PPCISelLowering.cpp revision 0c9b559bfd0b476c2dde787285a1195f3142c423
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPerfectShuffle.h"
17#include "PPCPredicates.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Constants.h"
31#include "llvm/Function.h"
32#include "llvm/Intrinsics.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
46                                            MVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
51                                              MVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
77  // arguments are at least 4/8 bytes aligned.
78  setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
82  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
83  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
84
85  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
86  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
87  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
88
89  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
90
91  // PowerPC has pre-inc load and store's.
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
93  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
98  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
102
103  // This is used in the ppcf128->int sequence.  Note it has different semantics
104  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
105  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
106
107  // PowerPC has no SREM/UREM instructions
108  setOperationAction(ISD::SREM, MVT::i32, Expand);
109  setOperationAction(ISD::UREM, MVT::i32, Expand);
110  setOperationAction(ISD::SREM, MVT::i64, Expand);
111  setOperationAction(ISD::UREM, MVT::i64, Expand);
112
113  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
114  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
115  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
116  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
117  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
118  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
119  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
120  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
121  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
122
123  // We don't support sin/cos/sqrt/fmod/pow
124  setOperationAction(ISD::FSIN , MVT::f64, Expand);
125  setOperationAction(ISD::FCOS , MVT::f64, Expand);
126  setOperationAction(ISD::FREM , MVT::f64, Expand);
127  setOperationAction(ISD::FPOW , MVT::f64, Expand);
128  setOperationAction(ISD::FSIN , MVT::f32, Expand);
129  setOperationAction(ISD::FCOS , MVT::f32, Expand);
130  setOperationAction(ISD::FREM , MVT::f32, Expand);
131  setOperationAction(ISD::FPOW , MVT::f32, Expand);
132
133  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
134
135  // If we're enabling GP optimizations, use hardware square root
136  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
137    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
138    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
139  }
140
141  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
142  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
143
144  // PowerPC does not have BSWAP, CTPOP or CTTZ
145  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
146  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
147  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
148  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
149  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
150  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
151
152  // PowerPC does not have ROTR
153  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
154  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
155
156  // PowerPC does not have Select
157  setOperationAction(ISD::SELECT, MVT::i32, Expand);
158  setOperationAction(ISD::SELECT, MVT::i64, Expand);
159  setOperationAction(ISD::SELECT, MVT::f32, Expand);
160  setOperationAction(ISD::SELECT, MVT::f64, Expand);
161
162  // PowerPC wants to turn select_cc of FP into fsel when possible.
163  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
164  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
165
166  // PowerPC wants to optimize integer setcc a bit
167  setOperationAction(ISD::SETCC, MVT::i32, Custom);
168
169  // PowerPC does not have BRCOND which requires SetCC
170  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
171
172  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
173
174  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
175  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
176
177  // PowerPC does not have [U|S]INT_TO_FP
178  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
179  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
180
181  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
182  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
183  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
184  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
185
186  // We cannot sextinreg(i1).  Expand to shifts.
187  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
188
189  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
193
194
195  // We want to legalize GlobalAddress and ConstantPool nodes into the
196  // appropriate instructions to materialize the address.
197  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
200  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
201  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
202  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
203  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
204  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
205  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
206  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
207
208  // TRAP is legal.
209  setOperationAction(ISD::TRAP, MVT::Other, Legal);
210
211  // TRAMPOLINE is custom lowered.
212  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
213
214  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
215  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
216
217  // VAARG is custom lowered with the 32-bit SVR4 ABI.
218  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
219      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
220    setOperationAction(ISD::VAARG, MVT::Other, Custom);
221  else
222    setOperationAction(ISD::VAARG, MVT::Other, Expand);
223
224  // Use the default implementation.
225  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
226  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
227  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
228  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
229  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
230  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
231
232  // We want to custom lower some of our intrinsics.
233  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
234
235  // Comparisons that require checking two conditions.
236  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
244  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
247  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
248
249  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
250    // They also have instructions for converting between i64 and fp.
251    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
252    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
253    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
254    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
255    // This is just the low 32 bits of a (signed) fp->i64 conversion.
256    // We cannot do this with Promote because i64 is not a legal type.
257    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
258
259    // FIXME: disable this lowered code.  This generates 64-bit register values,
260    // and we don't model the fact that the top part is clobbered by calls.  We
261    // need to flag these together so that the value isn't live across a call.
262    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
263  } else {
264    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
265    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
266  }
267
268  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
269    // 64-bit PowerPC implementations can support i64 types directly
270    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
271    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
272    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
273    // 64-bit PowerPC wants to expand i128 shifts itself.
274    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
275    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
276    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
277  } else {
278    // 32-bit PowerPC wants to expand i64 shifts itself.
279    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
280    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
281    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
282  }
283
284  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
285    // First set operation action for all vector types to expand. Then we
286    // will selectively turn on ones that can be effectively codegen'd.
287    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
288         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
289      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
290
291      // add/sub are legal for all supported vector VT's.
292      setOperationAction(ISD::ADD , VT, Legal);
293      setOperationAction(ISD::SUB , VT, Legal);
294
295      // We promote all shuffles to v16i8.
296      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
297      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
298
299      // We promote all non-typed operations to v4i32.
300      setOperationAction(ISD::AND   , VT, Promote);
301      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
302      setOperationAction(ISD::OR    , VT, Promote);
303      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
304      setOperationAction(ISD::XOR   , VT, Promote);
305      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
306      setOperationAction(ISD::LOAD  , VT, Promote);
307      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
308      setOperationAction(ISD::SELECT, VT, Promote);
309      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
310      setOperationAction(ISD::STORE, VT, Promote);
311      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
312
313      // No other operations are legal.
314      setOperationAction(ISD::MUL , VT, Expand);
315      setOperationAction(ISD::SDIV, VT, Expand);
316      setOperationAction(ISD::SREM, VT, Expand);
317      setOperationAction(ISD::UDIV, VT, Expand);
318      setOperationAction(ISD::UREM, VT, Expand);
319      setOperationAction(ISD::FDIV, VT, Expand);
320      setOperationAction(ISD::FNEG, VT, Expand);
321      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
322      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
323      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
324      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
325      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
326      setOperationAction(ISD::UDIVREM, VT, Expand);
327      setOperationAction(ISD::SDIVREM, VT, Expand);
328      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
329      setOperationAction(ISD::FPOW, VT, Expand);
330      setOperationAction(ISD::CTPOP, VT, Expand);
331      setOperationAction(ISD::CTLZ, VT, Expand);
332      setOperationAction(ISD::CTTZ, VT, Expand);
333    }
334
335    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
336    // with merges, splats, etc.
337    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
338
339    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
340    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
341    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
342    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
343    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
344    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
345
346    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
347    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
348    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
349    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
350
351    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
352    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
353    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
354    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
355
356    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
357    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
358
359    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
360    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
361    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
362    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
363  }
364
365  setBooleanContents(ZeroOrOneBooleanContent);
366
367  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
368    setStackPointerRegisterToSaveRestore(PPC::X1);
369    setExceptionPointerRegister(PPC::X3);
370    setExceptionSelectorRegister(PPC::X4);
371  } else {
372    setStackPointerRegisterToSaveRestore(PPC::R1);
373    setExceptionPointerRegister(PPC::R3);
374    setExceptionSelectorRegister(PPC::R4);
375  }
376
377  // We have target-specific dag combine patterns for the following nodes:
378  setTargetDAGCombine(ISD::SINT_TO_FP);
379  setTargetDAGCombine(ISD::STORE);
380  setTargetDAGCombine(ISD::BR_CC);
381  setTargetDAGCombine(ISD::BSWAP);
382
383  // Darwin long double math library functions have $LDBL128 appended.
384  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
385    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
386    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
387    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
388    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
389    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
390    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
391    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
392    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
393    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
394    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
395  }
396
397  setMinFunctionAlignment(2);
398  if (PPCSubTarget.isDarwin())
399    setPrefFunctionAlignment(4);
400
401  computeRegisterProperties();
402}
403
404/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
405/// function arguments in the caller parameter area.
406unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
407  const TargetMachine &TM = getTargetMachine();
408  // Darwin passes everything on 4 byte boundary.
409  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
410    return 4;
411  // FIXME SVR4 TBD
412  return 4;
413}
414
415const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
416  switch (Opcode) {
417  default: return 0;
418  case PPCISD::FSEL:            return "PPCISD::FSEL";
419  case PPCISD::FCFID:           return "PPCISD::FCFID";
420  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
421  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
422  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
423  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
424  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
425  case PPCISD::VPERM:           return "PPCISD::VPERM";
426  case PPCISD::Hi:              return "PPCISD::Hi";
427  case PPCISD::Lo:              return "PPCISD::Lo";
428  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
429  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
430  case PPCISD::LOAD:            return "PPCISD::LOAD";
431  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
432  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
433  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
434  case PPCISD::SRL:             return "PPCISD::SRL";
435  case PPCISD::SRA:             return "PPCISD::SRA";
436  case PPCISD::SHL:             return "PPCISD::SHL";
437  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
438  case PPCISD::STD_32:          return "PPCISD::STD_32";
439  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
440  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
441  case PPCISD::NOP:             return "PPCISD::NOP";
442  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
443  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
444  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
445  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
446  case PPCISD::MFCR:            return "PPCISD::MFCR";
447  case PPCISD::VCMP:            return "PPCISD::VCMP";
448  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
449  case PPCISD::LBRX:            return "PPCISD::LBRX";
450  case PPCISD::STBRX:           return "PPCISD::STBRX";
451  case PPCISD::LARX:            return "PPCISD::LARX";
452  case PPCISD::STCX:            return "PPCISD::STCX";
453  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
454  case PPCISD::MFFS:            return "PPCISD::MFFS";
455  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
456  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
457  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
458  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
459  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
460  }
461}
462
463MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
464  return MVT::i32;
465}
466
467//===----------------------------------------------------------------------===//
468// Node matching predicates, for use by the tblgen matching code.
469//===----------------------------------------------------------------------===//
470
471/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
472static bool isFloatingPointZero(SDValue Op) {
473  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
474    return CFP->getValueAPF().isZero();
475  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
476    // Maybe this has already been legalized into the constant pool?
477    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
478      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
479        return CFP->getValueAPF().isZero();
480  }
481  return false;
482}
483
484/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
485/// true if Op is undef or if it matches the specified value.
486static bool isConstantOrUndef(int Op, int Val) {
487  return Op < 0 || Op == Val;
488}
489
490/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
491/// VPKUHUM instruction.
492bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
493  if (!isUnary) {
494    for (unsigned i = 0; i != 16; ++i)
495      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
496        return false;
497  } else {
498    for (unsigned i = 0; i != 8; ++i)
499      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
500          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
501        return false;
502  }
503  return true;
504}
505
506/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
507/// VPKUWUM instruction.
508bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
509  if (!isUnary) {
510    for (unsigned i = 0; i != 16; i += 2)
511      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
512          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
513        return false;
514  } else {
515    for (unsigned i = 0; i != 8; i += 2)
516      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
517          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
518          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
519          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
520        return false;
521  }
522  return true;
523}
524
525/// isVMerge - Common function, used to match vmrg* shuffles.
526///
527static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
528                     unsigned LHSStart, unsigned RHSStart) {
529  assert(N->getValueType(0) == MVT::v16i8 &&
530         "PPC only supports shuffles by bytes!");
531  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
532         "Unsupported merge size!");
533
534  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
535    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
536      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
537                             LHSStart+j+i*UnitSize) ||
538          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
539                             RHSStart+j+i*UnitSize))
540        return false;
541    }
542  return true;
543}
544
545/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
546/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
547bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
548                             bool isUnary) {
549  if (!isUnary)
550    return isVMerge(N, UnitSize, 8, 24);
551  return isVMerge(N, UnitSize, 8, 8);
552}
553
554/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
555/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
556bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
557                             bool isUnary) {
558  if (!isUnary)
559    return isVMerge(N, UnitSize, 0, 16);
560  return isVMerge(N, UnitSize, 0, 0);
561}
562
563
564/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
565/// amount, otherwise return -1.
566int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
567  assert(N->getValueType(0) == MVT::v16i8 &&
568         "PPC only supports shuffles by bytes!");
569
570  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
571
572  // Find the first non-undef value in the shuffle mask.
573  unsigned i;
574  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
575    /*search*/;
576
577  if (i == 16) return -1;  // all undef.
578
579  // Otherwise, check to see if the rest of the elements are consecutively
580  // numbered from this value.
581  unsigned ShiftAmt = SVOp->getMaskElt(i);
582  if (ShiftAmt < i) return -1;
583  ShiftAmt -= i;
584
585  if (!isUnary) {
586    // Check the rest of the elements to see if they are consecutive.
587    for (++i; i != 16; ++i)
588      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
589        return -1;
590  } else {
591    // Check the rest of the elements to see if they are consecutive.
592    for (++i; i != 16; ++i)
593      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
594        return -1;
595  }
596  return ShiftAmt;
597}
598
599/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
600/// specifies a splat of a single element that is suitable for input to
601/// VSPLTB/VSPLTH/VSPLTW.
602bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
603  assert(N->getValueType(0) == MVT::v16i8 &&
604         (EltSize == 1 || EltSize == 2 || EltSize == 4));
605
606  // This is a splat operation if each element of the permute is the same, and
607  // if the value doesn't reference the second vector.
608  unsigned ElementBase = N->getMaskElt(0);
609
610  // FIXME: Handle UNDEF elements too!
611  if (ElementBase >= 16)
612    return false;
613
614  // Check that the indices are consecutive, in the case of a multi-byte element
615  // splatted with a v16i8 mask.
616  for (unsigned i = 1; i != EltSize; ++i)
617    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
618      return false;
619
620  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
621    if (N->getMaskElt(i) < 0) continue;
622    for (unsigned j = 0; j != EltSize; ++j)
623      if (N->getMaskElt(i+j) != N->getMaskElt(j))
624        return false;
625  }
626  return true;
627}
628
629/// isAllNegativeZeroVector - Returns true if all elements of build_vector
630/// are -0.0.
631bool PPC::isAllNegativeZeroVector(SDNode *N) {
632  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
633
634  APInt APVal, APUndef;
635  unsigned BitSize;
636  bool HasAnyUndefs;
637
638  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
639    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
640      return CFP->getValueAPF().isNegZero();
641
642  return false;
643}
644
645/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
646/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
647unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
648  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
649  assert(isSplatShuffleMask(SVOp, EltSize));
650  return SVOp->getMaskElt(0) / EltSize;
651}
652
653/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
654/// by using a vspltis[bhw] instruction of the specified element size, return
655/// the constant being splatted.  The ByteSize field indicates the number of
656/// bytes of each element [124] -> [bhw].
657SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
658  SDValue OpVal(0, 0);
659
660  // If ByteSize of the splat is bigger than the element size of the
661  // build_vector, then we have a case where we are checking for a splat where
662  // multiple elements of the buildvector are folded together into a single
663  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
664  unsigned EltSize = 16/N->getNumOperands();
665  if (EltSize < ByteSize) {
666    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
667    SDValue UniquedVals[4];
668    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
669
670    // See if all of the elements in the buildvector agree across.
671    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
672      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
673      // If the element isn't a constant, bail fully out.
674      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
675
676
677      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
678        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
679      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
680        return SDValue();  // no match.
681    }
682
683    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
684    // either constant or undef values that are identical for each chunk.  See
685    // if these chunks can form into a larger vspltis*.
686
687    // Check to see if all of the leading entries are either 0 or -1.  If
688    // neither, then this won't fit into the immediate field.
689    bool LeadingZero = true;
690    bool LeadingOnes = true;
691    for (unsigned i = 0; i != Multiple-1; ++i) {
692      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
693
694      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
695      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
696    }
697    // Finally, check the least significant entry.
698    if (LeadingZero) {
699      if (UniquedVals[Multiple-1].getNode() == 0)
700        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
701      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
702      if (Val < 16)
703        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
704    }
705    if (LeadingOnes) {
706      if (UniquedVals[Multiple-1].getNode() == 0)
707        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
708      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
709      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
710        return DAG.getTargetConstant(Val, MVT::i32);
711    }
712
713    return SDValue();
714  }
715
716  // Check to see if this buildvec has a single non-undef value in its elements.
717  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
718    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
719    if (OpVal.getNode() == 0)
720      OpVal = N->getOperand(i);
721    else if (OpVal != N->getOperand(i))
722      return SDValue();
723  }
724
725  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
726
727  unsigned ValSizeInBytes = EltSize;
728  uint64_t Value = 0;
729  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
730    Value = CN->getZExtValue();
731  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
732    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
733    Value = FloatToBits(CN->getValueAPF().convertToFloat());
734  }
735
736  // If the splat value is larger than the element value, then we can never do
737  // this splat.  The only case that we could fit the replicated bits into our
738  // immediate field for would be zero, and we prefer to use vxor for it.
739  if (ValSizeInBytes < ByteSize) return SDValue();
740
741  // If the element value is larger than the splat value, cut it in half and
742  // check to see if the two halves are equal.  Continue doing this until we
743  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
744  while (ValSizeInBytes > ByteSize) {
745    ValSizeInBytes >>= 1;
746
747    // If the top half equals the bottom half, we're still ok.
748    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
749         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
750      return SDValue();
751  }
752
753  // Properly sign extend the value.
754  int ShAmt = (4-ByteSize)*8;
755  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
756
757  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
758  if (MaskVal == 0) return SDValue();
759
760  // Finally, if this value fits in a 5 bit sext field, return it
761  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
762    return DAG.getTargetConstant(MaskVal, MVT::i32);
763  return SDValue();
764}
765
766//===----------------------------------------------------------------------===//
767//  Addressing Mode Selection
768//===----------------------------------------------------------------------===//
769
770/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
771/// or 64-bit immediate, and if the value can be accurately represented as a
772/// sign extension from a 16-bit value.  If so, this returns true and the
773/// immediate.
774static bool isIntS16Immediate(SDNode *N, short &Imm) {
775  if (N->getOpcode() != ISD::Constant)
776    return false;
777
778  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
779  if (N->getValueType(0) == MVT::i32)
780    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
781  else
782    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
783}
784static bool isIntS16Immediate(SDValue Op, short &Imm) {
785  return isIntS16Immediate(Op.getNode(), Imm);
786}
787
788
789/// SelectAddressRegReg - Given the specified addressed, check to see if it
790/// can be represented as an indexed [r+r] operation.  Returns false if it
791/// can be more efficiently represented with [r+imm].
792bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
793                                            SDValue &Index,
794                                            SelectionDAG &DAG) const {
795  short imm = 0;
796  if (N.getOpcode() == ISD::ADD) {
797    if (isIntS16Immediate(N.getOperand(1), imm))
798      return false;    // r+i
799    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
800      return false;    // r+i
801
802    Base = N.getOperand(0);
803    Index = N.getOperand(1);
804    return true;
805  } else if (N.getOpcode() == ISD::OR) {
806    if (isIntS16Immediate(N.getOperand(1), imm))
807      return false;    // r+i can fold it if we can.
808
809    // If this is an or of disjoint bitfields, we can codegen this as an add
810    // (for better address arithmetic) if the LHS and RHS of the OR are provably
811    // disjoint.
812    APInt LHSKnownZero, LHSKnownOne;
813    APInt RHSKnownZero, RHSKnownOne;
814    DAG.ComputeMaskedBits(N.getOperand(0),
815                          APInt::getAllOnesValue(N.getOperand(0)
816                            .getValueSizeInBits()),
817                          LHSKnownZero, LHSKnownOne);
818
819    if (LHSKnownZero.getBoolValue()) {
820      DAG.ComputeMaskedBits(N.getOperand(1),
821                            APInt::getAllOnesValue(N.getOperand(1)
822                              .getValueSizeInBits()),
823                            RHSKnownZero, RHSKnownOne);
824      // If all of the bits are known zero on the LHS or RHS, the add won't
825      // carry.
826      if (~(LHSKnownZero | RHSKnownZero) == 0) {
827        Base = N.getOperand(0);
828        Index = N.getOperand(1);
829        return true;
830      }
831    }
832  }
833
834  return false;
835}
836
837/// Returns true if the address N can be represented by a base register plus
838/// a signed 16-bit displacement [r+imm], and if it is not better
839/// represented as reg+reg.
840bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
841                                            SDValue &Base,
842                                            SelectionDAG &DAG) const {
843  // FIXME dl should come from parent load or store, not from address
844  DebugLoc dl = N.getDebugLoc();
845  // If this can be more profitably realized as r+r, fail.
