
1503static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
1504                                  bool &isDot) {
1505  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
1506  CompareOpc = -1;
1507  isDot = false;
1508  switch (IntrinsicID) {
1509  default: return false;
1510    // Comparison predicates.
1511  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
1512  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
1513  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
1514  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
1515  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
1516  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
1517  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
1518  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
1519  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
1520  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
1521  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
1522  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
1523  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
1524
1525    // Normal Comparisons.
1526  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
1527  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
1528  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
1529  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
1530  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
1531  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
1532  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
1533  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
1534  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
1535  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
1536  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
1537  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
1538  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
1539  }
1540  return true;
1541}
1542
1543/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
1544/// lower, do it, otherwise return null.
1545static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
1546  // If this is a lowered altivec predicate compare, CompareOpc is set to the
1547  // opcode number of the comparison.
1548  int CompareOpc;
1549  bool isDot;
1550  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
1551    return SDOperand();    // Don't custom lower most intrinsics.
1552
1553  // If this is a non-dot comparison, make the VCMP node and we are done.
1554  if (!isDot) {
1555    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
1556                                Op.getOperand(1), Op.getOperand(2),
1557                                DAG.getConstant(CompareOpc, MVT::i32));
1558    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
1559  }
1560
1561  // Create the PPCISD altivec 'dot' comparison node.
1562  std::vector<SDOperand> Ops;
1563  std::vector<MVT::ValueType> VTs;
1564  Ops.push_back(Op.getOperand(2));  // LHS
1565  Ops.push_back(Op.getOperand(3));  // RHS
1566  Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
1567  VTs.push_back(Op.getOperand(2).getValueType());
1568  VTs.push_back(MVT::Flag);
1569  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
1570
1571  // Now that we have the comparison, emit a copy from the CR to a GPR.
1572  // This is flagged to the above dot comparison.
1573  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
1574                                DAG.getRegister(PPC::CR6, MVT::i32),
1575                                CompNode.getValue(1));
1576
1577  // Unpack the result based on how the target uses it.
1578  unsigned BitNo;   // Bit # of CR6.
1579  bool InvertBit;   // Invert result?
1580  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1581  default:  // Can't happen, don't crash on invalid number though.
1582  case 0:   // Return the value of the EQ bit of CR6.
1583    BitNo = 0; InvertBit = false;
1584    break;
1585  case 1:   // Return the inverted value of the EQ bit of CR6.
1586    BitNo = 0; InvertBit = true;
1587    break;
1588  case 2:   // Return the value of the LT bit of CR6.
1589    BitNo = 2; InvertBit = false;
1590    break;
1591  case 3:   // Return the inverted value of the LT bit of CR6.
1592    BitNo = 2; InvertBit = true;
1593    break;
1594  }
1595
1596  // Shift the bit into the low position.
1597  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
1598                      DAG.getConstant(8-(3-BitNo), MVT::i32));
1599  // Isolate the bit.
1600  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
1601                      DAG.getConstant(1, MVT::i32));
1602
1603  // If we are supposed to, toggle the bit.
1604  if (InvertBit)
1605    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
1606                        DAG.getConstant(1, MVT::i32));
1607  return Flags;
1608}
1609
1610static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1611  // Create a stack slot that is 16-byte aligned.
1612  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1613  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
1614  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1615
1616  // Store the input value into Value#0 of the stack slot.
1617  SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
1618                                Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
1619  // Load it out.
1620  return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
1621}
1622
1623static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
1624  if (Op.getValueType() == MVT::v4i32) {
1625    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1626
1627    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
1628    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
1629
1630    SDOperand RHSSwap =   // = vrlw RHS, 16
1631      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
1632
1633    // Shrinkify inputs to v8i16.
1634    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
1635    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
1636    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
1637
1638    // Low parts multiplied together, generating 32-bit results (we ignore the
1639    // top parts).
1640    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
1641                                        LHS, RHS, DAG, MVT::v4i32);
1642
1643    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
1644                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
1645    // Shift the high parts up 16 bits.
