PPCISelLowering.cpp revision 1db3c92306f551a81440dffd88ce07b9fbea97f4
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/ParameterAttributes.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Support/CommandLine.h"
36using namespace llvm;
37
38static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
39cl::desc("enable preincrement load/store generation on PPC (experimental)"),
40                                     cl::Hidden);
41
42PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
43  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
44
45  setPow2DivIsCheap();
46
47  // Use _setjmp/_longjmp instead of setjmp/longjmp.
48  setUseUnderscoreSetJmp(true);
49  setUseUnderscoreLongJmp(true);
50
51  // Set up the register classes.
52  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
53  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
54  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
55
56  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
57  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
58  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
59
60  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
61
62  // PowerPC has pre-inc load and store's.
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
64  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
65  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
66  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
67  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
69  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
70  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
71  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
72  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
73
74  // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
75  setConvertAction(MVT::ppcf128, MVT::f64, Expand);
76  setConvertAction(MVT::ppcf128, MVT::f32, Expand);
77  // This is used in the ppcf128->int sequence.  Note it has different semantics
78  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
79  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
80
81  // PowerPC has no intrinsics for these particular operations
82  setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
83
84  // PowerPC has no SREM/UREM instructions
85  setOperationAction(ISD::SREM, MVT::i32, Expand);
86  setOperationAction(ISD::UREM, MVT::i32, Expand);
87  setOperationAction(ISD::SREM, MVT::i64, Expand);
88  setOperationAction(ISD::UREM, MVT::i64, Expand);
89
90  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
91  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
92  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
93  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
94  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
95  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
96  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
97  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
98  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
99
100  // We don't support sin/cos/sqrt/fmod/pow
101  setOperationAction(ISD::FSIN , MVT::f64, Expand);
102  setOperationAction(ISD::FCOS , MVT::f64, Expand);
103  setOperationAction(ISD::FREM , MVT::f64, Expand);
104  setOperationAction(ISD::FPOW , MVT::f64, Expand);
105  setOperationAction(ISD::FSIN , MVT::f32, Expand);
106  setOperationAction(ISD::FCOS , MVT::f32, Expand);
107  setOperationAction(ISD::FREM , MVT::f32, Expand);
108  setOperationAction(ISD::FPOW , MVT::f32, Expand);
109
110  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
111
112  // If we're enabling GP optimizations, use hardware square root
113  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
114    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
115    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
116  }
117
118  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
119  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
120
121  // PowerPC does not have BSWAP, CTPOP or CTTZ
122  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
123  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
124  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
125  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
126  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
127  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
128
129  // PowerPC does not have ROTR
130  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
131
132  // PowerPC does not have Select
133  setOperationAction(ISD::SELECT, MVT::i32, Expand);
134  setOperationAction(ISD::SELECT, MVT::i64, Expand);
135  setOperationAction(ISD::SELECT, MVT::f32, Expand);
136  setOperationAction(ISD::SELECT, MVT::f64, Expand);
137
138  // PowerPC wants to turn select_cc of FP into fsel when possible.
139  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
140  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
141
142  // PowerPC wants to optimize integer setcc a bit
143  setOperationAction(ISD::SETCC, MVT::i32, Custom);
144
145  // PowerPC does not have BRCOND which requires SetCC
146  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
147
148  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
149
150  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
151  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
152
153  // PowerPC does not have [U|S]INT_TO_FP
154  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
155  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
156
157  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
158  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
159  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
160  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
161
162  // We cannot sextinreg(i1).  Expand to shifts.
163  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
164
165  // Support label based line numbers.
166  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
167  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
168
169  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
170  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
171  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
172  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
173
174
175  // We want to legalize GlobalAddress and ConstantPool nodes into the
176  // appropriate instructions to materialize the address.
177  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
178  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
179  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
180  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
181  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
182  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
183  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
184  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
185
186  // RET must be custom lowered, to meet ABI requirements.
187  setOperationAction(ISD::RET               , MVT::Other, Custom);
188
189  // TRAP is legal.
190  setOperationAction(ISD::TRAP, MVT::Other, Legal);
191
192  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
193  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
194
195  // VAARG is custom lowered with ELF 32 ABI
196  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
197    setOperationAction(ISD::VAARG, MVT::Other, Custom);
198  else
199    setOperationAction(ISD::VAARG, MVT::Other, Expand);
200
201  // Use the default implementation.
202  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
203  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
204  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
205  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
206  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
207  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
208
209  setOperationAction(ISD::ATOMIC_LOAD_ADD   , MVT::i32  , Custom);
210  setOperationAction(ISD::ATOMIC_CMP_SWAP   , MVT::i32  , Custom);
211  setOperationAction(ISD::ATOMIC_SWAP       , MVT::i32  , Custom);
212  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
213    setOperationAction(ISD::ATOMIC_LOAD_ADD , MVT::i64  , Custom);
214    setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i64  , Custom);
215    setOperationAction(ISD::ATOMIC_SWAP     , MVT::i64  , Custom);
216  }
217
218  // We want to custom lower some of our intrinsics.
219  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
220
221  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
222    // They also have instructions for converting between i64 and fp.
223    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
224    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
225    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
226    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
227    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
228
229    // FIXME: disable this lowered code.  This generates 64-bit register values,
230    // and we don't model the fact that the top part is clobbered by calls.  We
231    // need to flag these together so that the value isn't live across a call.
232    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
233
234    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
235    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
236  } else {
237    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
238    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
239  }
240
241  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
242    // 64-bit PowerPC implementations can support i64 types directly
243    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
244    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
245    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
246    // 64-bit PowerPC wants to expand i128 shifts itself.
247    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
248    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
249    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
250  } else {
251    // 32-bit PowerPC wants to expand i64 shifts itself.
252    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
253    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
254    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
255  }
256
257  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
258    // First set operation action for all vector types to expand. Then we
259    // will selectively turn on ones that can be effectively codegen'd.
260    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
261         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
262      MVT VT = (MVT::SimpleValueType)i;
263
264      // add/sub are legal for all supported vector VT's.
265      setOperationAction(ISD::ADD , VT, Legal);
266      setOperationAction(ISD::SUB , VT, Legal);
267
268      // We promote all shuffles to v16i8.
269      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
270      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
271
272      // We promote all non-typed operations to v4i32.
273      setOperationAction(ISD::AND   , VT, Promote);
274      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
275      setOperationAction(ISD::OR    , VT, Promote);
276      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
277      setOperationAction(ISD::XOR   , VT, Promote);
278      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
279      setOperationAction(ISD::LOAD  , VT, Promote);
280      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
281      setOperationAction(ISD::SELECT, VT, Promote);
282      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
283      setOperationAction(ISD::STORE, VT, Promote);
284      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
285
286      // No other operations are legal.
287      setOperationAction(ISD::MUL , VT, Expand);
288      setOperationAction(ISD::SDIV, VT, Expand);
289      setOperationAction(ISD::SREM, VT, Expand);
290      setOperationAction(ISD::UDIV, VT, Expand);
291      setOperationAction(ISD::UREM, VT, Expand);
292      setOperationAction(ISD::FDIV, VT, Expand);
293      setOperationAction(ISD::FNEG, VT, Expand);
294      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
295      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
296      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
297      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
298      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
299      setOperationAction(ISD::UDIVREM, VT, Expand);
300      setOperationAction(ISD::SDIVREM, VT, Expand);
301      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
302      setOperationAction(ISD::FPOW, VT, Expand);
303      setOperationAction(ISD::CTPOP, VT, Expand);
304      setOperationAction(ISD::CTLZ, VT, Expand);
305      setOperationAction(ISD::CTTZ, VT, Expand);
306    }
307
308    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
309    // with merges, splats, etc.
310    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
311
312    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
313    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
314    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
315    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
316    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
317    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
318
319    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
320    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
321    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
322    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
323
324    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
325    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
326    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
327    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
328
329    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
330    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
331
332    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
333    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
334    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
335    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
336  }
337
338  setShiftAmountType(MVT::i32);
339  setSetCCResultContents(ZeroOrOneSetCCResult);
340
341  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
342    setStackPointerRegisterToSaveRestore(PPC::X1);
343    setExceptionPointerRegister(PPC::X3);
344    setExceptionSelectorRegister(PPC::X4);
345  } else {
346    setStackPointerRegisterToSaveRestore(PPC::R1);
347    setExceptionPointerRegister(PPC::R3);
348    setExceptionSelectorRegister(PPC::R4);
349  }
350
351  // We have target-specific dag combine patterns for the following nodes:
352  setTargetDAGCombine(ISD::SINT_TO_FP);
353  setTargetDAGCombine(ISD::STORE);
354  setTargetDAGCombine(ISD::BR_CC);
355  setTargetDAGCombine(ISD::BSWAP);
356
357  // Darwin long double math library functions have $LDBL128 appended.
358  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
359    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
360    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
361    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
362    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
363    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
364  }
365
366  computeRegisterProperties();
367}
368
369/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
370/// function arguments in the caller parameter area.
371unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
372  TargetMachine &TM = getTargetMachine();
373  // Darwin passes everything on 4 byte boundary.
374  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
375    return 4;
376  // FIXME Elf TBD
377  return 4;
378}
379
380const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
381  switch (Opcode) {
382  default: return 0;
383  case PPCISD::FSEL:            return "PPCISD::FSEL";
384  case PPCISD::FCFID:           return "PPCISD::FCFID";
385  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
386  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
387  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
388  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
389  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
390  case PPCISD::VPERM:           return "PPCISD::VPERM";
391  case PPCISD::Hi:              return "PPCISD::Hi";
392  case PPCISD::Lo:              return "PPCISD::Lo";
393  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
394  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
395  case PPCISD::SRL:             return "PPCISD::SRL";
396  case PPCISD::SRA:             return "PPCISD::SRA";
397  case PPCISD::SHL:             return "PPCISD::SHL";
398  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
399  case PPCISD::STD_32:          return "PPCISD::STD_32";
400  case PPCISD::CALL_ELF:        return "PPCISD::CALL_ELF";
401  case PPCISD::CALL_Macho:      return "PPCISD::CALL_Macho";
402  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
403  case PPCISD::BCTRL_Macho:     return "PPCISD::BCTRL_Macho";
404  case PPCISD::BCTRL_ELF:       return "PPCISD::BCTRL_ELF";
405  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
406  case PPCISD::MFCR:            return "PPCISD::MFCR";
407  case PPCISD::VCMP:            return "PPCISD::VCMP";
408  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
409  case PPCISD::LBRX:            return "PPCISD::LBRX";
410  case PPCISD::STBRX:           return "PPCISD::STBRX";
411  case PPCISD::ATOMIC_LOAD_ADD: return "PPCISD::ATOMIC_LOAD_ADD";
412  case PPCISD::ATOMIC_CMP_SWAP: return "PPCISD::ATOMIC_CMP_SWAP";
413  case PPCISD::ATOMIC_SWAP:     return "PPCISD::ATOMIC_SWAP";
414  case PPCISD::LARX:            return "PPCISD::LARX";
415  case PPCISD::STCX:            return "PPCISD::STCX";
416  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
417  case PPCISD::MFFS:            return "PPCISD::MFFS";
418  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
419  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
420  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
421  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
422  case PPCISD::TAILCALL:        return "PPCISD::TAILCALL";
423  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
424  }
425}
426
427
428MVT PPCTargetLowering::getSetCCResultType(const SDValue &) const {
429  return MVT::i32;
430}
431
432
433//===----------------------------------------------------------------------===//
434// Node matching predicates, for use by the tblgen matching code.
435//===----------------------------------------------------------------------===//
436
437/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
438static bool isFloatingPointZero(SDValue Op) {
439  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
440    return CFP->getValueAPF().isZero();
441  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
442    // Maybe this has already been legalized into the constant pool?
443    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
444      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
445        return CFP->getValueAPF().isZero();
446  }
447  return false;
448}
449
450/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
451/// true if Op is undef or if it matches the specified value.
452static bool isConstantOrUndef(SDValue Op, unsigned Val) {
453  return Op.getOpcode() == ISD::UNDEF ||
454         cast<ConstantSDNode>(Op)->getValue() == Val;
455}
456
457/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
458/// VPKUHUM instruction.
459bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
460  if (!isUnary) {
461    for (unsigned i = 0; i != 16; ++i)
462      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
463        return false;
464  } else {
465    for (unsigned i = 0; i != 8; ++i)
466      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
467          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
468        return false;
469  }
470  return true;
471}
472
473/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
474/// VPKUWUM instruction.
475bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
476  if (!isUnary) {
477    for (unsigned i = 0; i != 16; i += 2)
478      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
479          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
480        return false;
481  } else {
482    for (unsigned i = 0; i != 8; i += 2)
483      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
484          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
485          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
486          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
487        return false;
488  }
489  return true;
490}
491
492/// isVMerge - Common function, used to match vmrg* shuffles.
493///
494static bool isVMerge(SDNode *N, unsigned UnitSize,
495                     unsigned LHSStart, unsigned RHSStart) {
496  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
497         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
498  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
499         "Unsupported merge size!");
500
501  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
502    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
503      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
504                             LHSStart+j+i*UnitSize) ||
505          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
506                             RHSStart+j+i*UnitSize))
507        return false;
508    }
509      return true;
510}
511
512/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
513/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
514bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
515  if (!isUnary)
516    return isVMerge(N, UnitSize, 8, 24);
517  return isVMerge(N, UnitSize, 8, 8);
518}
519
520/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
521/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
522bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
523  if (!isUnary)
524    return isVMerge(N, UnitSize, 0, 16);
525  return isVMerge(N, UnitSize, 0, 0);
526}
527
528
529/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
530/// amount, otherwise return -1.
531int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
532  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
533         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
534  // Find the first non-undef value in the shuffle mask.
535  unsigned i;
536  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
537    /*search*/;
538
539  if (i == 16) return -1;  // all undef.
540
541  // Otherwise, check to see if the rest of the elements are consequtively
542  // numbered from this value.
543  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
544  if (ShiftAmt < i) return -1;
545  ShiftAmt -= i;
546
547  if (!isUnary) {
548    // Check the rest of the elements to see if they are consequtive.
549    for (++i; i != 16; ++i)
550      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
551        return -1;
552  } else {
553    // Check the rest of the elements to see if they are consequtive.
554    for (++i; i != 16; ++i)
555      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
556        return -1;
557  }
558
559  return ShiftAmt;
560}
561
562/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
563/// specifies a splat of a single element that is suitable for input to
564/// VSPLTB/VSPLTH/VSPLTW.
565bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
566  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
567         N->getNumOperands() == 16 &&
568         (EltSize == 1 || EltSize == 2 || EltSize == 4));
569
570  // This is a splat operation if each element of the permute is the same, and
571  // if the value doesn't reference the second vector.
572  unsigned ElementBase = 0;
573  SDValue Elt = N->getOperand(0);
574  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
575    ElementBase = EltV->getValue();
576  else
577    return false;   // FIXME: Handle UNDEF elements too!
578
579  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
580    return false;
581
582  // Check that they are consequtive.
583  for (unsigned i = 1; i != EltSize; ++i) {
584    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
585        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
586      return false;
587  }
588
589  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
590  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
591    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
592    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
593           "Invalid VECTOR_SHUFFLE mask!");
594    for (unsigned j = 0; j != EltSize; ++j)
595      if (N->getOperand(i+j) != N->getOperand(j))
596        return false;
597  }
598
599  return true;
600}
601
602/// isAllNegativeZeroVector - Returns true if all elements of build_vector
603/// are -0.0.
604bool PPC::isAllNegativeZeroVector(SDNode *N) {
605  assert(N->getOpcode() == ISD::BUILD_VECTOR);
606  if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
607    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
608      return CFP->getValueAPF().isNegZero();
609  return false;
610}
611
612/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
613/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
614unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
615  assert(isSplatShuffleMask(N, EltSize));
616  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
617}
618
619/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
620/// by using a vspltis[bhw] instruction of the specified element size, return
621/// the constant being splatted.  The ByteSize field indicates the number of
622/// bytes of each element [124] -> [bhw].
623SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
624  SDValue OpVal(0, 0);
625
626  // If ByteSize of the splat is bigger than the element size of the
627  // build_vector, then we have a case where we are checking for a splat where
628  // multiple elements of the buildvector are folded together into a single
629  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
630  unsigned EltSize = 16/N->getNumOperands();
631  if (EltSize < ByteSize) {
632    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
633    SDValue UniquedVals[4];
634    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
635
636    // See if all of the elements in the buildvector agree across.
637    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
638      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
639      // If the element isn't a constant, bail fully out.
640      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
641
642
643      if (UniquedVals[i&(Multiple-1)].Val == 0)
644        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
645      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
646        return SDValue();  // no match.
647    }
648
649    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
650    // either constant or undef values that are identical for each chunk.  See
651    // if these chunks can form into a larger vspltis*.
652
653    // Check to see if all of the leading entries are either 0 or -1.  If
654    // neither, then this won't fit into the immediate field.
655    bool LeadingZero = true;
656    bool LeadingOnes = true;
657    for (unsigned i = 0; i != Multiple-1; ++i) {
658      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
659
660      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
661      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
662    }
663    // Finally, check the least significant entry.
664    if (LeadingZero) {
665      if (UniquedVals[Multiple-1].Val == 0)
666        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
667      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
668      if (Val < 16)
669        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
670    }
671    if (LeadingOnes) {
672      if (UniquedVals[Multiple-1].Val == 0)
673        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
674      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
675      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
676        return DAG.getTargetConstant(Val, MVT::i32);
677    }
678
679    return SDValue();
680  }
681
682  // Check to see if this buildvec has a single non-undef value in its elements.
683  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
684    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
685    if (OpVal.Val == 0)
686      OpVal = N->getOperand(i);
687    else if (OpVal != N->getOperand(i))
688      return SDValue();
689  }
690
691  if (OpVal.Val == 0) return SDValue();  // All UNDEF: use implicit def.