846  if (SelectAddressRegReg(N, Disp, Base, DAG))
847    return false;
848
849  if (N.getOpcode() == ISD::ADD) {
850    short imm = 0;
851    if (isIntS16Immediate(N.getOperand(1), imm)) {
852      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
853      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
854        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
855      } else {
856        Base = N.getOperand(0);
857      }
858      return true; // [r+i]
859    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
860      // Match LOAD (ADD (X, Lo(G))).
861     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
862             && "Cannot handle constant offsets yet!");
863      Disp = N.getOperand(1).getOperand(0);  // The global address.
864      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
865             Disp.getOpcode() == ISD::TargetConstantPool ||
866             Disp.getOpcode() == ISD::TargetJumpTable);
867      Base = N.getOperand(0);
868      return true;  // [&g+r]
869    }
870  } else if (N.getOpcode() == ISD::OR) {
871    short imm = 0;
872    if (isIntS16Immediate(N.getOperand(1), imm)) {
873      // If this is an or of disjoint bitfields, we can codegen this as an add
874      // (for better address arithmetic) if the LHS and RHS of the OR are
875      // provably disjoint.
876      APInt LHSKnownZero, LHSKnownOne;
877      DAG.ComputeMaskedBits(N.getOperand(0),
878                            APInt::getAllOnesValue(N.getOperand(0)
879                                                   .getValueSizeInBits()),
880                            LHSKnownZero, LHSKnownOne);
881
882      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
883        // If all of the bits are known zero on the LHS or RHS, the add won't
884        // carry.
885        Base = N.getOperand(0);
886        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
887        return true;
888      }
889    }
890  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
891    // Loading from a constant address.
892
893    // If this address fits entirely in a 16-bit sext immediate field, codegen
894    // this as "d, 0"
895    short Imm;
896    if (isIntS16Immediate(CN, Imm)) {
897      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
898      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
899                             CN->getValueType(0));
900      return true;
901    }
902
903    // Handle 32-bit sext immediates with LIS + addr mode.
904    if (CN->getValueType(0) == MVT::i32 ||
905        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
906      int Addr = (int)CN->getZExtValue();
907
908      // Otherwise, break this down into an LIS + disp.
909      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
910
911      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
912      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
913      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
914      return true;
915    }
916  }
917
918  Disp = DAG.getTargetConstant(0, getPointerTy());
919  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
920    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
921  else
922    Base = N;
923  return true;      // [r+0]
924}
925
926/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
927/// represented as an indexed [r+r] operation.
928bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
929                                                SDValue &Index,
930                                                SelectionDAG &DAG) const {
931  // Check to see if we can easily represent this as an [r+r] address.  This
932  // will fail if it thinks that the address is more profitably represented as
933  // reg+imm, e.g. where imm = 0.
934  if (SelectAddressRegReg(N, Base, Index, DAG))
935    return true;
936
937  // If the operand is an addition, always emit this as [r+r], since this is
938  // better (for code size, and execution, as the memop does the add for free)
939  // than emitting an explicit add.
940  if (N.getOpcode() == ISD::ADD) {
941    Base = N.getOperand(0);
942    Index = N.getOperand(1);
943    return true;
944  }
945
946  // Otherwise, do it the hard way, using R0 as the base register.
947  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
948                         N.getValueType());
949  Index = N;
950  return true;
951}
952
953/// SelectAddressRegImmShift - Returns true if the address N can be
954/// represented by a base register plus a signed 14-bit displacement
955/// [r+imm*4].  Suitable for use by STD and friends.
956bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
957                                                 SDValue &Base,
958                                                 SelectionDAG &DAG) const {
959  // FIXME dl should come from the parent load or store, not the address
960  DebugLoc dl = N.getDebugLoc();
961  // If this can be more profitably realized as r+r, fail.
962  if (SelectAddressRegReg(N, Disp, Base, DAG))
963    return false;
964
965  if (N.getOpcode() == ISD::ADD) {
966    short imm = 0;
967    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
968      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
969      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
970        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
971      } else {
972        Base = N.getOperand(0);
973      }
974      return true; // [r+i]
975    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
976      // Match LOAD (ADD (X, Lo(G))).
977     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
978             && "Cannot handle constant offsets yet!");
979      Disp = N.getOperand(1).getOperand(0);  // The global address.
980      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
981             Disp.getOpcode() == ISD::TargetConstantPool ||
982             Disp.getOpcode() == ISD::TargetJumpTable);
983      Base = N.getOperand(0);
984      return true;  // [&g+r]
985    }
986  } else if (N.getOpcode() == ISD::OR) {
987    short imm = 0;
988    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
989      // If this is an or of disjoint bitfields, we can codegen this as an add
990      // (for better address arithmetic) if the LHS and RHS of the OR are
991      // provably disjoint.
992      APInt LHSKnownZero, LHSKnownOne;
993      DAG.ComputeMaskedBits(N.getOperand(0),
994                            APInt::getAllOnesValue(N.getOperand(0)
995                                                   .getValueSizeInBits()),
996                            LHSKnownZero, LHSKnownOne);
997      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
998        // If all of the bits are known zero on the LHS or RHS, the add won't
999        // carry.
1000        Base = N.getOperand(0);
1001        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1002        return true;
1003      }
1004    }
1005  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1006    // Loading from a constant address.  Verify low two bits are clear.
1007    if ((CN->getZExtValue() & 3) == 0) {
1008      // If this address fits entirely in a 14-bit sext immediate field, codegen
1009      // this as "d, 0"
1010      short Imm;
1011      if (isIntS16Immediate(CN, Imm)) {
1012        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1013        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1014                               CN->getValueType(0));
1015        return true;
1016      }
1017
1018      // Fold the low-part of 32-bit absolute addresses into addr mode.
1019      if (CN->getValueType(0) == MVT::i32 ||
1020          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1021        int Addr = (int)CN->getZExtValue();
1022
1023        // Otherwise, break this down into an LIS + disp.
1024        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1025        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1026        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1027        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1028        return true;
1029      }
1030    }
1031  }
1032
1033  Disp = DAG.getTargetConstant(0, getPointerTy());
1034  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1035    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1036  else
1037    Base = N;
1038  return true;      // [r+0]
1039}
1040
1041
1042/// getPreIndexedAddressParts - returns true by value, base pointer and
1043/// offset pointer and addressing mode by reference if the node's address
1044/// can be legally represented as pre-indexed load / store address.
1045bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1046                                                  SDValue &Offset,
1047                                                  ISD::MemIndexedMode &AM,
1048                                                  SelectionDAG &DAG) const {
1049  // Disabled by default for now.
1050  if (!EnablePPCPreinc) return false;
1051
1052  SDValue Ptr;
1053  EVT VT;
1054  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1055    Ptr = LD->getBasePtr();
1056    VT = LD->getMemoryVT();
1057
1058  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1059    Ptr = ST->getBasePtr();
1060    VT  = ST->getMemoryVT();
1061  } else
1062    return false;
1063
1064  // PowerPC doesn't have preinc load/store instructions for vectors.
1065  if (VT.isVector())
1066    return false;
1067
1068  // TODO: Check reg+reg first.
1069
1070  // LDU/STU use reg+imm*4, others use reg+imm.
1071  if (VT != MVT::i64) {
1072    // reg + imm
1073    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1074      return false;
1075  } else {
1076    // reg + imm * 4.
1077    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1078      return false;
1079  }
1080
1081  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1082    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1083    // sext i32 to i64 when addr mode is r+i.
1084    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1085        LD->getExtensionType() == ISD::SEXTLOAD &&
1086        isa<ConstantSDNode>(Offset))
1087      return false;
1088  }
1089
1090  AM = ISD::PRE_INC;
1091  return true;
1092}
1093
1094//===----------------------------------------------------------------------===//
1095//  LowerOperation implementation
1096//===----------------------------------------------------------------------===//
1097
1098/// GetLabelAccessInfo - Return true if we should reference labels using a
1099/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1100static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1101                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1102  HiOpFlags = PPCII::MO_HA16;
1103  LoOpFlags = PPCII::MO_LO16;
1104
1105  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1106  // non-darwin platform.  We don't support PIC on other platforms yet.
1107  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1108               TM.getSubtarget<PPCSubtarget>().isDarwin();
1109  if (isPIC) {
1110    HiOpFlags |= PPCII::MO_PIC_FLAG;
1111    LoOpFlags |= PPCII::MO_PIC_FLAG;
1112  }
1113
1114  // If this is a reference to a global value that requires a non-lazy-ptr, make
1115  // sure that instruction lowering adds it.
1116  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1117    HiOpFlags |= PPCII::MO_NLP_FLAG;
1118    LoOpFlags |= PPCII::MO_NLP_FLAG;
1119
1120    if (GV->hasHiddenVisibility()) {
1121      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1122      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1123    }
1124  }
1125
1126  return isPIC;
1127}
1128
1129static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1130                             SelectionDAG &DAG) {
1131  EVT PtrVT = HiPart.getValueType();
1132  SDValue Zero = DAG.getConstant(0, PtrVT);
1133  DebugLoc DL = HiPart.getDebugLoc();
1134
1135  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1136  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1137
1138  // With PIC, the first instruction is actually "GR+hi(&G)".
1139  if (isPIC)
1140    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1141                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1142
1143  // Generate non-pic code that has direct accesses to the constant pool.
1144  // The address of the global is just (hi(&g)+lo(&g)).
1145  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1146}
1147
1148SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1149                                             SelectionDAG &DAG) const {
1150  EVT PtrVT = Op.getValueType();
1151  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1152  const Constant *C = CP->getConstVal();
1153
1154  unsigned MOHiFlag, MOLoFlag;
1155  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1156  SDValue CPIHi =
1157    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1158  SDValue CPILo =
1159    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1160  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1161}
1162
1163SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1164  EVT PtrVT = Op.getValueType();
1165  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1166
1167  unsigned MOHiFlag, MOLoFlag;
1168  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1169  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1170  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1171  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1172}
1173
1174SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1175                                             SelectionDAG &DAG) const {
1176  EVT PtrVT = Op.getValueType();
1177
1178  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1179
1180  unsigned MOHiFlag, MOLoFlag;
1181  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1182  SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
1183  SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
1184  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1185}
1186
1187SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1188                                              SelectionDAG &DAG) const {
1189  EVT PtrVT = Op.getValueType();
1190  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1191  DebugLoc DL = GSDN->getDebugLoc();
1192  const GlobalValue *GV = GSDN->getGlobal();
1193
1194  // 64-bit SVR4 ABI code is always position-independent.
1195  // The actual address of the GlobalValue is stored in the TOC.
1196  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1197    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1198    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1199                       DAG.getRegister(PPC::X2, MVT::i64));
1200  }
1201
1202  unsigned MOHiFlag, MOLoFlag;
1203  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1204
1205  SDValue GAHi =
1206    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1207  SDValue GALo =
1208    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1209
1210  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1211
1212  // If the global reference is actually to a non-lazy-pointer, we have to do an
1213  // extra load to get the address of the global.
1214  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1215    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1216                      false, false, 0);
1217  return Ptr;
1218}
1219
1220SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1221  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1222  DebugLoc dl = Op.getDebugLoc();
1223
1224  // If we're comparing for equality to zero, expose the fact that this is
1225  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1226  // fold the new nodes.
1227  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1228    if (C->isNullValue() && CC == ISD::SETEQ) {
1229      EVT VT = Op.getOperand(0).getValueType();
1230      SDValue Zext = Op.getOperand(0);
1231      if (VT.bitsLT(MVT::i32)) {
1232        VT = MVT::i32;
1233        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1234      }
1235      unsigned Log2b = Log2_32(VT.getSizeInBits());
1236      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1237      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1238                                DAG.getConstant(Log2b, MVT::i32));
1239      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1240    }
1241    // Leave comparisons against 0 and -1 alone for now, since they're usually
1242    // optimized.  FIXME: revisit this when we can custom lower all setcc
1243    // optimizations.
1244    if (C->isAllOnesValue() || C->isNullValue())
1245      return SDValue();
1246  }
1247
1248  // If we have an integer seteq/setne, turn it into a compare against zero
1249  // by xor'ing the rhs with the lhs, which is faster than setting a
1250  // condition register, reading it back out, and masking the correct bit.  The
1251  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1252  // the result to other bit-twiddling opportunities.
1253  EVT LHSVT = Op.getOperand(0).getValueType();
1254  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1255    EVT VT = Op.getValueType();
1256    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1257                                Op.getOperand(1));
1258    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1259  }
1260  return SDValue();
1261}
1262
1263SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1264                                      const PPCSubtarget &Subtarget) const {
1265
1266  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1267  return SDValue(); // Not reached
1268}
1269
1270SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op,
1271                                           SelectionDAG &DAG) const {
1272  SDValue Chain = Op.getOperand(0);
1273  SDValue Trmp = Op.getOperand(1); // trampoline
1274  SDValue FPtr = Op.getOperand(2); // nested function
1275  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1276  DebugLoc dl = Op.getDebugLoc();
1277
1278  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1279  bool isPPC64 = (PtrVT == MVT::i64);
1280  const Type *IntPtrTy =
1281    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1282                                                             *DAG.getContext());
1283
1284  TargetLowering::ArgListTy Args;
1285  TargetLowering::ArgListEntry Entry;
1286
1287  Entry.Ty = IntPtrTy;
1288  Entry.Node = Trmp; Args.push_back(Entry);
1289
1290  // TrampSize == (isPPC64 ? 48 : 40);
1291  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1292                               isPPC64 ? MVT::i64 : MVT::i32);
1293  Args.push_back(Entry);
1294
1295  Entry.Node = FPtr; Args.push_back(Entry);
1296  Entry.Node = Nest; Args.push_back(Entry);
1297
1298  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1299  std::pair<SDValue, SDValue> CallResult =
1300    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1301                false, false, false, false, 0, CallingConv::C, false,
1302                /*isReturnValueUsed=*/true,
1303                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1304                Args, DAG, dl);
1305
1306  SDValue Ops[] =
1307    { CallResult.first, CallResult.second };
1308
1309  return DAG.getMergeValues(Ops, 2, dl);
1310}
1311
1312SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1313                                        const PPCSubtarget &Subtarget) const {
1314  MachineFunction &MF = DAG.getMachineFunction();
1315  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1316
1317  DebugLoc dl = Op.getDebugLoc();
1318
1319  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1320    // vastart just stores the address of the VarArgsFrameIndex slot into the
1321    // memory location argument.
1322    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1323    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1324    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1325    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1326                        MachinePointerInfo(SV),
1327                        false, false, 0);
1328  }
1329
1330  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1331  // We suppose the given va_list is already allocated.
1332  //
1333  // typedef struct {
1334  //  char gpr;     /* index into the array of 8 GPRs
1335  //                 * stored in the register save area
1336  //                 * gpr=0 corresponds to r3,
1337  //                 * gpr=1 to r4, etc.
1338  //                 */
1339  //  char fpr;     /* index into the array of 8 FPRs
1340  //                 * stored in the register save area
1341  //                 * fpr=0 corresponds to f1,
1342  //                 * fpr=1 to f2, etc.
1343  //                 */
1344  //  char *overflow_arg_area;
1345  //                /* location on stack that holds
1346  //                 * the next overflow argument
1347  //                 */
1348  //  char *reg_save_area;
1349  //               /* where r3:r10 and f1:f8 (if saved)
1350  //                * are stored
1351  //                */
1352  // } va_list[1];
1353
1354
1355  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1356  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1357
1358
1359  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1360
1361  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1362                                            PtrVT);
1363  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1364                                 PtrVT);
1365
1366  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1367  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1368
1369  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1370  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1371
1372  uint64_t FPROffset = 1;
1373  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1374
1375  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1376
1377  // Store first byte : number of int regs
1378  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1379                                         Op.getOperand(1),
1380                                         MachinePointerInfo(SV),
1381                                         MVT::i8, false, false, 0);
1382  uint64_t nextOffset = FPROffset;
1383  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1384                                  ConstFPROffset);
1385
1386  // Store second byte : number of float regs
1387  SDValue secondStore =
1388    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1389                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1390                      false, false, 0);
1391  nextOffset += StackOffset;
1392  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1393
1394  // Store second word : arguments given on stack
1395  SDValue thirdStore =
1396    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1397                 MachinePointerInfo(SV, nextOffset),
1398                 false, false, 0);
1399  nextOffset += FrameOffset;
1400  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1401
1402  // Store third word : arguments given in registers
1403  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1404                      MachinePointerInfo(SV, nextOffset),
1405                      false, false, 0);
1406
1407}
1408
1409#include "PPCGenCallingConv.inc"
1410
1411static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1412                                     CCValAssign::LocInfo &LocInfo,
1413                                     ISD::ArgFlagsTy &ArgFlags,
1414                                     CCState &State) {
1415  return true;
1416}
1417
1418static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1419                                            MVT &LocVT,
1420                                            CCValAssign::LocInfo &LocInfo,
1421                                            ISD::ArgFlagsTy &ArgFlags,
1422                                            CCState &State) {
1423  static const unsigned ArgRegs[] = {
1424    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1425    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1426  };
1427  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1428
1429  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1430
1431  // Skip one register if the first unallocated register has an even register
1432  // number and there are still argument registers available which have not been
1433  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1434  // need to skip a register if RegNum is odd.
1435  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1436    State.AllocateReg(ArgRegs[RegNum]);
1437  }
1438
1439  // Always return false here, as this function only makes sure that the first
1440  // unallocated register has an odd register number and does not actually
1441  // allocate a register for the current argument.
1442  return false;
1443}
1444
1445static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1446                                              MVT &LocVT,
1447                                              CCValAssign::LocInfo &LocInfo,
1448                                              ISD::ArgFlagsTy &ArgFlags,
1449                                              CCState &State) {
1450  static const unsigned ArgRegs[] = {
1451    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1452    PPC::F8
1453  };
1454
1455  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1456
1457  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1458
1459  // If there is only one Floating-point register left we need to put both f64
1460  // values of a split ppc_fp128 value on the stack.
1461  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1462    State.AllocateReg(ArgRegs[RegNum]);
1463  }
1464
1465  // Always return false here, as this function only makes sure that the two f64
1466  // values a ppc_fp128 value is split into are both passed in registers or both
1467  // passed on the stack and does not actually allocate a register for the
1468  // current argument.
1469  return false;
1470}
1471
1472/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1473/// on Darwin.
1474static const unsigned *GetFPR() {
1475  static const unsigned FPR[] = {
1476    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1477    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1478  };
1479
1480  return FPR;
1481}
1482
1483/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1484/// the stack.
1485static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1486                                       unsigned PtrByteSize) {
1487  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1488  if (Flags.isByVal())
1489    ArgSize = Flags.getByValSize();
1490  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1491
1492  return ArgSize;
1493}
1494
1495SDValue
1496PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1497                                        CallingConv::ID CallConv, bool isVarArg,
1498                                        const SmallVectorImpl<ISD::InputArg>
1499                                          &Ins,
1500                                        DebugLoc dl, SelectionDAG &DAG,
1501                                        SmallVectorImpl<SDValue> &InVals)
1502                                          const {
1503  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1504    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1505                                     dl, DAG, InVals);
1506  } else {
1507    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1508                                       dl, DAG, InVals);
1509  }
1510}
1511
1512SDValue
1513PPCTargetLowering::LowerFormalArguments_SVR4(
1514                                      SDValue Chain,
1515                                      CallingConv::ID CallConv, bool isVarArg,
1516                                      const SmallVectorImpl<ISD::InputArg>
1517                                        &Ins,
1518                                      DebugLoc dl, SelectionDAG &DAG,
1519                                      SmallVectorImpl<SDValue> &InVals) const {
1520
1521  // 32-bit SVR4 ABI Stack Frame Layout:
1522  //              +-----------------------------------+
1523  //        +-->  |            Back chain             |
1524  //        |     +-----------------------------------+
1525  //        |     | Floating-point register save area |
1526  //        |     +-----------------------------------+
1527  //        |     |    General register save area     |
1528  //        |     +-----------------------------------+
1529  //        |     |          CR save word             |
1530  //        |     +-----------------------------------+
1531  //        |     |         VRSAVE save word          |
1532  //        |     +-----------------------------------+
1533  //        |     |         Alignment padding         |
1534  //        |     +-----------------------------------+
1535  //        |     |     Vector register save area     |
1536  //        |     +-----------------------------------+
1537  //        |     |       Local variable space        |
1538  //        |     +-----------------------------------+
1539  //        |     |        Parameter list area        |
1540  //        |     +-----------------------------------+
1541  //        |     |           LR save word            |
1542  //        |     +-----------------------------------+
1543  // SP-->  +---  |            Back chain             |
1544  //              +-----------------------------------+
1545  //
1546  // Specifications:
1547  //   System V Application Binary Interface PowerPC Processor Supplement
1548  //   AltiVec Technology Programming Interface Manual
1549
1550  MachineFunction &MF = DAG.getMachineFunction();
1551  MachineFrameInfo *MFI = MF.getFrameInfo();
1552  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1553
1554  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1555  // Potential tail calls could cause overwriting of argument stack slots.