1646    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
1647    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
1648  } else if (Op.getValueType() == MVT::v8i16) {
1649    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1650
1651    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
1652
1653    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
1654                            LHS, RHS, Zero, DAG);
1655  } else if (Op.getValueType() == MVT::v16i8) {
1656    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1657
1658    // Multiply the even 8-bit parts, producing 16-bit sums.
1659    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
1660                                           LHS, RHS, DAG, MVT::v8i16);
1661    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
1662
1663    // Multiply the odd 8-bit parts, producing 16-bit sums.
1664    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
1665                                          LHS, RHS, DAG, MVT::v8i16);
1666    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
1667
1668    // Merge the results together.
1669    std::vector<SDOperand> Ops;
1670    for (unsigned i = 0; i != 8; ++i) {
1671      Ops.push_back(DAG.getConstant(2*i+1, MVT::i8));
1672      Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8));
1673    }
1674
1675    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
1676                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1677  } else {
1678    assert(0 && "Unknown mul to lower!");
1679    abort();
1680  }
1681}
1682
1683/// LowerOperation - Provide custom lowering hooks for some operations.
1684///
1685SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
1686  switch (Op.getOpcode()) {
1687  default: assert(0 && "Wasn't expecting to be able to lower this!");
1688  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
1689  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
1690  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
1691  case ISD::SETCC:              return LowerSETCC(Op, DAG);
1692  case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex);
1693  case ISD::RET:                return LowerRET(Op, DAG);
1694
1695  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
1696  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
1697  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
1698
1699  // Lower 64-bit shifts.
1700  case ISD::SHL:                return LowerSHL(Op, DAG);
1701  case ISD::SRL:                return LowerSRL(Op, DAG);
1702  case ISD::SRA:                return LowerSRA(Op, DAG);
1703
1704  // Vector-related lowering.
1705  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
1706  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
1707  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1708  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
1709  case ISD::MUL:                return LowerMUL(Op, DAG);
1710  }
1711  return SDOperand();
1712}
1713
1714//===----------------------------------------------------------------------===//
1715//  Other Lowering Code
1716//===----------------------------------------------------------------------===//
1717
1718std::vector<SDOperand>
1719PPCTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
1720  //
1721  // add beautiful description of PPC stack frame format, or at least some docs
1722  //
1723  MachineFunction &MF = DAG.getMachineFunction();
1724  MachineFrameInfo *MFI = MF.getFrameInfo();
1725  SSARegMap *RegMap = MF.getSSARegMap();
1726  std::vector<SDOperand> ArgValues;
1727
1728  unsigned ArgOffset = 24;
1729  unsigned GPR_remaining = 8;
1730  unsigned FPR_remaining = 13;
1731  unsigned GPR_idx = 0, FPR_idx = 0;
1732  static const unsigned GPR[] = {
1733    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1734    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1735  };
1736  static const unsigned FPR[] = {
1737    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1738    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1739  };
1740
1741  // Add DAG nodes to load the arguments...  On entry to a function on PPC,
1742  // the arguments start at offset 24, although they are likely to be passed
1743  // in registers.
1744  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
1745    SDOperand newroot, argt;
1746    unsigned ObjSize;
1747    bool needsLoad = false;
1748    bool ArgLive = !I->use_empty();
1749    MVT::ValueType ObjectVT = getValueType(I->getType());
1750
1751    switch (ObjectVT) {
1752    default: assert(0 && "Unhandled argument type!");
1753    case MVT::i1:
1754    case MVT::i8:
1755    case MVT::i16:
1756    case MVT::i32:
1757      ObjSize = 4;
1758      if (!ArgLive) break;
1759      if (GPR_remaining > 0) {
1760        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1761        MF.addLiveIn(GPR[GPR_idx], VReg);
1762        argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
1763        if (ObjectVT != MVT::i32) {
1764          unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
1765                                                       : ISD::AssertZext;
1766          argt = DAG.getNode(AssertOp, MVT::i32, argt,
1767                             DAG.getValueType(ObjectVT));
1768          argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, argt);
1769        }
1770      } else {
1771        needsLoad = true;
1772      }
1773      break;
1774    case MVT::i64:
1775      ObjSize = 8;
1776      if (!ArgLive) break;
1777      if (GPR_remaining > 0) {
1778        SDOperand argHi, argLo;
1779        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1780        MF.addLiveIn(GPR[GPR_idx], VReg);
1781        argHi = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
1782        // If we have two or more remaining argument registers, then both halves
1783        // of the i64 can be sourced from there.  Otherwise, the lower half will
1784        // have to come off the stack.  This can happen when an i64 is preceded
1785        // by 28 bytes of arguments.