692
693  unsigned ValSizeInBytes = 0;
694  uint64_t Value = 0;
695  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
696    Value = CN->getValue();
697    ValSizeInBytes = CN->getValueType(0).getSizeInBits()/8;
698  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
699    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
700    Value = FloatToBits(CN->getValueAPF().convertToFloat());
701    ValSizeInBytes = 4;
702  }
703
704  // If the splat value is larger than the element value, then we can never do
705  // this splat.  The only case that we could fit the replicated bits into our
706  // immediate field for would be zero, and we prefer to use vxor for it.
707  if (ValSizeInBytes < ByteSize) return SDValue();
708
709  // If the element value is larger than the splat value, cut it in half and
710  // check to see if the two halves are equal.  Continue doing this until we
711  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
712  while (ValSizeInBytes > ByteSize) {
713    ValSizeInBytes >>= 1;
714
715    // If the top half equals the bottom half, we're still ok.
716    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
717         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
718      return SDValue();
719  }
720
721  // Properly sign extend the value.
722  int ShAmt = (4-ByteSize)*8;
723  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
724
725  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
726  if (MaskVal == 0) return SDValue();
727
728  // Finally, if this value fits in a 5 bit sext field, return it
729  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
730    return DAG.getTargetConstant(MaskVal, MVT::i32);
731  return SDValue();
732}
733
734//===----------------------------------------------------------------------===//
735//  Addressing Mode Selection
736//===----------------------------------------------------------------------===//
737
738/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
739/// or 64-bit immediate, and if the value can be accurately represented as a
740/// sign extension from a 16-bit value.  If so, this returns true and the
741/// immediate.
742static bool isIntS16Immediate(SDNode *N, short &Imm) {
743  if (N->getOpcode() != ISD::Constant)
744    return false;
745
746  Imm = (short)cast<ConstantSDNode>(N)->getValue();
747  if (N->getValueType(0) == MVT::i32)
748    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
749  else
750    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
751}
752static bool isIntS16Immediate(SDValue Op, short &Imm) {
753  return isIntS16Immediate(Op.Val, Imm);
754}
755
756
757/// SelectAddressRegReg - Given the specified addressed, check to see if it
758/// can be represented as an indexed [r+r] operation.  Returns false if it
759/// can be more efficiently represented with [r+imm].
760bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
761                                            SDValue &Index,
762                                            SelectionDAG &DAG) {
763  short imm = 0;
764  if (N.getOpcode() == ISD::ADD) {
765    if (isIntS16Immediate(N.getOperand(1), imm))
766      return false;    // r+i
767    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
768      return false;    // r+i
769
770    Base = N.getOperand(0);
771    Index = N.getOperand(1);
772    return true;
773  } else if (N.getOpcode() == ISD::OR) {
774    if (isIntS16Immediate(N.getOperand(1), imm))
775      return false;    // r+i can fold it if we can.
776
777    // If this is an or of disjoint bitfields, we can codegen this as an add
778    // (for better address arithmetic) if the LHS and RHS of the OR are provably
779    // disjoint.
780    APInt LHSKnownZero, LHSKnownOne;
781    APInt RHSKnownZero, RHSKnownOne;
782    DAG.ComputeMaskedBits(N.getOperand(0),
783                          APInt::getAllOnesValue(N.getOperand(0)
784                            .getValueSizeInBits()),
785                          LHSKnownZero, LHSKnownOne);
786
787    if (LHSKnownZero.getBoolValue()) {
788      DAG.ComputeMaskedBits(N.getOperand(1),
789                            APInt::getAllOnesValue(N.getOperand(1)
790                              .getValueSizeInBits()),
791                            RHSKnownZero, RHSKnownOne);
792      // If all of the bits are known zero on the LHS or RHS, the add won't
793      // carry.
794      if (~(LHSKnownZero | RHSKnownZero) == 0) {
795        Base = N.getOperand(0);
796        Index = N.getOperand(1);
797        return true;
798      }
799    }
800  }
801
802  return false;
803}
804
805/// Returns true if the address N can be represented by a base register plus
806/// a signed 16-bit displacement [r+imm], and if it is not better
807/// represented as reg+reg.
808bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
809                                            SDValue &Base, SelectionDAG &DAG){
810  // If this can be more profitably realized as r+r, fail.
811  if (SelectAddressRegReg(N, Disp, Base, DAG))
812    return false;
813
814  if (N.getOpcode() == ISD::ADD) {
815    short imm = 0;
816    if (isIntS16Immediate(N.getOperand(1), imm)) {
817      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
818      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
819        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
820      } else {
821        Base = N.getOperand(0);
822      }
823      return true; // [r+i]
824    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
825      // Match LOAD (ADD (X, Lo(G))).
826      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
827             && "Cannot handle constant offsets yet!");
828      Disp = N.getOperand(1).getOperand(0);  // The global address.
829      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
830             Disp.getOpcode() == ISD::TargetConstantPool ||
831             Disp.getOpcode() == ISD::TargetJumpTable);
832      Base = N.getOperand(0);
833      return true;  // [&g+r]
834    }
835  } else if (N.getOpcode() == ISD::OR) {
836    short imm = 0;
837    if (isIntS16Immediate(N.getOperand(1), imm)) {
838      // If this is an or of disjoint bitfields, we can codegen this as an add
839      // (for better address arithmetic) if the LHS and RHS of the OR are
840      // provably disjoint.
841      APInt LHSKnownZero, LHSKnownOne;
842      DAG.ComputeMaskedBits(N.getOperand(0),
843                            APInt::getAllOnesValue(N.getOperand(0)
844                                                   .getValueSizeInBits()),
845                            LHSKnownZero, LHSKnownOne);
846
847      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
848        // If all of the bits are known zero on the LHS or RHS, the add won't
849        // carry.
850        Base = N.getOperand(0);
851        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
852        return true;
853      }
854    }
855  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
856    // Loading from a constant address.
857
858    // If this address fits entirely in a 16-bit sext immediate field, codegen
859    // this as "d, 0"
860    short Imm;
861    if (isIntS16Immediate(CN, Imm)) {
862      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
863      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
864      return true;
865    }
866
867    // Handle 32-bit sext immediates with LIS + addr mode.
868    if (CN->getValueType(0) == MVT::i32 ||
869        (int64_t)CN->getValue() == (int)CN->getValue()) {
870      int Addr = (int)CN->getValue();
871
872      // Otherwise, break this down into an LIS + disp.
873      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
874
875      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
876      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
877      Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
878      return true;
879    }
880  }
881
882  Disp = DAG.getTargetConstant(0, getPointerTy());
883  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
884    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
885  else
886    Base = N;
887  return true;      // [r+0]
888}
889
890/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
891/// represented as an indexed [r+r] operation.
892bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
893                                                SDValue &Index,
894                                                SelectionDAG &DAG) {
895  // Check to see if we can easily represent this as an [r+r] address.  This
896  // will fail if it thinks that the address is more profitably represented as
897  // reg+imm, e.g. where imm = 0.
898  if (SelectAddressRegReg(N, Base, Index, DAG))
899    return true;
900
901  // If the operand is an addition, always emit this as [r+r], since this is
902  // better (for code size, and execution, as the memop does the add for free)
903  // than emitting an explicit add.
904  if (N.getOpcode() == ISD::ADD) {
905    Base = N.getOperand(0);
906    Index = N.getOperand(1);
907    return true;
908  }
909
910  // Otherwise, do it the hard way, using R0 as the base register.
911  Base = DAG.getRegister(PPC::R0, N.getValueType());
912  Index = N;
913  return true;
914}
915
916/// SelectAddressRegImmShift - Returns true if the address N can be
917/// represented by a base register plus a signed 14-bit displacement
918/// [r+imm*4].  Suitable for use by STD and friends.
919bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
920                                                 SDValue &Base,
921                                                 SelectionDAG &DAG) {
922  // If this can be more profitably realized as r+r, fail.
923  if (SelectAddressRegReg(N, Disp, Base, DAG))
924    return false;
925
926  if (N.getOpcode() == ISD::ADD) {
927    short imm = 0;
928    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
929      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
930      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
931        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
932      } else {
933        Base = N.getOperand(0);
934      }
935      return true; // [r+i]
936    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
937      // Match LOAD (ADD (X, Lo(G))).
938      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
939             && "Cannot handle constant offsets yet!");
940      Disp = N.getOperand(1).getOperand(0);  // The global address.
941      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
942             Disp.getOpcode() == ISD::TargetConstantPool ||
943             Disp.getOpcode() == ISD::TargetJumpTable);
944      Base = N.getOperand(0);
945      return true;  // [&g+r]
946    }
947  } else if (N.getOpcode() == ISD::OR) {
948    short imm = 0;
949    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
950      // If this is an or of disjoint bitfields, we can codegen this as an add
951      // (for better address arithmetic) if the LHS and RHS of the OR are
952      // provably disjoint.
953      APInt LHSKnownZero, LHSKnownOne;
954      DAG.ComputeMaskedBits(N.getOperand(0),
955                            APInt::getAllOnesValue(N.getOperand(0)
956                                                   .getValueSizeInBits()),
957                            LHSKnownZero, LHSKnownOne);
958      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
959        // If all of the bits are known zero on the LHS or RHS, the add won't
960        // carry.
961        Base = N.getOperand(0);
962        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
963        return true;
964      }
965    }
966  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
967    // Loading from a constant address.  Verify low two bits are clear.
968    if ((CN->getValue() & 3) == 0) {
969      // If this address fits entirely in a 14-bit sext immediate field, codegen
970      // this as "d, 0"
971      short Imm;
972      if (isIntS16Immediate(CN, Imm)) {
973        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
974        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
975        return true;
976      }
977
978      // Fold the low-part of 32-bit absolute addresses into addr mode.
979      if (CN->getValueType(0) == MVT::i32 ||
980          (int64_t)CN->getValue() == (int)CN->getValue()) {
981        int Addr = (int)CN->getValue();
982
983        // Otherwise, break this down into an LIS + disp.
984        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
985
986        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
987        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
988        Base = SDValue(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
989        return true;
990      }
991    }
992  }
993
994  Disp = DAG.getTargetConstant(0, getPointerTy());
995  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
996    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
997  else
998    Base = N;
999  return true;      // [r+0]
1000}
1001
1002
1003/// getPreIndexedAddressParts - returns true by value, base pointer and
1004/// offset pointer and addressing mode by reference if the node's address
1005/// can be legally represented as pre-indexed load / store address.
1006bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1007                                                  SDValue &Offset,
1008                                                  ISD::MemIndexedMode &AM,
1009                                                  SelectionDAG &DAG) {
1010  // Disabled by default for now.
1011  if (!EnablePPCPreinc) return false;
1012
1013  SDValue Ptr;
1014  MVT VT;
1015  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1016    Ptr = LD->getBasePtr();
1017    VT = LD->getMemoryVT();
1018
1019  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1020    ST = ST;
1021    Ptr = ST->getBasePtr();
1022    VT  = ST->getMemoryVT();
1023  } else
1024    return false;
1025
1026  // PowerPC doesn't have preinc load/store instructions for vectors.
1027  if (VT.isVector())
1028    return false;
1029
1030  // TODO: Check reg+reg first.
1031
1032  // LDU/STU use reg+imm*4, others use reg+imm.
1033  if (VT != MVT::i64) {
1034    // reg + imm
1035    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1036      return false;
1037  } else {
1038    // reg + imm * 4.
1039    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1040      return false;
1041  }
1042
1043  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1044    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1045    // sext i32 to i64 when addr mode is r+i.
1046    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1047        LD->getExtensionType() == ISD::SEXTLOAD &&
1048        isa<ConstantSDNode>(Offset))
1049      return false;
1050  }
1051
1052  AM = ISD::PRE_INC;
1053  return true;
1054}
1055
1056//===----------------------------------------------------------------------===//
1057//  LowerOperation implementation
1058//===----------------------------------------------------------------------===//
1059
1060SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1061                                             SelectionDAG &DAG) {
1062  MVT PtrVT = Op.getValueType();
1063  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1064  Constant *C = CP->getConstVal();
1065  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1066  SDValue Zero = DAG.getConstant(0, PtrVT);
1067
1068  const TargetMachine &TM = DAG.getTarget();
1069
1070  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1071  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1072
1073  // If this is a non-darwin platform, we don't support non-static relo models
1074  // yet.
1075  if (TM.getRelocationModel() == Reloc::Static ||
1076      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1077    // Generate non-pic code that has direct accesses to the constant pool.
1078    // The address of the global is just (hi(&g)+lo(&g)).
1079    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1080  }
1081
1082  if (TM.getRelocationModel() == Reloc::PIC_) {
1083    // With PIC, the first instruction is actually "GR+hi(&G)".
1084    Hi = DAG.getNode(ISD::ADD, PtrVT,
1085                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1086  }
1087
1088  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1089  return Lo;
1090}
1091
1092SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1093  MVT PtrVT = Op.getValueType();
1094  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1095  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1096  SDValue Zero = DAG.getConstant(0, PtrVT);
1097
1098  const TargetMachine &TM = DAG.getTarget();
1099
1100  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1101  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1102
1103  // If this is a non-darwin platform, we don't support non-static relo models
1104  // yet.
1105  if (TM.getRelocationModel() == Reloc::Static ||
1106      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1107    // Generate non-pic code that has direct accesses to the constant pool.
1108    // The address of the global is just (hi(&g)+lo(&g)).
1109    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1110  }
1111
1112  if (TM.getRelocationModel() == Reloc::PIC_) {
1113    // With PIC, the first instruction is actually "GR+hi(&G)".
1114    Hi = DAG.getNode(ISD::ADD, PtrVT,
1115                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1116  }
1117
1118  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1119  return Lo;
1120}
1121
1122SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1123                                                   SelectionDAG &DAG) {
1124  assert(0 && "TLS not implemented for PPC.");
1125  return SDValue(); // Not reached
1126}
1127
1128SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1129                                                SelectionDAG &DAG) {
1130  MVT PtrVT = Op.getValueType();
1131  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1132  GlobalValue *GV = GSDN->getGlobal();
1133  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1134  // If it's a debug information descriptor, don't mess with it.
1135  if (DAG.isVerifiedDebugInfoDesc(Op))
1136    return GA;
1137  SDValue Zero = DAG.getConstant(0, PtrVT);
1138
1139  const TargetMachine &TM = DAG.getTarget();
1140
1141  SDValue Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1142  SDValue Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1143
1144  // If this is a non-darwin platform, we don't support non-static relo models
1145  // yet.
1146  if (TM.getRelocationModel() == Reloc::Static ||
1147      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1148    // Generate non-pic code that has direct accesses to globals.
1149    // The address of the global is just (hi(&g)+lo(&g)).
1150    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1151  }
1152
1153  if (TM.getRelocationModel() == Reloc::PIC_) {
1154    // With PIC, the first instruction is actually "GR+hi(&G)".
1155    Hi = DAG.getNode(ISD::ADD, PtrVT,
1156                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1157  }
1158
1159  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1160
1161  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1162    return Lo;
1163
1164  // If the global is weak or external, we have to go through the lazy
1165  // resolution stub.
1166  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1167}
1168
1169SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1170  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1171
1172  // If we're comparing for equality to zero, expose the fact that this is
1173  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1174  // fold the new nodes.
1175  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1176    if (C->isNullValue() && CC == ISD::SETEQ) {
1177      MVT VT = Op.getOperand(0).getValueType();
1178      SDValue Zext = Op.getOperand(0);
1179      if (VT.bitsLT(MVT::i32)) {
1180        VT = MVT::i32;
1181        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1182      }
1183      unsigned Log2b = Log2_32(VT.getSizeInBits());
1184      SDValue Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1185      SDValue Scc = DAG.getNode(ISD::SRL, VT, Clz,
1186                                  DAG.getConstant(Log2b, MVT::i32));
1187      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1188    }
1189    // Leave comparisons against 0 and -1 alone for now, since they're usually
1190    // optimized.  FIXME: revisit this when we can custom lower all setcc
1191    // optimizations.
1192    if (C->isAllOnesValue() || C->isNullValue())
1193      return SDValue();
1194  }
1195
1196  // If we have an integer seteq/setne, turn it into a compare against zero
1197  // by xor'ing the rhs with the lhs, which is faster than setting a
1198  // condition register, reading it back out, and masking the correct bit.  The
1199  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1200  // the result to other bit-twiddling opportunities.
1201  MVT LHSVT = Op.getOperand(0).getValueType();
1202  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1203    MVT VT = Op.getValueType();
1204    SDValue Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1205                                Op.getOperand(1));
1206    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1207  }
1208  return SDValue();
1209}
1210
1211SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1212                              int VarArgsFrameIndex,
1213                              int VarArgsStackOffset,
1214                              unsigned VarArgsNumGPR,
1215                              unsigned VarArgsNumFPR,
1216                              const PPCSubtarget &Subtarget) {
1217
1218  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1219  return SDValue(); // Not reached
1220}
1221
1222SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1223                              int VarArgsFrameIndex,
1224                              int VarArgsStackOffset,
1225                              unsigned VarArgsNumGPR,
1226                              unsigned VarArgsNumFPR,
1227                              const PPCSubtarget &Subtarget) {
1228
1229  if (Subtarget.isMachoABI()) {
1230    // vastart just stores the address of the VarArgsFrameIndex slot into the
1231    // memory location argument.
1232    MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1233    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1234    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1235    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV, 0);
1236  }
1237
1238  // For ELF 32 ABI we follow the layout of the va_list struct.
1239  // We suppose the given va_list is already allocated.
1240  //
1241  // typedef struct {
1242  //  char gpr;     /* index into the array of 8 GPRs
1243  //                 * stored in the register save area
1244  //                 * gpr=0 corresponds to r3,
1245  //                 * gpr=1 to r4, etc.
1246  //                 */
1247  //  char fpr;     /* index into the array of 8 FPRs
1248  //                 * stored in the register save area
1249  //                 * fpr=0 corresponds to f1,
1250  //                 * fpr=1 to f2, etc.