1556  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1557  unsigned PtrByteSize = 4;
1558
1559  // Assign locations to all of the incoming arguments.
1560  SmallVector<CCValAssign, 16> ArgLocs;
1561  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1562                 *DAG.getContext());
1563
1564  // Reserve space for the linkage area on the stack.
1565  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1566
1567  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1568
1569  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1570    CCValAssign &VA = ArgLocs[i];
1571
1572    // Arguments stored in registers.
1573    if (VA.isRegLoc()) {
1574      TargetRegisterClass *RC;
1575      EVT ValVT = VA.getValVT();
1576
1577      switch (ValVT.getSimpleVT().SimpleTy) {
1578        default:
1579          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1580        case MVT::i32:
1581          RC = PPC::GPRCRegisterClass;
1582          break;
1583        case MVT::f32:
1584          RC = PPC::F4RCRegisterClass;
1585          break;
1586        case MVT::f64:
1587          RC = PPC::F8RCRegisterClass;
1588          break;
1589        case MVT::v16i8:
1590        case MVT::v8i16:
1591        case MVT::v4i32:
1592        case MVT::v4f32:
1593          RC = PPC::VRRCRegisterClass;
1594          break;
1595      }
1596
1597      // Transform the arguments stored in physical registers into virtual ones.
1598      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1599      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1600
1601      InVals.push_back(ArgValue);
1602    } else {
1603      // Argument stored in memory.
1604      assert(VA.isMemLoc());
1605
1606      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1607      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1608                                      isImmutable);
1609
1610      // Create load nodes to retrieve arguments from the stack.
1611      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1612      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1613                                   MachinePointerInfo(),
1614                                   false, false, 0));
1615    }
1616  }
1617
1618  // Assign locations to all of the incoming aggregate by value arguments.
1619  // Aggregates passed by value are stored in the local variable space of the
1620  // caller's stack frame, right above the parameter list area.
1621  SmallVector<CCValAssign, 16> ByValArgLocs;
1622  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1623                      ByValArgLocs, *DAG.getContext());
1624
1625  // Reserve stack space for the allocations in CCInfo.
1626  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1627
1628  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1629
1630  // Area that is at least reserved in the caller of this function.
1631  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1632
1633  // Set the size that is at least reserved in caller of this function.  Tail
1634  // call optimized function's reserved stack space needs to be aligned so that
1635  // taking the difference between two stack areas will result in an aligned
1636  // stack.
1637  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1638
1639  MinReservedArea =
1640    std::max(MinReservedArea,
1641             PPCFrameLowering::getMinCallFrameSize(false, false));
1642
1643  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1644    getStackAlignment();
1645  unsigned AlignMask = TargetAlign-1;
1646  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1647
1648  FI->setMinReservedArea(MinReservedArea);
1649
1650  SmallVector<SDValue, 8> MemOps;
1651
1652  // If the function takes variable number of arguments, make a frame index for
1653  // the start of the first vararg value... for expansion of llvm.va_start.
1654  if (isVarArg) {
1655    static const unsigned GPArgRegs[] = {
1656      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1657      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1658    };
1659    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1660
1661    static const unsigned FPArgRegs[] = {
1662      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1663      PPC::F8
1664    };
1665    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1666
1667    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1668                                                          NumGPArgRegs));
1669    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1670                                                          NumFPArgRegs));
1671
1672    // Make room for NumGPArgRegs and NumFPArgRegs.
1673    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1674                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1675
1676    FuncInfo->setVarArgsStackOffset(
1677      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1678                             CCInfo.getNextStackOffset(), true));
1679
1680    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1681    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1682
1683    // The fixed integer arguments of a variadic function are stored to the
1684    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1685    // the result of va_next.
1686    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1687      // Get an existing live-in vreg, or add a new one.
1688      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1689      if (!VReg)
1690        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1691
1692      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1693      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1694                                   MachinePointerInfo(), false, false, 0);
1695      MemOps.push_back(Store);
1696      // Increment the address by four for the next argument to store
1697      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1698      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1699    }
1700
1701    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1702    // is set.
1703    // The double arguments are stored to the VarArgsFrameIndex
1704    // on the stack.
1705    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1706      // Get an existing live-in vreg, or add a new one.
1707      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1708      if (!VReg)
1709        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1710
1711      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1712      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1713                                   MachinePointerInfo(), false, false, 0);
1714      MemOps.push_back(Store);
1715      // Increment the address by eight for the next argument to store
1716      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1717                                         PtrVT);
1718      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1719    }
1720  }
1721
1722  if (!MemOps.empty())
1723    Chain = DAG.getNode(ISD::TokenFactor, dl,
1724                        MVT::Other, &MemOps[0], MemOps.size());
1725
1726  return Chain;
1727}
1728
1729SDValue
1730PPCTargetLowering::LowerFormalArguments_Darwin(
1731                                      SDValue Chain,
1732                                      CallingConv::ID CallConv, bool isVarArg,
1733                                      const SmallVectorImpl<ISD::InputArg>
1734                                        &Ins,
1735                                      DebugLoc dl, SelectionDAG &DAG,
1736                                      SmallVectorImpl<SDValue> &InVals) const {
1737  // TODO: add description of PPC stack frame format, or at least some docs.
1738  //
1739  MachineFunction &MF = DAG.getMachineFunction();
1740  MachineFrameInfo *MFI = MF.getFrameInfo();
1741  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1742
1743  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1744  bool isPPC64 = PtrVT == MVT::i64;
1745  // Potential tail calls could cause overwriting of argument stack slots.
1746  bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
1747  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1748
1749  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
1750  // Area that is at least reserved in caller of this function.
1751  unsigned MinReservedArea = ArgOffset;
1752
1753  static const unsigned GPR_32[] = {           // 32-bit registers.
1754    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1755    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1756  };
1757  static const unsigned GPR_64[] = {           // 64-bit registers.
1758    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1759    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1760  };
1761
1762  static const unsigned *FPR = GetFPR();
1763
1764  static const unsigned VR[] = {
1765    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1766    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1767  };
1768
1769  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1770  const unsigned Num_FPR_Regs = 13;
1771  const unsigned Num_VR_Regs  = array_lengthof( VR);
1772
1773  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1774
1775  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1776
1777  // In 32-bit non-varargs functions, the stack space for vectors is after the
1778  // stack space for non-vectors.  We do not use this space unless we have
1779  // too many vectors to fit in registers, something that only occurs in
1780  // constructed examples:), but we have to walk the arglist to figure
1781  // that out...for the pathological case, compute VecArgOffset as the
1782  // start of the vector parameter area.  Computing VecArgOffset is the
1783  // entire point of the following loop.
1784  unsigned VecArgOffset = ArgOffset;
1785  if (!isVarArg && !isPPC64) {
1786    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1787         ++ArgNo) {
1788      EVT ObjectVT = Ins[ArgNo].VT;
1789      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1790      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1791
1792      if (Flags.isByVal()) {
1793        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1794        ObjSize = Flags.getByValSize();
1795        unsigned ArgSize =
1796                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1797        VecArgOffset += ArgSize;
1798        continue;
1799      }
1800
1801      switch(ObjectVT.getSimpleVT().SimpleTy) {
1802      default: llvm_unreachable("Unhandled argument type!");
1803      case MVT::i32:
1804      case MVT::f32:
1805        VecArgOffset += isPPC64 ? 8 : 4;
1806        break;
1807      case MVT::i64:  // PPC64
1808      case MVT::f64:
1809        VecArgOffset += 8;
1810        break;
1811      case MVT::v4f32:
1812      case MVT::v4i32:
1813      case MVT::v8i16:
1814      case MVT::v16i8:
1815        // Nothing to do, we're only looking at Nonvector args here.
1816        break;
1817      }
1818    }
1819  }
1820  // We've found where the vector parameter area in memory is.  Skip the
1821  // first 12 parameters; these don't use that memory.
1822  VecArgOffset = ((VecArgOffset+15)/16)*16;
1823  VecArgOffset += 12*16;
1824
1825  // Add DAG nodes to load the arguments or copy them out of registers.  On
1826  // entry to a function on PPC, the arguments start after the linkage area,
1827  // although the first ones are often in registers.
1828
1829  SmallVector<SDValue, 8> MemOps;
1830  unsigned nAltivecParamsAtEnd = 0;
1831  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1832    SDValue ArgVal;
1833    bool needsLoad = false;
1834    EVT ObjectVT = Ins[ArgNo].VT;
1835    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1836    unsigned ArgSize = ObjSize;
1837    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1838
1839    unsigned CurArgOffset = ArgOffset;
1840
1841    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1842    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1843        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1844      if (isVarArg || isPPC64) {
1845        MinReservedArea = ((MinReservedArea+15)/16)*16;
1846        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1847                                                  Flags,
1848                                                  PtrByteSize);
1849      } else  nAltivecParamsAtEnd++;
1850    } else
1851      // Calculate min reserved area.
1852      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1853                                                Flags,
1854                                                PtrByteSize);
1855
1856    // FIXME the codegen can be much improved in some cases.
1857    // We do not have to keep everything in memory.
1858    if (Flags.isByVal()) {
1859      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1860      ObjSize = Flags.getByValSize();
1861      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1862      // Objects of size 1 and 2 are right justified, everything else is
1863      // left justified.  This means the memory address is adjusted forwards.
1864      if (ObjSize==1 || ObjSize==2) {
1865        CurArgOffset = CurArgOffset + (4 - ObjSize);
1866      }
1867      // The value of the object is its address.
1868      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
1869      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1870      InVals.push_back(FIN);
1871      if (ObjSize==1 || ObjSize==2) {
1872        if (GPR_idx != Num_GPR_Regs) {
1873          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1874          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1875          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1876                                            MachinePointerInfo(),
1877                                            ObjSize==1 ? MVT::i8 : MVT::i16,
1878                                            false, false, 0);
1879          MemOps.push_back(Store);
1880          ++GPR_idx;
1881        }
1882
1883        ArgOffset += PtrByteSize;
1884
1885        continue;
1886      }
1887      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1888        // Store whatever pieces of the object are in registers
1889        // to memory.  ArgVal will be address of the beginning of
1890        // the object.
1891        if (GPR_idx != Num_GPR_Regs) {
1892          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1893          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
1894          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1895          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1896          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1897                                       MachinePointerInfo(),
1898                                       false, false, 0);
1899          MemOps.push_back(Store);
1900          ++GPR_idx;
1901          ArgOffset += PtrByteSize;
1902        } else {
1903          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1904          break;
1905        }
1906      }
1907      continue;
1908    }
1909
1910    switch (ObjectVT.getSimpleVT().SimpleTy) {
1911    default: llvm_unreachable("Unhandled argument type!");
1912    case MVT::i32:
1913      if (!isPPC64) {
1914        if (GPR_idx != Num_GPR_Regs) {
1915          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1916          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1917          ++GPR_idx;
1918        } else {
1919          needsLoad = true;
1920          ArgSize = PtrByteSize;
1921        }
1922        // All int arguments reserve stack space in the Darwin ABI.
1923        ArgOffset += PtrByteSize;
1924        break;
1925      }
1926      // FALLTHROUGH
1927    case MVT::i64:  // PPC64
1928      if (GPR_idx != Num_GPR_Regs) {
1929        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1930        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1931
1932        if (ObjectVT == MVT::i32) {
1933          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1934          // value to MVT::i64 and then truncate to the correct register size.
1935          if (Flags.isSExt())
1936            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1937                                 DAG.getValueType(ObjectVT));
1938          else if (Flags.isZExt())
1939            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1940                                 DAG.getValueType(ObjectVT));
1941
1942          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1943        }
1944
1945        ++GPR_idx;
1946      } else {
1947        needsLoad = true;
1948        ArgSize = PtrByteSize;
1949      }
1950      // All int arguments reserve stack space in the Darwin ABI.
1951      ArgOffset += 8;
1952      break;
1953
1954    case MVT::f32:
1955    case MVT::f64:
1956      // Every 4 bytes of argument space consumes one of the GPRs available for
1957      // argument passing.
1958      if (GPR_idx != Num_GPR_Regs) {
1959        ++GPR_idx;
1960        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1961          ++GPR_idx;
1962      }
1963      if (FPR_idx != Num_FPR_Regs) {
1964        unsigned VReg;
1965
1966        if (ObjectVT == MVT::f32)
1967          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1968        else
1969          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1970
1971        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1972        ++FPR_idx;
1973      } else {
1974        needsLoad = true;
1975      }
1976
1977      // All FP arguments reserve stack space in the Darwin ABI.
1978      ArgOffset += isPPC64 ? 8 : ObjSize;
1979      break;
1980    case MVT::v4f32:
1981    case MVT::v4i32:
1982    case MVT::v8i16:
1983    case MVT::v16i8:
1984      // Note that vector arguments in registers don't reserve stack space,
1985      // except in varargs functions.
1986      if (VR_idx != Num_VR_Regs) {
1987        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
1988        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1989        if (isVarArg) {
1990          while ((ArgOffset % 16) != 0) {
1991            ArgOffset += PtrByteSize;
1992            if (GPR_idx != Num_GPR_Regs)
1993              GPR_idx++;
1994          }
1995          ArgOffset += 16;
1996          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
1997        }
1998        ++VR_idx;
1999      } else {
2000        if (!isVarArg && !isPPC64) {
2001          // Vectors go after all the nonvectors.
2002          CurArgOffset = VecArgOffset;
2003          VecArgOffset += 16;
2004        } else {
2005          // Vectors are aligned.
2006          ArgOffset = ((ArgOffset+15)/16)*16;
2007          CurArgOffset = ArgOffset;
2008          ArgOffset += 16;
2009        }
2010        needsLoad = true;
2011      }
2012      break;
2013    }
2014
2015    // We need to load the argument to a virtual register if we determined above
2016    // that we ran out of physical registers of the appropriate type.
2017    if (needsLoad) {
2018      int FI = MFI->CreateFixedObject(ObjSize,
2019                                      CurArgOffset + (ArgSize - ObjSize),
2020                                      isImmutable);
2021      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2022      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2023                           false, false, 0);
2024    }
2025
2026    InVals.push_back(ArgVal);
2027  }
2028
2029  // Set the size that is at least reserved in caller of this function.  Tail
2030  // call optimized function's reserved stack space needs to be aligned so that
2031  // taking the difference between two stack areas will result in an aligned
2032  // stack.
2033  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2034  // Add the Altivec parameters at the end, if needed.
2035  if (nAltivecParamsAtEnd) {
2036    MinReservedArea = ((MinReservedArea+15)/16)*16;
2037    MinReservedArea += 16*nAltivecParamsAtEnd;
2038  }
2039  MinReservedArea =
2040    std::max(MinReservedArea,
2041             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2042  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2043    getStackAlignment();
2044  unsigned AlignMask = TargetAlign-1;
2045  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2046  FI->setMinReservedArea(MinReservedArea);
2047
2048  // If the function takes variable number of arguments, make a frame index for
2049  // the start of the first vararg value... for expansion of llvm.va_start.
2050  if (isVarArg) {
2051    int Depth = ArgOffset;
2052
2053    FuncInfo->setVarArgsFrameIndex(
2054      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2055                             Depth, true));
2056    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2057
2058    // If this function is vararg, store any remaining integer argument regs
2059    // to their spots on the stack so that they may be loaded by deferencing the
2060    // result of va_next.
2061    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2062      unsigned VReg;
2063
2064      if (isPPC64)
2065        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2066      else
2067        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2068
2069      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2070      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2071                                   MachinePointerInfo(), false, false, 0);
2072      MemOps.push_back(Store);
2073      // Increment the address by four for the next argument to store
2074      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2075      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2076    }
2077  }
2078
2079  if (!MemOps.empty())
2080    Chain = DAG.getNode(ISD::TokenFactor, dl,
2081                        MVT::Other, &MemOps[0], MemOps.size());
2082
2083  return Chain;
2084}
2085
2086/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2087/// linkage area for the Darwin ABI.
2088static unsigned
2089CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2090                                     bool isPPC64,
2091                                     bool isVarArg,
2092                                     unsigned CC,
2093                                     const SmallVectorImpl<ISD::OutputArg>
2094                                       &Outs,
2095                                     const SmallVectorImpl<SDValue> &OutVals,
2096                                     unsigned &nAltivecParamsAtEnd) {
2097  // Count how many bytes are to be pushed on the stack, including the linkage
2098  // area, and parameter passing area.  We start with 24/48 bytes, which is
2099  // prereserved space for [SP][CR][LR][3 x unused].
2100  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2101  unsigned NumOps = Outs.size();
2102  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2103
2104  // Add up all the space actually used.
2105  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2106  // they all go in registers, but we must reserve stack space for them for
2107  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2108  // assigned stack space in order, with padding so Altivec parameters are
2109  // 16-byte aligned.
2110  nAltivecParamsAtEnd = 0;
2111  for (unsigned i = 0; i != NumOps; ++i) {
2112    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2113    EVT ArgVT = Outs[i].VT;
2114    // Varargs Altivec parameters are padded to a 16 byte boundary.
2115    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2116        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2117      if (!isVarArg && !isPPC64) {
2118        // Non-varargs Altivec parameters go after all the non-Altivec
2119        // parameters; handle those later so we know how much padding we need.
2120        nAltivecParamsAtEnd++;
2121        continue;
2122      }
2123      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2124      NumBytes = ((NumBytes+15)/16)*16;
2125    }
2126    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2127  }
2128
2129   // Allow for Altivec parameters at the end, if needed.
2130  if (nAltivecParamsAtEnd) {
2131    NumBytes = ((NumBytes+15)/16)*16;
2132    NumBytes += 16*nAltivecParamsAtEnd;
2133  }
2134
2135  // The prolog code of the callee may store up to 8 GPR argument registers to
2136  // the stack, allowing va_start to index over them in memory if its varargs.
2137  // Because we cannot tell if this is needed on the caller side, we have to
2138  // conservatively assume that it is needed.  As such, make sure we have at
2139  // least enough stack space for the caller to store the 8 GPRs.
2140  NumBytes = std::max(NumBytes,
2141                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2142
2143  // Tail call needs the stack to be aligned.
2144  if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
2145    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2146      getStackAlignment();
2147    unsigned AlignMask = TargetAlign-1;
2148    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2149  }
2150
2151  return NumBytes;
2152}
2153
2154/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2155/// adjusted to accommodate the arguments for the tailcall.
2156static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2157                                   unsigned ParamSize) {
2158
2159  if (!isTailCall) return 0;
2160
2161  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2162  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2163  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2164  // Remember only if the new adjustement is bigger.
2165  if (SPDiff < FI->getTailCallSPDelta())
2166    FI->setTailCallSPDelta(SPDiff);
2167
2168  return SPDiff;
2169}
2170
2171/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2172/// for tail call optimization. Targets which want to do tail call
2173/// optimization should implement this function.
2174bool
2175PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2176                                                     CallingConv::ID CalleeCC,
2177                                                     bool isVarArg,
2178                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2179                                                     SelectionDAG& DAG) const {
2180  if (!GuaranteedTailCallOpt)
2181    return false;
2182
2183  // Variable argument functions are not supported.
2184  if (isVarArg)
2185    return false;
2186
2187  MachineFunction &MF = DAG.getMachineFunction();
2188  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2189  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2190    // Functions containing by val parameters are not supported.
2191    for (unsigned i = 0; i != Ins.size(); i++) {
2192       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2193       if (Flags.isByVal()) return false;
2194    }
2195
2196    // Non PIC/GOT  tail calls are supported.
2197    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2198      return true;
2199
2200    // At the moment we can only do local tail calls (in same module, hidden
2201    // or protected) if we are generating PIC.