1786        if (GPR_remaining > 1) {
1787          unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1788          MF.addLiveIn(GPR[GPR_idx+1], VReg);
1789          argLo = DAG.getCopyFromReg(argHi, VReg, MVT::i32);
1790        } else {
1791          int FI = MFI->CreateFixedObject(4, ArgOffset+4);
1792          SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
1793          argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
1794                              DAG.getSrcValue(NULL));
1795        }
1796        // Build the outgoing arg thingy
1797        argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
1798        newroot = argLo;
1799      } else {
1800        needsLoad = true;
1801      }
1802      break;
1803    case MVT::f32:
1804    case MVT::f64:
1805      ObjSize = (ObjectVT == MVT::f64) ? 8 : 4;
1806      if (!ArgLive) {
1807        if (FPR_remaining > 0) {
1808          --FPR_remaining;
1809          ++FPR_idx;
1810        }
1811        break;
1812      }
1813      if (FPR_remaining > 0) {
1814        unsigned VReg;
1815        if (ObjectVT == MVT::f32)
1816          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1817        else
1818          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1819        MF.addLiveIn(FPR[FPR_idx], VReg);
1820        argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, ObjectVT);
1821        --FPR_remaining;
1822        ++FPR_idx;
1823      } else {
1824        needsLoad = true;
1825      }
1826      break;
1827    }
1828
1829    // We need to load the argument to a virtual register if we determined above
1830    // that we ran out of physical registers of the appropriate type
1831    if (needsLoad) {
1832      unsigned SubregOffset = 0;
1833      if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
1834      if (ObjectVT == MVT::i16) SubregOffset = 2;
1835      int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1836      SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
1837      FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
1838                        DAG.getConstant(SubregOffset, MVT::i32));
1839      argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
1840                                   DAG.getSrcValue(NULL));
1841    }
1842
1843    // Every 4 bytes of argument space consumes one of the GPRs available for
1844    // argument passing.
1845    if (GPR_remaining > 0) {
1846      unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
1847      GPR_remaining -= delta;
1848      GPR_idx += delta;
1849    }
1850    ArgOffset += ObjSize;
1851    if (newroot.Val)
1852      DAG.setRoot(newroot.getValue(1));
1853
1854    ArgValues.push_back(argt);
1855  }
1856
1857  // If the function takes variable number of arguments, make a frame index for
1858  // the start of the first vararg value... for expansion of llvm.va_start.
1859  if (F.isVarArg()) {
1860    VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1861    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
1862    // If this function is vararg, store any remaining integer argument regs
1863    // to their spots on the stack so that they may be loaded by deferencing the
1864    // result of va_next.
1865    std::vector<SDOperand> MemOps;
1866    for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
1867      unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1868      MF.addLiveIn(GPR[GPR_idx], VReg);
1869      SDOperand Val = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
1870      SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
1871                                    Val, FIN, DAG.getSrcValue(NULL));
1872      MemOps.push_back(Store);
1873      // Increment the address by four for the next argument to store
1874      SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
1875      FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
1876    }
1877    if (!MemOps.empty()) {
1878      MemOps.push_back(DAG.getRoot());
1879      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
1880    }
1881  }
1882
1883  return ArgValues;
1884}
1885
1886std::pair<SDOperand, SDOperand>
1887PPCTargetLowering::LowerCallTo(SDOperand Chain,
1888                               const Type *RetTy, bool isVarArg,
1889                               unsigned CallingConv, bool isTailCall,
1890                               SDOperand Callee, ArgListTy &Args,
1891                               SelectionDAG &DAG) {
1892  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1893  // SelectExpr to use to put the arguments in the appropriate registers.