1251  //                 */
1252  //  char *overflow_arg_area;
1253  //                /* location on stack that holds
1254  //                 * the next overflow argument
1255  //                 */
1256  //  char *reg_save_area;
1257  //               /* where r3:r10 and f1:f8 (if saved)
1258  //                * are stored
1259  //                */
1260  // } va_list[1];
1261
1262
1263  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1264  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1265
1266
1267  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1268
1269  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1270  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1271
1272  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1273  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1274
1275  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1276  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1277
1278  uint64_t FPROffset = 1;
1279  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1280
1281  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1282
1283  // Store first byte : number of int regs
1284  SDValue firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1285                                      Op.getOperand(1), SV, 0);
1286  uint64_t nextOffset = FPROffset;
1287  SDValue nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1288                                  ConstFPROffset);
1289
1290  // Store second byte : number of float regs
1291  SDValue secondStore =
1292    DAG.getStore(firstStore, ArgFPR, nextPtr, SV, nextOffset);
1293  nextOffset += StackOffset;
1294  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1295
1296  // Store second word : arguments given on stack
1297  SDValue thirdStore =
1298    DAG.getStore(secondStore, StackOffsetFI, nextPtr, SV, nextOffset);
1299  nextOffset += FrameOffset;
1300  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1301
1302  // Store third word : arguments given in registers
1303  return DAG.getStore(thirdStore, FR, nextPtr, SV, nextOffset);
1304
1305}
1306
1307#include "PPCGenCallingConv.inc"
1308
1309/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1310/// depending on which subtarget is selected.
1311static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1312  if (Subtarget.isMachoABI()) {
1313    static const unsigned FPR[] = {
1314      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1315      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1316    };
1317    return FPR;
1318  }
1319
1320
1321  static const unsigned FPR[] = {
1322    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1323    PPC::F8
1324  };
1325  return FPR;
1326}
1327
1328/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1329/// the stack.
1330static unsigned CalculateStackSlotSize(SDValue Arg, SDValue Flag,
1331                                       bool isVarArg, unsigned PtrByteSize) {
1332  MVT ArgVT = Arg.getValueType();
1333  ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Flag)->getArgFlags();
1334  unsigned ArgSize =ArgVT.getSizeInBits()/8;
1335  if (Flags.isByVal())
1336    ArgSize = Flags.getByValSize();
1337  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1338
1339  return ArgSize;
1340}
1341
1342SDValue
1343PPCTargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op,
1344                                         SelectionDAG &DAG,
1345                                         int &VarArgsFrameIndex,
1346                                         int &VarArgsStackOffset,
1347                                         unsigned &VarArgsNumGPR,
1348                                         unsigned &VarArgsNumFPR,
1349                                         const PPCSubtarget &Subtarget) {
1350  // TODO: add description of PPC stack frame format, or at least some docs.
1351  //
1352  MachineFunction &MF = DAG.getMachineFunction();
1353  MachineFrameInfo *MFI = MF.getFrameInfo();
1354  MachineRegisterInfo &RegInfo = MF.getRegInfo();
1355  SmallVector<SDValue, 8> ArgValues;
1356  SDValue Root = Op.getOperand(0);
1357  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1358
1359  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1360  bool isPPC64 = PtrVT == MVT::i64;
1361  bool isMachoABI = Subtarget.isMachoABI();
1362  bool isELF32_ABI = Subtarget.isELF32_ABI();
1363  // Potential tail calls could cause overwriting of argument stack slots.
1364  unsigned CC = MF.getFunction()->getCallingConv();
1365  bool isImmutable = !(PerformTailCallOpt && (CC==CallingConv::Fast));
1366  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1367
1368  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1369  // Area that is at least reserved in caller of this function.
1370  unsigned MinReservedArea = ArgOffset;
1371
1372  static const unsigned GPR_32[] = {           // 32-bit registers.
1373    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1374    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1375  };
1376  static const unsigned GPR_64[] = {           // 64-bit registers.
1377    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1378    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1379  };
1380
1381  static const unsigned *FPR = GetFPR(Subtarget);
1382
1383  static const unsigned VR[] = {
1384    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1385    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1386  };
1387
1388  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1389  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1390  const unsigned Num_VR_Regs  = array_lengthof( VR);
1391
1392  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1393
1394  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1395
1396  // In 32-bit non-varargs functions, the stack space for vectors is after the
1397  // stack space for non-vectors.  We do not use this space unless we have
1398  // too many vectors to fit in registers, something that only occurs in
1399  // constructed examples:), but we have to walk the arglist to figure
1400  // that out...for the pathological case, compute VecArgOffset as the
1401  // start of the vector parameter area.  Computing VecArgOffset is the
1402  // entire point of the following loop.
1403  // Altivec is not mentioned in the ppc32 Elf Supplement, so I'm not trying
1404  // to handle Elf here.
1405  unsigned VecArgOffset = ArgOffset;
1406  if (!isVarArg && !isPPC64) {
1407    for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e;
1408         ++ArgNo) {
1409      MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1410      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1411      ISD::ArgFlagsTy Flags =
1412        cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1413
1414      if (Flags.isByVal()) {
1415        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1416        ObjSize = Flags.getByValSize();
1417        unsigned ArgSize =
1418                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1419        VecArgOffset += ArgSize;
1420        continue;
1421      }
1422
1423      switch(ObjectVT.getSimpleVT()) {
1424      default: assert(0 && "Unhandled argument type!");
1425      case MVT::i32:
1426      case MVT::f32:
1427        VecArgOffset += isPPC64 ? 8 : 4;
1428        break;
1429      case MVT::i64:  // PPC64
1430      case MVT::f64:
1431        VecArgOffset += 8;
1432        break;
1433      case MVT::v4f32:
1434      case MVT::v4i32:
1435      case MVT::v8i16:
1436      case MVT::v16i8:
1437        // Nothing to do, we're only looking at Nonvector args here.
1438        break;
1439      }
1440    }
1441  }
1442  // We've found where the vector parameter area in memory is.  Skip the
1443  // first 12 parameters; these don't use that memory.
1444  VecArgOffset = ((VecArgOffset+15)/16)*16;
1445  VecArgOffset += 12*16;
1446
1447  // Add DAG nodes to load the arguments or copy them out of registers.  On
1448  // entry to a function on PPC, the arguments start after the linkage area,
1449  // although the first ones are often in registers.
1450  //
1451  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1452  // represented with two words (long long or double) must be copied to an
1453  // even GPR_idx value or to an even ArgOffset value.
1454
1455  SmallVector<SDValue, 8> MemOps;
1456  unsigned nAltivecParamsAtEnd = 0;
1457  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1458    SDValue ArgVal;
1459    bool needsLoad = false;
1460    MVT ObjectVT = Op.getValue(ArgNo).getValueType();
1461    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1462    unsigned ArgSize = ObjSize;
1463    ISD::ArgFlagsTy Flags =
1464      cast<ARG_FLAGSSDNode>(Op.getOperand(ArgNo+3))->getArgFlags();
1465    // See if next argument requires stack alignment in ELF
1466    bool Align = Flags.isSplit();
1467
1468    unsigned CurArgOffset = ArgOffset;
1469
1470    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1471    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1472        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1473      if (isVarArg || isPPC64) {
1474        MinReservedArea = ((MinReservedArea+15)/16)*16;
1475        MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1476                                                  Op.getOperand(ArgNo+3),
1477                                                  isVarArg,
1478                                                  PtrByteSize);
1479      } else  nAltivecParamsAtEnd++;
1480    } else
1481      // Calculate min reserved area.
1482      MinReservedArea += CalculateStackSlotSize(Op.getValue(ArgNo),
1483                                                Op.getOperand(ArgNo+3),
1484                                                isVarArg,
1485                                                PtrByteSize);
1486
1487    // FIXME alignment for ELF may not be right
1488    // FIXME the codegen can be much improved in some cases.
1489    // We do not have to keep everything in memory.
1490    if (Flags.isByVal()) {
1491      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1492      ObjSize = Flags.getByValSize();
1493      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1494      // Double word align in ELF
1495      if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1496      // Objects of size 1 and 2 are right justified, everything else is
1497      // left justified.  This means the memory address is adjusted forwards.
1498      if (ObjSize==1 || ObjSize==2) {
1499        CurArgOffset = CurArgOffset + (4 - ObjSize);
1500      }
1501      // The value of the object is its address.
1502      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1503      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1504      ArgValues.push_back(FIN);
1505      if (ObjSize==1 || ObjSize==2) {
1506        if (GPR_idx != Num_GPR_Regs) {
1507          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1508          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1509          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1510          SDValue Store = DAG.getTruncStore(Val.getValue(1), Val, FIN,
1511                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1512          MemOps.push_back(Store);
1513          ++GPR_idx;
1514          if (isMachoABI) ArgOffset += PtrByteSize;
1515        } else {
1516          ArgOffset += PtrByteSize;
1517        }
1518        continue;
1519      }
1520      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1521        // Store whatever pieces of the object are in registers
1522        // to memory.  ArgVal will be address of the beginning of
1523        // the object.
1524        if (GPR_idx != Num_GPR_Regs) {
1525          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1526          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1527          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1528          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1529          SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1530          SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1531          MemOps.push_back(Store);
1532          ++GPR_idx;
1533          if (isMachoABI) ArgOffset += PtrByteSize;
1534        } else {
1535          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1536          break;
1537        }
1538      }
1539      continue;
1540    }
1541
1542    switch (ObjectVT.getSimpleVT()) {
1543    default: assert(0 && "Unhandled argument type!");
1544    case MVT::i32:
1545      if (!isPPC64) {
1546        // Double word align in ELF
1547        if (Align && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1548
1549        if (GPR_idx != Num_GPR_Regs) {
1550          unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1551          RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1552          ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1553          ++GPR_idx;
1554        } else {
1555          needsLoad = true;
1556          ArgSize = PtrByteSize;
1557        }
1558        // Stack align in ELF
1559        if (needsLoad && Align && isELF32_ABI)
1560          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1561        // All int arguments reserve stack space in Macho ABI.
1562        if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1563        break;
1564      }
1565      // FALLTHROUGH
1566    case MVT::i64:  // PPC64
1567      if (GPR_idx != Num_GPR_Regs) {
1568        unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1569        RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1570        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1571
1572        if (ObjectVT == MVT::i32) {
1573          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1574          // value to MVT::i64 and then truncate to the correct register size.
1575          if (Flags.isSExt())
1576            ArgVal = DAG.getNode(ISD::AssertSext, MVT::i64, ArgVal,
1577                                 DAG.getValueType(ObjectVT));
1578          else if (Flags.isZExt())
1579            ArgVal = DAG.getNode(ISD::AssertZext, MVT::i64, ArgVal,
1580                                 DAG.getValueType(ObjectVT));
1581
1582          ArgVal = DAG.getNode(ISD::TRUNCATE, MVT::i32, ArgVal);
1583        }
1584
1585        ++GPR_idx;
1586      } else {
1587        needsLoad = true;
1588        ArgSize = PtrByteSize;
1589      }
1590      // All int arguments reserve stack space in Macho ABI.
1591      if (isMachoABI || needsLoad) ArgOffset += 8;
1592      break;
1593
1594    case MVT::f32:
1595    case MVT::f64:
1596      // Every 4 bytes of argument space consumes one of the GPRs available for
1597      // argument passing.
1598      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1599        ++GPR_idx;
1600        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1601          ++GPR_idx;
1602      }
1603      if (FPR_idx != Num_FPR_Regs) {
1604        unsigned VReg;
1605        if (ObjectVT == MVT::f32)
1606          VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1607        else
1608          VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1609        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1610        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1611        ++FPR_idx;
1612      } else {
1613        needsLoad = true;
1614      }
1615
1616      // Stack align in ELF
1617      if (needsLoad && Align && isELF32_ABI)
1618        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1619      // All FP arguments reserve stack space in Macho ABI.
1620      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1621      break;
1622    case MVT::v4f32:
1623    case MVT::v4i32:
1624    case MVT::v8i16:
1625    case MVT::v16i8:
1626      // Note that vector arguments in registers don't reserve stack space,
1627      // except in varargs functions.
1628      if (VR_idx != Num_VR_Regs) {
1629        unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1630        RegInfo.addLiveIn(VR[VR_idx], VReg);
1631        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1632        if (isVarArg) {
1633          while ((ArgOffset % 16) != 0) {
1634            ArgOffset += PtrByteSize;
1635            if (GPR_idx != Num_GPR_Regs)
1636              GPR_idx++;
1637          }
1638          ArgOffset += 16;
1639          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs);
1640        }
1641        ++VR_idx;
1642      } else {
1643        if (!isVarArg && !isPPC64) {
1644          // Vectors go after all the nonvectors.
1645          CurArgOffset = VecArgOffset;
1646          VecArgOffset += 16;
1647        } else {
1648          // Vectors are aligned.
1649          ArgOffset = ((ArgOffset+15)/16)*16;
1650          CurArgOffset = ArgOffset;
1651          ArgOffset += 16;
1652        }
1653        needsLoad = true;
1654      }
1655      break;
1656    }
1657
1658    // We need to load the argument to a virtual register if we determined above
1659    // that we ran out of physical registers of the appropriate type.
1660    if (needsLoad) {
1661      int FI = MFI->CreateFixedObject(ObjSize,
1662                                      CurArgOffset + (ArgSize - ObjSize),
1663                                      isImmutable);
1664      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1665      ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1666    }
1667
1668    ArgValues.push_back(ArgVal);
1669  }
1670
1671  // Set the size that is at least reserved in caller of this function.  Tail
1672  // call optimized function's reserved stack space needs to be aligned so that
1673  // taking the difference between two stack areas will result in an aligned
1674  // stack.
1675  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1676  // Add the Altivec parameters at the end, if needed.
1677  if (nAltivecParamsAtEnd) {
1678    MinReservedArea = ((MinReservedArea+15)/16)*16;
1679    MinReservedArea += 16*nAltivecParamsAtEnd;
1680  }
1681  MinReservedArea =
1682    std::max(MinReservedArea,
1683             PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1684  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1685    getStackAlignment();
1686  unsigned AlignMask = TargetAlign-1;
1687  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1688  FI->setMinReservedArea(MinReservedArea);
1689
1690  // If the function takes variable number of arguments, make a frame index for
1691  // the start of the first vararg value... for expansion of llvm.va_start.
1692  if (isVarArg) {
1693
1694    int depth;
1695    if (isELF32_ABI) {
1696      VarArgsNumGPR = GPR_idx;
1697      VarArgsNumFPR = FPR_idx;
1698
1699      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1700      // pointer.
1701      depth = -(Num_GPR_Regs * PtrVT.getSizeInBits()/8 +
1702                Num_FPR_Regs * MVT(MVT::f64).getSizeInBits()/8 +
1703                PtrVT.getSizeInBits()/8);
1704
1705      VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1706                                                  ArgOffset);
1707
1708    }
1709    else
1710      depth = ArgOffset;
1711
1712    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1713                                               depth);
1714    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1715
1716    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1717    // stored to the VarArgsFrameIndex on the stack.
1718    if (isELF32_ABI) {
1719      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1720        SDValue Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1721        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1722        MemOps.push_back(Store);
1723        // Increment the address by four for the next argument to store
1724        SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1725        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1726      }
1727    }
1728
1729    // If this function is vararg, store any remaining integer argument regs
1730    // to their spots on the stack so that they may be loaded by deferencing the
1731    // result of va_next.
1732    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1733      unsigned VReg;
1734      if (isPPC64)
1735        VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1736      else
1737        VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1738
1739      RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1740      SDValue Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1741      SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1742      MemOps.push_back(Store);
1743      // Increment the address by four for the next argument to store
1744      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1745      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1746    }
1747
1748    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1749    // on the stack.
1750    if (isELF32_ABI) {
1751      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1752        SDValue Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1753        SDValue Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1754        MemOps.push_back(Store);
1755        // Increment the address by eight for the next argument to store
1756        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1757                                           PtrVT);
1758        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1759      }
1760
1761      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1762        unsigned VReg;
1763        VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1764
1765        RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1766        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1767        SDValue Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1768        MemOps.push_back(Store);
1769        // Increment the address by eight for the next argument to store
1770        SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8,
1771                                           PtrVT);
1772        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1773      }
1774    }
1775  }
1776
1777  if (!MemOps.empty())
1778    Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1779
1780  ArgValues.push_back(Root);
1781
1782  // Return the new list of results.
1783  return DAG.getMergeValues(Op.Val->getVTList(), &ArgValues[0],
1784                            ArgValues.size());
1785}
1786
1787/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
1788/// linkage area.
1789static unsigned
1790CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
1791                                     bool isPPC64,
1792                                     bool isMachoABI,
1793                                     bool isVarArg,
1794                                     unsigned CC,
1795                                     SDValue Call,
1796                                     unsigned &nAltivecParamsAtEnd) {
1797  // Count how many bytes are to be pushed on the stack, including the linkage
1798  // area, and parameter passing area.  We start with 24/48 bytes, which is
1799  // prereserved space for [SP][CR][LR][3 x unused].
1800  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1801  unsigned NumOps = (Call.getNumOperands() - 5) / 2;
1802  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1803
1804  // Add up all the space actually used.
1805  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
1806  // they all go in registers, but we must reserve stack space for them for
1807  // possible use by the caller.  In varargs or 64-bit calls, parameters are
1808  // assigned stack space in order, with padding so Altivec parameters are
1809  // 16-byte aligned.
1810  nAltivecParamsAtEnd = 0;
1811  for (unsigned i = 0; i != NumOps; ++i) {
1812    SDValue Arg = Call.getOperand(5+2*i);
1813    SDValue Flag = Call.getOperand(5+2*i+1);
1814    MVT ArgVT = Arg.getValueType();
1815    // Varargs Altivec parameters are padded to a 16 byte boundary.
1816    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
1817        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
1818      if (!isVarArg && !isPPC64) {
1819        // Non-varargs Altivec parameters go after all the non-Altivec
1820        // parameters; handle those later so we know how much padding we need.
1821        nAltivecParamsAtEnd++;
1822        continue;
1823      }
1824      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
1825      NumBytes = ((NumBytes+15)/16)*16;
1826    }
1827    NumBytes += CalculateStackSlotSize(Arg, Flag, isVarArg, PtrByteSize);
1828  }
1829
1830   // Allow for Altivec parameters at the end, if needed.