2202    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2203      return G->getGlobal()->hasHiddenVisibility()
2204          || G->getGlobal()->hasProtectedVisibility();
2205  }
2206
2207  return false;
2208}
2209
2210/// isCallCompatibleAddress - Return the immediate to use if the specified
2211/// 32-bit value is representable in the immediate field of a BxA instruction.
2212static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2213  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2214  if (!C) return 0;
2215
2216  int Addr = C->getZExtValue();
2217  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2218      (Addr << 6 >> 6) != Addr)
2219    return 0;  // Top 6 bits have to be sext of immediate.
2220
2221  return DAG.getConstant((int)C->getZExtValue() >> 2,
2222                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2223}
2224
2225namespace {
2226
2227struct TailCallArgumentInfo {
2228  SDValue Arg;
2229  SDValue FrameIdxOp;
2230  int       FrameIdx;
2231
2232  TailCallArgumentInfo() : FrameIdx(0) {}
2233};
2234
2235}
2236
2237/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2238static void
2239StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2240                                           SDValue Chain,
2241                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2242                   SmallVector<SDValue, 8> &MemOpChains,
2243                   DebugLoc dl) {
2244  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2245    SDValue Arg = TailCallArgs[i].Arg;
2246    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2247    int FI = TailCallArgs[i].FrameIdx;
2248    // Store relative to framepointer.
2249    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2250                                       MachinePointerInfo::getFixedStack(FI),
2251                                       false, false, 0));
2252  }
2253}
2254
2255/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2256/// the appropriate stack slot for the tail call optimized function call.
2257static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2258                                               MachineFunction &MF,
2259                                               SDValue Chain,
2260                                               SDValue OldRetAddr,
2261                                               SDValue OldFP,
2262                                               int SPDiff,
2263                                               bool isPPC64,
2264                                               bool isDarwinABI,
2265                                               DebugLoc dl) {
2266  if (SPDiff) {
2267    // Calculate the new stack slot for the return address.
2268    int SlotSize = isPPC64 ? 8 : 4;
2269    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2270                                                                   isDarwinABI);
2271    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2272                                                          NewRetAddrLoc, true);
2273    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2274    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2275    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2276                         MachinePointerInfo::getFixedStack(NewRetAddr),
2277                         false, false, 0);
2278
2279    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2280    // slot as the FP is never overwritten.
2281    if (isDarwinABI) {
2282      int NewFPLoc =
2283        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2284      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2285                                                          true);
2286      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2287      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2288                           MachinePointerInfo::getFixedStack(NewFPIdx),
2289                           false, false, 0);
2290    }
2291  }
2292  return Chain;
2293}
2294
2295/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2296/// the position of the argument.
2297static void
2298CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2299                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2300                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2301  int Offset = ArgOffset + SPDiff;
2302  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2303  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2304  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2305  SDValue FIN = DAG.getFrameIndex(FI, VT);
2306  TailCallArgumentInfo Info;
2307  Info.Arg = Arg;
2308  Info.FrameIdxOp = FIN;
2309  Info.FrameIdx = FI;
2310  TailCallArguments.push_back(Info);
2311}
2312
2313/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2314/// stack slot. Returns the chain as result and the loaded frame pointers in
2315/// LROpOut/FPOpout. Used when tail calling.
2316SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2317                                                        int SPDiff,
2318                                                        SDValue Chain,
2319                                                        SDValue &LROpOut,
2320                                                        SDValue &FPOpOut,
2321                                                        bool isDarwinABI,
2322                                                        DebugLoc dl) const {
2323  if (SPDiff) {
2324    // Load the LR and FP stack slot for later adjusting.
2325    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2326    LROpOut = getReturnAddrFrameIndex(DAG);
2327    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2328                          false, false, 0);
2329    Chain = SDValue(LROpOut.getNode(), 1);
2330
2331    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2332    // slot as the FP is never overwritten.
2333    if (isDarwinABI) {
2334      FPOpOut = getFramePointerFrameIndex(DAG);
2335      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2336                            false, false, 0);
2337      Chain = SDValue(FPOpOut.getNode(), 1);
2338    }
2339  }
2340  return Chain;
2341}
2342
2343/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2344/// by "Src" to address "Dst" of size "Size".  Alignment information is
2345/// specified by the specific parameter attribute. The copy will be passed as
2346/// a byval function parameter.
2347/// Sometimes what we are copying is the end of a larger object, the part that
2348/// does not fit in registers.
2349static SDValue
2350CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2351                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2352                          DebugLoc dl) {
2353  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2354  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2355                       false, false, MachinePointerInfo(0),
2356                       MachinePointerInfo(0));
2357}
2358
2359/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2360/// tail calls.
2361static void
2362LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2363                 SDValue Arg, SDValue PtrOff, int SPDiff,
2364                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2365                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2366                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2367                 DebugLoc dl) {
2368  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2369  if (!isTailCall) {
2370    if (isVector) {
2371      SDValue StackPtr;
2372      if (isPPC64)
2373        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2374      else
2375        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2376      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2377                           DAG.getConstant(ArgOffset, PtrVT));
2378    }
2379    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2380                                       MachinePointerInfo(), false, false, 0));
2381  // Calculate and remember argument location.
2382  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2383                                  TailCallArguments);
2384}
2385
2386static
2387void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2388                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2389                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2390                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2391  MachineFunction &MF = DAG.getMachineFunction();
2392
2393  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2394  // might overwrite each other in case of tail call optimization.
2395  SmallVector<SDValue, 8> MemOpChains2;
2396  // Do not flag preceding copytoreg stuff together with the following stuff.
2397  InFlag = SDValue();
2398  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2399                                    MemOpChains2, dl);
2400  if (!MemOpChains2.empty())
2401    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2402                        &MemOpChains2[0], MemOpChains2.size());
2403
2404  // Store the return address to the appropriate stack slot.
2405  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2406                                        isPPC64, isDarwinABI, dl);
2407
2408  // Emit callseq_end just before tailcall node.
2409  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2410                             DAG.getIntPtrConstant(0, true), InFlag);
2411  InFlag = Chain.getValue(1);
2412}
2413
2414static
2415unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2416                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2417                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2418                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2419                     const PPCSubtarget &PPCSubTarget) {
2420
2421  bool isPPC64 = PPCSubTarget.isPPC64();
2422  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2423
2424  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2425  NodeTys.push_back(MVT::Other);   // Returns a chain
2426  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2427
2428  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2429
2430  bool needIndirectCall = true;
2431  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2432    // If this is an absolute destination address, use the munged value.
2433    Callee = SDValue(Dest, 0);
2434    needIndirectCall = false;
2435  }
2436
2437  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2438    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2439    // Use indirect calls for ALL functions calls in JIT mode, since the
2440    // far-call stubs may be outside relocation limits for a BL instruction.
2441    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2442      unsigned OpFlags = 0;
2443      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2444          (!PPCSubTarget.getTargetTriple().isMacOSX() ||
2445           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
2446          (G->getGlobal()->isDeclaration() ||
2447           G->getGlobal()->isWeakForLinker())) {
2448        // PC-relative references to external symbols should go through $stub,
2449        // unless we're building with the leopard linker or later, which
2450        // automatically synthesizes these stubs.
2451        OpFlags = PPCII::MO_DARWIN_STUB;
2452      }
2453
2454      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2455      // every direct call is) turn it into a TargetGlobalAddress /
2456      // TargetExternalSymbol node so that legalize doesn't hack it.
2457      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2458                                          Callee.getValueType(),
2459                                          0, OpFlags);
2460      needIndirectCall = false;
2461    }
2462  }
2463
2464  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2465    unsigned char OpFlags = 0;
2466
2467    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2468        (!PPCSubTarget.getTargetTriple().isMacOSX() ||
2469         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
2470      // PC-relative references to external symbols should go through $stub,
2471      // unless we're building with the leopard linker or later, which
2472      // automatically synthesizes these stubs.
2473      OpFlags = PPCII::MO_DARWIN_STUB;
2474    }
2475
2476    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2477                                         OpFlags);
2478    needIndirectCall = false;
2479  }
2480
2481  if (needIndirectCall) {
2482    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2483    // to do the call, we can't use PPCISD::CALL.
2484    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2485
2486    if (isSVR4ABI && isPPC64) {
2487      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2488      // entry point, but to the function descriptor (the function entry point
2489      // address is part of the function descriptor though).
2490      // The function descriptor is a three doubleword structure with the
2491      // following fields: function entry point, TOC base address and
2492      // environment pointer.
2493      // Thus for a call through a function pointer, the following actions need
2494      // to be performed:
2495      //   1. Save the TOC of the caller in the TOC save area of its stack
2496      //      frame (this is done in LowerCall_Darwin()).
2497      //   2. Load the address of the function entry point from the function
2498      //      descriptor.
2499      //   3. Load the TOC of the callee from the function descriptor into r2.
2500      //   4. Load the environment pointer from the function descriptor into
2501      //      r11.
2502      //   5. Branch to the function entry point address.
2503      //   6. On return of the callee, the TOC of the caller needs to be
2504      //      restored (this is done in FinishCall()).
2505      //
2506      // All those operations are flagged together to ensure that no other
2507      // operations can be scheduled in between. E.g. without flagging the
2508      // operations together, a TOC access in the caller could be scheduled
2509      // between the load of the callee TOC and the branch to the callee, which
2510      // results in the TOC access going through the TOC of the callee instead
2511      // of going through the TOC of the caller, which leads to incorrect code.
2512
2513      // Load the address of the function entry point from the function
2514      // descriptor.
2515      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
2516      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2517                                        InFlag.getNode() ? 3 : 2);
2518      Chain = LoadFuncPtr.getValue(1);
2519      InFlag = LoadFuncPtr.getValue(2);
2520
2521      // Load environment pointer into r11.
2522      // Offset of the environment pointer within the function descriptor.
2523      SDValue PtrOff = DAG.getIntPtrConstant(16);
2524
2525      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2526      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2527                                       InFlag);
2528      Chain = LoadEnvPtr.getValue(1);
2529      InFlag = LoadEnvPtr.getValue(2);
2530
2531      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2532                                        InFlag);
2533      Chain = EnvVal.getValue(0);
2534      InFlag = EnvVal.getValue(1);
2535
2536      // Load TOC of the callee into r2. We are using a target-specific load
2537      // with r2 hard coded, because the result of a target-independent load
2538      // would never go directly into r2, since r2 is a reserved register (which
2539      // prevents the register allocator from allocating it), resulting in an
2540      // additional register being allocated and an unnecessary move instruction
2541      // being generated.
2542      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2543      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2544                                       Callee, InFlag);
2545      Chain = LoadTOCPtr.getValue(0);
2546      InFlag = LoadTOCPtr.getValue(1);
2547
2548      MTCTROps[0] = Chain;
2549      MTCTROps[1] = LoadFuncPtr;
2550      MTCTROps[2] = InFlag;
2551    }
2552
2553    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2554                        2 + (InFlag.getNode() != 0));
2555    InFlag = Chain.getValue(1);
2556
2557    NodeTys.clear();
2558    NodeTys.push_back(MVT::Other);
2559    NodeTys.push_back(MVT::Glue);
2560    Ops.push_back(Chain);
2561    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2562    Callee.setNode(0);
2563    // Add CTR register as callee so a bctr can be emitted later.
2564    if (isTailCall)
2565      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
2566  }
2567
2568  // If this is a direct call, pass the chain and the callee.
2569  if (Callee.getNode()) {
2570    Ops.push_back(Chain);
2571    Ops.push_back(Callee);
2572  }
2573  // If this is a tail call add stack pointer delta.
2574  if (isTailCall)
2575    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2576
2577  // Add argument registers to the end of the list so that they are known live
2578  // into the call.
2579  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2580    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2581                                  RegsToPass[i].second.getValueType()));
2582
2583  return CallOpc;
2584}
2585
2586SDValue
2587PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2588                                   CallingConv::ID CallConv, bool isVarArg,
2589                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2590                                   DebugLoc dl, SelectionDAG &DAG,
2591                                   SmallVectorImpl<SDValue> &InVals) const {
2592
2593  SmallVector<CCValAssign, 16> RVLocs;
2594  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2595                    RVLocs, *DAG.getContext());
2596  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2597
2598  // Copy all of the result registers out of their specified physreg.
2599  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2600    CCValAssign &VA = RVLocs[i];
2601    EVT VT = VA.getValVT();
2602    assert(VA.isRegLoc() && "Can only return in registers!");
2603    Chain = DAG.getCopyFromReg(Chain, dl,
2604                               VA.getLocReg(), VT, InFlag).getValue(1);
2605    InVals.push_back(Chain.getValue(0));
2606    InFlag = Chain.getValue(2);
2607  }
2608
2609  return Chain;
2610}
2611
2612SDValue
2613PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2614                              bool isTailCall, bool isVarArg,
2615                              SelectionDAG &DAG,
2616                              SmallVector<std::pair<unsigned, SDValue>, 8>
2617                                &RegsToPass,
2618                              SDValue InFlag, SDValue Chain,
2619                              SDValue &Callee,
2620                              int SPDiff, unsigned NumBytes,
2621                              const SmallVectorImpl<ISD::InputArg> &Ins,
2622                              SmallVectorImpl<SDValue> &InVals) const {
2623  std::vector<EVT> NodeTys;
2624  SmallVector<SDValue, 8> Ops;
2625  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2626                                 isTailCall, RegsToPass, Ops, NodeTys,
2627                                 PPCSubTarget);
2628
2629  // When performing tail call optimization the callee pops its arguments off
2630  // the stack. Account for this here so these bytes can be pushed back on in
2631  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2632  int BytesCalleePops =
2633    (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
2634
2635  if (InFlag.getNode())
2636    Ops.push_back(InFlag);
2637
2638  // Emit tail call.
2639  if (isTailCall) {
2640    // If this is the first return lowered for this function, add the regs
2641    // to the liveout set for the function.
2642    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2643      SmallVector<CCValAssign, 16> RVLocs;
2644      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2645                     *DAG.getContext());
2646      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2647      for (unsigned i = 0; i != RVLocs.size(); ++i)
2648        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2649    }
2650
2651    assert(((Callee.getOpcode() == ISD::Register &&
2652             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2653            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2654            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2655            isa<ConstantSDNode>(Callee)) &&
2656    "Expecting an global address, external symbol, absolute value or register");
2657
2658    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2659  }
2660
2661  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2662  InFlag = Chain.getValue(1);
2663
2664  // Add a NOP immediately after the branch instruction when using the 64-bit
2665  // SVR4 ABI. At link time, if caller and callee are in a different module and
2666  // thus have a different TOC, the call will be replaced with a call to a stub
2667  // function which saves the current TOC, loads the TOC of the callee and
2668  // branches to the callee. The NOP will be replaced with a load instruction
2669  // which restores the TOC of the caller from the TOC save slot of the current
2670  // stack frame. If caller and callee belong to the same module (and have the
2671  // same TOC), the NOP will remain unchanged.
2672  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2673    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2674    if (CallOpc == PPCISD::BCTRL_SVR4) {
2675      // This is a call through a function pointer.
2676      // Restore the caller TOC from the save area into R2.
2677      // See PrepareCall() for more information about calls through function
2678      // pointers in the 64-bit SVR4 ABI.
2679      // We are using a target-specific load with r2 hard coded, because the
2680      // result of a target-independent load would never go directly into r2,
2681      // since r2 is a reserved register (which prevents the register allocator
2682      // from allocating it), resulting in an additional register being
2683      // allocated and an unnecessary move instruction being generated.
2684      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2685      InFlag = Chain.getValue(1);
2686    } else {
2687      // Otherwise insert NOP.
2688      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Glue, InFlag);
2689    }
2690  }
2691
2692  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2693                             DAG.getIntPtrConstant(BytesCalleePops, true),
2694                             InFlag);
2695  if (!Ins.empty())
2696    InFlag = Chain.getValue(1);
2697
2698  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2699                         Ins, dl, DAG, InVals);
2700}
2701
2702SDValue
2703PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2704                             CallingConv::ID CallConv, bool isVarArg,
2705                             bool &isTailCall,
2706                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2707                             const SmallVectorImpl<SDValue> &OutVals,
2708                             const SmallVectorImpl<ISD::InputArg> &Ins,
2709                             DebugLoc dl, SelectionDAG &DAG,
2710                             SmallVectorImpl<SDValue> &InVals) const {
2711  if (isTailCall)
2712    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2713                                                   Ins, DAG);
2714
2715  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2716    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2717                          isTailCall, Outs, OutVals, Ins,
2718                          dl, DAG, InVals);
2719
2720  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2721                          isTailCall, Outs, OutVals, Ins,
2722                          dl, DAG, InVals);
2723}
2724
2725SDValue
2726PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2727                                  CallingConv::ID CallConv, bool isVarArg,
2728                                  bool isTailCall,
2729                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2730                                  const SmallVectorImpl<SDValue> &OutVals,
2731                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2732                                  DebugLoc dl, SelectionDAG &DAG,
2733                                  SmallVectorImpl<SDValue> &InVals) const {
2734  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2735  // of the 32-bit SVR4 ABI stack frame layout.
2736
2737  assert((CallConv == CallingConv::C ||
2738          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2739
2740  unsigned PtrByteSize = 4;
2741
2742  MachineFunction &MF = DAG.getMachineFunction();
2743
2744  // Mark this function as potentially containing a function that contains a
2745  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2746  // and restoring the callers stack pointer in this functions epilog. This is
2747  // done because by tail calling the called function might overwrite the value
2748  // in this function's (MF) stack pointer stack slot 0(SP).
2749  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2750    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2751
2752  // Count how many bytes are to be pushed on the stack, including the linkage
2753  // area, parameter list area and the part of the local variable space which
2754  // contains copies of aggregates which are passed by value.
2755
2756  // Assign locations to all of the outgoing arguments.
2757  SmallVector<CCValAssign, 16> ArgLocs;
2758  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2759                 ArgLocs, *DAG.getContext());
2760
2761  // Reserve space for the linkage area on the stack.
2762  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2763
2764  if (isVarArg) {
2765    // Handle fixed and variable vector arguments differently.
2766    // Fixed vector arguments go into registers as long as registers are
2767    // available. Variable vector arguments always go into memory.
2768    unsigned NumArgs = Outs.size();
2769
2770    for (unsigned i = 0; i != NumArgs; ++i) {
2771      MVT ArgVT = Outs[i].VT;
2772      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2773      bool Result;
2774
2775      if (Outs[i].IsFixed) {
2776        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2777                             CCInfo);
2778      } else {
2779        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2780                                    ArgFlags, CCInfo);
2781      }
2782
2783      if (Result) {
2784#ifndef NDEBUG
2785        errs() << "Call operand #" << i << " has unhandled type "
2786             << EVT(ArgVT).getEVTString() << "\n";
2787#endif
2788        llvm_unreachable(0);
2789      }
2790    }
2791  } else {
2792    // All arguments are treated the same.
2793    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2794  }
2795
2796  // Assign locations to all of the outgoing aggregate by value arguments.
2797  SmallVector<CCValAssign, 16> ByValArgLocs;
2798  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2799                      *DAG.getContext());
2800
2801  // Reserve stack space for the allocations in CCInfo.
2802  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2803
2804  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2805
2806  // Size of the linkage area, parameter list area and the part of the local
2807  // space variable where copies of aggregates which are passed by value are
2808  // stored.
2809  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2810
2811  // Calculate by how many bytes the stack has to be adjusted in case of tail
2812  // call optimization.
2813  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2814
2815  // Adjust the stack pointer for the new arguments...
2816  // These operations are automatically eliminated by the prolog/epilog pass
2817  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2818  SDValue CallSeqStart = Chain;
2819
2820  // Load the return address and frame pointer so it can be moved somewhere else
2821  // later.
2822  SDValue LROp, FPOp;
2823  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2824                                       dl);
2825
2826  // Set up a copy of the stack pointer for use loading and storing any
2827  // arguments that may not fit in the registers available for argument
2828  // passing.
2829  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2830
2831  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2832  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2833  SmallVector<SDValue, 8> MemOpChains;
2834
2835  // Walk the register/memloc assignments, inserting copies/loads.
2836  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2837       i != e;
2838       ++i) {
2839    CCValAssign &VA = ArgLocs[i];
2840    SDValue Arg = OutVals[i];
2841    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2842
2843    if (Flags.isByVal()) {
2844      // Argument is an aggregate which is passed by value, thus we need to
2845      // create a copy of it in the local variable space of the current stack
2846      // frame (which is the stack frame of the caller) and pass the address of
2847      // this copy to the callee.