1894  std::vector<SDOperand> args_to_use;
1895
1896  // Count how many bytes are to be pushed on the stack, including the linkage
1897  // area, and parameter passing area.
1898  unsigned NumBytes = 24;
1899
1900  if (Args.empty()) {
1901    Chain = DAG.getCALLSEQ_START(Chain,
1902                                 DAG.getConstant(NumBytes, getPointerTy()));
1903  } else {
1904    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1905      switch (getValueType(Args[i].second)) {
1906      default: assert(0 && "Unknown value type!");
1907      case MVT::i1:
1908      case MVT::i8:
1909      case MVT::i16:
1910      case MVT::i32:
1911      case MVT::f32:
1912        NumBytes += 4;
1913        break;
1914      case MVT::i64:
1915      case MVT::f64:
1916        NumBytes += 8;
1917        break;
1918      }
1919    }
1920
1921    // Just to be safe, we'll always reserve the full 24 bytes of linkage area
1922    // plus 32 bytes of argument space in case any called code gets funky on us.
1923    // (Required by ABI to support var arg)
1924    if (NumBytes < 56) NumBytes = 56;
1925
1926    // Adjust the stack pointer for the new arguments...
1927    // These operations are automatically eliminated by the prolog/epilog pass
1928    Chain = DAG.getCALLSEQ_START(Chain,
1929                                 DAG.getConstant(NumBytes, getPointerTy()));
1930
1931    // Set up a copy of the stack pointer for use loading and storing any
1932    // arguments that may not fit in the registers available for argument
1933    // passing.
1934    SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1935
1936    // Figure out which arguments are going to go in registers, and which in
1937    // memory.  Also, if this is a vararg function, floating point operations
1938    // must be stored to our stack, and loaded into integer regs as well, if
1939    // any integer regs are available for argument passing.
1940    unsigned ArgOffset = 24;
1941    unsigned GPR_remaining = 8;
1942    unsigned FPR_remaining = 13;
1943
1944    std::vector<SDOperand> MemOps;
1945    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1946      // PtrOff will be used to store the current argument to the stack if a
1947      // register cannot be found for it.
1948      SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1949      PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
1950      MVT::ValueType ArgVT = getValueType(Args[i].second);
1951
1952      switch (ArgVT) {
1953      default: assert(0 && "Unexpected ValueType for argument!");
1954      case MVT::i1:
1955      case MVT::i8:
1956      case MVT::i16:
1957        // Promote the integer to 32 bits.  If the input type is signed use a
1958        // sign extend, otherwise use a zero extend.
1959        if (Args[i].second->isSigned())
1960          Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
1961        else
1962          Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
1963        // FALL THROUGH
1964      case MVT::i32:
1965        if (GPR_remaining > 0) {
1966          args_to_use.push_back(Args[i].first);
1967          --GPR_remaining;
1968        } else {
1969          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1970                                       Args[i].first, PtrOff,
1971                                       DAG.getSrcValue(NULL)));
1972        }
1973        ArgOffset += 4;
1974        break;
1975      case MVT::i64:
1976        // If we have one free GPR left, we can place the upper half of the i64
1977        // in it, and store the other half to the stack.  If we have two or more
1978        // free GPRs, then we can pass both halves of the i64 in registers.
1979        if (GPR_remaining > 0) {
1980          SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1981                                   Args[i].first, DAG.getConstant(1, MVT::i32));
1982          SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1983                                   Args[i].first, DAG.getConstant(0, MVT::i32));
1984          args_to_use.push_back(Hi);
1985          --GPR_remaining;
1986          if (GPR_remaining > 0) {
1987            args_to_use.push_back(Lo);
1988            --GPR_remaining;
1989          } else {
1990            SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1991            PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
1992            MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1993                                         Lo, PtrOff, DAG.getSrcValue(NULL)));
1994          }
1995        } else {
1996          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1997                                       Args[i].first, PtrOff,
1998                                       DAG.getSrcValue(NULL)));
1999        }
2000        ArgOffset += 8;
2001        break;
2002      case MVT::f32:
2003      case MVT::f64:
2004        if (FPR_remaining > 0) {
2005          args_to_use.push_back(Args[i].first);
2006          --FPR_remaining;
2007          if (isVarArg) {
2008            SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
2009                                          Args[i].first, PtrOff,
2010                                          DAG.getSrcValue(NULL));
2011            MemOps.push_back(Store);
2012            // Float varargs are always shadowed in available integer registers
2013            if (GPR_remaining > 0) {
2014              SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
2015                                           DAG.getSrcValue(NULL));
2016              MemOps.push_back(Load.getValue(1));
2017              args_to_use.push_back(Load);
2018              --GPR_remaining;
2019            }
2020            if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
2021              SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
2022              PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
2023              SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
2024                                           DAG.getSrcValue(NULL));
2025              MemOps.push_back(Load.getValue(1));
2026              args_to_use.push_back(Load);
2027              --GPR_remaining;
2028            }
2029          } else {
2030            // If we have any FPRs remaining, we may also have GPRs remaining.