1831  if (nAltivecParamsAtEnd) {
1832    NumBytes = ((NumBytes+15)/16)*16;
1833    NumBytes += 16*nAltivecParamsAtEnd;
1834  }
1835
1836  // The prolog code of the callee may store up to 8 GPR argument registers to
1837  // the stack, allowing va_start to index over them in memory if its varargs.
1838  // Because we cannot tell if this is needed on the caller side, we have to
1839  // conservatively assume that it is needed.  As such, make sure we have at
1840  // least enough stack space for the caller to store the 8 GPRs.
1841  NumBytes = std::max(NumBytes,
1842                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1843
1844  // Tail call needs the stack to be aligned.
1845  if (CC==CallingConv::Fast && PerformTailCallOpt) {
1846    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1847      getStackAlignment();
1848    unsigned AlignMask = TargetAlign-1;
1849    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
1850  }
1851
1852  return NumBytes;
1853}
1854
1855/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
1856/// adjusted to accomodate the arguments for the tailcall.
1857static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
1858                                   unsigned ParamSize) {
1859
1860  if (!IsTailCall) return 0;
1861
1862  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
1863  unsigned CallerMinReservedArea = FI->getMinReservedArea();
1864  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
1865  // Remember only if the new adjustement is bigger.
1866  if (SPDiff < FI->getTailCallSPDelta())
1867    FI->setTailCallSPDelta(SPDiff);
1868
1869  return SPDiff;
1870}
1871
1872/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1873/// following the call is a return. A function is eligible if caller/callee
1874/// calling conventions match, currently only fastcc supports tail calls, and
1875/// the function CALL is immediatly followed by a RET.
1876bool
1877PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Call,
1878                                                     SDValue Ret,
1879                                                     SelectionDAG& DAG) const {
1880  // Variable argument functions are not supported.
1881  if (!PerformTailCallOpt ||
1882      cast<ConstantSDNode>(Call.getOperand(2))->getValue() != 0) return false;
1883
1884  if (CheckTailCallReturnConstraints(Call, Ret)) {
1885    MachineFunction &MF = DAG.getMachineFunction();
1886    unsigned CallerCC = MF.getFunction()->getCallingConv();
1887    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1888    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1889      // Functions containing by val parameters are not supported.
1890      for (unsigned i = 0; i != ((Call.getNumOperands()-5)/2); i++) {
1891         ISD::ArgFlagsTy Flags = cast<ARG_FLAGSSDNode>(Call.getOperand(5+2*i+1))
1892           ->getArgFlags();
1893         if (Flags.isByVal()) return false;
1894      }
1895
1896      SDValue Callee = Call.getOperand(4);
1897      // Non PIC/GOT  tail calls are supported.
1898      if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1899        return true;
1900
1901      // At the moment we can only do local tail calls (in same module, hidden
1902      // or protected) if we are generating PIC.
1903      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1904        return G->getGlobal()->hasHiddenVisibility()
1905            || G->getGlobal()->hasProtectedVisibility();
1906    }
1907  }
1908
1909  return false;
1910}
1911
1912/// isCallCompatibleAddress - Return the immediate to use if the specified
1913/// 32-bit value is representable in the immediate field of a BxA instruction.
1914static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
1915  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1916  if (!C) return 0;
1917
1918  int Addr = C->getValue();
1919  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1920      (Addr << 6 >> 6) != Addr)
1921    return 0;  // Top 6 bits have to be sext of immediate.
1922
1923  return DAG.getConstant((int)C->getValue() >> 2,
1924                         DAG.getTargetLoweringInfo().getPointerTy()).Val;
1925}
1926
1927namespace {
1928
1929struct TailCallArgumentInfo {
1930  SDValue Arg;
1931  SDValue FrameIdxOp;
1932  int       FrameIdx;
1933
1934  TailCallArgumentInfo() : FrameIdx(0) {}
1935};
1936
1937}
1938
1939/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
1940static void
1941StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
1942                                           SDValue Chain,
1943                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
1944                   SmallVector<SDValue, 8> &MemOpChains) {
1945  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
1946    SDValue Arg = TailCallArgs[i].Arg;
1947    SDValue FIN = TailCallArgs[i].FrameIdxOp;
1948    int FI = TailCallArgs[i].FrameIdx;
1949    // Store relative to framepointer.
1950    MemOpChains.push_back(DAG.getStore(Chain, Arg, FIN,
1951                                       PseudoSourceValue::getFixedStack(FI),
1952                                       0));
1953  }
1954}
1955
1956/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
1957/// the appropriate stack slot for the tail call optimized function call.
1958static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
1959                                               MachineFunction &MF,
1960                                               SDValue Chain,
1961                                               SDValue OldRetAddr,
1962                                               SDValue OldFP,
1963                                               int SPDiff,
1964                                               bool isPPC64,
1965                                               bool isMachoABI) {
1966  if (SPDiff) {
1967    // Calculate the new stack slot for the return address.
1968    int SlotSize = isPPC64 ? 8 : 4;
1969    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
1970                                                                   isMachoABI);
1971    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
1972                                                          NewRetAddrLoc);
1973    int NewFPLoc = SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
1974                                                                    isMachoABI);
1975    int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
1976
1977    MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1978    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
1979    Chain = DAG.getStore(Chain, OldRetAddr, NewRetAddrFrIdx,
1980                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
1981    SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
1982    Chain = DAG.getStore(Chain, OldFP, NewFramePtrIdx,
1983                         PseudoSourceValue::getFixedStack(NewFPIdx), 0);
1984  }
1985  return Chain;
1986}
1987
1988/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
1989/// the position of the argument.
1990static void
1991CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
1992                         SDValue Arg, int SPDiff, unsigned ArgOffset,
1993                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
1994  int Offset = ArgOffset + SPDiff;
1995  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
1996  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1997  MVT VT = isPPC64 ? MVT::i64 : MVT::i32;
1998  SDValue FIN = DAG.getFrameIndex(FI, VT);
1999  TailCallArgumentInfo Info;
2000  Info.Arg = Arg;
2001  Info.FrameIdxOp = FIN;
2002  Info.FrameIdx = FI;
2003  TailCallArguments.push_back(Info);
2004}
2005
2006/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2007/// stack slot. Returns the chain as result and the loaded frame pointers in
2008/// LROpOut/FPOpout. Used when tail calling.
2009SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2010                                                          int SPDiff,
2011                                                          SDValue Chain,
2012                                                          SDValue &LROpOut,
2013                                                          SDValue &FPOpOut) {
2014  if (SPDiff) {
2015    // Load the LR and FP stack slot for later adjusting.
2016    MVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2017    LROpOut = getReturnAddrFrameIndex(DAG);
2018    LROpOut = DAG.getLoad(VT, Chain, LROpOut, NULL, 0);
2019    Chain = SDValue(LROpOut.Val, 1);
2020    FPOpOut = getFramePointerFrameIndex(DAG);
2021    FPOpOut = DAG.getLoad(VT, Chain, FPOpOut, NULL, 0);
2022    Chain = SDValue(FPOpOut.Val, 1);
2023  }
2024  return Chain;
2025}
2026
2027/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2028/// by "Src" to address "Dst" of size "Size".  Alignment information is
2029/// specified by the specific parameter attribute. The copy will be passed as
2030/// a byval function parameter.
2031/// Sometimes what we are copying is the end of a larger object, the part that
2032/// does not fit in registers.
2033static SDValue
2034CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2035                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2036                          unsigned Size) {
2037  SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
2038  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), false,
2039                       NULL, 0, NULL, 0);
2040}
2041
2042/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2043/// tail calls.
2044static void
2045LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2046                 SDValue Arg, SDValue PtrOff, int SPDiff,
2047                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2048                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2049                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2050  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2051  if (!isTailCall) {
2052    if (isVector) {
2053      SDValue StackPtr;
2054      if (isPPC64)
2055        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2056      else
2057        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2058      PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2059                           DAG.getConstant(ArgOffset, PtrVT));
2060    }
2061    MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
2062  // Calculate and remember argument location.
2063  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2064                                  TailCallArguments);
2065}
2066
2067SDValue PPCTargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG,
2068                                       const PPCSubtarget &Subtarget,
2069                                       TargetMachine &TM) {
2070  SDValue Chain  = Op.getOperand(0);
2071  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
2072  unsigned CC      = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2073  bool isTailCall  = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0 &&
2074                     CC == CallingConv::Fast && PerformTailCallOpt;
2075  SDValue Callee = Op.getOperand(4);
2076  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
2077
2078  bool isMachoABI = Subtarget.isMachoABI();
2079  bool isELF32_ABI  = Subtarget.isELF32_ABI();
2080
2081  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2082  bool isPPC64 = PtrVT == MVT::i64;
2083  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2084
2085  MachineFunction &MF = DAG.getMachineFunction();
2086
2087  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
2088  // SelectExpr to use to put the arguments in the appropriate registers.
2089  std::vector<SDValue> args_to_use;
2090
2091  // Mark this function as potentially containing a function that contains a
2092  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2093  // and restoring the callers stack pointer in this functions epilog. This is
2094  // done because by tail calling the called function might overwrite the value
2095  // in this function's (MF) stack pointer stack slot 0(SP).
2096  if (PerformTailCallOpt && CC==CallingConv::Fast)
2097    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2098
2099  unsigned nAltivecParamsAtEnd = 0;
2100
2101  // Count how many bytes are to be pushed on the stack, including the linkage
2102  // area, and parameter passing area.  We start with 24/48 bytes, which is
2103  // prereserved space for [SP][CR][LR][3 x unused].
2104  unsigned NumBytes =
2105    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isMachoABI, isVarArg, CC,
2106                                         Op, nAltivecParamsAtEnd);
2107
2108  // Calculate by how many bytes the stack has to be adjusted in case of tail
2109  // call optimization.
2110  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2111
2112  // Adjust the stack pointer for the new arguments...
2113  // These operations are automatically eliminated by the prolog/epilog pass
2114  Chain = DAG.getCALLSEQ_START(Chain,
2115                               DAG.getConstant(NumBytes, PtrVT));
2116  SDValue CallSeqStart = Chain;
2117
2118  // Load the return address and frame pointer so it can be move somewhere else
2119  // later.
2120  SDValue LROp, FPOp;
2121  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp);
2122
2123  // Set up a copy of the stack pointer for use loading and storing any
2124  // arguments that may not fit in the registers available for argument
2125  // passing.
2126  SDValue StackPtr;
2127  if (isPPC64)
2128    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2129  else
2130    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2131
2132  // Figure out which arguments are going to go in registers, and which in
2133  // memory.  Also, if this is a vararg function, floating point operations
2134  // must be stored to our stack, and loaded into integer regs as well, if
2135  // any integer regs are available for argument passing.
2136  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
2137  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2138
2139  static const unsigned GPR_32[] = {           // 32-bit registers.
2140    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2141    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2142  };
2143  static const unsigned GPR_64[] = {           // 64-bit registers.
2144    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2145    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2146  };
2147  static const unsigned *FPR = GetFPR(Subtarget);
2148
2149  static const unsigned VR[] = {
2150    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2151    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2152  };
2153  const unsigned NumGPRs = array_lengthof(GPR_32);
2154  const unsigned NumFPRs = isMachoABI ? 13 : 8;
2155  const unsigned NumVRs  = array_lengthof( VR);
2156
2157  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2158
2159  std::vector<std::pair<unsigned, SDValue> > RegsToPass;
2160  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2161
2162  SmallVector<SDValue, 8> MemOpChains;
2163  for (unsigned i = 0; i != NumOps; ++i) {
2164    bool inMem = false;
2165    SDValue Arg = Op.getOperand(5+2*i);
2166    ISD::ArgFlagsTy Flags =
2167      cast<ARG_FLAGSSDNode>(Op.getOperand(5+2*i+1))->getArgFlags();
2168    // See if next argument requires stack alignment in ELF
2169    bool Align = Flags.isSplit();
2170
2171    // PtrOff will be used to store the current argument to the stack if a
2172    // register cannot be found for it.
2173    SDValue PtrOff;
2174
2175    // Stack align in ELF 32
2176    if (isELF32_ABI && Align)
2177      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
2178                               StackPtr.getValueType());
2179    else
2180      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2181
2182    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
2183
2184    // On PPC64, promote integers to 64-bit values.
2185    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2186      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2187      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2188      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
2189    }
2190
2191    // FIXME Elf untested, what are alignment rules?
2192    // FIXME memcpy is used way more than necessary.  Correctness first.
2193    if (Flags.isByVal()) {
2194      unsigned Size = Flags.getByValSize();
2195      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2196      if (Size==1 || Size==2) {
2197        // Very small objects are passed right-justified.
2198        // Everything else is passed left-justified.
2199        MVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2200        if (GPR_idx != NumGPRs) {
2201          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, PtrVT, Chain, Arg,
2202                                          NULL, 0, VT);
2203          MemOpChains.push_back(Load.getValue(1));
2204          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2205          if (isMachoABI)
2206            ArgOffset += PtrByteSize;
2207        } else {
2208          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2209          SDValue AddPtr = DAG.getNode(ISD::ADD, PtrVT, PtrOff, Const);
2210          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2211                                CallSeqStart.Val->getOperand(0),
2212                                Flags, DAG, Size);
2213          // This must go outside the CALLSEQ_START..END.
2214          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2215                               CallSeqStart.Val->getOperand(1));
2216          DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
2217          Chain = CallSeqStart = NewCallSeqStart;
2218          ArgOffset += PtrByteSize;
2219        }
2220        continue;
2221      }
2222      // Copy entire object into memory.  There are cases where gcc-generated
2223      // code assumes it is there, even if it could be put entirely into
2224      // registers.  (This is not what the doc says.)
2225      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2226                            CallSeqStart.Val->getOperand(0),
2227                            Flags, DAG, Size);
2228      // This must go outside the CALLSEQ_START..END.
2229      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2230                           CallSeqStart.Val->getOperand(1));
2231      DAG.ReplaceAllUsesWith(CallSeqStart.Val, NewCallSeqStart.Val);
2232      Chain = CallSeqStart = NewCallSeqStart;
2233      // And copy the pieces of it that fit into registers.
2234      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2235        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2236        SDValue AddArg = DAG.getNode(ISD::ADD, PtrVT, Arg, Const);
2237        if (GPR_idx != NumGPRs) {
2238          SDValue Load = DAG.getLoad(PtrVT, Chain, AddArg, NULL, 0);
2239          MemOpChains.push_back(Load.getValue(1));
2240          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2241          if (isMachoABI)
2242            ArgOffset += PtrByteSize;
2243        } else {
2244          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2245          break;
2246        }
2247      }
2248      continue;
2249    }
2250
2251    switch (Arg.getValueType().getSimpleVT()) {
2252    default: assert(0 && "Unexpected ValueType for argument!");
2253    case MVT::i32:
2254    case MVT::i64:
2255      // Double word align in ELF
2256      if (isELF32_ABI && Align) GPR_idx += (GPR_idx % 2);
2257      if (GPR_idx != NumGPRs) {
2258        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2259      } else {
2260        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2261                         isPPC64, isTailCall, false, MemOpChains,
2262                         TailCallArguments);
2263        inMem = true;
2264      }
2265      if (inMem || isMachoABI) {
2266        // Stack align in ELF
2267        if (isELF32_ABI && Align)
2268          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2269
2270        ArgOffset += PtrByteSize;
2271      }
2272      break;
2273    case MVT::f32:
2274    case MVT::f64:
2275      if (FPR_idx != NumFPRs) {
2276        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
2277
2278        if (isVarArg) {
2279          SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2280          MemOpChains.push_back(Store);
2281
2282          // Float varargs are always shadowed in available integer registers
2283          if (GPR_idx != NumGPRs) {
2284            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2285            MemOpChains.push_back(Load.getValue(1));
2286            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2287                                                                Load));
2288          }
2289          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
2290            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
2291            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
2292            SDValue Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
2293            MemOpChains.push_back(Load.getValue(1));
2294            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
2295                                                                Load));
2296          }
2297        } else {
2298          // If we have any FPRs remaining, we may also have GPRs remaining.
2299          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2300          // GPRs.
2301          if (isMachoABI) {
2302            if (GPR_idx != NumGPRs)
2303              ++GPR_idx;
2304            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
2305                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
2306              ++GPR_idx;
2307          }
2308        }
2309      } else {
2310        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2311                         isPPC64, isTailCall, false, MemOpChains,
2312                         TailCallArguments);
2313        inMem = true;
2314      }
2315      if (inMem || isMachoABI) {
2316        // Stack align in ELF
2317        if (isELF32_ABI && Align)
2318          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
2319        if (isPPC64)
2320          ArgOffset += 8;
2321        else
2322          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
2323      }
2324      break;
2325    case MVT::v4f32:
2326    case MVT::v4i32:
2327    case MVT::v8i16:
2328    case MVT::v16i8:
2329      if (isVarArg) {
2330        // These go aligned on the stack, or in the corresponding R registers
2331        // when within range.  The Darwin PPC ABI doc claims they also go in
2332        // V registers; in fact gcc does this only for arguments that are
2333        // prototyped, not for those that match the ...  We do it for all
2334        // arguments, seems to work.
2335        while (ArgOffset % 16 !=0) {
2336          ArgOffset += PtrByteSize;
2337          if (GPR_idx != NumGPRs)
2338            GPR_idx++;
2339        }
2340        // We could elide this store in the case where the object fits
2341        // entirely in R registers.  Maybe later.
2342        PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr,
2343                            DAG.getConstant(ArgOffset, PtrVT));
2344        SDValue Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
2345        MemOpChains.push_back(Store);
2346        if (VR_idx != NumVRs) {
2347          SDValue Load = DAG.getLoad(MVT::v4f32, Store, PtrOff, NULL, 0);
2348          MemOpChains.push_back(Load.getValue(1));
2349          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
2350        }
2351        ArgOffset += 16;
2352        for (unsigned i=0; i<16; i+=PtrByteSize) {
2353          if (GPR_idx == NumGPRs)
2354            break;
2355          SDValue Ix = DAG.getNode(ISD::ADD, PtrVT, PtrOff,
2356                                  DAG.getConstant(i, PtrVT));
2357          SDValue Load = DAG.getLoad(PtrVT, Store, Ix, NULL, 0);
2358          MemOpChains.push_back(Load.getValue(1));
2359          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2360        }
2361        break;
2362      }
2363
2364      // Non-varargs Altivec params generally go in registers, but have
2365      // stack space allocated at the end.