2848      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2849      CCValAssign &ByValVA = ByValArgLocs[j++];
2850      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2851
2852      // Memory reserved in the local variable space of the callers stack frame.
2853      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2854
2855      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2856      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2857
2858      // Create a copy of the argument in the local area of the current
2859      // stack frame.
2860      SDValue MemcpyCall =
2861        CreateCopyOfByValArgument(Arg, PtrOff,
2862                                  CallSeqStart.getNode()->getOperand(0),
2863                                  Flags, DAG, dl);
2864
2865      // This must go outside the CALLSEQ_START..END.
2866      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2867                           CallSeqStart.getNode()->getOperand(1));
2868      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2869                             NewCallSeqStart.getNode());
2870      Chain = CallSeqStart = NewCallSeqStart;
2871
2872      // Pass the address of the aggregate copy on the stack either in a
2873      // physical register or in the parameter list area of the current stack
2874      // frame to the callee.
2875      Arg = PtrOff;
2876    }
2877
2878    if (VA.isRegLoc()) {
2879      // Put argument in a physical register.
2880      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2881    } else {
2882      // Put argument in the parameter list area of the current stack frame.
2883      assert(VA.isMemLoc());
2884      unsigned LocMemOffset = VA.getLocMemOffset();
2885
2886      if (!isTailCall) {
2887        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2888        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2889
2890        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2891                                           MachinePointerInfo(),
2892                                           false, false, 0));
2893      } else {
2894        // Calculate and remember argument location.
2895        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2896                                 TailCallArguments);
2897      }
2898    }
2899  }
2900
2901  if (!MemOpChains.empty())
2902    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2903                        &MemOpChains[0], MemOpChains.size());
2904
2905  // Build a sequence of copy-to-reg nodes chained together with token chain
2906  // and flag operands which copy the outgoing args into the appropriate regs.
2907  SDValue InFlag;
2908  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2909    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2910                             RegsToPass[i].second, InFlag);
2911    InFlag = Chain.getValue(1);
2912  }
2913
2914  // Set CR6 to true if this is a vararg call.
2915  if (isVarArg) {
2916    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2917    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2918    InFlag = Chain.getValue(1);
2919  }
2920
2921  if (isTailCall)
2922    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2923                    false, TailCallArguments);
2924
2925  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2926                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2927                    Ins, InVals);
2928}
2929
2930SDValue
2931PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2932                                    CallingConv::ID CallConv, bool isVarArg,
2933                                    bool isTailCall,
2934                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2935                                    const SmallVectorImpl<SDValue> &OutVals,
2936                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2937                                    DebugLoc dl, SelectionDAG &DAG,
2938                                    SmallVectorImpl<SDValue> &InVals) const {
2939
2940  unsigned NumOps  = Outs.size();
2941
2942  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2943  bool isPPC64 = PtrVT == MVT::i64;
2944  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2945
2946  MachineFunction &MF = DAG.getMachineFunction();
2947
2948  // Mark this function as potentially containing a function that contains a
2949  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2950  // and restoring the callers stack pointer in this functions epilog. This is
2951  // done because by tail calling the called function might overwrite the value
2952  // in this function's (MF) stack pointer stack slot 0(SP).
2953  if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
2954    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2955
2956  unsigned nAltivecParamsAtEnd = 0;
2957
2958  // Count how many bytes are to be pushed on the stack, including the linkage
2959  // area, and parameter passing area.  We start with 24/48 bytes, which is
2960  // prereserved space for [SP][CR][LR][3 x unused].
2961  unsigned NumBytes =
2962    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2963                                         Outs, OutVals,
2964                                         nAltivecParamsAtEnd);
2965
2966  // Calculate by how many bytes the stack has to be adjusted in case of tail
2967  // call optimization.
2968  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2969
2970  // To protect arguments on the stack from being clobbered in a tail call,
2971  // force all the loads to happen before doing any other lowering.
2972  if (isTailCall)
2973    Chain = DAG.getStackArgumentTokenFactor(Chain);
2974
2975  // Adjust the stack pointer for the new arguments...
2976  // These operations are automatically eliminated by the prolog/epilog pass
2977  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2978  SDValue CallSeqStart = Chain;
2979
2980  // Load the return address and frame pointer so it can be move somewhere else
2981  // later.
2982  SDValue LROp, FPOp;
2983  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2984                                       dl);
2985
2986  // Set up a copy of the stack pointer for use loading and storing any
2987  // arguments that may not fit in the registers available for argument
2988  // passing.
2989  SDValue StackPtr;
2990  if (isPPC64)
2991    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2992  else
2993    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2994
2995  // Figure out which arguments are going to go in registers, and which in
2996  // memory.  Also, if this is a vararg function, floating point operations
2997  // must be stored to our stack, and loaded into integer regs as well, if
2998  // any integer regs are available for argument passing.
2999  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
3000  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3001
3002  static const unsigned GPR_32[] = {           // 32-bit registers.
3003    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3004    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3005  };
3006  static const unsigned GPR_64[] = {           // 64-bit registers.
3007    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3008    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3009  };
3010  static const unsigned *FPR = GetFPR();
3011
3012  static const unsigned VR[] = {
3013    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3014    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3015  };
3016  const unsigned NumGPRs = array_lengthof(GPR_32);
3017  const unsigned NumFPRs = 13;
3018  const unsigned NumVRs  = array_lengthof(VR);
3019
3020  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
3021
3022  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3023  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3024
3025  SmallVector<SDValue, 8> MemOpChains;
3026  for (unsigned i = 0; i != NumOps; ++i) {
3027    SDValue Arg = OutVals[i];
3028    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3029
3030    // PtrOff will be used to store the current argument to the stack if a
3031    // register cannot be found for it.
3032    SDValue PtrOff;
3033
3034    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3035
3036    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3037
3038    // On PPC64, promote integers to 64-bit values.
3039    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3040      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3041      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3042      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3043    }
3044
3045    // FIXME memcpy is used way more than necessary.  Correctness first.
3046    if (Flags.isByVal()) {
3047      unsigned Size = Flags.getByValSize();
3048      if (Size==1 || Size==2) {
3049        // Very small objects are passed right-justified.
3050        // Everything else is passed left-justified.
3051        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3052        if (GPR_idx != NumGPRs) {
3053          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3054                                        MachinePointerInfo(), VT,
3055                                        false, false, 0);
3056          MemOpChains.push_back(Load.getValue(1));
3057          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3058
3059          ArgOffset += PtrByteSize;
3060        } else {
3061          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3062          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3063          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3064                                CallSeqStart.getNode()->getOperand(0),
3065                                Flags, DAG, dl);
3066          // This must go outside the CALLSEQ_START..END.
3067          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3068                               CallSeqStart.getNode()->getOperand(1));
3069          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3070                                 NewCallSeqStart.getNode());
3071          Chain = CallSeqStart = NewCallSeqStart;
3072          ArgOffset += PtrByteSize;
3073        }
3074        continue;
3075      }
3076      // Copy entire object into memory.  There are cases where gcc-generated
3077      // code assumes it is there, even if it could be put entirely into
3078      // registers.  (This is not what the doc says.)
3079      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3080                            CallSeqStart.getNode()->getOperand(0),
3081                            Flags, DAG, dl);
3082      // This must go outside the CALLSEQ_START..END.
3083      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3084                           CallSeqStart.getNode()->getOperand(1));
3085      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3086      Chain = CallSeqStart = NewCallSeqStart;
3087      // And copy the pieces of it that fit into registers.
3088      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3089        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3090        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3091        if (GPR_idx != NumGPRs) {
3092          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3093                                     MachinePointerInfo(),
3094                                     false, false, 0);
3095          MemOpChains.push_back(Load.getValue(1));
3096          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3097          ArgOffset += PtrByteSize;
3098        } else {
3099          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3100          break;
3101        }
3102      }
3103      continue;
3104    }
3105
3106    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3107    default: llvm_unreachable("Unexpected ValueType for argument!");
3108    case MVT::i32:
3109    case MVT::i64:
3110      if (GPR_idx != NumGPRs) {
3111        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3112      } else {
3113        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3114                         isPPC64, isTailCall, false, MemOpChains,
3115                         TailCallArguments, dl);
3116      }
3117      ArgOffset += PtrByteSize;
3118      break;
3119    case MVT::f32:
3120    case MVT::f64:
3121      if (FPR_idx != NumFPRs) {
3122        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3123
3124        if (isVarArg) {
3125          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3126                                       MachinePointerInfo(), false, false, 0);
3127          MemOpChains.push_back(Store);
3128
3129          // Float varargs are always shadowed in available integer registers
3130          if (GPR_idx != NumGPRs) {
3131            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3132                                       MachinePointerInfo(), false, false, 0);
3133            MemOpChains.push_back(Load.getValue(1));
3134            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3135          }
3136          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3137            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3138            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3139            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3140                                       MachinePointerInfo(),
3141                                       false, false, 0);
3142            MemOpChains.push_back(Load.getValue(1));
3143            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3144          }
3145        } else {
3146          // If we have any FPRs remaining, we may also have GPRs remaining.
3147          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3148          // GPRs.
3149          if (GPR_idx != NumGPRs)
3150            ++GPR_idx;
3151          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3152              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3153            ++GPR_idx;
3154        }
3155      } else {
3156        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3157                         isPPC64, isTailCall, false, MemOpChains,
3158                         TailCallArguments, dl);
3159      }
3160      if (isPPC64)
3161        ArgOffset += 8;
3162      else
3163        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3164      break;
3165    case MVT::v4f32:
3166    case MVT::v4i32:
3167    case MVT::v8i16:
3168    case MVT::v16i8:
3169      if (isVarArg) {
3170        // These go aligned on the stack, or in the corresponding R registers
3171        // when within range.  The Darwin PPC ABI doc claims they also go in
3172        // V registers; in fact gcc does this only for arguments that are
3173        // prototyped, not for those that match the ...  We do it for all
3174        // arguments, seems to work.
3175        while (ArgOffset % 16 !=0) {
3176          ArgOffset += PtrByteSize;
3177          if (GPR_idx != NumGPRs)
3178            GPR_idx++;
3179        }
3180        // We could elide this store in the case where the object fits
3181        // entirely in R registers.  Maybe later.
3182        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3183                            DAG.getConstant(ArgOffset, PtrVT));
3184        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3185                                     MachinePointerInfo(), false, false, 0);
3186        MemOpChains.push_back(Store);
3187        if (VR_idx != NumVRs) {
3188          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3189                                     MachinePointerInfo(),
3190                                     false, false, 0);
3191          MemOpChains.push_back(Load.getValue(1));
3192          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3193        }
3194        ArgOffset += 16;
3195        for (unsigned i=0; i<16; i+=PtrByteSize) {
3196          if (GPR_idx == NumGPRs)
3197            break;
3198          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3199                                  DAG.getConstant(i, PtrVT));
3200          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3201                                     false, false, 0);
3202          MemOpChains.push_back(Load.getValue(1));
3203          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3204        }
3205        break;
3206      }
3207
3208      // Non-varargs Altivec params generally go in registers, but have
3209      // stack space allocated at the end.
3210      if (VR_idx != NumVRs) {
3211        // Doesn't have GPR space allocated.
3212        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3213      } else if (nAltivecParamsAtEnd==0) {
3214        // We are emitting Altivec params in order.
3215        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3216                         isPPC64, isTailCall, true, MemOpChains,
3217                         TailCallArguments, dl);
3218        ArgOffset += 16;
3219      }
3220      break;
3221    }
3222  }
3223  // If all Altivec parameters fit in registers, as they usually do,
3224  // they get stack space following the non-Altivec parameters.  We
3225  // don't track this here because nobody below needs it.
3226  // If there are more Altivec parameters than fit in registers emit
3227  // the stores here.
3228  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3229    unsigned j = 0;
3230    // Offset is aligned; skip 1st 12 params which go in V registers.
3231    ArgOffset = ((ArgOffset+15)/16)*16;
3232    ArgOffset += 12*16;
3233    for (unsigned i = 0; i != NumOps; ++i) {
3234      SDValue Arg = OutVals[i];
3235      EVT ArgType = Outs[i].VT;
3236      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3237          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3238        if (++j > NumVRs) {
3239          SDValue PtrOff;
3240          // We are emitting Altivec params in order.
3241          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3242                           isPPC64, isTailCall, true, MemOpChains,
3243                           TailCallArguments, dl);
3244          ArgOffset += 16;
3245        }
3246      }
3247    }
3248  }
3249
3250  if (!MemOpChains.empty())
3251    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3252                        &MemOpChains[0], MemOpChains.size());
3253
3254  // Check if this is an indirect call (MTCTR/BCTRL).
3255  // See PrepareCall() for more information about calls through function
3256  // pointers in the 64-bit SVR4 ABI.
3257  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3258      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3259      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3260      !isBLACompatibleAddress(Callee, DAG)) {
3261    // Load r2 into a virtual register and store it to the TOC save area.
3262    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3263    // TOC save area offset.
3264    SDValue PtrOff = DAG.getIntPtrConstant(40);
3265    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3266    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3267                         false, false, 0);
3268  }
3269
3270  // On Darwin, R12 must contain the address of an indirect callee.  This does
3271  // not mean the MTCTR instruction must use R12; it's easier to model this as
3272  // an extra parameter, so do that.
3273  if (!isTailCall &&
3274      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3275      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3276      !isBLACompatibleAddress(Callee, DAG))
3277    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3278                                                   PPC::R12), Callee));
3279
3280  // Build a sequence of copy-to-reg nodes chained together with token chain
3281  // and flag operands which copy the outgoing args into the appropriate regs.
3282  SDValue InFlag;
3283  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3284    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3285                             RegsToPass[i].second, InFlag);
3286    InFlag = Chain.getValue(1);
3287  }
3288
3289  if (isTailCall)
3290    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3291                    FPOp, true, TailCallArguments);
3292
3293  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3294                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3295                    Ins, InVals);
3296}
3297
3298SDValue
3299PPCTargetLowering::LowerReturn(SDValue Chain,
3300                               CallingConv::ID CallConv, bool isVarArg,
3301                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3302                               const SmallVectorImpl<SDValue> &OutVals,
3303                               DebugLoc dl, SelectionDAG &DAG) const {
3304
3305  SmallVector<CCValAssign, 16> RVLocs;
3306  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3307                 RVLocs, *DAG.getContext());
3308  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3309
3310  // If this is the first return lowered for this function, add the regs to the
3311  // liveout set for the function.
3312  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3313    for (unsigned i = 0; i != RVLocs.size(); ++i)
3314      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3315  }
3316
3317  SDValue Flag;
3318
3319  // Copy the result values into the output registers.
3320  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3321    CCValAssign &VA = RVLocs[i];
3322    assert(VA.isRegLoc() && "Can only return in registers!");
3323    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3324                             OutVals[i], Flag);
3325    Flag = Chain.getValue(1);
3326  }
3327
3328  if (Flag.getNode())
3329    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3330  else
3331    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3332}
3333
3334SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3335                                   const PPCSubtarget &Subtarget) const {
3336  // When we pop the dynamic allocation we need to restore the SP link.
3337  DebugLoc dl = Op.getDebugLoc();
3338
3339  // Get the corect type for pointers.
3340  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3341
3342  // Construct the stack pointer operand.
3343  bool isPPC64 = Subtarget.isPPC64();
3344  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3345  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3346
3347  // Get the operands for the STACKRESTORE.
3348  SDValue Chain = Op.getOperand(0);
3349  SDValue SaveSP = Op.getOperand(1);
3350
3351  // Load the old link SP.
3352  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3353                                   MachinePointerInfo(),
3354                                   false, false, 0);
3355
3356  // Restore the stack pointer.
3357  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3358
3359  // Store the old link SP.
3360  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3361                      false, false, 0);
3362}
3363
3364
3365
3366SDValue
3367PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3368  MachineFunction &MF = DAG.getMachineFunction();
3369  bool isPPC64 = PPCSubTarget.isPPC64();
3370  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3371  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3372
3373  // Get current frame pointer save index.  The users of this index will be
3374  // primarily DYNALLOC instructions.
3375  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3376  int RASI = FI->getReturnAddrSaveIndex();
3377
3378  // If the frame pointer save index hasn't been defined yet.
3379  if (!RASI) {
3380    // Find out what the fix offset of the frame pointer save area.
3381    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
3382    // Allocate the frame index for frame pointer save area.
3383    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3384    // Save the result.
3385    FI->setReturnAddrSaveIndex(RASI);
3386  }
3387  return DAG.getFrameIndex(RASI, PtrVT);
3388}
3389
3390SDValue
3391PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3392  MachineFunction &MF = DAG.getMachineFunction();
3393  bool isPPC64 = PPCSubTarget.isPPC64();
3394  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3395  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3396
3397  // Get current frame pointer save index.  The users of this index will be
3398  // primarily DYNALLOC instructions.
3399  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3400  int FPSI = FI->getFramePointerSaveIndex();
3401
3402  // If the frame pointer save index hasn't been defined yet.
3403  if (!FPSI) {
3404    // Find out what the fix offset of the frame pointer save area.
3405    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
3406                                                           isDarwinABI);
3407
3408    // Allocate the frame index for frame pointer save area.
3409    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3410    // Save the result.
3411    FI->setFramePointerSaveIndex(FPSI);
3412  }
3413  return DAG.getFrameIndex(FPSI, PtrVT);
3414}
3415
3416SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3417                                         SelectionDAG &DAG,
3418                                         const PPCSubtarget &Subtarget) const {
3419  // Get the inputs.
3420  SDValue Chain = Op.getOperand(0);
3421  SDValue Size  = Op.getOperand(1);
3422  DebugLoc dl = Op.getDebugLoc();
3423
3424  // Get the corect type for pointers.
3425  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3426  // Negate the size.
3427  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3428                                  DAG.getConstant(0, PtrVT), Size);
3429  // Construct a node for the frame pointer save index.
3430  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3431  // Build a DYNALLOC node.
3432  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3433  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3434  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3435}
3436
3437/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3438/// possible.
3439SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3440  // Not FP? Not a fsel.
3441  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3442      !Op.getOperand(2).getValueType().isFloatingPoint())
3443    return Op;
3444
3445  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3446
3447  // Cannot handle SETEQ/SETNE.
3448  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3449
3450  EVT ResVT = Op.getValueType();
3451  EVT CmpVT = Op.getOperand(0).getValueType();
3452  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3453  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3454  DebugLoc dl = Op.getDebugLoc();
3455
3456  // If the RHS of the comparison is a 0.0, we don't need to do the
3457  // subtraction at all.
3458  if (isFloatingPointZero(RHS))
3459    switch (CC) {
3460    default: break;       // SETUO etc aren't handled by fsel.
3461    case ISD::SETULT:
3462    case ISD::SETLT:
3463      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3464    case ISD::SETOGE:
3465    case ISD::SETGE:
3466      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3467        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3468      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3469    case ISD::SETUGT:
3470    case ISD::SETGT:
3471      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3472    case ISD::SETOLE:
3473    case ISD::SETLE:
3474      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3475        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3476      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3477                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3478    }
3479
3480  SDValue Cmp;
3481  switch (CC) {
3482  default: break;       // SETUO etc aren't handled by fsel.
3483  case ISD::SETULT:
3484  case ISD::SETLT:
3485    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3486    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3487      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3488      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3489  case ISD::SETOGE:
3490  case ISD::SETGE:
3491    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3492    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3493      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3494      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3495  case ISD::SETUGT:
3496  case ISD::SETGT:
3497    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3498    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3499      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3500      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3501  case ISD::SETOLE:
3502  case ISD::SETLE:
3503    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3504    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3505      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3506      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3507  }
3508  return Op;
3509}
3510
3511// FIXME: Split this code up when LegalizeDAGTypes lands.
3512SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3513                                           DebugLoc dl) const {
3514  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3515  SDValue Src = Op.getOperand(0);
3516  if (Src.getValueType() == MVT::f32)
3517    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3518
3519  SDValue Tmp;
3520  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3521  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3522  case MVT::i32:
3523    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3524                                                         PPCISD::FCTIDZ,
3525                      dl, MVT::f64, Src);
3526    break;
3527  case MVT::i64:
3528    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3529    break;
3530  }
3531
3532  // Convert the FP value to an int value through memory.
3533  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3534
3535  // Emit a store to the stack slot.
3536  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3537                               MachinePointerInfo(), false, false, 0);
3538
3539  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3540  // add in a bias.