2031            // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2032            // GPRs.
2033            if (GPR_remaining > 0) {
2034              args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2035              --GPR_remaining;
2036            }
2037            if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
2038              args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2039              --GPR_remaining;
2040            }
2041          }
2042        } else {
2043          MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2044                                       Args[i].first, PtrOff,
2045                                       DAG.getSrcValue(NULL)));
2046        }
2047        ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
2048        break;
2049      }
2050    }
2051    if (!MemOps.empty())
2052      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
2053  }
2054
2055  std::vector<MVT::ValueType> RetVals;
2056  MVT::ValueType RetTyVT = getValueType(RetTy);
2057  MVT::ValueType ActualRetTyVT = RetTyVT;
2058  if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
2059    ActualRetTyVT = MVT::i32;   // Promote result to i32.
2060
2061  if (RetTyVT == MVT::i64) {
2062    RetVals.push_back(MVT::i32);
2063    RetVals.push_back(MVT::i32);
2064  } else if (RetTyVT != MVT::isVoid) {
2065    RetVals.push_back(ActualRetTyVT);
2066  }
2067  RetVals.push_back(MVT::Other);
2068
2069  // If the callee is a GlobalAddress node (quite common, every direct call is)
2070  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
2071  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2072    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
2073
2074  std::vector<SDOperand> Ops;
2075  Ops.push_back(Chain);
2076  Ops.push_back(Callee);
2077  Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
2078  SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
2079  Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
2080  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
2081                      DAG.getConstant(NumBytes, getPointerTy()));
2082  SDOperand RetVal = TheCall;
2083
2084  // If the result is a small value, add a note so that we keep track of the
2085  // information about whether it is sign or zero extended.
2086  if (RetTyVT != ActualRetTyVT) {
2087    RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
2088                         MVT::i32, RetVal, DAG.getValueType(RetTyVT));
2089    RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
2090  } else if (RetTyVT == MVT::i64) {
2091    RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
2092  }
2093
2094  return std::make_pair(RetVal, Chain);
2095}
2096
2097MachineBasicBlock *
2098PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2099                                           MachineBasicBlock *BB) {
2100  assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
2101          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2102          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2103          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2104         "Unexpected instr type to insert");
2105
2106  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2107  // control-flow pattern.  The incoming instruction knows the destination vreg
2108  // to set, the condition code register to branch on, the true/false values to
2109  // select between, and a branch opcode to use.
2110  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2111  ilist<MachineBasicBlock>::iterator It = BB;
2112  ++It;
2113
2114  //  thisMBB:
2115  //  ...
2116  //   TrueVal = ...
2117  //   cmpTY ccX, r1, r2
2118  //   bCC copy1MBB
2119  //   fallthrough --> copy0MBB
2120  MachineBasicBlock *thisMBB = BB;
2121  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2122  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2123  BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
2124    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2125  MachineFunction *F = BB->getParent();
2126  F->getBasicBlockList().insert(It, copy0MBB);
2127  F->getBasicBlockList().insert(It, sinkMBB);
2128  // Update machine-CFG edges by first adding all successors of the current
2129  // block to the new block which will contain the Phi node for the select.
2130  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2131      e = BB->succ_end(); i != e; ++i)
2132    sinkMBB->addSuccessor(*i);
2133  // Next, remove all successors of the current block, and add the true
2134  // and fallthrough blocks as its successors.