2366      if (VR_idx != NumVRs) {
2367        // Doesn't have GPR space allocated.
2368        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
2369      } else if (nAltivecParamsAtEnd==0) {
2370        // We are emitting Altivec params in order.
2371        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2372                         isPPC64, isTailCall, true, MemOpChains,
2373                         TailCallArguments);
2374        ArgOffset += 16;
2375      }
2376      break;
2377    }
2378  }
2379  // If all Altivec parameters fit in registers, as they usually do,
2380  // they get stack space following the non-Altivec parameters.  We
2381  // don't track this here because nobody below needs it.
2382  // If there are more Altivec parameters than fit in registers emit
2383  // the stores here.
2384  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
2385    unsigned j = 0;
2386    // Offset is aligned; skip 1st 12 params which go in V registers.
2387    ArgOffset = ((ArgOffset+15)/16)*16;
2388    ArgOffset += 12*16;
2389    for (unsigned i = 0; i != NumOps; ++i) {
2390      SDValue Arg = Op.getOperand(5+2*i);
2391      MVT ArgType = Arg.getValueType();
2392      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
2393          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
2394        if (++j > NumVRs) {
2395          SDValue PtrOff;
2396          // We are emitting Altivec params in order.
2397          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2398                           isPPC64, isTailCall, true, MemOpChains,
2399                           TailCallArguments);
2400          ArgOffset += 16;
2401        }
2402      }
2403    }
2404  }
2405
2406  if (!MemOpChains.empty())
2407    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2408                        &MemOpChains[0], MemOpChains.size());
2409
2410  // Build a sequence of copy-to-reg nodes chained together with token chain
2411  // and flag operands which copy the outgoing args into the appropriate regs.
2412  SDValue InFlag;
2413  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2414    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
2415                             InFlag);
2416    InFlag = Chain.getValue(1);
2417  }
2418
2419  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
2420  if (isVarArg && isELF32_ABI) {
2421    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, MVT::i32), 0);
2422    Chain = DAG.getCopyToReg(Chain, PPC::CR1EQ, SetCR, InFlag);
2423    InFlag = Chain.getValue(1);
2424  }
2425
2426  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2427  // might overwrite each other in case of tail call optimization.
2428  if (isTailCall) {
2429    SmallVector<SDValue, 8> MemOpChains2;
2430    // Do not flag preceeding copytoreg stuff together with the following stuff.
2431    InFlag = SDValue();
2432    StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2433                                      MemOpChains2);
2434    if (!MemOpChains2.empty())
2435      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2436                          &MemOpChains2[0], MemOpChains2.size());
2437
2438    // Store the return address to the appropriate stack slot.
2439    Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2440                                          isPPC64, isMachoABI);
2441  }
2442
2443  // Emit callseq_end just before tailcall node.
2444  if (isTailCall) {
2445    SmallVector<SDValue, 8> CallSeqOps;
2446    SDVTList CallSeqNodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2447    CallSeqOps.push_back(Chain);
2448    CallSeqOps.push_back(DAG.getIntPtrConstant(NumBytes));
2449    CallSeqOps.push_back(DAG.getIntPtrConstant(0));
2450    if (InFlag.Val)
2451      CallSeqOps.push_back(InFlag);
2452    Chain = DAG.getNode(ISD::CALLSEQ_END, CallSeqNodeTys, &CallSeqOps[0],
2453                        CallSeqOps.size());
2454    InFlag = Chain.getValue(1);
2455  }
2456
2457  std::vector<MVT> NodeTys;
2458  NodeTys.push_back(MVT::Other);   // Returns a chain
2459  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2460
2461  SmallVector<SDValue, 8> Ops;
2462  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
2463
2464  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2465  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2466  // node so that legalize doesn't hack it.
2467  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2468    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2469  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2470    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2471  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2472    // If this is an absolute destination address, use the munged value.
2473    Callee = SDValue(Dest, 0);
2474  else {
2475    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2476    // to do the call, we can't use PPCISD::CALL.
2477    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2478    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
2479    InFlag = Chain.getValue(1);
2480
2481    // Copy the callee address into R12/X12 on darwin.
2482    if (isMachoABI) {
2483      unsigned Reg = Callee.getValueType() == MVT::i32 ? PPC::R12 : PPC::X12;
2484      Chain = DAG.getCopyToReg(Chain, Reg, Callee, InFlag);
2485      InFlag = Chain.getValue(1);
2486    }
2487
2488    NodeTys.clear();
2489    NodeTys.push_back(MVT::Other);
2490    NodeTys.push_back(MVT::Flag);
2491    Ops.push_back(Chain);
2492    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
2493    Callee.Val = 0;
2494    // Add CTR register as callee so a bctr can be emitted later.
2495    if (isTailCall)
2496      Ops.push_back(DAG.getRegister(PPC::CTR, getPointerTy()));
2497  }
2498
2499  // If this is a direct call, pass the chain and the callee.
2500  if (Callee.Val) {
2501    Ops.push_back(Chain);
2502    Ops.push_back(Callee);
2503  }
2504  // If this is a tail call add stack pointer delta.
2505  if (isTailCall)
2506    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2507
2508  // Add argument registers to the end of the list so that they are known live
2509  // into the call.
2510  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2511    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2512                                  RegsToPass[i].second.getValueType()));
2513
2514  // When performing tail call optimization the callee pops its arguments off
2515  // the stack. Account for this here so these bytes can be pushed back on in
2516  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2517  int BytesCalleePops =
2518    (CC==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2519
2520  if (InFlag.Val)
2521    Ops.push_back(InFlag);
2522
2523  // Emit tail call.
2524  if (isTailCall) {
2525    assert(InFlag.Val &&
2526           "Flag must be set. Depend on flag being set in LowerRET");
2527    Chain = DAG.getNode(PPCISD::TAILCALL,
2528                        Op.Val->getVTList(), &Ops[0], Ops.size());
2529    return SDValue(Chain.Val, Op.ResNo);
2530  }
2531
2532  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
2533  InFlag = Chain.getValue(1);
2534
2535  Chain = DAG.getCALLSEQ_END(Chain,
2536                             DAG.getConstant(NumBytes, PtrVT),
2537                             DAG.getConstant(BytesCalleePops, PtrVT),
2538                             InFlag);
2539  if (Op.Val->getValueType(0) != MVT::Other)
2540    InFlag = Chain.getValue(1);
2541
2542  SmallVector<SDValue, 16> ResultVals;
2543  SmallVector<CCValAssign, 16> RVLocs;
2544  unsigned CallerCC = DAG.getMachineFunction().getFunction()->getCallingConv();
2545  CCState CCInfo(CallerCC, isVarArg, TM, RVLocs);
2546  CCInfo.AnalyzeCallResult(Op.Val, RetCC_PPC);
2547
2548  // Copy all of the result registers out of their specified physreg.
2549  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2550    CCValAssign &VA = RVLocs[i];
2551    MVT VT = VA.getValVT();
2552    assert(VA.isRegLoc() && "Can only return in registers!");
2553    Chain = DAG.getCopyFromReg(Chain, VA.getLocReg(), VT, InFlag).getValue(1);
2554    ResultVals.push_back(Chain.getValue(0));
2555    InFlag = Chain.getValue(2);
2556  }
2557
2558  // If the function returns void, just return the chain.
2559  if (RVLocs.empty())
2560    return Chain;
2561
2562  // Otherwise, merge everything together with a MERGE_VALUES node.
2563  ResultVals.push_back(Chain);
2564  SDValue Res = DAG.getMergeValues(Op.Val->getVTList(), &ResultVals[0],
2565                                     ResultVals.size());
2566  return Res.getValue(Op.ResNo);
2567}
2568
2569SDValue PPCTargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG,
2570                                      TargetMachine &TM) {
2571  SmallVector<CCValAssign, 16> RVLocs;
2572  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
2573  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
2574  CCState CCInfo(CC, isVarArg, TM, RVLocs);
2575  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
2576
2577  // If this is the first return lowered for this function, add the regs to the
2578  // liveout set for the function.
2579  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2580    for (unsigned i = 0; i != RVLocs.size(); ++i)
2581      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2582  }
2583
2584  SDValue Chain = Op.getOperand(0);
2585
2586  Chain = GetPossiblePreceedingTailCall(Chain, PPCISD::TAILCALL);
2587  if (Chain.getOpcode() == PPCISD::TAILCALL) {
2588    SDValue TailCall = Chain;
2589    SDValue TargetAddress = TailCall.getOperand(1);
2590    SDValue StackAdjustment = TailCall.getOperand(2);
2591
2592    assert(((TargetAddress.getOpcode() == ISD::Register &&
2593             cast<RegisterSDNode>(TargetAddress)->getReg() == PPC::CTR) ||
2594            TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
2595            TargetAddress.getOpcode() == ISD::TargetGlobalAddress ||
2596            isa<ConstantSDNode>(TargetAddress)) &&
2597    "Expecting an global address, external symbol, absolute value or register");
2598
2599    assert(StackAdjustment.getOpcode() == ISD::Constant &&
2600           "Expecting a const value");
2601
2602    SmallVector<SDValue,8> Operands;
2603    Operands.push_back(Chain.getOperand(0));
2604    Operands.push_back(TargetAddress);
2605    Operands.push_back(StackAdjustment);
2606    // Copy registers used by the call. Last operand is a flag so it is not
2607    // copied.
2608    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
2609      Operands.push_back(Chain.getOperand(i));
2610    }
2611    return DAG.getNode(PPCISD::TC_RETURN, MVT::Other, &Operands[0],
2612                       Operands.size());
2613  }
2614
2615  SDValue Flag;
2616
2617  // Copy the result values into the output registers.
2618  for (unsigned i = 0; i != RVLocs.size(); ++i) {
2619    CCValAssign &VA = RVLocs[i];
2620    assert(VA.isRegLoc() && "Can only return in registers!");
2621    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
2622    Flag = Chain.getValue(1);
2623  }
2624
2625  if (Flag.Val)
2626    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
2627  else
2628    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
2629}
2630
2631SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
2632                                   const PPCSubtarget &Subtarget) {
2633  // When we pop the dynamic allocation we need to restore the SP link.
2634
2635  // Get the corect type for pointers.
2636  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2637
2638  // Construct the stack pointer operand.
2639  bool IsPPC64 = Subtarget.isPPC64();
2640  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
2641  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
2642
2643  // Get the operands for the STACKRESTORE.
2644  SDValue Chain = Op.getOperand(0);
2645  SDValue SaveSP = Op.getOperand(1);
2646
2647  // Load the old link SP.
2648  SDValue LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
2649
2650  // Restore the stack pointer.
2651  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
2652
2653  // Store the old link SP.
2654  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
2655}
2656
2657
2658
2659SDValue
2660PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
2661  MachineFunction &MF = DAG.getMachineFunction();
2662  bool IsPPC64 = PPCSubTarget.isPPC64();
2663  bool isMachoABI = PPCSubTarget.isMachoABI();
2664  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2665
2666  // Get current frame pointer save index.  The users of this index will be
2667  // primarily DYNALLOC instructions.
2668  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2669  int RASI = FI->getReturnAddrSaveIndex();
2670
2671  // If the frame pointer save index hasn't been defined yet.
2672  if (!RASI) {
2673    // Find out what the fix offset of the frame pointer save area.
2674    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isMachoABI);
2675    // Allocate the frame index for frame pointer save area.
2676    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
2677    // Save the result.
2678    FI->setReturnAddrSaveIndex(RASI);
2679  }
2680  return DAG.getFrameIndex(RASI, PtrVT);
2681}
2682
2683SDValue
2684PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
2685  MachineFunction &MF = DAG.getMachineFunction();
2686  bool IsPPC64 = PPCSubTarget.isPPC64();
2687  bool isMachoABI = PPCSubTarget.isMachoABI();
2688  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2689
2690  // Get current frame pointer save index.  The users of this index will be
2691  // primarily DYNALLOC instructions.
2692  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2693  int FPSI = FI->getFramePointerSaveIndex();
2694
2695  // If the frame pointer save index hasn't been defined yet.
2696  if (!FPSI) {
2697    // Find out what the fix offset of the frame pointer save area.
2698    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
2699
2700    // Allocate the frame index for frame pointer save area.
2701    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
2702    // Save the result.
2703    FI->setFramePointerSaveIndex(FPSI);
2704  }
2705  return DAG.getFrameIndex(FPSI, PtrVT);
2706}
2707
2708SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
2709                                         SelectionDAG &DAG,
2710                                         const PPCSubtarget &Subtarget) {
2711  // Get the inputs.
2712  SDValue Chain = Op.getOperand(0);
2713  SDValue Size  = Op.getOperand(1);
2714
2715  // Get the corect type for pointers.
2716  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2717  // Negate the size.
2718  SDValue NegSize = DAG.getNode(ISD::SUB, PtrVT,
2719                                  DAG.getConstant(0, PtrVT), Size);
2720  // Construct a node for the frame pointer save index.
2721  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
2722  // Build a DYNALLOC node.
2723  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
2724  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
2725  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
2726}
2727
2728SDValue PPCTargetLowering::LowerAtomicLOAD_ADD(SDValue Op, SelectionDAG &DAG) {
2729  MVT VT = Op.Val->getValueType(0);
2730  SDValue Chain   = Op.getOperand(0);
2731  SDValue Ptr     = Op.getOperand(1);
2732  SDValue Incr    = Op.getOperand(2);
2733
2734  SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2735  SDValue Ops[] = {
2736    Chain,
2737    Ptr,
2738    Incr,
2739  };
2740  return DAG.getNode(PPCISD::ATOMIC_LOAD_ADD, VTs, Ops, 3);
2741}
2742
2743SDValue PPCTargetLowering::LowerAtomicCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
2744  MVT VT = Op.Val->getValueType(0);
2745  SDValue Chain   = Op.getOperand(0);
2746  SDValue Ptr     = Op.getOperand(1);
2747  SDValue NewVal  = Op.getOperand(2);
2748  SDValue OldVal  = Op.getOperand(3);
2749
2750  SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2751  SDValue Ops[] = {
2752    Chain,
2753    Ptr,
2754    OldVal,
2755    NewVal,
2756  };
2757  return DAG.getNode(PPCISD::ATOMIC_CMP_SWAP, VTs, Ops, 4);
2758}
2759
2760SDValue PPCTargetLowering::LowerAtomicSWAP(SDValue Op, SelectionDAG &DAG) {
2761  MVT VT = Op.Val->getValueType(0);
2762  SDValue Chain   = Op.getOperand(0);
2763  SDValue Ptr     = Op.getOperand(1);
2764  SDValue NewVal  = Op.getOperand(2);
2765
2766  SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2767  SDValue Ops[] = {
2768    Chain,
2769    Ptr,
2770    NewVal,
2771  };
2772  return DAG.getNode(PPCISD::ATOMIC_SWAP, VTs, Ops, 3);
2773}
2774
2775/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2776/// possible.
2777SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
2778  // Not FP? Not a fsel.
2779  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
2780      !Op.getOperand(2).getValueType().isFloatingPoint())
2781    return SDValue();
2782
2783  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2784
2785  // Cannot handle SETEQ/SETNE.
2786  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDValue();
2787
2788  MVT ResVT = Op.getValueType();
2789  MVT CmpVT = Op.getOperand(0).getValueType();
2790  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2791  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
2792
2793  // If the RHS of the comparison is a 0.0, we don't need to do the
2794  // subtraction at all.
2795  if (isFloatingPointZero(RHS))
2796    switch (CC) {
2797    default: break;       // SETUO etc aren't handled by fsel.
2798    case ISD::SETULT:
2799    case ISD::SETOLT:
2800    case ISD::SETLT:
2801      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2802    case ISD::SETUGE:
2803    case ISD::SETOGE:
2804    case ISD::SETGE:
2805      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2806        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2807      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2808    case ISD::SETUGT:
2809    case ISD::SETOGT:
2810    case ISD::SETGT:
2811      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
2812    case ISD::SETULE:
2813    case ISD::SETOLE:
2814    case ISD::SETLE:
2815      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
2816        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2817      return DAG.getNode(PPCISD::FSEL, ResVT,
2818                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2819    }
2820
2821  SDValue Cmp;
2822  switch (CC) {
2823  default: break;       // SETUO etc aren't handled by fsel.
2824  case ISD::SETULT:
2825  case ISD::SETOLT:
2826  case ISD::SETLT:
2827    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2828    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2829      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2830      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2831  case ISD::SETUGE:
2832  case ISD::SETOGE:
2833  case ISD::SETGE:
2834    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2835    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2836      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2837      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2838  case ISD::SETUGT:
2839  case ISD::SETOGT:
2840  case ISD::SETGT:
2841    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2842    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2843      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2844      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2845  case ISD::SETULE:
2846  case ISD::SETOLE:
2847  case ISD::SETLE:
2848    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2849    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2850      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2851      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2852  }
2853  return SDValue();
2854}
2855
2856// FIXME: Split this code up when LegalizeDAGTypes lands.
2857SDValue PPCTargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
2858  assert(Op.getOperand(0).getValueType().isFloatingPoint());
2859  SDValue Src = Op.getOperand(0);
2860  if (Src.getValueType() == MVT::f32)
2861    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2862
2863  SDValue Tmp;
2864  switch (Op.getValueType().getSimpleVT()) {
2865  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2866  case MVT::i32:
2867    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2868    break;
2869  case MVT::i64:
2870    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2871    break;
2872  }
2873
2874  // Convert the FP value to an int value through memory.
2875  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
2876
2877  // Emit a store to the stack slot.
2878  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2879
2880  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
2881  // add in a bias.