3541  if (Op.getValueType() == MVT::i32)
3542    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3543                        DAG.getConstant(4, FIPtr.getValueType()));
3544  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3545                     false, false, 0);
3546}
3547
3548SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3549                                           SelectionDAG &DAG) const {
3550  DebugLoc dl = Op.getDebugLoc();
3551  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3552  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3553    return SDValue();
3554
3555  if (Op.getOperand(0).getValueType() == MVT::i64) {
3556    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
3557    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3558    if (Op.getValueType() == MVT::f32)
3559      FP = DAG.getNode(ISD::FP_ROUND, dl,
3560                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3561    return FP;
3562  }
3563
3564  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3565         "Unhandled SINT_TO_FP type in custom expander!");
3566  // Since we only generate this in 64-bit mode, we can take advantage of
3567  // 64-bit registers.  In particular, sign extend the input value into the
3568  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3569  // then lfd it and fcfid it.
3570  MachineFunction &MF = DAG.getMachineFunction();
3571  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3572  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3573  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3574  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3575
3576  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3577                                Op.getOperand(0));
3578
3579  // STD the extended value into the stack slot.
3580  MachineMemOperand *MMO =
3581    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3582                            MachineMemOperand::MOStore, 8, 8);
3583  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3584  SDValue Store =
3585    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3586                            Ops, 4, MVT::i64, MMO);
3587  // Load the value as a double.
3588  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3589                           false, false, 0);
3590
3591  // FCFID it and return it.
3592  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3593  if (Op.getValueType() == MVT::f32)
3594    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3595  return FP;
3596}
3597
3598SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3599                                            SelectionDAG &DAG) const {
3600  DebugLoc dl = Op.getDebugLoc();
3601  /*
3602   The rounding mode is in bits 30:31 of FPSR, and has the following
3603   settings:
3604     00 Round to nearest
3605     01 Round to 0
3606     10 Round to +inf
3607     11 Round to -inf
3608
3609  FLT_ROUNDS, on the other hand, expects the following:
3610    -1 Undefined
3611     0 Round to 0
3612     1 Round to nearest
3613     2 Round to +inf
3614     3 Round to -inf
3615
3616  To perform the conversion, we do:
3617    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3618  */
3619
3620  MachineFunction &MF = DAG.getMachineFunction();
3621  EVT VT = Op.getValueType();
3622  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3623  std::vector<EVT> NodeTys;
3624  SDValue MFFSreg, InFlag;
3625
3626  // Save FP Control Word to register
3627  NodeTys.push_back(MVT::f64);    // return register
3628  NodeTys.push_back(MVT::Glue);   // unused in this context
3629  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3630
3631  // Save FP register to stack slot
3632  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3633  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3634  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3635                               StackSlot, MachinePointerInfo(), false, false,0);
3636
3637  // Load FP Control Word from low 32 bits of stack slot.
3638  SDValue Four = DAG.getConstant(4, PtrVT);
3639  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3640  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3641                            false, false, 0);
3642
3643  // Transform as necessary
3644  SDValue CWD1 =
3645    DAG.getNode(ISD::AND, dl, MVT::i32,
3646                CWD, DAG.getConstant(3, MVT::i32));
3647  SDValue CWD2 =
3648    DAG.getNode(ISD::SRL, dl, MVT::i32,
3649                DAG.getNode(ISD::AND, dl, MVT::i32,
3650                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3651                                        CWD, DAG.getConstant(3, MVT::i32)),
3652                            DAG.getConstant(3, MVT::i32)),
3653                DAG.getConstant(1, MVT::i32));
3654
3655  SDValue RetVal =
3656    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3657
3658  return DAG.getNode((VT.getSizeInBits() < 16 ?
3659                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3660}
3661
3662SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3663  EVT VT = Op.getValueType();
3664  unsigned BitWidth = VT.getSizeInBits();
3665  DebugLoc dl = Op.getDebugLoc();
3666  assert(Op.getNumOperands() == 3 &&
3667         VT == Op.getOperand(1).getValueType() &&
3668         "Unexpected SHL!");
3669
3670  // Expand into a bunch of logical ops.  Note that these ops
3671  // depend on the PPC behavior for oversized shift amounts.
3672  SDValue Lo = Op.getOperand(0);
3673  SDValue Hi = Op.getOperand(1);
3674  SDValue Amt = Op.getOperand(2);
3675  EVT AmtVT = Amt.getValueType();
3676
3677  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3678                             DAG.getConstant(BitWidth, AmtVT), Amt);
3679  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3680  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3681  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3682  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3683                             DAG.getConstant(-BitWidth, AmtVT));
3684  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3685  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3686  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3687  SDValue OutOps[] = { OutLo, OutHi };
3688  return DAG.getMergeValues(OutOps, 2, dl);
3689}
3690
3691SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3692  EVT VT = Op.getValueType();
3693  DebugLoc dl = Op.getDebugLoc();
3694  unsigned BitWidth = VT.getSizeInBits();
3695  assert(Op.getNumOperands() == 3 &&
3696         VT == Op.getOperand(1).getValueType() &&
3697         "Unexpected SRL!");
3698
3699  // Expand into a bunch of logical ops.  Note that these ops
3700  // depend on the PPC behavior for oversized shift amounts.
3701  SDValue Lo = Op.getOperand(0);
3702  SDValue Hi = Op.getOperand(1);
3703  SDValue Amt = Op.getOperand(2);
3704  EVT AmtVT = Amt.getValueType();
3705
3706  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3707                             DAG.getConstant(BitWidth, AmtVT), Amt);
3708  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3709  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3710  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3711  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3712                             DAG.getConstant(-BitWidth, AmtVT));
3713  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3714  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3715  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3716  SDValue OutOps[] = { OutLo, OutHi };
3717  return DAG.getMergeValues(OutOps, 2, dl);
3718}
3719
3720SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3721  DebugLoc dl = Op.getDebugLoc();
3722  EVT VT = Op.getValueType();
3723  unsigned BitWidth = VT.getSizeInBits();
3724  assert(Op.getNumOperands() == 3 &&
3725         VT == Op.getOperand(1).getValueType() &&
3726         "Unexpected SRA!");
3727
3728  // Expand into a bunch of logical ops, followed by a select_cc.
3729  SDValue Lo = Op.getOperand(0);
3730  SDValue Hi = Op.getOperand(1);
3731  SDValue Amt = Op.getOperand(2);
3732  EVT AmtVT = Amt.getValueType();
3733
3734  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3735                             DAG.getConstant(BitWidth, AmtVT), Amt);
3736  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3737  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3738  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3739  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3740                             DAG.getConstant(-BitWidth, AmtVT));
3741  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3742  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3743  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3744                                  Tmp4, Tmp6, ISD::SETLE);
3745  SDValue OutOps[] = { OutLo, OutHi };
3746  return DAG.getMergeValues(OutOps, 2, dl);
3747}
3748
3749//===----------------------------------------------------------------------===//
3750// Vector related lowering.
3751//
3752
3753/// BuildSplatI - Build a canonical splati of Val with an element size of
3754/// SplatSize.  Cast the result to VT.
3755static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3756                             SelectionDAG &DAG, DebugLoc dl) {
3757  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3758
3759  static const EVT VTys[] = { // canonical VT to use for each size.
3760    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3761  };
3762
3763  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3764
3765  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3766  if (Val == -1)
3767    SplatSize = 1;
3768
3769  EVT CanonicalVT = VTys[SplatSize-1];
3770
3771  // Build a canonical splat for this value.
3772  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3773  SmallVector<SDValue, 8> Ops;
3774  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3775  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3776                              &Ops[0], Ops.size());
3777  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
3778}
3779
3780/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3781/// specified intrinsic ID.
3782static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3783                                SelectionDAG &DAG, DebugLoc dl,
3784                                EVT DestVT = MVT::Other) {
3785  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3786  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3787                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3788}
3789
3790/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3791/// specified intrinsic ID.
3792static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3793                                SDValue Op2, SelectionDAG &DAG,
3794                                DebugLoc dl, EVT DestVT = MVT::Other) {
3795  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3796  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3797                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3798}
3799
3800
3801/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3802/// amount.  The result has the specified value type.
3803static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3804                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3805  // Force LHS/RHS to be the right type.
3806  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
3807  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
3808
3809  int Ops[16];
3810  for (unsigned i = 0; i != 16; ++i)
3811    Ops[i] = i + Amt;
3812  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3813  return DAG.getNode(ISD::BITCAST, dl, VT, T);
3814}
3815
3816// If this is a case we can't handle, return null and let the default
3817// expansion code take care of it.  If we CAN select this case, and if it
3818// selects to a single instruction, return Op.  Otherwise, if we can codegen
3819// this case more efficiently than a constant pool load, lower it to the
3820// sequence of ops that should be used.
3821SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3822                                             SelectionDAG &DAG) const {
3823  DebugLoc dl = Op.getDebugLoc();
3824  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3825  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3826
3827  // Check if this is a splat of a constant value.
3828  APInt APSplatBits, APSplatUndef;
3829  unsigned SplatBitSize;
3830  bool HasAnyUndefs;
3831  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3832                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3833    return SDValue();
3834
3835  unsigned SplatBits = APSplatBits.getZExtValue();
3836  unsigned SplatUndef = APSplatUndef.getZExtValue();
3837  unsigned SplatSize = SplatBitSize / 8;
3838
3839  // First, handle single instruction cases.
3840
3841  // All zeros?
3842  if (SplatBits == 0) {
3843    // Canonicalize all zero vectors to be v4i32.
3844    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3845      SDValue Z = DAG.getConstant(0, MVT::i32);
3846      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3847      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
3848    }
3849    return Op;
3850  }
3851
3852  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3853  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3854                    (32-SplatBitSize));
3855  if (SextVal >= -16 && SextVal <= 15)
3856    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3857
3858
3859  // Two instruction sequences.
3860
3861  // If this value is in the range [-32,30] and is even, use:
3862  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3863  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3864    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3865    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3866    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3867  }
3868
3869  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3870  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3871  // for fneg/fabs.
3872  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3873    // Make -1 and vspltisw -1:
3874    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3875
3876    // Make the VSLW intrinsic, computing 0x8000_0000.
3877    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3878                                   OnesV, DAG, dl);
3879
3880    // xor by OnesV to invert it.
3881    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3882    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3883  }
3884
3885  // Check to see if this is a wide variety of vsplti*, binop self cases.
3886  static const signed char SplatCsts[] = {
3887    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3888    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3889  };
3890
3891  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3892    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3893    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3894    int i = SplatCsts[idx];
3895
3896    // Figure out what shift amount will be used by altivec if shifted by i in
3897    // this splat size.
3898    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3899
3900    // vsplti + shl self.
3901    if (SextVal == (i << (int)TypeShiftAmt)) {
3902      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3903      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3904        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3905        Intrinsic::ppc_altivec_vslw
3906      };
3907      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3908      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3909    }
3910
3911    // vsplti + srl self.
3912    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3913      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3914      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3915        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3916        Intrinsic::ppc_altivec_vsrw
3917      };
3918      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3919      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3920    }
3921
3922    // vsplti + sra self.
3923    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3924      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3925      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3926        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3927        Intrinsic::ppc_altivec_vsraw
3928      };
3929      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3930      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3931    }
3932
3933    // vsplti + rol self.
3934    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3935                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3936      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3937      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3938        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3939        Intrinsic::ppc_altivec_vrlw
3940      };
3941      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3942      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
3943    }
3944
3945    // t = vsplti c, result = vsldoi t, t, 1
3946    if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
3947      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3948      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3949    }
3950    // t = vsplti c, result = vsldoi t, t, 2
3951    if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
3952      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3953      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3954    }
3955    // t = vsplti c, result = vsldoi t, t, 3
3956    if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
3957      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3958      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3959    }
3960  }
3961
3962  // Three instruction sequences.
3963
3964  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3965  if (SextVal >= 0 && SextVal <= 31) {
3966    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3967    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3968    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3969    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
3970  }
3971  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3972  if (SextVal >= -31 && SextVal <= 0) {
3973    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3974    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3975    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3976    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
3977  }
3978
3979  return SDValue();
3980}
3981
3982/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3983/// the specified operations to build the shuffle.
3984static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3985                                      SDValue RHS, SelectionDAG &DAG,
3986                                      DebugLoc dl) {
3987  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3988  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3989  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3990
3991  enum {
3992    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3993    OP_VMRGHW,
3994    OP_VMRGLW,
3995    OP_VSPLTISW0,
3996    OP_VSPLTISW1,
3997    OP_VSPLTISW2,
3998    OP_VSPLTISW3,
3999    OP_VSLDOI4,
4000    OP_VSLDOI8,
4001    OP_VSLDOI12
4002  };
4003
4004  if (OpNum == OP_COPY) {
4005    if (LHSID == (1*9+2)*9+3) return LHS;
4006    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4007    return RHS;
4008  }
4009
4010  SDValue OpLHS, OpRHS;
4011  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4012  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4013
4014  int ShufIdxs[16];
4015  switch (OpNum) {
4016  default: llvm_unreachable("Unknown i32 permute!");
4017  case OP_VMRGHW:
4018    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4019    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4020    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4021    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4022    break;
4023  case OP_VMRGLW:
4024    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4025    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4026    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4027    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4028    break;
4029  case OP_VSPLTISW0:
4030    for (unsigned i = 0; i != 16; ++i)
4031      ShufIdxs[i] = (i&3)+0;
4032    break;
4033  case OP_VSPLTISW1:
4034    for (unsigned i = 0; i != 16; ++i)
4035      ShufIdxs[i] = (i&3)+4;
4036    break;
4037  case OP_VSPLTISW2:
4038    for (unsigned i = 0; i != 16; ++i)
4039      ShufIdxs[i] = (i&3)+8;
4040    break;
4041  case OP_VSPLTISW3:
4042    for (unsigned i = 0; i != 16; ++i)
4043      ShufIdxs[i] = (i&3)+12;
4044    break;
4045  case OP_VSLDOI4:
4046    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4047  case OP_VSLDOI8:
4048    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4049  case OP_VSLDOI12:
4050    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4051  }
4052  EVT VT = OpLHS.getValueType();
4053  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4054  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4055  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4056  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4057}
4058
4059/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4060/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4061/// return the code it can be lowered into.  Worst case, it can always be
4062/// lowered into a vperm.
4063SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4064                                               SelectionDAG &DAG) const {
4065  DebugLoc dl = Op.getDebugLoc();
4066  SDValue V1 = Op.getOperand(0);
4067  SDValue V2 = Op.getOperand(1);
4068  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4069  EVT VT = Op.getValueType();
4070
4071  // Cases that are handled by instructions that take permute immediates
4072  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4073  // selected by the instruction selector.
4074  if (V2.getOpcode() == ISD::UNDEF) {
4075    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4076        PPC::isSplatShuffleMask(SVOp, 2) ||
4077        PPC::isSplatShuffleMask(SVOp, 4) ||
4078        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4079        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4080        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4081        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4082        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4083        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4084        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4085        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4086        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4087      return Op;
4088    }
4089  }
4090
4091  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4092  // and produce a fixed permutation.  If any of these match, do not lower to
4093  // VPERM.
4094  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4095      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4096      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4097      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4098      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4099      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4100      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4101      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4102      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4103    return Op;
4104
4105  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4106  // perfect shuffle table to emit an optimal matching sequence.
4107  SmallVector<int, 16> PermMask;
4108  SVOp->getMask(PermMask);
4109
4110  unsigned PFIndexes[4];
4111  bool isFourElementShuffle = true;
4112  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4113    unsigned EltNo = 8;   // Start out undef.
4114    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4115      if (PermMask[i*4+j] < 0)
4116        continue;   // Undef, ignore it.
4117
4118      unsigned ByteSource = PermMask[i*4+j];
4119      if ((ByteSource & 3) != j) {
4120        isFourElementShuffle = false;
4121        break;
4122      }
4123
4124      if (EltNo == 8) {
4125        EltNo = ByteSource/4;
4126      } else if (EltNo != ByteSource/4) {
4127        isFourElementShuffle = false;
4128        break;
4129      }
4130    }
4131    PFIndexes[i] = EltNo;
4132  }
4133
4134  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4135  // perfect shuffle vector to determine if it is cost effective to do this as
4136  // discrete instructions, or whether we should use a vperm.
4137  if (isFourElementShuffle) {
4138    // Compute the index in the perfect shuffle table.
4139    unsigned PFTableIndex =
4140      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4141
4142    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4143    unsigned Cost  = (PFEntry >> 30);
4144
4145    // Determining when to avoid vperm is tricky.  Many things affect the cost
4146    // of vperm, particularly how many times the perm mask needs to be computed.
4147    // For example, if the perm mask can be hoisted out of a loop or is already
4148    // used (perhaps because there are multiple permutes with the same shuffle
4149    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4150    // the loop requires an extra register.
4151    //
4152    // As a compromise, we only emit discrete instructions if the shuffle can be
4153    // generated in 3 or fewer operations.  When we have loop information
4154    // available, if this block is within a loop, we should avoid using vperm
4155    // for 3-operation perms and use a constant pool load instead.
4156    if (Cost < 3)
4157      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4158  }
4159
4160  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4161  // vector that will get spilled to the constant pool.
4162  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4163
4164  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4165  // that it is in input element units, not in bytes.  Convert now.
4166  EVT EltVT = V1.getValueType().getVectorElementType();
4167  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4168
4169  SmallVector<SDValue, 16> ResultMask;
4170  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4171    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4172
4173    for (unsigned j = 0; j != BytesPerElement; ++j)
4174      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4175                                           MVT::i32));
4176  }
4177
4178  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4179                                    &ResultMask[0], ResultMask.size());
4180  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4181}
4182
4183/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4184/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4185/// information about the intrinsic.
4186static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4187                                  bool &isDot) {
4188  unsigned IntrinsicID =
4189    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4190  CompareOpc = -1;
4191  isDot = false;
4192  switch (IntrinsicID) {
4193  default: return false;
4194    // Comparison predicates.
4195  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4196  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4197  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4198  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4199  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4200  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4201  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4202  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4203  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4204  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4205  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4206  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4207  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4208
4209    // Normal Comparisons.
4210  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4211  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4212  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4213  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4214  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4215  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4216  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4217  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4218  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4219  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4220  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4221  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4222  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4223  }
4224  return true;
4225}
4226
4227/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4228/// lower, do it, otherwise return null.
4229SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4230                                                   SelectionDAG &DAG) const {
4231  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4232  // opcode number of the comparison.
4233  DebugLoc dl = Op.getDebugLoc();
4234  int CompareOpc;
4235  bool isDot;
4236  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4237    return SDValue();    // Don't custom lower most intrinsics.
4238
4239  // If this is a non-dot comparison, make the VCMP node and we are done.
4240  if (!isDot) {
4241    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4242                              Op.getOperand(1), Op.getOperand(2),
4243                              DAG.getConstant(CompareOpc, MVT::i32));
4244    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4245  }
4246
4247  // Create the PPCISD altivec 'dot' comparison node.
4248  SDValue Ops[] = {
4249    Op.getOperand(2),  // LHS
4250    Op.getOperand(3),  // RHS
4251    DAG.getConstant(CompareOpc, MVT::i32)
4252  };
4253  std::vector<EVT> VTs;
4254  VTs.push_back(Op.getOperand(2).getValueType());
4255  VTs.push_back(MVT::Glue);
4256  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4257
4258  // Now that we have the comparison, emit a copy from the CR to a GPR.
4259  // This is flagged to the above dot comparison.
4260  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4261                                DAG.getRegister(PPC::CR6, MVT::i32),
4262                                CompNode.getValue(1));
4263
4264  // Unpack the result based on how the target uses it.
4265  unsigned BitNo;   // Bit # of CR6.
4266  bool InvertBit;   // Invert result?
4267  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4268  default:  // Can't happen, don't crash on invalid number though.
4269  case 0:   // Return the value of the EQ bit of CR6.
4270    BitNo = 0; InvertBit = false;
4271    break;
4272  case 1:   // Return the inverted value of the EQ bit of CR6.
4273    BitNo = 0; InvertBit = true;
4274    break;
4275  case 2:   // Return the value of the LT bit of CR6.
4276    BitNo = 2; InvertBit = false;
4277    break;
4278  case 3:   // Return the inverted value of the LT bit of CR6.
4279    BitNo = 2; InvertBit = true;
4280    break;
4281  }
4282
4283  // Shift the bit into the low position.
4284  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4285                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4286  // Isolate the bit.