2135  while(!BB->succ_empty())
2136    BB->removeSuccessor(BB->succ_begin());
2137  BB->addSuccessor(copy0MBB);
2138  BB->addSuccessor(sinkMBB);
2139
2140  //  copy0MBB:
2141  //   %FalseValue = ...
2142  //   # fallthrough to sinkMBB
2143  BB = copy0MBB;
2144
2145  // Update machine-CFG edges
2146  BB->addSuccessor(sinkMBB);
2147
2148  //  sinkMBB:
2149  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2150  //  ...
2151  BB = sinkMBB;
2152  BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2153    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2154    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2155
2156  delete MI;   // The pseudo instruction is gone now.
2157  return BB;
2158}
2159
2160//===----------------------------------------------------------------------===//
2161// Target Optimization Hooks
2162//===----------------------------------------------------------------------===//
2163
2164SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2165                                               DAGCombinerInfo &DCI) const {
2166  TargetMachine &TM = getTargetMachine();
2167  SelectionDAG &DAG = DCI.DAG;
2168  switch (N->getOpcode()) {
2169  default: break;
2170  case ISD::SINT_TO_FP:
2171    if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
2172      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2173        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2174        // We allow the src/dst to be either f32/f64, but the intermediate
2175        // type must be i64.
2176        if (N->getOperand(0).getValueType() == MVT::i64) {
2177          SDOperand Val = N->getOperand(0).getOperand(0);
2178          if (Val.getValueType() == MVT::f32) {
2179            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2180            DCI.AddToWorklist(Val.Val);
2181          }
2182
2183          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2184          DCI.AddToWorklist(Val.Val);
2185          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2186          DCI.AddToWorklist(Val.Val);
2187          if (N->getValueType(0) == MVT::f32) {
2188            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2189            DCI.AddToWorklist(Val.Val);
2190          }
2191          return Val;
2192        } else if (N->getOperand(0).getValueType() == MVT::i32) {
2193          // If the intermediate type is i32, we can avoid the load/store here
2194          // too.
2195        }
2196      }
2197    }
2198    break;
2199  case ISD::STORE:
2200    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2201    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2202        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2203        N->getOperand(1).getValueType() == MVT::i32) {
2204      SDOperand Val = N->getOperand(1).getOperand(0);
2205      if (Val.getValueType() == MVT::f32) {
2206        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2207        DCI.AddToWorklist(Val.Val);
2208      }
2209      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2210      DCI.AddToWorklist(Val.Val);
2211
2212      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2213                        N->getOperand(2), N->getOperand(3));
2214      DCI.AddToWorklist(Val.Val);
2215      return Val;
2216    }
2217    break;
2218  case PPCISD::VCMP: {
2219    // If a VCMPo node already exists with exactly the same operands as this
2220    // node, use its result instead of this node (VCMPo computes both a CR6 and
2221    // a normal output).
2222    //
2223    if (!N->getOperand(0).hasOneUse() &&
2224        !N->getOperand(1).hasOneUse() &&
2225        !N->getOperand(2).hasOneUse()) {
2226
2227      // Scan all of the users of the LHS, looking for VCMPo's that match.
2228      SDNode *VCMPoNode = 0;
2229
2230      SDNode *LHSN = N->getOperand(0).Val;
2231      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2232           UI != E; ++UI)
2233        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2234            (*UI)->getOperand(1) == N->getOperand(1) &&
2235            (*UI)->getOperand(2) == N->getOperand(2) &&
2236            (*UI)->getOperand(0) == N->getOperand(0)) {
2237          VCMPoNode = *UI;
2238          break;
2239        }
2240
2241      // If there is no VCMPo node, or if the flag value has a single use, don't
2242      // transform this.
2243      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2244        break;
2245
2246      // Look at the (necessarily single) use of the flag value.  If it has a
2247      // chain, this transformation is more complex.  Note that multiple things
2248      // could use the value result, which we should ignore.
2249      SDNode *FlagUser = 0;
2250      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2251           FlagUser == 0; ++UI) {
2252        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2253        SDNode *User = *UI;
2254        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2255          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2256            FlagUser = User;
2257            break;
2258          }
2259        }
2260      }
2261
2262      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
2263      // give up for right now.