2882  if (Op.getValueType() == MVT::i32)
2883    FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2884                        DAG.getConstant(4, FIPtr.getValueType()));
2885  return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2886}
2887
2888SDValue PPCTargetLowering::LowerFP_ROUND_INREG(SDValue Op,
2889                                                 SelectionDAG &DAG) {
2890  assert(Op.getValueType() == MVT::ppcf128);
2891  SDNode *Node = Op.Val;
2892  assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2893  assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2894  SDValue Lo = Node->getOperand(0).Val->getOperand(0);
2895  SDValue Hi = Node->getOperand(0).Val->getOperand(1);
2896
2897  // This sequence changes FPSCR to do round-to-zero, adds the two halves
2898  // of the long double, and puts FPSCR back the way it was.  We do not
2899  // actually model FPSCR.
2900  std::vector<MVT> NodeTys;
2901  SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
2902
2903  NodeTys.push_back(MVT::f64);   // Return register
2904  NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
2905  Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2906  MFFSreg = Result.getValue(0);
2907  InFlag = Result.getValue(1);
2908
2909  NodeTys.clear();
2910  NodeTys.push_back(MVT::Flag);   // Returns a flag
2911  Ops[0] = DAG.getConstant(31, MVT::i32);
2912  Ops[1] = InFlag;
2913  Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2914  InFlag = Result.getValue(0);
2915
2916  NodeTys.clear();
2917  NodeTys.push_back(MVT::Flag);   // Returns a flag
2918  Ops[0] = DAG.getConstant(30, MVT::i32);
2919  Ops[1] = InFlag;
2920  Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2921  InFlag = Result.getValue(0);
2922
2923  NodeTys.clear();
2924  NodeTys.push_back(MVT::f64);    // result of add
2925  NodeTys.push_back(MVT::Flag);   // Returns a flag
2926  Ops[0] = Lo;
2927  Ops[1] = Hi;
2928  Ops[2] = InFlag;
2929  Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2930  FPreg = Result.getValue(0);
2931  InFlag = Result.getValue(1);
2932
2933  NodeTys.clear();
2934  NodeTys.push_back(MVT::f64);
2935  Ops[0] = DAG.getConstant(1, MVT::i32);
2936  Ops[1] = MFFSreg;
2937  Ops[2] = FPreg;
2938  Ops[3] = InFlag;
2939  Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2940  FPreg = Result.getValue(0);
2941
2942  // We know the low half is about to be thrown away, so just use something
2943  // convenient.
2944  return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2945}
2946
2947SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
2948  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
2949  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
2950    return SDValue();
2951
2952  if (Op.getOperand(0).getValueType() == MVT::i64) {
2953    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2954    SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2955    if (Op.getValueType() == MVT::f32)
2956      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2957    return FP;
2958  }
2959
2960  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2961         "Unhandled SINT_TO_FP type in custom expander!");
2962  // Since we only generate this in 64-bit mode, we can take advantage of
2963  // 64-bit registers.  In particular, sign extend the input value into the
2964  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2965  // then lfd it and fcfid it.
2966  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2967  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2968  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2969  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2970
2971  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2972                                Op.getOperand(0));
2973
2974  // STD the extended value into the stack slot.
2975  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
2976                       MachineMemOperand::MOStore, 0, 8, 8);
2977  SDValue Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2978                                DAG.getEntryNode(), Ext64, FIdx,
2979                                DAG.getMemOperand(MO));
2980  // Load the value as a double.
2981  SDValue Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2982
2983  // FCFID it and return it.
2984  SDValue FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2985  if (Op.getValueType() == MVT::f32)
2986    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP, DAG.getIntPtrConstant(0));
2987  return FP;
2988}
2989
2990SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
2991  /*
2992   The rounding mode is in bits 30:31 of FPSR, and has the following
2993   settings:
2994     00 Round to nearest
2995     01 Round to 0
2996     10 Round to +inf
2997     11 Round to -inf
2998
2999  FLT_ROUNDS, on the other hand, expects the following:
3000    -1 Undefined
3001     0 Round to 0
3002     1 Round to nearest
3003     2 Round to +inf
3004     3 Round to -inf
3005
3006  To perform the conversion, we do:
3007    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3008  */
3009
3010  MachineFunction &MF = DAG.getMachineFunction();
3011  MVT VT = Op.getValueType();
3012  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3013  std::vector<MVT> NodeTys;
3014  SDValue MFFSreg, InFlag;
3015
3016  // Save FP Control Word to register
3017  NodeTys.push_back(MVT::f64);    // return register
3018  NodeTys.push_back(MVT::Flag);   // unused in this context
3019  SDValue Chain = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
3020
3021  // Save FP register to stack slot
3022  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3023  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3024  SDValue Store = DAG.getStore(DAG.getEntryNode(), Chain,
3025                                 StackSlot, NULL, 0);
3026
3027  // Load FP Control Word from low 32 bits of stack slot.
3028  SDValue Four = DAG.getConstant(4, PtrVT);
3029  SDValue Addr = DAG.getNode(ISD::ADD, PtrVT, StackSlot, Four);
3030  SDValue CWD = DAG.getLoad(MVT::i32, Store, Addr, NULL, 0);
3031
3032  // Transform as necessary
3033  SDValue CWD1 =
3034    DAG.getNode(ISD::AND, MVT::i32,
3035                CWD, DAG.getConstant(3, MVT::i32));
3036  SDValue CWD2 =
3037    DAG.getNode(ISD::SRL, MVT::i32,
3038                DAG.getNode(ISD::AND, MVT::i32,
3039                            DAG.getNode(ISD::XOR, MVT::i32,
3040                                        CWD, DAG.getConstant(3, MVT::i32)),
3041                            DAG.getConstant(3, MVT::i32)),
3042                DAG.getConstant(1, MVT::i8));
3043
3044  SDValue RetVal =
3045    DAG.getNode(ISD::XOR, MVT::i32, CWD1, CWD2);
3046
3047  return DAG.getNode((VT.getSizeInBits() < 16 ?
3048                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
3049}
3050
3051SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3052  MVT VT = Op.getValueType();
3053  unsigned BitWidth = VT.getSizeInBits();
3054  assert(Op.getNumOperands() == 3 &&
3055         VT == Op.getOperand(1).getValueType() &&
3056         "Unexpected SHL!");
3057
3058  // Expand into a bunch of logical ops.  Note that these ops
3059  // depend on the PPC behavior for oversized shift amounts.
3060  SDValue Lo = Op.getOperand(0);
3061  SDValue Hi = Op.getOperand(1);
3062  SDValue Amt = Op.getOperand(2);
3063  MVT AmtVT = Amt.getValueType();
3064
3065  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3066                               DAG.getConstant(BitWidth, AmtVT), Amt);
3067  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, VT, Hi, Amt);
3068  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, VT, Lo, Tmp1);
3069  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3070  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3071                               DAG.getConstant(-BitWidth, AmtVT));
3072  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, VT, Lo, Tmp5);
3073  SDValue OutHi = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3074  SDValue OutLo = DAG.getNode(PPCISD::SHL, VT, Lo, Amt);
3075  SDValue OutOps[] = { OutLo, OutHi };
3076  return DAG.getMergeValues(OutOps, 2);
3077}
3078
3079SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3080  MVT VT = Op.getValueType();
3081  unsigned BitWidth = VT.getSizeInBits();
3082  assert(Op.getNumOperands() == 3 &&
3083         VT == Op.getOperand(1).getValueType() &&
3084         "Unexpected SRL!");
3085
3086  // Expand into a bunch of logical ops.  Note that these ops
3087  // depend on the PPC behavior for oversized shift amounts.
3088  SDValue Lo = Op.getOperand(0);
3089  SDValue Hi = Op.getOperand(1);
3090  SDValue Amt = Op.getOperand(2);
3091  MVT AmtVT = Amt.getValueType();
3092
3093  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3094                               DAG.getConstant(BitWidth, AmtVT), Amt);
3095  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3096  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3097  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3098  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3099                               DAG.getConstant(-BitWidth, AmtVT));
3100  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, VT, Hi, Tmp5);
3101  SDValue OutLo = DAG.getNode(ISD::OR, VT, Tmp4, Tmp6);
3102  SDValue OutHi = DAG.getNode(PPCISD::SRL, VT, Hi, Amt);
3103  SDValue OutOps[] = { OutLo, OutHi };
3104  return DAG.getMergeValues(OutOps, 2);
3105}
3106
3107SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3108  MVT VT = Op.getValueType();
3109  unsigned BitWidth = VT.getSizeInBits();
3110  assert(Op.getNumOperands() == 3 &&
3111         VT == Op.getOperand(1).getValueType() &&
3112         "Unexpected SRA!");
3113
3114  // Expand into a bunch of logical ops, followed by a select_cc.
3115  SDValue Lo = Op.getOperand(0);
3116  SDValue Hi = Op.getOperand(1);
3117  SDValue Amt = Op.getOperand(2);
3118  MVT AmtVT = Amt.getValueType();
3119
3120  SDValue Tmp1 = DAG.getNode(ISD::SUB, AmtVT,
3121                               DAG.getConstant(BitWidth, AmtVT), Amt);
3122  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, VT, Lo, Amt);
3123  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, VT, Hi, Tmp1);
3124  SDValue Tmp4 = DAG.getNode(ISD::OR , VT, Tmp2, Tmp3);
3125  SDValue Tmp5 = DAG.getNode(ISD::ADD, AmtVT, Amt,
3126                               DAG.getConstant(-BitWidth, AmtVT));
3127  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, VT, Hi, Tmp5);
3128  SDValue OutHi = DAG.getNode(PPCISD::SRA, VT, Hi, Amt);
3129  SDValue OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, AmtVT),
3130                                    Tmp4, Tmp6, ISD::SETLE);
3131  SDValue OutOps[] = { OutLo, OutHi };
3132  return DAG.getMergeValues(OutOps, 2);
3133}
3134
3135//===----------------------------------------------------------------------===//
3136// Vector related lowering.
3137//
3138
3139// If this is a vector of constants or undefs, get the bits.  A bit in
3140// UndefBits is set if the corresponding element of the vector is an
3141// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3142// zero.   Return true if this is not an array of constants, false if it is.
3143//
3144static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
3145                                       uint64_t UndefBits[2]) {
3146  // Start with zero'd results.
3147  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
3148
3149  unsigned EltBitSize = BV->getOperand(0).getValueType().getSizeInBits();
3150  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
3151    SDValue OpVal = BV->getOperand(i);
3152
3153    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
3154    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
3155
3156    uint64_t EltBits = 0;
3157    if (OpVal.getOpcode() == ISD::UNDEF) {
3158      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
3159      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
3160      continue;
3161    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
3162      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
3163    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
3164      assert(CN->getValueType(0) == MVT::f32 &&
3165             "Only one legal FP vector type!");
3166      EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
3167    } else {
3168      // Nonconstant element.
3169      return true;
3170    }
3171
3172    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
3173  }
3174
3175  //printf("%llx %llx  %llx %llx\n",
3176  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
3177  return false;
3178}
3179
3180// If this is a splat (repetition) of a value across the whole vector, return
3181// the smallest size that splats it.  For example, "0x01010101010101..." is a
3182// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3183// SplatSize = 1 byte.
3184static bool isConstantSplat(const uint64_t Bits128[2],
3185                            const uint64_t Undef128[2],
3186                            unsigned &SplatBits, unsigned &SplatUndef,
3187                            unsigned &SplatSize) {
3188
3189  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
3190  // the same as the lower 64-bits, ignoring undefs.
3191  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
3192    return false;  // Can't be a splat if two pieces don't match.
3193
3194  uint64_t Bits64  = Bits128[0] | Bits128[1];
3195  uint64_t Undef64 = Undef128[0] & Undef128[1];
3196
3197  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
3198  // undefs.
3199  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
3200    return false;  // Can't be a splat if two pieces don't match.
3201
3202  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
3203  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
3204
3205  // If the top 16-bits are different than the lower 16-bits, ignoring
3206  // undefs, we have an i32 splat.
3207  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
3208    SplatBits = Bits32;
3209    SplatUndef = Undef32;
3210    SplatSize = 4;
3211    return true;
3212  }
3213
3214  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
3215  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
3216
3217  // If the top 8-bits are different than the lower 8-bits, ignoring
3218  // undefs, we have an i16 splat.
3219  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
3220    SplatBits = Bits16;
3221    SplatUndef = Undef16;
3222    SplatSize = 2;
3223    return true;
3224  }
3225
3226  // Otherwise, we have an 8-bit splat.
3227  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
3228  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
3229  SplatSize = 1;
3230  return true;
3231}
3232
3233/// BuildSplatI - Build a canonical splati of Val with an element size of
3234/// SplatSize.  Cast the result to VT.
3235static SDValue BuildSplatI(int Val, unsigned SplatSize, MVT VT,
3236                             SelectionDAG &DAG) {
3237  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3238
3239  static const MVT VTys[] = { // canonical VT to use for each size.
3240    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3241  };
3242
3243  MVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3244
3245  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3246  if (Val == -1)
3247    SplatSize = 1;
3248
3249  MVT CanonicalVT = VTys[SplatSize-1];
3250
3251  // Build a canonical splat for this value.
3252  SDValue Elt = DAG.getConstant(Val, CanonicalVT.getVectorElementType());
3253  SmallVector<SDValue, 8> Ops;
3254  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3255  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
3256                              &Ops[0], Ops.size());
3257  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
3258}
3259
3260/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3261/// specified intrinsic ID.
3262static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3263                                  SelectionDAG &DAG,
3264                                  MVT DestVT = MVT::Other) {
3265  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3266  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3267                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3268}
3269
3270/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3271/// specified intrinsic ID.
3272static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3273                                  SDValue Op2, SelectionDAG &DAG,
3274                                  MVT DestVT = MVT::Other) {
3275  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3276  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
3277                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3278}
3279
3280
3281/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3282/// amount.  The result has the specified value type.
3283static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3284                             MVT VT, SelectionDAG &DAG) {
3285  // Force LHS/RHS to be the right type.
3286  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
3287  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
3288
3289  SDValue Ops[16];
3290  for (unsigned i = 0; i != 16; ++i)
3291    Ops[i] = DAG.getConstant(i+Amt, MVT::i8);
3292  SDValue T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
3293                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
3294  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
3295}
3296
3297// If this is a case we can't handle, return null and let the default
3298// expansion code take care of it.  If we CAN select this case, and if it
3299// selects to a single instruction, return Op.  Otherwise, if we can codegen
3300// this case more efficiently than a constant pool load, lower it to the
3301// sequence of ops that should be used.
3302SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
3303                                               SelectionDAG &DAG) {
3304  // If this is a vector of constants or undefs, get the bits.  A bit in
3305  // UndefBits is set if the corresponding element of the vector is an
3306  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
3307  // zero.
3308  uint64_t VectorBits[2];
3309  uint64_t UndefBits[2];
3310  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
3311    return SDValue();   // Not a constant vector.
3312
3313  // If this is a splat (repetition) of a value across the whole vector, return
3314  // the smallest size that splats it.  For example, "0x01010101010101..." is a
3315  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
3316  // SplatSize = 1 byte.
3317  unsigned SplatBits, SplatUndef, SplatSize;
3318  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
3319    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
3320
3321    // First, handle single instruction cases.
3322
3323    // All zeros?
3324    if (SplatBits == 0) {
3325      // Canonicalize all zero vectors to be v4i32.
3326      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3327        SDValue Z = DAG.getConstant(0, MVT::i32);
3328        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
3329        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
3330      }
3331      return Op;
3332    }
3333
3334    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3335    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
3336    if (SextVal >= -16 && SextVal <= 15)
3337      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
3338
3339
3340    // Two instruction sequences.
3341
3342    // If this value is in the range [-32,30] and is even, use:
3343    //    tmp = VSPLTI[bhw], result = add tmp, tmp
3344    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3345      SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG);
3346      Res = DAG.getNode(ISD::ADD, Res.getValueType(), Res, Res);
3347      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3348    }
3349
3350    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3351    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3352    // for fneg/fabs.
3353    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3354      // Make -1 and vspltisw -1:
3355      SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
3356
3357      // Make the VSLW intrinsic, computing 0x8000_0000.
3358      SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3359                                       OnesV, DAG);
3360
3361      // xor by OnesV to invert it.
3362      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
3363      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3364    }
3365
3366    // Check to see if this is a wide variety of vsplti*, binop self cases.
3367    unsigned SplatBitSize = SplatSize*8;
3368    static const signed char SplatCsts[] = {
3369      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3370      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3371    };
3372
3373    for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3374      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3375      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3376      int i = SplatCsts[idx];
3377
3378      // Figure out what shift amount will be used by altivec if shifted by i in
3379      // this splat size.
3380      unsigned TypeShiftAmt = i & (SplatBitSize-1);
3381
3382      // vsplti + shl self.
3383      if (SextVal == (i << (int)TypeShiftAmt)) {
3384        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3385        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3386          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3387          Intrinsic::ppc_altivec_vslw
3388        };
3389        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3390        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3391      }
3392
3393      // vsplti + srl self.
3394      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3395        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3396        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3397          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3398          Intrinsic::ppc_altivec_vsrw
3399        };
3400        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3401        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3402      }
3403
3404      // vsplti + sra self.
3405      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3406        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3407        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3408          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3409          Intrinsic::ppc_altivec_vsraw
3410        };
3411        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3412        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3413      }
3414
3415      // vsplti + rol self.
3416      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3417                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3418        SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
3419        static const unsigned IIDs[] = { // Intrinsic to use for each size.
3420          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3421          Intrinsic::ppc_altivec_vrlw
3422        };
3423        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
3424        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
3425      }
3426
3427      // t = vsplti c, result = vsldoi t, t, 1
3428      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3429        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3430        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
3431      }
3432      // t = vsplti c, result = vsldoi t, t, 2
3433      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3434        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3435        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
3436      }
3437      // t = vsplti c, result = vsldoi t, t, 3
3438      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3439        SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
3440        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
3441      }
3442    }
3443
3444    // Three instruction sequences.
3445
3446    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3447    if (SextVal >= 0 && SextVal <= 31) {
3448      SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
3449      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3450      LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
3451      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3452    }
3453    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3454    if (SextVal >= -31 && SextVal <= 0) {
3455      SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
3456      SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
3457      LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
3458      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
3459    }
3460  }
3461
3462  return SDValue();
3463}
3464
3465/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3466/// the specified operations to build the shuffle.