4287  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4288                      DAG.getConstant(1, MVT::i32));
4289
4290  // If we are supposed to, toggle the bit.
4291  if (InvertBit)
4292    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4293                        DAG.getConstant(1, MVT::i32));
4294  return Flags;
4295}
4296
4297SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4298                                                   SelectionDAG &DAG) const {
4299  DebugLoc dl = Op.getDebugLoc();
4300  // Create a stack slot that is 16-byte aligned.
4301  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4302  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4303  EVT PtrVT = getPointerTy();
4304  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4305
4306  // Store the input value into Value#0 of the stack slot.
4307  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4308                               Op.getOperand(0), FIdx, MachinePointerInfo(),
4309                               false, false, 0);
4310  // Load it out.
4311  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4312                     false, false, 0);
4313}
4314
4315SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4316  DebugLoc dl = Op.getDebugLoc();
4317  if (Op.getValueType() == MVT::v4i32) {
4318    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4319
4320    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4321    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4322
4323    SDValue RHSSwap =   // = vrlw RHS, 16
4324      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4325
4326    // Shrinkify inputs to v8i16.
4327    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4328    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4329    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4330
4331    // Low parts multiplied together, generating 32-bit results (we ignore the
4332    // top parts).
4333    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4334                                        LHS, RHS, DAG, dl, MVT::v4i32);
4335
4336    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4337                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4338    // Shift the high parts up 16 bits.
4339    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4340                              Neg16, DAG, dl);
4341    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4342  } else if (Op.getValueType() == MVT::v8i16) {
4343    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4344
4345    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4346
4347    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4348                            LHS, RHS, Zero, DAG, dl);
4349  } else if (Op.getValueType() == MVT::v16i8) {
4350    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4351
4352    // Multiply the even 8-bit parts, producing 16-bit sums.
4353    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4354                                           LHS, RHS, DAG, dl, MVT::v8i16);
4355    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4356
4357    // Multiply the odd 8-bit parts, producing 16-bit sums.
4358    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4359                                          LHS, RHS, DAG, dl, MVT::v8i16);
4360    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
4361
4362    // Merge the results together.
4363    int Ops[16];
4364    for (unsigned i = 0; i != 8; ++i) {
4365      Ops[i*2  ] = 2*i+1;
4366      Ops[i*2+1] = 2*i+1+16;
4367    }
4368    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4369  } else {
4370    llvm_unreachable("Unknown mul to lower!");
4371  }
4372}
4373
4374/// LowerOperation - Provide custom lowering hooks for some operations.
4375///
4376SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4377  switch (Op.getOpcode()) {
4378  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4379  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4380  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4381  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4382  case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
4383  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4384  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4385  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4386  case ISD::VASTART:
4387    return LowerVASTART(Op, DAG, PPCSubTarget);
4388
4389  case ISD::VAARG:
4390    return LowerVAARG(Op, DAG, PPCSubTarget);
4391
4392  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4393  case ISD::DYNAMIC_STACKALLOC:
4394    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4395
4396  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4397  case ISD::FP_TO_UINT:
4398  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4399                                                       Op.getDebugLoc());
4400  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4401  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4402
4403  // Lower 64-bit shifts.
4404  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4405  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4406  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4407
4408  // Vector-related lowering.
4409  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4410  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4411  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4412  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4413  case ISD::MUL:                return LowerMUL(Op, DAG);
4414
4415  // Frame & Return address.
4416  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4417  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4418  }
4419  return SDValue();
4420}
4421
4422void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4423                                           SmallVectorImpl<SDValue>&Results,
4424                                           SelectionDAG &DAG) const {
4425  DebugLoc dl = N->getDebugLoc();
4426  switch (N->getOpcode()) {
4427  default:
4428    assert(false && "Do not know how to custom type legalize this operation!");
4429    return;
4430  case ISD::FP_ROUND_INREG: {
4431    assert(N->getValueType(0) == MVT::ppcf128);
4432    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4433    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4434                             MVT::f64, N->getOperand(0),
4435                             DAG.getIntPtrConstant(0));
4436    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4437                             MVT::f64, N->getOperand(0),
4438                             DAG.getIntPtrConstant(1));
4439
4440    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4441    // of the long double, and puts FPSCR back the way it was.  We do not
4442    // actually model FPSCR.
4443    std::vector<EVT> NodeTys;
4444    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4445
4446    NodeTys.push_back(MVT::f64);   // Return register
4447    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
4448    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4449    MFFSreg = Result.getValue(0);
4450    InFlag = Result.getValue(1);
4451
4452    NodeTys.clear();
4453    NodeTys.push_back(MVT::Glue);   // Returns a flag
4454    Ops[0] = DAG.getConstant(31, MVT::i32);
4455    Ops[1] = InFlag;
4456    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4457    InFlag = Result.getValue(0);
4458
4459    NodeTys.clear();
4460    NodeTys.push_back(MVT::Glue);   // Returns a flag
4461    Ops[0] = DAG.getConstant(30, MVT::i32);
4462    Ops[1] = InFlag;
4463    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4464    InFlag = Result.getValue(0);
4465
4466    NodeTys.clear();
4467    NodeTys.push_back(MVT::f64);    // result of add
4468    NodeTys.push_back(MVT::Glue);   // Returns a flag
4469    Ops[0] = Lo;
4470    Ops[1] = Hi;
4471    Ops[2] = InFlag;
4472    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4473    FPreg = Result.getValue(0);
4474    InFlag = Result.getValue(1);
4475
4476    NodeTys.clear();
4477    NodeTys.push_back(MVT::f64);
4478    Ops[0] = DAG.getConstant(1, MVT::i32);
4479    Ops[1] = MFFSreg;
4480    Ops[2] = FPreg;
4481    Ops[3] = InFlag;
4482    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4483    FPreg = Result.getValue(0);
4484
4485    // We know the low half is about to be thrown away, so just use something
4486    // convenient.
4487    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4488                                FPreg, FPreg));
4489    return;
4490  }
4491  case ISD::FP_TO_SINT:
4492    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4493    return;
4494  }
4495}
4496
4497
4498//===----------------------------------------------------------------------===//
4499//  Other Lowering Code
4500//===----------------------------------------------------------------------===//
4501
4502MachineBasicBlock *
4503PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4504                                    bool is64bit, unsigned BinOpcode) const {
4505  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4506  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4507
4508  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4509  MachineFunction *F = BB->getParent();
4510  MachineFunction::iterator It = BB;
4511  ++It;
4512
4513  unsigned dest = MI->getOperand(0).getReg();
4514  unsigned ptrA = MI->getOperand(1).getReg();
4515  unsigned ptrB = MI->getOperand(2).getReg();
4516  unsigned incr = MI->getOperand(3).getReg();
4517  DebugLoc dl = MI->getDebugLoc();
4518
4519  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4520  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4521  F->insert(It, loopMBB);
4522  F->insert(It, exitMBB);
4523  exitMBB->splice(exitMBB->begin(), BB,
4524                  llvm::next(MachineBasicBlock::iterator(MI)),
4525                  BB->end());
4526  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4527
4528  MachineRegisterInfo &RegInfo = F->getRegInfo();
4529  unsigned TmpReg = (!BinOpcode) ? incr :
4530    RegInfo.createVirtualRegister(
4531       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4532                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4533
4534  //  thisMBB:
4535  //   ...
4536  //   fallthrough --> loopMBB
4537  BB->addSuccessor(loopMBB);
4538
4539  //  loopMBB:
4540  //   l[wd]arx dest, ptr
4541  //   add r0, dest, incr
4542  //   st[wd]cx. r0, ptr
4543  //   bne- loopMBB
4544  //   fallthrough --> exitMBB
4545  BB = loopMBB;
4546  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4547    .addReg(ptrA).addReg(ptrB);
4548  if (BinOpcode)
4549    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4550  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4551    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4552  BuildMI(BB, dl, TII->get(PPC::BCC))
4553    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4554  BB->addSuccessor(loopMBB);
4555  BB->addSuccessor(exitMBB);
4556
4557  //  exitMBB:
4558  //   ...
4559  BB = exitMBB;
4560  return BB;
4561}
4562
4563MachineBasicBlock *
4564PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4565                                            MachineBasicBlock *BB,
4566                                            bool is8bit,    // operation
4567                                            unsigned BinOpcode) const {
4568  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4569  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4570  // In 64 bit mode we have to use 64 bits for addresses, even though the
4571  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4572  // registers without caring whether they're 32 or 64, but here we're
4573  // doing actual arithmetic on the addresses.
4574  bool is64bit = PPCSubTarget.isPPC64();
4575  unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
4576
4577  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4578  MachineFunction *F = BB->getParent();
4579  MachineFunction::iterator It = BB;
4580  ++It;
4581
4582  unsigned dest = MI->getOperand(0).getReg();
4583  unsigned ptrA = MI->getOperand(1).getReg();
4584  unsigned ptrB = MI->getOperand(2).getReg();
4585  unsigned incr = MI->getOperand(3).getReg();
4586  DebugLoc dl = MI->getDebugLoc();
4587
4588  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4589  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4590  F->insert(It, loopMBB);
4591  F->insert(It, exitMBB);
4592  exitMBB->splice(exitMBB->begin(), BB,
4593                  llvm::next(MachineBasicBlock::iterator(MI)),
4594                  BB->end());
4595  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4596
4597  MachineRegisterInfo &RegInfo = F->getRegInfo();
4598  const TargetRegisterClass *RC =
4599    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4600              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4601  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4602  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4603  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4604  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4605  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4606  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4607  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4608  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4609  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4610  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4611  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4612  unsigned Ptr1Reg;
4613  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4614
4615  //  thisMBB:
4616  //   ...
4617  //   fallthrough --> loopMBB
4618  BB->addSuccessor(loopMBB);
4619
4620  // The 4-byte load must be aligned, while a char or short may be
4621  // anywhere in the word.  Hence all this nasty bookkeeping code.
4622  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4623  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4624  //   xori shift, shift1, 24 [16]
4625  //   rlwinm ptr, ptr1, 0, 0, 29
4626  //   slw incr2, incr, shift
4627  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4628  //   slw mask, mask2, shift
4629  //  loopMBB:
4630  //   lwarx tmpDest, ptr
4631  //   add tmp, tmpDest, incr2
4632  //   andc tmp2, tmpDest, mask
4633  //   and tmp3, tmp, mask
4634  //   or tmp4, tmp3, tmp2
4635  //   stwcx. tmp4, ptr
4636  //   bne- loopMBB
4637  //   fallthrough --> exitMBB
4638  //   srw dest, tmpDest, shift
4639  if (ptrA != ZeroReg) {
4640    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4641    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4642      .addReg(ptrA).addReg(ptrB);
4643  } else {
4644    Ptr1Reg = ptrB;
4645  }
4646  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4647      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4648  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4649      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4650  if (is64bit)
4651    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4652      .addReg(Ptr1Reg).addImm(0).addImm(61);
4653  else
4654    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4655      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4656  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4657      .addReg(incr).addReg(ShiftReg);
4658  if (is8bit)
4659    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4660  else {
4661    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4662    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4663  }
4664  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4665      .addReg(Mask2Reg).addReg(ShiftReg);
4666
4667  BB = loopMBB;
4668  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4669    .addReg(ZeroReg).addReg(PtrReg);
4670  if (BinOpcode)
4671    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4672      .addReg(Incr2Reg).addReg(TmpDestReg);
4673  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4674    .addReg(TmpDestReg).addReg(MaskReg);
4675  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4676    .addReg(TmpReg).addReg(MaskReg);
4677  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4678    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4679  BuildMI(BB, dl, TII->get(PPC::STWCX))
4680    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
4681  BuildMI(BB, dl, TII->get(PPC::BCC))
4682    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4683  BB->addSuccessor(loopMBB);
4684  BB->addSuccessor(exitMBB);
4685
4686  //  exitMBB:
4687  //   ...
4688  BB = exitMBB;
4689  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
4690    .addReg(ShiftReg);
4691  return BB;
4692}
4693
4694MachineBasicBlock *
4695PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4696                                               MachineBasicBlock *BB) const {
4697  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4698
4699  // To "insert" these instructions we actually have to insert their
4700  // control-flow patterns.
4701  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4702  MachineFunction::iterator It = BB;
4703  ++It;
4704
4705  MachineFunction *F = BB->getParent();
4706
4707  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4708      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4709      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4710      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4711      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4712
4713    // The incoming instruction knows the destination vreg to set, the
4714    // condition code register to branch on, the true/false values to
4715    // select between, and a branch opcode to use.
4716
4717    //  thisMBB:
4718    //  ...
4719    //   TrueVal = ...
4720    //   cmpTY ccX, r1, r2
4721    //   bCC copy1MBB
4722    //   fallthrough --> copy0MBB
4723    MachineBasicBlock *thisMBB = BB;
4724    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4725    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4726    unsigned SelectPred = MI->getOperand(4).getImm();
4727    DebugLoc dl = MI->getDebugLoc();
4728    F->insert(It, copy0MBB);
4729    F->insert(It, sinkMBB);
4730
4731    // Transfer the remainder of BB and its successor edges to sinkMBB.
4732    sinkMBB->splice(sinkMBB->begin(), BB,
4733                    llvm::next(MachineBasicBlock::iterator(MI)),
4734                    BB->end());
4735    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4736
4737    // Next, add the true and fallthrough blocks as its successors.
4738    BB->addSuccessor(copy0MBB);
4739    BB->addSuccessor(sinkMBB);
4740
4741    BuildMI(BB, dl, TII->get(PPC::BCC))
4742      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4743
4744    //  copy0MBB:
4745    //   %FalseValue = ...
4746    //   # fallthrough to sinkMBB
4747    BB = copy0MBB;
4748
4749    // Update machine-CFG edges
4750    BB->addSuccessor(sinkMBB);
4751
4752    //  sinkMBB:
4753    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4754    //  ...
4755    BB = sinkMBB;
4756    BuildMI(*BB, BB->begin(), dl,
4757            TII->get(PPC::PHI), MI->getOperand(0).getReg())
4758      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4759      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4760  }
4761  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4762    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4763  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4764    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4765  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4766    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4767  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4768    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4769
4770  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4771    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4772  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4773    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4774  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4775    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4776  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4777    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4778
4779  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4780    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4781  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4782    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4783  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4784    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4785  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4786    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4787
4788  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4789    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4790  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4791    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4792  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4793    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4794  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4795    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4796
4797  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4798    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4799  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4800    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4801  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4802    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4803  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4804    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4805
4806  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4807    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4808  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4809    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4810  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4811    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4812  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4813    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4814
4815  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4816    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4817  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4818    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4819  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4820    BB = EmitAtomicBinary(MI, BB, false, 0);
4821  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4822    BB = EmitAtomicBinary(MI, BB, true, 0);
4823
4824  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4825           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4826    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4827
4828    unsigned dest   = MI->getOperand(0).getReg();
4829    unsigned ptrA   = MI->getOperand(1).getReg();
4830    unsigned ptrB   = MI->getOperand(2).getReg();
4831    unsigned oldval = MI->getOperand(3).getReg();
4832    unsigned newval = MI->getOperand(4).getReg();
4833    DebugLoc dl     = MI->getDebugLoc();
4834
4835    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4836    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4837    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4838    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4839    F->insert(It, loop1MBB);
4840    F->insert(It, loop2MBB);
4841    F->insert(It, midMBB);
4842    F->insert(It, exitMBB);
4843    exitMBB->splice(exitMBB->begin(), BB,
4844                    llvm::next(MachineBasicBlock::iterator(MI)),
4845                    BB->end());
4846    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4847
4848    //  thisMBB:
4849    //   ...
4850    //   fallthrough --> loopMBB
4851    BB->addSuccessor(loop1MBB);
4852
4853    // loop1MBB:
4854    //   l[wd]arx dest, ptr
4855    //   cmp[wd] dest, oldval
4856    //   bne- midMBB
4857    // loop2MBB:
4858    //   st[wd]cx. newval, ptr
4859    //   bne- loopMBB
4860    //   b exitBB
4861    // midMBB:
4862    //   st[wd]cx. dest, ptr
4863    // exitBB:
4864    BB = loop1MBB;
4865    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4866      .addReg(ptrA).addReg(ptrB);
4867    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4868      .addReg(oldval).addReg(dest);
4869    BuildMI(BB, dl, TII->get(PPC::BCC))
4870      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4871    BB->addSuccessor(loop2MBB);
4872    BB->addSuccessor(midMBB);
4873
4874    BB = loop2MBB;
4875    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4876      .addReg(newval).addReg(ptrA).addReg(ptrB);
4877    BuildMI(BB, dl, TII->get(PPC::BCC))
4878      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4879    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4880    BB->addSuccessor(loop1MBB);
4881    BB->addSuccessor(exitMBB);
4882
4883    BB = midMBB;
4884    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4885      .addReg(dest).addReg(ptrA).addReg(ptrB);
4886    BB->addSuccessor(exitMBB);
4887
4888    //  exitMBB:
4889    //   ...
4890    BB = exitMBB;
4891  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4892             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4893    // We must use 64-bit registers for addresses when targeting 64-bit,
4894    // since we're actually doing arithmetic on them.  Other registers
4895    // can be 32-bit.
4896    bool is64bit = PPCSubTarget.isPPC64();
4897    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4898
4899    unsigned dest   = MI->getOperand(0).getReg();
4900    unsigned ptrA   = MI->getOperand(1).getReg();
4901    unsigned ptrB   = MI->getOperand(2).getReg();
4902    unsigned oldval = MI->getOperand(3).getReg();
4903    unsigned newval = MI->getOperand(4).getReg();
4904    DebugLoc dl     = MI->getDebugLoc();
4905
4906    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4907    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4908    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4909    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4910    F->insert(It, loop1MBB);
4911    F->insert(It, loop2MBB);
4912    F->insert(It, midMBB);
4913    F->insert(It, exitMBB);
4914    exitMBB->splice(exitMBB->begin(), BB,
4915                    llvm::next(MachineBasicBlock::iterator(MI)),
4916                    BB->end());
4917    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4918
4919    MachineRegisterInfo &RegInfo = F->getRegInfo();
4920    const TargetRegisterClass *RC =
4921      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4922                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4923    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4924    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4925    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4926    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4927    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4928    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4929    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4930    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4931    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4932    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4933    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4934    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4935    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4936    unsigned Ptr1Reg;
4937    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4938    unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
4939    //  thisMBB:
4940    //   ...
4941    //   fallthrough --> loopMBB
4942    BB->addSuccessor(loop1MBB);
4943
4944    // The 4-byte load must be aligned, while a char or short may be
4945    // anywhere in the word.  Hence all this nasty bookkeeping code.
4946    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4947    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4948    //   xori shift, shift1, 24 [16]
4949    //   rlwinm ptr, ptr1, 0, 0, 29
4950    //   slw newval2, newval, shift
4951    //   slw oldval2, oldval,shift
4952    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4953    //   slw mask, mask2, shift
4954    //   and newval3, newval2, mask
4955    //   and oldval3, oldval2, mask
4956    // loop1MBB:
4957    //   lwarx tmpDest, ptr
4958    //   and tmp, tmpDest, mask
4959    //   cmpw tmp, oldval3
4960    //   bne- midMBB
4961    // loop2MBB:
4962    //   andc tmp2, tmpDest, mask
4963    //   or tmp4, tmp2, newval3
4964    //   stwcx. tmp4, ptr
4965    //   bne- loop1MBB
4966    //   b exitBB
4967    // midMBB:
4968    //   stwcx. tmpDest, ptr
4969    // exitBB:
4970    //   srw dest, tmpDest, shift
4971    if (ptrA != ZeroReg) {
4972      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4973      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4974        .addReg(ptrA).addReg(ptrB);
4975    } else {
4976      Ptr1Reg = ptrB;
4977    }
4978    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4979        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4980    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4981        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4982    if (is64bit)
4983      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4984        .addReg(Ptr1Reg).addImm(0).addImm(61);
4985    else
4986      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4987        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4988    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4989        .addReg(newval).addReg(ShiftReg);
4990    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4991        .addReg(oldval).addReg(ShiftReg);
4992    if (is8bit)
4993      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4994    else {
4995      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4996      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4997        .addReg(Mask3Reg).addImm(65535);
4998    }
4999    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5000        .addReg(Mask2Reg).addReg(ShiftReg);
5001    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5002        .addReg(NewVal2Reg).addReg(MaskReg);
5003    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5004        .addReg(OldVal2Reg).addReg(MaskReg);
5005
5006    BB = loop1MBB;
5007    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5008        .addReg(ZeroReg).addReg(PtrReg);
5009    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5010        .addReg(TmpDestReg).addReg(MaskReg);
5011    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5012        .addReg(TmpReg).addReg(OldVal3Reg);
5013    BuildMI(BB, dl, TII->get(PPC::BCC))
5014        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5015    BB->addSuccessor(loop2MBB);
5016    BB->addSuccessor(midMBB);
5017
5018    BB = loop2MBB;
5019    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5020        .addReg(TmpDestReg).addReg(MaskReg);
5021    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5022        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5023    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5024        .addReg(ZeroReg).addReg(PtrReg);
5025    BuildMI(BB, dl, TII->get(PPC::BCC))
5026      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5027    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5028    BB->addSuccessor(loop1MBB);
5029    BB->addSuccessor(exitMBB);
5030
5031    BB = midMBB;
5032    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5033      .addReg(ZeroReg).addReg(PtrReg);
5034    BB->addSuccessor(exitMBB);
5035
5036    //  exitMBB:
5037    //   ...