2264      if (FlagUser->getOpcode() == PPCISD::MFCR)
2265        return SDOperand(VCMPoNode, 0);
2266    }
2267    break;
2268  }
2269  case ISD::BR_CC: {
2270    // If this is a branch on an altivec predicate comparison, lower this so
2271    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
2272    // lowering is done pre-legalize, because the legalizer lowers the predicate
2273    // compare down to code that is difficult to reassemble.
2274    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2275    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2276    int CompareOpc;
2277    bool isDot;
2278
2279    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2280        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2281        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2282      assert(isDot && "Can't compare against a vector result!");
2283
2284      // If this is a comparison against something other than 0/1, then we know
2285      // that the condition is never/always true.
2286      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2287      if (Val != 0 && Val != 1) {
2288        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
2289          return N->getOperand(0);
2290        // Always !=, turn it into an unconditional branch.
2291        return DAG.getNode(ISD::BR, MVT::Other,
2292                           N->getOperand(0), N->getOperand(4));
2293      }
2294
2295      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2296
2297      // Create the PPCISD altivec 'dot' comparison node.
2298      std::vector<SDOperand> Ops;
2299      std::vector<MVT::ValueType> VTs;
2300      Ops.push_back(LHS.getOperand(2));  // LHS of compare
2301      Ops.push_back(LHS.getOperand(3));  // RHS of compare
2302      Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
2303      VTs.push_back(LHS.getOperand(2).getValueType());
2304      VTs.push_back(MVT::Flag);
2305      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
2306
2307      // Unpack the result based on how the target uses it.
2308      unsigned CompOpc;
2309      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2310      default:  // Can't happen, don't crash on invalid number though.
2311      case 0:   // Branch on the value of the EQ bit of CR6.
2312        CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
2313        break;
2314      case 1:   // Branch on the inverted value of the EQ bit of CR6.
2315        CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
2316        break;
2317      case 2:   // Branch on the value of the LT bit of CR6.
2318        CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
2319        break;
2320      case 3:   // Branch on the inverted value of the LT bit of CR6.
2321        CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
2322        break;
2323      }
2324
2325      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2326                         DAG.getRegister(PPC::CR6, MVT::i32),
2327                         DAG.getConstant(CompOpc, MVT::i32),
2328                         N->getOperand(4), CompNode.getValue(1));
2329    }
2330    break;
2331  }
2332  }
2333
2334  return SDOperand();
2335}
2336
2337//===----------------------------------------------------------------------===//
2338// Inline Assembly Support
2339//===----------------------------------------------------------------------===//
2340
2341void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2342                                                       uint64_t Mask,
2343                                                       uint64_t &KnownZero,
2344                                                       uint64_t &KnownOne,
2345                                                       unsigned Depth) const {
2346  KnownZero = 0;
2347  KnownOne = 0;
2348  switch (Op.getOpcode()) {
2349  default: break;
2350  case ISD::INTRINSIC_WO_CHAIN: {
2351    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2352    default: break;
2353    case Intrinsic::ppc_altivec_vcmpbfp_p:
2354    case Intrinsic::ppc_altivec_vcmpeqfp_p:
2355    case Intrinsic::ppc_altivec_vcmpequb_p:
2356    case Intrinsic::ppc_altivec_vcmpequh_p:
2357    case Intrinsic::ppc_altivec_vcmpequw_p:
2358    case Intrinsic::ppc_altivec_vcmpgefp_p:
2359    case Intrinsic::ppc_altivec_vcmpgtfp_p:
2360    case Intrinsic::ppc_altivec_vcmpgtsb_p:
2361    case Intrinsic::ppc_altivec_vcmpgtsh_p:
2362    case Intrinsic::ppc_altivec_vcmpgtsw_p:
2363    case Intrinsic::ppc_altivec_vcmpgtub_p:
2364    case Intrinsic::ppc_altivec_vcmpgtuh_p:
2365    case Intrinsic::ppc_altivec_vcmpgtuw_p:
2366      KnownZero = ~1U;  // All bits but the low one are known to be zero.
2367      break;
2368    }
2369  }
2370  }
2371}
2372
2373
2374/// getConstraintType - Given a constraint letter, return the type of
2375/// constraint it is for this target.