3467static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3468                                        SDValue RHS, SelectionDAG &DAG) {
3469  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3470  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
3471  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3472
3473  enum {
3474    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3475    OP_VMRGHW,
3476    OP_VMRGLW,
3477    OP_VSPLTISW0,
3478    OP_VSPLTISW1,
3479    OP_VSPLTISW2,
3480    OP_VSPLTISW3,
3481    OP_VSLDOI4,
3482    OP_VSLDOI8,
3483    OP_VSLDOI12
3484  };
3485
3486  if (OpNum == OP_COPY) {
3487    if (LHSID == (1*9+2)*9+3) return LHS;
3488    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3489    return RHS;
3490  }
3491
3492  SDValue OpLHS, OpRHS;
3493  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
3494  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
3495
3496  unsigned ShufIdxs[16];
3497  switch (OpNum) {
3498  default: assert(0 && "Unknown i32 permute!");
3499  case OP_VMRGHW:
3500    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3501    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3502    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3503    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3504    break;
3505  case OP_VMRGLW:
3506    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3507    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3508    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3509    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3510    break;
3511  case OP_VSPLTISW0:
3512    for (unsigned i = 0; i != 16; ++i)
3513      ShufIdxs[i] = (i&3)+0;
3514    break;
3515  case OP_VSPLTISW1:
3516    for (unsigned i = 0; i != 16; ++i)
3517      ShufIdxs[i] = (i&3)+4;
3518    break;
3519  case OP_VSPLTISW2:
3520    for (unsigned i = 0; i != 16; ++i)
3521      ShufIdxs[i] = (i&3)+8;
3522    break;
3523  case OP_VSPLTISW3:
3524    for (unsigned i = 0; i != 16; ++i)
3525      ShufIdxs[i] = (i&3)+12;
3526    break;
3527  case OP_VSLDOI4:
3528    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
3529  case OP_VSLDOI8:
3530    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
3531  case OP_VSLDOI12:
3532    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
3533  }
3534  SDValue Ops[16];
3535  for (unsigned i = 0; i != 16; ++i)
3536    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i8);
3537
3538  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
3539                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3540}
3541
3542/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3543/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3544/// return the code it can be lowered into.  Worst case, it can always be
3545/// lowered into a vperm.
3546SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3547                                                 SelectionDAG &DAG) {
3548  SDValue V1 = Op.getOperand(0);
3549  SDValue V2 = Op.getOperand(1);
3550  SDValue PermMask = Op.getOperand(2);
3551
3552  // Cases that are handled by instructions that take permute immediates
3553  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3554  // selected by the instruction selector.
3555  if (V2.getOpcode() == ISD::UNDEF) {
3556    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
3557        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
3558        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
3559        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
3560        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
3561        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
3562        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
3563        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
3564        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
3565        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
3566        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
3567        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
3568      return Op;
3569    }
3570  }
3571
3572  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3573  // and produce a fixed permutation.  If any of these match, do not lower to
3574  // VPERM.
3575  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
3576      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
3577      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
3578      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
3579      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
3580      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
3581      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
3582      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
3583      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
3584    return Op;
3585
3586  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3587  // perfect shuffle table to emit an optimal matching sequence.
3588  unsigned PFIndexes[4];
3589  bool isFourElementShuffle = true;
3590  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3591    unsigned EltNo = 8;   // Start out undef.
3592    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3593      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
3594        continue;   // Undef, ignore it.
3595
3596      unsigned ByteSource =
3597        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
3598      if ((ByteSource & 3) != j) {
3599        isFourElementShuffle = false;
3600        break;
3601      }
3602
3603      if (EltNo == 8) {
3604        EltNo = ByteSource/4;
3605      } else if (EltNo != ByteSource/4) {
3606        isFourElementShuffle = false;
3607        break;
3608      }
3609    }
3610    PFIndexes[i] = EltNo;
3611  }
3612
3613  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3614  // perfect shuffle vector to determine if it is cost effective to do this as
3615  // discrete instructions, or whether we should use a vperm.
3616  if (isFourElementShuffle) {
3617    // Compute the index in the perfect shuffle table.
3618    unsigned PFTableIndex =
3619      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3620
3621    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3622    unsigned Cost  = (PFEntry >> 30);
3623
3624    // Determining when to avoid vperm is tricky.  Many things affect the cost
3625    // of vperm, particularly how many times the perm mask needs to be computed.
3626    // For example, if the perm mask can be hoisted out of a loop or is already
3627    // used (perhaps because there are multiple permutes with the same shuffle
3628    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3629    // the loop requires an extra register.
3630    //
3631    // As a compromise, we only emit discrete instructions if the shuffle can be
3632    // generated in 3 or fewer operations.  When we have loop information
3633    // available, if this block is within a loop, we should avoid using vperm
3634    // for 3-operation perms and use a constant pool load instead.
3635    if (Cost < 3)
3636      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
3637  }
3638
3639  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
3640  // vector that will get spilled to the constant pool.
3641  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
3642
3643  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
3644  // that it is in input element units, not in bytes.  Convert now.
3645  MVT EltVT = V1.getValueType().getVectorElementType();
3646  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
3647
3648  SmallVector<SDValue, 16> ResultMask;
3649  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
3650    unsigned SrcElt;
3651    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
3652      SrcElt = 0;
3653    else
3654      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
3655
3656    for (unsigned j = 0; j != BytesPerElement; ++j)
3657      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
3658                                           MVT::i8));
3659  }
3660
3661  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
3662                                    &ResultMask[0], ResultMask.size());
3663  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
3664}
3665
3666/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
3667/// altivec comparison.  If it is, return true and fill in Opc/isDot with
3668/// information about the intrinsic.
3669static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
3670                                  bool &isDot) {
3671  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
3672  CompareOpc = -1;
3673  isDot = false;
3674  switch (IntrinsicID) {
3675  default: return false;
3676    // Comparison predicates.
3677  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
3678  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
3679  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
3680  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
3681  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
3682  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
3683  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
3684  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
3685  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
3686  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
3687  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
3688  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
3689  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
3690
3691    // Normal Comparisons.
3692  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
3693  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
3694  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
3695  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
3696  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
3697  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
3698  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
3699  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
3700  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
3701  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
3702  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
3703  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
3704  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
3705  }
3706  return true;
3707}
3708
3709/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
3710/// lower, do it, otherwise return null.
3711SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
3712                                                     SelectionDAG &DAG) {
3713  // If this is a lowered altivec predicate compare, CompareOpc is set to the
3714  // opcode number of the comparison.
3715  int CompareOpc;
3716  bool isDot;
3717  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
3718    return SDValue();    // Don't custom lower most intrinsics.
3719
3720  // If this is a non-dot comparison, make the VCMP node and we are done.
3721  if (!isDot) {
3722    SDValue Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
3723                                Op.getOperand(1), Op.getOperand(2),
3724                                DAG.getConstant(CompareOpc, MVT::i32));
3725    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
3726  }
3727
3728  // Create the PPCISD altivec 'dot' comparison node.
3729  SDValue Ops[] = {
3730    Op.getOperand(2),  // LHS
3731    Op.getOperand(3),  // RHS
3732    DAG.getConstant(CompareOpc, MVT::i32)
3733  };
3734  std::vector<MVT> VTs;
3735  VTs.push_back(Op.getOperand(2).getValueType());
3736  VTs.push_back(MVT::Flag);
3737  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3738
3739  // Now that we have the comparison, emit a copy from the CR to a GPR.
3740  // This is flagged to the above dot comparison.
3741  SDValue Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
3742                                DAG.getRegister(PPC::CR6, MVT::i32),
3743                                CompNode.getValue(1));
3744
3745  // Unpack the result based on how the target uses it.
3746  unsigned BitNo;   // Bit # of CR6.
3747  bool InvertBit;   // Invert result?
3748  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
3749  default:  // Can't happen, don't crash on invalid number though.
3750  case 0:   // Return the value of the EQ bit of CR6.
3751    BitNo = 0; InvertBit = false;
3752    break;
3753  case 1:   // Return the inverted value of the EQ bit of CR6.
3754    BitNo = 0; InvertBit = true;
3755    break;
3756  case 2:   // Return the value of the LT bit of CR6.
3757    BitNo = 2; InvertBit = false;
3758    break;
3759  case 3:   // Return the inverted value of the LT bit of CR6.
3760    BitNo = 2; InvertBit = true;
3761    break;
3762  }
3763
3764  // Shift the bit into the low position.
3765  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
3766                      DAG.getConstant(8-(3-BitNo), MVT::i32));
3767  // Isolate the bit.
3768  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
3769                      DAG.getConstant(1, MVT::i32));
3770
3771  // If we are supposed to, toggle the bit.
3772  if (InvertBit)
3773    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
3774                        DAG.getConstant(1, MVT::i32));
3775  return Flags;
3776}
3777
3778SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
3779                                                   SelectionDAG &DAG) {
3780  // Create a stack slot that is 16-byte aligned.
3781  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3782  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
3783  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3784  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3785
3786  // Store the input value into Value#0 of the stack slot.
3787  SDValue Store = DAG.getStore(DAG.getEntryNode(),
3788                                 Op.getOperand(0), FIdx, NULL, 0);
3789  // Load it out.
3790  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
3791}
3792
3793SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
3794  if (Op.getValueType() == MVT::v4i32) {
3795    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3796
3797    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
3798    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
3799
3800    SDValue RHSSwap =   // = vrlw RHS, 16
3801      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
3802
3803    // Shrinkify inputs to v8i16.
3804    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
3805    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
3806    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
3807
3808    // Low parts multiplied together, generating 32-bit results (we ignore the
3809    // top parts).
3810    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
3811                                        LHS, RHS, DAG, MVT::v4i32);
3812
3813    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
3814                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
3815    // Shift the high parts up 16 bits.
3816    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
3817    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
3818  } else if (Op.getValueType() == MVT::v8i16) {
3819    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3820
3821    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
3822
3823    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
3824                            LHS, RHS, Zero, DAG);
3825  } else if (Op.getValueType() == MVT::v16i8) {
3826    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3827
3828    // Multiply the even 8-bit parts, producing 16-bit sums.
3829    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
3830                                           LHS, RHS, DAG, MVT::v8i16);
3831    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
3832
3833    // Multiply the odd 8-bit parts, producing 16-bit sums.
3834    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
3835                                          LHS, RHS, DAG, MVT::v8i16);
3836    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
3837
3838    // Merge the results together.
3839    SDValue Ops[16];
3840    for (unsigned i = 0; i != 8; ++i) {
3841      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
3842      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
3843    }
3844    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
3845                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
3846  } else {
3847    assert(0 && "Unknown mul to lower!");
3848    abort();
3849  }
3850}
3851
3852/// LowerOperation - Provide custom lowering hooks for some operations.
3853///
3854SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
3855  switch (Op.getOpcode()) {
3856  default: assert(0 && "Wasn't expecting to be able to lower this!");
3857  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
3858  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
3859  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
3860  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
3861  case ISD::SETCC:              return LowerSETCC(Op, DAG);
3862  case ISD::VASTART:
3863    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3864                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3865
3866  case ISD::VAARG:
3867    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3868                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3869
3870  case ISD::FORMAL_ARGUMENTS:
3871    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3872                                 VarArgsStackOffset, VarArgsNumGPR,
3873                                 VarArgsNumFPR, PPCSubTarget);
3874
3875  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget,
3876                                                 getTargetMachine());
3877  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
3878  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3879  case ISD::DYNAMIC_STACKALLOC:
3880    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3881
3882  case ISD::ATOMIC_LOAD_ADD:    return LowerAtomicLOAD_ADD(Op, DAG);
3883  case ISD::ATOMIC_CMP_SWAP:    return LowerAtomicCMP_SWAP(Op, DAG);
3884  case ISD::ATOMIC_SWAP:        return LowerAtomicSWAP(Op, DAG);
3885
3886  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
3887  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
3888  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
3889  case ISD::FP_ROUND_INREG:     return LowerFP_ROUND_INREG(Op, DAG);
3890  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
3891
3892  // Lower 64-bit shifts.
3893  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
3894  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
3895  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
3896
3897  // Vector-related lowering.
3898  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
3899  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
3900  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3901  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
3902  case ISD::MUL:                return LowerMUL(Op, DAG);
3903
3904  // Frame & Return address.
3905  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
3906  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
3907  }
3908  return SDValue();
3909}
3910
3911SDNode *PPCTargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) {
3912  switch (N->getOpcode()) {
3913  default: assert(0 && "Wasn't expecting to be able to lower this!");
3914  case ISD::FP_TO_SINT: {
3915    SDValue Res = LowerFP_TO_SINT(SDValue(N, 0), DAG);
3916    // Use MERGE_VALUES to drop the chain result value and get a node with one
3917    // result.  This requires turning off getMergeValues simplification, since
3918    // otherwise it will give us Res back.
3919    return DAG.getMergeValues(&Res, 1, false).Val;
3920  }
3921  }
3922}
3923
3924
3925//===----------------------------------------------------------------------===//
3926//  Other Lowering Code
3927//===----------------------------------------------------------------------===//
3928
3929MachineBasicBlock *
3930PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
3931                                               MachineBasicBlock *BB) {
3932  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3933
3934  // To "insert" these instructions we actually have to insert their
3935  // control-flow patterns.
3936  const BasicBlock *LLVM_BB = BB->getBasicBlock();
3937  MachineFunction::iterator It = BB;
3938  ++It;
3939
3940  MachineFunction *F = BB->getParent();
3941
3942  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
3943      MI->getOpcode() == PPC::SELECT_CC_I8 ||
3944      MI->getOpcode() == PPC::SELECT_CC_F4 ||
3945      MI->getOpcode() == PPC::SELECT_CC_F8 ||
3946      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
3947
3948    // The incoming instruction knows the destination vreg to set, the
3949    // condition code register to branch on, the true/false values to
3950    // select between, and a branch opcode to use.
3951
3952    //  thisMBB:
3953    //  ...
3954    //   TrueVal = ...
3955    //   cmpTY ccX, r1, r2
3956    //   bCC copy1MBB
3957    //   fallthrough --> copy0MBB
3958    MachineBasicBlock *thisMBB = BB;
3959    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
3960    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
3961    unsigned SelectPred = MI->getOperand(4).getImm();
3962    BuildMI(BB, TII->get(PPC::BCC))
3963      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3964    F->insert(It, copy0MBB);
3965    F->insert(It, sinkMBB);
3966    // Update machine-CFG edges by transferring all successors of the current
3967    // block to the new block which will contain the Phi node for the select.
3968    sinkMBB->transferSuccessors(BB);
3969    // Next, add the true and fallthrough blocks as its successors.
3970    BB->addSuccessor(copy0MBB);
3971    BB->addSuccessor(sinkMBB);
3972
3973    //  copy0MBB:
3974    //   %FalseValue = ...
3975    //   # fallthrough to sinkMBB
3976    BB = copy0MBB;
3977
3978    // Update machine-CFG edges
3979    BB->addSuccessor(sinkMBB);
3980
3981    //  sinkMBB:
3982    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3983    //  ...
3984    BB = sinkMBB;
3985    BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3986      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3987      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3988  }
3989  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32 ||
3990           MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) {
3991    bool is64bit = MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64;
3992
3993    unsigned dest = MI->getOperand(0).getReg();
3994    unsigned ptrA = MI->getOperand(1).getReg();
3995    unsigned ptrB = MI->getOperand(2).getReg();
3996    unsigned incr = MI->getOperand(3).getReg();
3997
3998    MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
3999    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4000    F->insert(It, loopMBB);
4001    F->insert(It, exitMBB);
4002    exitMBB->transferSuccessors(BB);
4003
4004    MachineRegisterInfo &RegInfo = F->getRegInfo();
4005    unsigned TmpReg = RegInfo.createVirtualRegister(
4006      is64bit ? (const TargetRegisterClass *) &PPC::GPRCRegClass :
4007                (const TargetRegisterClass *) &PPC::G8RCRegClass);
4008
4009    //  thisMBB:
4010    //   ...
4011    //   fallthrough --> loopMBB
4012    BB->addSuccessor(loopMBB);
4013
4014    //  loopMBB:
4015    //   l[wd]arx dest, ptr
4016    //   add r0, dest, incr
4017    //   st[wd]cx. r0, ptr
4018    //   bne- loopMBB
4019    //   fallthrough --> exitMBB
4020    BB = loopMBB;
4021    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4022      .addReg(ptrA).addReg(ptrB);
4023    BuildMI(BB, TII->get(is64bit ? PPC::ADD4 : PPC::ADD8), TmpReg)
4024      .addReg(incr).addReg(dest);
4025    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4026      .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4027    BuildMI(BB, TII->get(PPC::BCC))
4028      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4029    BB->addSuccessor(loopMBB);
4030    BB->addSuccessor(exitMBB);
4031
4032    //  exitMBB:
4033    //   ...
4034    BB = exitMBB;
4035  }
4036  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4037           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4038    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4039
4040    unsigned dest   = MI->getOperand(0).getReg();
4041    unsigned ptrA   = MI->getOperand(1).getReg();
4042    unsigned ptrB   = MI->getOperand(2).getReg();
4043    unsigned oldval = MI->getOperand(3).getReg();
4044    unsigned newval = MI->getOperand(4).getReg();
4045
4046    MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4047    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4048    F->insert(It, loopMBB);
4049    F->insert(It, exitMBB);
4050    exitMBB->transferSuccessors(BB);
4051
4052    //  thisMBB:
4053    //   ...