5038    BB = exitMBB;
5039    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
5040      .addReg(ShiftReg);
5041  } else {
5042    llvm_unreachable("Unexpected instr type to insert");
5043  }
5044
5045  MI->eraseFromParent();   // The pseudo instruction is gone now.
5046  return BB;
5047}
5048
5049//===----------------------------------------------------------------------===//
5050// Target Optimization Hooks
5051//===----------------------------------------------------------------------===//
5052
5053SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5054                                             DAGCombinerInfo &DCI) const {
5055  const TargetMachine &TM = getTargetMachine();
5056  SelectionDAG &DAG = DCI.DAG;
5057  DebugLoc dl = N->getDebugLoc();
5058  switch (N->getOpcode()) {
5059  default: break;
5060  case PPCISD::SHL:
5061    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5062      if (C->isNullValue())   // 0 << V -> 0.
5063        return N->getOperand(0);
5064    }
5065    break;
5066  case PPCISD::SRL:
5067    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5068      if (C->isNullValue())   // 0 >>u V -> 0.
5069        return N->getOperand(0);
5070    }
5071    break;
5072  case PPCISD::SRA:
5073    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5074      if (C->isNullValue() ||   //  0 >>s V -> 0.
5075          C->isAllOnesValue())    // -1 >>s V -> -1.
5076        return N->getOperand(0);
5077    }
5078    break;
5079
5080  case ISD::SINT_TO_FP:
5081    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5082      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5083        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5084        // We allow the src/dst to be either f32/f64, but the intermediate
5085        // type must be i64.
5086        if (N->getOperand(0).getValueType() == MVT::i64 &&
5087            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5088          SDValue Val = N->getOperand(0).getOperand(0);
5089          if (Val.getValueType() == MVT::f32) {
5090            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5091            DCI.AddToWorklist(Val.getNode());
5092          }
5093
5094          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5095          DCI.AddToWorklist(Val.getNode());
5096          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5097          DCI.AddToWorklist(Val.getNode());
5098          if (N->getValueType(0) == MVT::f32) {
5099            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5100                              DAG.getIntPtrConstant(0));
5101            DCI.AddToWorklist(Val.getNode());
5102          }
5103          return Val;
5104        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5105          // If the intermediate type is i32, we can avoid the load/store here
5106          // too.
5107        }
5108      }
5109    }
5110    break;
5111  case ISD::STORE:
5112    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5113    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5114        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5115        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5116        N->getOperand(1).getValueType() == MVT::i32 &&
5117        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5118      SDValue Val = N->getOperand(1).getOperand(0);
5119      if (Val.getValueType() == MVT::f32) {
5120        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5121        DCI.AddToWorklist(Val.getNode());
5122      }
5123      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5124      DCI.AddToWorklist(Val.getNode());
5125
5126      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5127                        N->getOperand(2), N->getOperand(3));
5128      DCI.AddToWorklist(Val.getNode());
5129      return Val;
5130    }
5131
5132    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5133    if (cast<StoreSDNode>(N)->isUnindexed() &&
5134        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5135        N->getOperand(1).getNode()->hasOneUse() &&
5136        (N->getOperand(1).getValueType() == MVT::i32 ||
5137         N->getOperand(1).getValueType() == MVT::i16)) {
5138      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5139      // Do an any-extend to 32-bits if this is a half-word input.
5140      if (BSwapOp.getValueType() == MVT::i16)
5141        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5142
5143      SDValue Ops[] = {
5144        N->getOperand(0), BSwapOp, N->getOperand(2),
5145        DAG.getValueType(N->getOperand(1).getValueType())
5146      };
5147      return
5148        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5149                                Ops, array_lengthof(Ops),
5150                                cast<StoreSDNode>(N)->getMemoryVT(),
5151                                cast<StoreSDNode>(N)->getMemOperand());
5152    }
5153    break;
5154  case ISD::BSWAP:
5155    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5156    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5157        N->getOperand(0).hasOneUse() &&
5158        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5159      SDValue Load = N->getOperand(0);
5160      LoadSDNode *LD = cast<LoadSDNode>(Load);
5161      // Create the byte-swapping load.
5162      SDValue Ops[] = {
5163        LD->getChain(),    // Chain
5164        LD->getBasePtr(),  // Ptr
5165        DAG.getValueType(N->getValueType(0)) // VT
5166      };
5167      SDValue BSLoad =
5168        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5169                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5170                                LD->getMemoryVT(), LD->getMemOperand());
5171
5172      // If this is an i16 load, insert the truncate.
5173      SDValue ResVal = BSLoad;
5174      if (N->getValueType(0) == MVT::i16)
5175        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5176
5177      // First, combine the bswap away.  This makes the value produced by the
5178      // load dead.
5179      DCI.CombineTo(N, ResVal);
5180
5181      // Next, combine the load away, we give it a bogus result value but a real
5182      // chain result.  The result value is dead because the bswap is dead.
5183      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5184
5185      // Return N so it doesn't get rechecked!
5186      return SDValue(N, 0);
5187    }
5188
5189    break;
5190  case PPCISD::VCMP: {
5191    // If a VCMPo node already exists with exactly the same operands as this
5192    // node, use its result instead of this node (VCMPo computes both a CR6 and
5193    // a normal output).
5194    //
5195    if (!N->getOperand(0).hasOneUse() &&
5196        !N->getOperand(1).hasOneUse() &&
5197        !N->getOperand(2).hasOneUse()) {
5198
5199      // Scan all of the users of the LHS, looking for VCMPo's that match.
5200      SDNode *VCMPoNode = 0;
5201
5202      SDNode *LHSN = N->getOperand(0).getNode();
5203      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5204           UI != E; ++UI)
5205        if (UI->getOpcode() == PPCISD::VCMPo &&
5206            UI->getOperand(1) == N->getOperand(1) &&
5207            UI->getOperand(2) == N->getOperand(2) &&
5208            UI->getOperand(0) == N->getOperand(0)) {
5209          VCMPoNode = *UI;
5210          break;
5211        }
5212
5213      // If there is no VCMPo node, or if the flag value has a single use, don't
5214      // transform this.
5215      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5216        break;
5217
5218      // Look at the (necessarily single) use of the flag value.  If it has a
5219      // chain, this transformation is more complex.  Note that multiple things
5220      // could use the value result, which we should ignore.
5221      SDNode *FlagUser = 0;
5222      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5223           FlagUser == 0; ++UI) {
5224        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5225        SDNode *User = *UI;
5226        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5227          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5228            FlagUser = User;
5229            break;
5230          }
5231        }
5232      }
5233
5234      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5235      // give up for right now.
5236      if (FlagUser->getOpcode() == PPCISD::MFCR)
5237        return SDValue(VCMPoNode, 0);
5238    }
5239    break;
5240  }
5241  case ISD::BR_CC: {
5242    // If this is a branch on an altivec predicate comparison, lower this so
5243    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5244    // lowering is done pre-legalize, because the legalizer lowers the predicate
5245    // compare down to code that is difficult to reassemble.
5246    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5247    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5248    int CompareOpc;
5249    bool isDot;
5250
5251    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5252        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5253        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5254      assert(isDot && "Can't compare against a vector result!");
5255
5256      // If this is a comparison against something other than 0/1, then we know
5257      // that the condition is never/always true.
5258      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5259      if (Val != 0 && Val != 1) {
5260        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5261          return N->getOperand(0);
5262        // Always !=, turn it into an unconditional branch.
5263        return DAG.getNode(ISD::BR, dl, MVT::Other,
5264                           N->getOperand(0), N->getOperand(4));
5265      }
5266
5267      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5268
5269      // Create the PPCISD altivec 'dot' comparison node.
5270      std::vector<EVT> VTs;
5271      SDValue Ops[] = {
5272        LHS.getOperand(2),  // LHS of compare
5273        LHS.getOperand(3),  // RHS of compare
5274        DAG.getConstant(CompareOpc, MVT::i32)
5275      };
5276      VTs.push_back(LHS.getOperand(2).getValueType());
5277      VTs.push_back(MVT::Glue);
5278      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5279
5280      // Unpack the result based on how the target uses it.
5281      PPC::Predicate CompOpc;
5282      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5283      default:  // Can't happen, don't crash on invalid number though.
5284      case 0:   // Branch on the value of the EQ bit of CR6.
5285        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5286        break;
5287      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5288        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5289        break;
5290      case 2:   // Branch on the value of the LT bit of CR6.
5291        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5292        break;
5293      case 3:   // Branch on the inverted value of the LT bit of CR6.
5294        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5295        break;
5296      }
5297
5298      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5299                         DAG.getConstant(CompOpc, MVT::i32),
5300                         DAG.getRegister(PPC::CR6, MVT::i32),
5301                         N->getOperand(4), CompNode.getValue(1));
5302    }
5303    break;
5304  }
5305  }
5306
5307  return SDValue();
5308}
5309
5310//===----------------------------------------------------------------------===//
5311// Inline Assembly Support
5312//===----------------------------------------------------------------------===//
5313
5314void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5315                                                       const APInt &Mask,
5316                                                       APInt &KnownZero,
5317                                                       APInt &KnownOne,
5318                                                       const SelectionDAG &DAG,
5319                                                       unsigned Depth) const {
5320  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5321  switch (Op.getOpcode()) {
5322  default: break;
5323  case PPCISD::LBRX: {
5324    // lhbrx is known to have the top bits cleared out.
5325    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5326      KnownZero = 0xFFFF0000;
5327    break;
5328  }
5329  case ISD::INTRINSIC_WO_CHAIN: {
5330    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5331    default: break;
5332    case Intrinsic::ppc_altivec_vcmpbfp_p:
5333    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5334    case Intrinsic::ppc_altivec_vcmpequb_p:
5335    case Intrinsic::ppc_altivec_vcmpequh_p:
5336    case Intrinsic::ppc_altivec_vcmpequw_p:
5337    case Intrinsic::ppc_altivec_vcmpgefp_p:
5338    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5339    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5340    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5341    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5342    case Intrinsic::ppc_altivec_vcmpgtub_p:
5343    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5344    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5345      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5346      break;
5347    }
5348  }
5349  }
5350}
5351
5352
5353/// getConstraintType - Given a constraint, return the type of
5354/// constraint it is for this target.
5355PPCTargetLowering::ConstraintType
5356PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5357  if (Constraint.size() == 1) {
5358    switch (Constraint[0]) {
5359    default: break;
5360    case 'b':
5361    case 'r':
5362    case 'f':
5363    case 'v':
5364    case 'y':
5365      return C_RegisterClass;
5366    }
5367  }
5368  return TargetLowering::getConstraintType(Constraint);
5369}
5370
5371/// Examine constraint type and operand type and determine a weight value.
5372/// This object must already have been set up with the operand type
5373/// and the current alternative constraint selected.
5374TargetLowering::ConstraintWeight
5375PPCTargetLowering::getSingleConstraintMatchWeight(
5376    AsmOperandInfo &info, const char *constraint) const {
5377  ConstraintWeight weight = CW_Invalid;
5378  Value *CallOperandVal = info.CallOperandVal;
5379    // If we don't have a value, we can't do a match,
5380    // but allow it at the lowest weight.
5381  if (CallOperandVal == NULL)
5382    return CW_Default;
5383  const Type *type = CallOperandVal->getType();
5384  // Look at the constraint type.
5385  switch (*constraint) {
5386  default:
5387    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5388    break;
5389  case 'b':
5390    if (type->isIntegerTy())
5391      weight = CW_Register;
5392    break;
5393  case 'f':
5394    if (type->isFloatTy())
5395      weight = CW_Register;
5396    break;
5397  case 'd':
5398    if (type->isDoubleTy())
5399      weight = CW_Register;
5400    break;
5401  case 'v':
5402    if (type->isVectorTy())
5403      weight = CW_Register;
5404    break;
5405  case 'y':
5406    weight = CW_Register;
5407    break;
5408  }
5409  return weight;
5410}
5411
5412std::pair<unsigned, const TargetRegisterClass*>
5413PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5414                                                EVT VT) const {
5415  if (Constraint.size() == 1) {
5416    // GCC RS6000 Constraint Letters
5417    switch (Constraint[0]) {
5418    case 'b':   // R1-R31
5419    case 'r':   // R0-R31
5420      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5421        return std::make_pair(0U, PPC::G8RCRegisterClass);
5422      return std::make_pair(0U, PPC::GPRCRegisterClass);
5423    case 'f':
5424      if (VT == MVT::f32)
5425        return std::make_pair(0U, PPC::F4RCRegisterClass);
5426      else if (VT == MVT::f64)
5427        return std::make_pair(0U, PPC::F8RCRegisterClass);
5428      break;
5429    case 'v':
5430      return std::make_pair(0U, PPC::VRRCRegisterClass);
5431    case 'y':   // crrc
5432      return std::make_pair(0U, PPC::CRRCRegisterClass);
5433    }
5434  }
5435
5436  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5437}
5438
5439
5440/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5441/// vector.  If it is invalid, don't add anything to Ops.
5442void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5443                                                     std::string &Constraint,
5444                                                     std::vector<SDValue>&Ops,
5445                                                     SelectionDAG &DAG) const {
5446  SDValue Result(0,0);
5447
5448  // Only support length 1 constraints.
5449  if (Constraint.length() > 1) return;
5450
5451  char Letter = Constraint[0];
5452  switch (Letter) {
5453  default: break;
5454  case 'I':
5455  case 'J':
5456  case 'K':
5457  case 'L':
5458  case 'M':
5459  case 'N':
5460  case 'O':
5461  case 'P': {
5462    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5463    if (!CST) return; // Must be an immediate to match.
5464    unsigned Value = CST->getZExtValue();
5465    switch (Letter) {
5466    default: llvm_unreachable("Unknown constraint letter!");
5467    case 'I':  // "I" is a signed 16-bit constant.
5468      if ((short)Value == (int)Value)
5469        Result = DAG.getTargetConstant(Value, Op.getValueType());
5470      break;
5471    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5472    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5473      if ((short)Value == 0)
5474        Result = DAG.getTargetConstant(Value, Op.getValueType());
5475      break;
5476    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5477      if ((Value >> 16) == 0)
5478        Result = DAG.getTargetConstant(Value, Op.getValueType());
5479      break;
5480    case 'M':  // "M" is a constant that is greater than 31.
5481      if (Value > 31)
5482        Result = DAG.getTargetConstant(Value, Op.getValueType());
5483      break;
5484    case 'N':  // "N" is a positive constant that is an exact power of two.
5485      if ((int)Value > 0 && isPowerOf2_32(Value))
5486        Result = DAG.getTargetConstant(Value, Op.getValueType());
5487      break;
5488    case 'O':  // "O" is the constant zero.
5489      if (Value == 0)
5490        Result = DAG.getTargetConstant(Value, Op.getValueType());
5491      break;
5492    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5493      if ((short)-Value == (int)-Value)
5494        Result = DAG.getTargetConstant(Value, Op.getValueType());
5495      break;
5496    }
5497    break;
5498  }
5499  }
5500
5501  if (Result.getNode()) {
5502    Ops.push_back(Result);
5503    return;
5504  }
5505
5506  // Handle standard constraint letters.
5507  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5508}
5509
5510// isLegalAddressingMode - Return true if the addressing mode represented
5511// by AM is legal for this target, for a load/store of the specified type.
5512bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5513                                              const Type *Ty) const {
5514  // FIXME: PPC does not allow r+i addressing modes for vectors!
5515
5516  // PPC allows a sign-extended 16-bit immediate field.
5517  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5518    return false;
5519
5520  // No global is ever allowed as a base.
5521  if (AM.BaseGV)
5522    return false;
5523
5524  // PPC only support r+r,
5525  switch (AM.Scale) {
5526  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5527    break;
5528  case 1:
5529    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5530      return false;
5531    // Otherwise we have r+r or r+i.
5532    break;
5533  case 2:
5534    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5535      return false;
5536    // Allow 2*r as r+r.
5537    break;
5538  default:
5539    // No other scales are supported.
5540    return false;
5541  }
5542
5543  return true;
5544}
5545
5546/// isLegalAddressImmediate - Return true if the integer value can be used
5547/// as the offset of the target addressing mode for load / store of the
5548/// given type.
5549bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5550  // PPC allows a sign-extended 16-bit immediate field.
5551  return (V > -(1 << 16) && V < (1 << 16)-1);
5552}
5553
5554bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5555  return false;
5556}
5557
5558SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5559                                           SelectionDAG &DAG) const {
5560  MachineFunction &MF = DAG.getMachineFunction();
5561  MachineFrameInfo *MFI = MF.getFrameInfo();
5562  MFI->setReturnAddressIsTaken(true);
5563
5564  DebugLoc dl = Op.getDebugLoc();
5565  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5566
5567  // Make sure the function does not optimize away the store of the RA to
5568  // the stack.
5569  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5570  FuncInfo->setLRStoreRequired();
5571  bool isPPC64 = PPCSubTarget.isPPC64();
5572  bool isDarwinABI = PPCSubTarget.isDarwinABI();
5573
5574  if (Depth > 0) {
5575    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5576    SDValue Offset =
5577
5578      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
5579                      isPPC64? MVT::i64 : MVT::i32);
5580    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5581                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
5582                                   FrameAddr, Offset),
5583                       MachinePointerInfo(), false, false, 0);
5584  }
5585
5586  // Just load the return address off the stack.
5587  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5588  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5589                     RetAddrFI, MachinePointerInfo(), false, false, 0);
5590}
5591
5592SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5593                                          SelectionDAG &DAG) const {
5594  DebugLoc dl = Op.getDebugLoc();
5595  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5596
5597  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5598  bool isPPC64 = PtrVT == MVT::i64;
5599
5600  MachineFunction &MF = DAG.getMachineFunction();
5601  MachineFrameInfo *MFI = MF.getFrameInfo();
5602  MFI->setFrameAddressIsTaken(true);
5603  bool is31 = (DisableFramePointerElim(MF) || MFI->hasVarSizedObjects()) &&
5604                  MFI->getStackSize() &&
5605                  !MF.getFunction()->hasFnAttr(Attribute::Naked);
5606  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5607                                (is31 ? PPC::R31 : PPC::R1);
5608  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5609                                         PtrVT);
5610  while (Depth--)
5611    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5612                            FrameAddr, MachinePointerInfo(), false, false, 0);
5613  return FrameAddr;
5614}
5615
5616bool
5617PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5618  // The PowerPC target isn't yet aware of offsets.
5619  return false;
5620}
5621
5622/// getOptimalMemOpType - Returns the target specific optimal type for load
5623/// and store operations as a result of memset, memcpy, and memmove
5624/// lowering. If DstAlign is zero that means it's safe to destination
5625/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5626/// means there isn't a need to check it against alignment requirement,
5627/// probably because the source does not need to be loaded. If
5628/// 'NonScalarIntSafe' is true, that means it's safe to return a
5629/// non-scalar-integer type, e.g. empty string source, constant, or loaded
5630/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5631/// constant so it does not need to be loaded.
5632/// It returns EVT::Other if the type should be determined using generic
5633/// target-independent logic.
5634EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5635                                           unsigned DstAlign, unsigned SrcAlign,
5636                                           bool NonScalarIntSafe,
5637                                           bool MemcpyStrSrc,
5638                                           MachineFunction &MF) const {
5639  if (this->PPCSubTarget.isPPC64()) {
5640    return MVT::i64;
5641  } else {
5642    return MVT::i32;
5643  }
5644}
5645