2376PPCTargetLowering::ConstraintType
2377PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2378  switch (ConstraintLetter) {
2379  default: break;
2380  case 'b':
2381  case 'r':
2382  case 'f':
2383  case 'v':
2384  case 'y':
2385    return C_RegisterClass;
2386  }
2387  return TargetLowering::getConstraintType(ConstraintLetter);
2388}
2389
2390
2391std::vector<unsigned> PPCTargetLowering::
2392getRegClassForInlineAsmConstraint(const std::string &Constraint,
2393                                  MVT::ValueType VT) const {
2394  if (Constraint.size() == 1) {
2395    switch (Constraint[0]) {      // GCC RS6000 Constraint Letters
2396    default: break;  // Unknown constriant letter
2397    case 'b':
2398      return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
2399                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2400                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2401                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2402                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2403                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2404                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2405                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2406                                   0);
2407    case 'r':
2408      return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
2409                                   PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2410                                   PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2411                                   PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2412                                   PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2413                                   PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2414                                   PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2415                                   PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2416                                   0);
2417    case 'f':
2418      return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
2419                                   PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
2420                                   PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
2421                                   PPC::F12, PPC::F13, PPC::F14, PPC::F15,
2422                                   PPC::F16, PPC::F17, PPC::F18, PPC::F19,
2423                                   PPC::F20, PPC::F21, PPC::F22, PPC::F23,
2424                                   PPC::F24, PPC::F25, PPC::F26, PPC::F27,
2425                                   PPC::F28, PPC::F29, PPC::F30, PPC::F31,
2426                                   0);
2427    case 'v':
2428      return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
2429                                   PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
2430                                   PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
2431                                   PPC::V12, PPC::V13, PPC::V14, PPC::V15,
2432                                   PPC::V16, PPC::V17, PPC::V18, PPC::V19,
2433                                   PPC::V20, PPC::V21, PPC::V22, PPC::V23,
2434                                   PPC::V24, PPC::V25, PPC::V26, PPC::V27,
2435                                   PPC::V28, PPC::V29, PPC::V30, PPC::V31,
2436                                   0);
2437    case 'y':
2438      return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
2439                                   PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
2440                                   0);
2441    }
2442  }
2443
2444  return std::vector<unsigned>();
2445}
2446
2447// isOperandValidForConstraint
2448bool PPCTargetLowering::
2449isOperandValidForConstraint(SDOperand Op, char Letter) {
2450  switch (Letter) {
2451  default: break;
2452  case 'I':
2453  case 'J':
2454  case 'K':
2455  case 'L':
2456  case 'M':
2457  case 'N':
2458  case 'O':
2459  case 'P': {
2460    if (!isa<ConstantSDNode>(Op)) return false;  // Must be an immediate.
2461    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2462    switch (Letter) {
2463    default: assert(0 && "Unknown constraint letter!");
2464    case 'I':  // "I" is a signed 16-bit constant.
2465      return (short)Value == (int)Value;
2466    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
2467    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
2468      return (short)Value == 0;
2469    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
2470      return (Value >> 16) == 0;
2471    case 'M':  // "M" is a constant that is greater than 31.
2472      return Value > 31;
2473    case 'N':  // "N" is a positive constant that is an exact power of two.
2474      return (int)Value > 0 && isPowerOf2_32(Value);
2475    case 'O':  // "O" is the constant zero.
2476      return Value == 0;
2477    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
2478      return (short)-Value == (int)-Value;
2479    }
2480    break;
2481  }
2482  }
2483
2484  // Handle standard constraint letters.
2485  return TargetLowering::isOperandValidForConstraint(Op, Letter);
2486}
2487
2488/// isLegalAddressImmediate - Return true if the integer value can be used
2489/// as the offset of the target addressing mode.
2490bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2491  // PPC allows a sign-extended 16-bit immediate field.
2492  return (V > -(1 << 16) && V < (1 << 16)-1);
2493}
2494