4054    //   fallthrough --> loopMBB
4055    BB->addSuccessor(loopMBB);
4056
4057    //  loopMBB:
4058    //   l[wd]arx dest, ptr
4059    //   cmp[wd] dest, oldval
4060    //   bne- exitMBB
4061    //   st[wd]cx. newval, ptr
4062    //   bne- loopMBB
4063    //   fallthrough --> exitMBB
4064    BB = loopMBB;
4065    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4066      .addReg(ptrA).addReg(ptrB);
4067    BuildMI(BB, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4068      .addReg(oldval).addReg(dest);
4069    BuildMI(BB, TII->get(PPC::BCC))
4070      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(exitMBB);
4071    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4072      .addReg(newval).addReg(ptrA).addReg(ptrB);
4073    BuildMI(BB, TII->get(PPC::BCC))
4074      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4075    BB->addSuccessor(loopMBB);
4076    BB->addSuccessor(exitMBB);
4077
4078    //  exitMBB:
4079    //   ...
4080    BB = exitMBB;
4081  }
4082  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32 ||
4083           MI->getOpcode() == PPC::ATOMIC_SWAP_I64) {
4084    bool is64bit = MI->getOpcode() == PPC::ATOMIC_SWAP_I64;
4085
4086    unsigned dest   = MI->getOperand(0).getReg();
4087    unsigned ptrA   = MI->getOperand(1).getReg();
4088    unsigned ptrB   = MI->getOperand(2).getReg();
4089    unsigned newval = MI->getOperand(3).getReg();
4090
4091    MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4092    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4093    F->insert(It, loopMBB);
4094    F->insert(It, exitMBB);
4095    exitMBB->transferSuccessors(BB);
4096
4097    //  thisMBB:
4098    //   ...
4099    //   fallthrough --> loopMBB
4100    BB->addSuccessor(loopMBB);
4101
4102    //  loopMBB:
4103    //   l[wd]arx dest, ptr
4104    //   st[wd]cx. newval, ptr
4105    //   bne- loopMBB
4106    //   fallthrough --> exitMBB
4107    BB = loopMBB;
4108    BuildMI(BB, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4109      .addReg(ptrA).addReg(ptrB);
4110    BuildMI(BB, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4111      .addReg(newval).addReg(ptrA).addReg(ptrB);
4112    BuildMI(BB, TII->get(PPC::BCC))
4113      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4114    BB->addSuccessor(loopMBB);
4115    BB->addSuccessor(exitMBB);
4116
4117    //  exitMBB:
4118    //   ...
4119    BB = exitMBB;
4120  }
4121  else {
4122    assert(0 && "Unexpected instr type to insert");
4123  }
4124
4125  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4126  return BB;
4127}
4128
4129//===----------------------------------------------------------------------===//
4130// Target Optimization Hooks
4131//===----------------------------------------------------------------------===//
4132
4133SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4134                                               DAGCombinerInfo &DCI) const {
4135  TargetMachine &TM = getTargetMachine();
4136  SelectionDAG &DAG = DCI.DAG;
4137  switch (N->getOpcode()) {
4138  default: break;
4139  case PPCISD::SHL:
4140    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4141      if (C->getValue() == 0)   // 0 << V -> 0.
4142        return N->getOperand(0);
4143    }
4144    break;
4145  case PPCISD::SRL:
4146    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4147      if (C->getValue() == 0)   // 0 >>u V -> 0.
4148        return N->getOperand(0);
4149    }
4150    break;
4151  case PPCISD::SRA:
4152    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4153      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
4154          C->isAllOnesValue())    // -1 >>s V -> -1.
4155        return N->getOperand(0);
4156    }
4157    break;
4158
4159  case ISD::SINT_TO_FP:
4160    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4161      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4162        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4163        // We allow the src/dst to be either f32/f64, but the intermediate
4164        // type must be i64.
4165        if (N->getOperand(0).getValueType() == MVT::i64 &&
4166            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4167          SDValue Val = N->getOperand(0).getOperand(0);
4168          if (Val.getValueType() == MVT::f32) {
4169            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4170            DCI.AddToWorklist(Val.Val);
4171          }
4172
4173          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
4174          DCI.AddToWorklist(Val.Val);
4175          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
4176          DCI.AddToWorklist(Val.Val);
4177          if (N->getValueType(0) == MVT::f32) {
4178            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val,
4179                              DAG.getIntPtrConstant(0));
4180            DCI.AddToWorklist(Val.Val);
4181          }
4182          return Val;
4183        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4184          // If the intermediate type is i32, we can avoid the load/store here
4185          // too.
4186        }
4187      }
4188    }
4189    break;
4190  case ISD::STORE:
4191    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4192    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4193        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4194        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4195        N->getOperand(1).getValueType() == MVT::i32 &&
4196        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4197      SDValue Val = N->getOperand(1).getOperand(0);
4198      if (Val.getValueType() == MVT::f32) {
4199        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
4200        DCI.AddToWorklist(Val.Val);
4201      }
4202      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
4203      DCI.AddToWorklist(Val.Val);
4204
4205      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
4206                        N->getOperand(2), N->getOperand(3));
4207      DCI.AddToWorklist(Val.Val);
4208      return Val;
4209    }
4210
4211    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4212    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4213        N->getOperand(1).Val->hasOneUse() &&
4214        (N->getOperand(1).getValueType() == MVT::i32 ||
4215         N->getOperand(1).getValueType() == MVT::i16)) {
4216      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4217      // Do an any-extend to 32-bits if this is a half-word input.
4218      if (BSwapOp.getValueType() == MVT::i16)
4219        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
4220
4221      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
4222                         N->getOperand(2), N->getOperand(3),
4223                         DAG.getValueType(N->getOperand(1).getValueType()));
4224    }
4225    break;
4226  case ISD::BSWAP:
4227    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4228    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
4229        N->getOperand(0).hasOneUse() &&
4230        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4231      SDValue Load = N->getOperand(0);
4232      LoadSDNode *LD = cast<LoadSDNode>(Load);
4233      // Create the byte-swapping load.
4234      std::vector<MVT> VTs;
4235      VTs.push_back(MVT::i32);
4236      VTs.push_back(MVT::Other);
4237      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4238      SDValue Ops[] = {
4239        LD->getChain(),    // Chain
4240        LD->getBasePtr(),  // Ptr
4241        MO,                // MemOperand
4242        DAG.getValueType(N->getValueType(0)) // VT
4243      };
4244      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
4245
4246      // If this is an i16 load, insert the truncate.
4247      SDValue ResVal = BSLoad;
4248      if (N->getValueType(0) == MVT::i16)
4249        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
4250
4251      // First, combine the bswap away.  This makes the value produced by the
4252      // load dead.
4253      DCI.CombineTo(N, ResVal);
4254
4255      // Next, combine the load away, we give it a bogus result value but a real
4256      // chain result.  The result value is dead because the bswap is dead.
4257      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
4258
4259      // Return N so it doesn't get rechecked!
4260      return SDValue(N, 0);
4261    }
4262
4263    break;
4264  case PPCISD::VCMP: {
4265    // If a VCMPo node already exists with exactly the same operands as this
4266    // node, use its result instead of this node (VCMPo computes both a CR6 and
4267    // a normal output).
4268    //
4269    if (!N->getOperand(0).hasOneUse() &&
4270        !N->getOperand(1).hasOneUse() &&
4271        !N->getOperand(2).hasOneUse()) {
4272
4273      // Scan all of the users of the LHS, looking for VCMPo's that match.
4274      SDNode *VCMPoNode = 0;
4275
4276      SDNode *LHSN = N->getOperand(0).Val;
4277      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
4278           UI != E; ++UI)
4279        if (UI->getOpcode() == PPCISD::VCMPo &&
4280            UI->getOperand(1) == N->getOperand(1) &&
4281            UI->getOperand(2) == N->getOperand(2) &&
4282            UI->getOperand(0) == N->getOperand(0)) {
4283          VCMPoNode = *UI;
4284          break;
4285        }
4286
4287      // If there is no VCMPo node, or if the flag value has a single use, don't
4288      // transform this.
4289      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
4290        break;
4291
4292      // Look at the (necessarily single) use of the flag value.  If it has a
4293      // chain, this transformation is more complex.  Note that multiple things
4294      // could use the value result, which we should ignore.
4295      SDNode *FlagUser = 0;
4296      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
4297           FlagUser == 0; ++UI) {
4298        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
4299        SDNode *User = *UI;
4300        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
4301          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
4302            FlagUser = User;
4303            break;
4304          }
4305        }
4306      }
4307
4308      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
4309      // give up for right now.
4310      if (FlagUser->getOpcode() == PPCISD::MFCR)
4311        return SDValue(VCMPoNode, 0);
4312    }
4313    break;
4314  }
4315  case ISD::BR_CC: {
4316    // If this is a branch on an altivec predicate comparison, lower this so
4317    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
4318    // lowering is done pre-legalize, because the legalizer lowers the predicate
4319    // compare down to code that is difficult to reassemble.
4320    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
4321    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
4322    int CompareOpc;
4323    bool isDot;
4324
4325    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
4326        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
4327        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
4328      assert(isDot && "Can't compare against a vector result!");
4329
4330      // If this is a comparison against something other than 0/1, then we know
4331      // that the condition is never/always true.
4332      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
4333      if (Val != 0 && Val != 1) {
4334        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
4335          return N->getOperand(0);
4336        // Always !=, turn it into an unconditional branch.
4337        return DAG.getNode(ISD::BR, MVT::Other,
4338                           N->getOperand(0), N->getOperand(4));
4339      }
4340
4341      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
4342
4343      // Create the PPCISD altivec 'dot' comparison node.
4344      std::vector<MVT> VTs;
4345      SDValue Ops[] = {
4346        LHS.getOperand(2),  // LHS of compare
4347        LHS.getOperand(3),  // RHS of compare
4348        DAG.getConstant(CompareOpc, MVT::i32)
4349      };
4350      VTs.push_back(LHS.getOperand(2).getValueType());
4351      VTs.push_back(MVT::Flag);
4352      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
4353
4354      // Unpack the result based on how the target uses it.
4355      PPC::Predicate CompOpc;
4356      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
4357      default:  // Can't happen, don't crash on invalid number though.
4358      case 0:   // Branch on the value of the EQ bit of CR6.
4359        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
4360        break;
4361      case 1:   // Branch on the inverted value of the EQ bit of CR6.
4362        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
4363        break;
4364      case 2:   // Branch on the value of the LT bit of CR6.
4365        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
4366        break;
4367      case 3:   // Branch on the inverted value of the LT bit of CR6.
4368        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
4369        break;
4370      }
4371
4372      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
4373                         DAG.getConstant(CompOpc, MVT::i32),
4374                         DAG.getRegister(PPC::CR6, MVT::i32),
4375                         N->getOperand(4), CompNode.getValue(1));
4376    }
4377    break;
4378  }
4379  }
4380
4381  return SDValue();
4382}
4383
4384//===----------------------------------------------------------------------===//
4385// Inline Assembly Support
4386//===----------------------------------------------------------------------===//
4387
4388void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
4389                                                       const APInt &Mask,
4390                                                       APInt &KnownZero,
4391                                                       APInt &KnownOne,
4392                                                       const SelectionDAG &DAG,
4393                                                       unsigned Depth) const {
4394  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
4395  switch (Op.getOpcode()) {
4396  default: break;
4397  case PPCISD::LBRX: {
4398    // lhbrx is known to have the top bits cleared out.
4399    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
4400      KnownZero = 0xFFFF0000;
4401    break;
4402  }
4403  case ISD::INTRINSIC_WO_CHAIN: {
4404    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
4405    default: break;
4406    case Intrinsic::ppc_altivec_vcmpbfp_p:
4407    case Intrinsic::ppc_altivec_vcmpeqfp_p:
4408    case Intrinsic::ppc_altivec_vcmpequb_p:
4409    case Intrinsic::ppc_altivec_vcmpequh_p:
4410    case Intrinsic::ppc_altivec_vcmpequw_p:
4411    case Intrinsic::ppc_altivec_vcmpgefp_p:
4412    case Intrinsic::ppc_altivec_vcmpgtfp_p:
4413    case Intrinsic::ppc_altivec_vcmpgtsb_p:
4414    case Intrinsic::ppc_altivec_vcmpgtsh_p:
4415    case Intrinsic::ppc_altivec_vcmpgtsw_p:
4416    case Intrinsic::ppc_altivec_vcmpgtub_p:
4417    case Intrinsic::ppc_altivec_vcmpgtuh_p:
4418    case Intrinsic::ppc_altivec_vcmpgtuw_p:
4419      KnownZero = ~1U;  // All bits but the low one are known to be zero.
4420      break;
4421    }
4422  }
4423  }
4424}
4425
4426
4427/// getConstraintType - Given a constraint, return the type of
4428/// constraint it is for this target.
4429PPCTargetLowering::ConstraintType
4430PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
4431  if (Constraint.size() == 1) {
4432    switch (Constraint[0]) {
4433    default: break;
4434    case 'b':
4435    case 'r':
4436    case 'f':
4437    case 'v':
4438    case 'y':
4439      return C_RegisterClass;
4440    }
4441  }
4442  return TargetLowering::getConstraintType(Constraint);
4443}
4444
4445std::pair<unsigned, const TargetRegisterClass*>
4446PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4447                                                MVT VT) const {
4448  if (Constraint.size() == 1) {
4449    // GCC RS6000 Constraint Letters
4450    switch (Constraint[0]) {
4451    case 'b':   // R1-R31
4452    case 'r':   // R0-R31
4453      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
4454        return std::make_pair(0U, PPC::G8RCRegisterClass);
4455      return std::make_pair(0U, PPC::GPRCRegisterClass);
4456    case 'f':
4457      if (VT == MVT::f32)
4458        return std::make_pair(0U, PPC::F4RCRegisterClass);
4459      else if (VT == MVT::f64)
4460        return std::make_pair(0U, PPC::F8RCRegisterClass);
4461      break;
4462    case 'v':
4463      return std::make_pair(0U, PPC::VRRCRegisterClass);
4464    case 'y':   // crrc
4465      return std::make_pair(0U, PPC::CRRCRegisterClass);
4466    }
4467  }
4468
4469  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4470}
4471
4472
4473/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4474/// vector.  If it is invalid, don't add anything to Ops.
4475void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
4476                                                     std::vector<SDValue>&Ops,
4477                                                     SelectionDAG &DAG) const {
4478  SDValue Result(0,0);
4479  switch (Letter) {
4480  default: break;
4481  case 'I':
4482  case 'J':
4483  case 'K':
4484  case 'L':
4485  case 'M':
4486  case 'N':
4487  case 'O':
4488  case 'P': {
4489    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
4490    if (!CST) return; // Must be an immediate to match.
4491    unsigned Value = CST->getValue();
4492    switch (Letter) {
4493    default: assert(0 && "Unknown constraint letter!");
4494    case 'I':  // "I" is a signed 16-bit constant.
4495      if ((short)Value == (int)Value)
4496        Result = DAG.getTargetConstant(Value, Op.getValueType());
4497      break;
4498    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
4499    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
4500      if ((short)Value == 0)
4501        Result = DAG.getTargetConstant(Value, Op.getValueType());
4502      break;
4503    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
4504      if ((Value >> 16) == 0)
4505        Result = DAG.getTargetConstant(Value, Op.getValueType());
4506      break;
4507    case 'M':  // "M" is a constant that is greater than 31.
4508      if (Value > 31)
4509        Result = DAG.getTargetConstant(Value, Op.getValueType());
4510      break;
4511    case 'N':  // "N" is a positive constant that is an exact power of two.
4512      if ((int)Value > 0 && isPowerOf2_32(Value))
4513        Result = DAG.getTargetConstant(Value, Op.getValueType());
4514      break;
4515    case 'O':  // "O" is the constant zero.
4516      if (Value == 0)
4517        Result = DAG.getTargetConstant(Value, Op.getValueType());
4518      break;
4519    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
4520      if ((short)-Value == (int)-Value)
4521        Result = DAG.getTargetConstant(Value, Op.getValueType());
4522      break;
4523    }
4524    break;
4525  }
4526  }
4527
4528  if (Result.Val) {
4529    Ops.push_back(Result);
4530    return;
4531  }
4532
4533  // Handle standard constraint letters.
4534  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
4535}
4536
4537// isLegalAddressingMode - Return true if the addressing mode represented
4538// by AM is legal for this target, for a load/store of the specified type.
4539bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
4540                                              const Type *Ty) const {
4541  // FIXME: PPC does not allow r+i addressing modes for vectors!
4542
4543  // PPC allows a sign-extended 16-bit immediate field.
4544  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
4545    return false;
4546
4547  // No global is ever allowed as a base.
4548  if (AM.BaseGV)
4549    return false;
4550
4551  // PPC only support r+r,
4552  switch (AM.Scale) {
4553  case 0:  // "r+i" or just "i", depending on HasBaseReg.
4554    break;
4555  case 1:
4556    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
4557      return false;
4558    // Otherwise we have r+r or r+i.
4559    break;
4560  case 2:
4561    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
4562      return false;
4563    // Allow 2*r as r+r.
4564    break;
4565  default:
4566    // No other scales are supported.
4567    return false;
4568  }
4569
4570  return true;
4571}
4572
4573/// isLegalAddressImmediate - Return true if the integer value can be used
4574/// as the offset of the target addressing mode for load / store of the
4575/// given type.
4576bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
4577  // PPC allows a sign-extended 16-bit immediate field.
4578  return (V > -(1 << 16) && V < (1 << 16)-1);
4579}
4580
4581bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
4582  return false;
4583}
4584
4585SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
4586  // Depths > 0 not supported yet!
4587  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4588    return SDValue();
4589
4590  MachineFunction &MF = DAG.getMachineFunction();
4591  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4592
4593  // Just load the return address off the stack.
4594  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
4595
4596  // Make sure the function really does not optimize away the store of the RA
4597  // to the stack.
4598  FuncInfo->setLRStoreRequired();
4599  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4600}
4601
4602SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
4603  // Depths > 0 not supported yet!
4604  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4605    return SDValue();
4606
4607  MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4608  bool isPPC64 = PtrVT == MVT::i64;
4609
4610  MachineFunction &MF = DAG.getMachineFunction();
4611  MachineFrameInfo *MFI = MF.getFrameInfo();
4612  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
4613                  && MFI->getStackSize();
4614
4615  if (isPPC64)
4616    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
4617      MVT::i64);
4618  else
4619    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
4620      MVT::i32);
4621}
4622