PPCISelLowering.cpp revision 2fe4bf453b433cfe7113e282a59bf0f1e7fb0195
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCTargetMachine.h"
16#include "PPCPerfectShuffle.h"
17#include "llvm/ADT/VectorExtras.h"
18#include "llvm/Analysis/ScalarEvolutionExpressions.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
21#include "llvm/CodeGen/MachineInstrBuilder.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Constants.h"
25#include "llvm/Function.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetOptions.h"
29#include "llvm/Support/CommandLine.h"
30using namespace llvm;
31
32static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc");
33
34PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
35  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
36
37  // Fold away setcc operations if possible.
38  setSetCCIsExpensive();
39  setPow2DivIsCheap();
40
41  // Use _setjmp/_longjmp instead of setjmp/longjmp.
42  setUseUnderscoreSetJmpLongJmp(true);
43
44  // Set up the register classes.
45  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
46  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
47  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
48
49  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
50  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
51  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
52
53  // PowerPC does not have truncstore for i1.
54  setStoreXAction(MVT::i1, Promote);
55
56  // PowerPC has pre-inc load and store's.
57  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
58  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
59  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
60  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
61  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
62  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
63  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
64  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
65  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
66  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
67
68  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
69  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
70
71  // PowerPC has no intrinsics for these particular operations
72  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
73  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
74  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
75
76  // PowerPC has no SREM/UREM instructions
77  setOperationAction(ISD::SREM, MVT::i32, Expand);
78  setOperationAction(ISD::UREM, MVT::i32, Expand);
79  setOperationAction(ISD::SREM, MVT::i64, Expand);
80  setOperationAction(ISD::UREM, MVT::i64, Expand);
81
82  // We don't support sin/cos/sqrt/fmod
83  setOperationAction(ISD::FSIN , MVT::f64, Expand);
84  setOperationAction(ISD::FCOS , MVT::f64, Expand);
85  setOperationAction(ISD::FREM , MVT::f64, Expand);
86  setOperationAction(ISD::FSIN , MVT::f32, Expand);
87  setOperationAction(ISD::FCOS , MVT::f32, Expand);
88  setOperationAction(ISD::FREM , MVT::f32, Expand);
89
90  // If we're enabling GP optimizations, use hardware square root
91  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
92    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
93    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
94  }
95
96  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
97  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
98
99  // PowerPC does not have BSWAP, CTPOP or CTTZ
100  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
101  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
102  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
103  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
104  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
105  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
106
107  // PowerPC does not have ROTR
108  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
109
110  // PowerPC does not have Select
111  setOperationAction(ISD::SELECT, MVT::i32, Expand);
112  setOperationAction(ISD::SELECT, MVT::i64, Expand);
113  setOperationAction(ISD::SELECT, MVT::f32, Expand);
114  setOperationAction(ISD::SELECT, MVT::f64, Expand);
115
116  // PowerPC wants to turn select_cc of FP into fsel when possible.
117  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
118  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
119
120  // PowerPC wants to optimize integer setcc a bit
121  setOperationAction(ISD::SETCC, MVT::i32, Custom);
122
123  // PowerPC does not have BRCOND which requires SetCC
124  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
125
126  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
127
128  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
129  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
130
131  // PowerPC does not have [U|S]INT_TO_FP
132  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
133  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
134
135  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
136  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
137  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
138  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
139
140  // We cannot sextinreg(i1).  Expand to shifts.
141  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
142
143
144  // Support label based line numbers.
145  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
146  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
147  // FIXME - use subtarget debug flags
148  if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
149    setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
150
151  // We want to legalize GlobalAddress and ConstantPool nodes into the
152  // appropriate instructions to materialize the address.
153  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
154  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
155  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
156  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
157  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
158  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
159
160  // RET must be custom lowered, to meet ABI requirements
161  setOperationAction(ISD::RET               , MVT::Other, Custom);
162
163  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
164  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
165
166  // Use the default implementation.
167  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
168  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
169  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
170  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
171  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
172  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand);
173  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Expand);
174
175  // We want to custom lower some of our intrinsics.
176  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
177
178  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
179    // They also have instructions for converting between i64 and fp.
180    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
181    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
182
183    // FIXME: disable this lowered code.  This generates 64-bit register values,
184    // and we don't model the fact that the top part is clobbered by calls.  We
185    // need to flag these together so that the value isn't live across a call.
186    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
187
188    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
189    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
190  } else {
191    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
192    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
193  }
194
195  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
196    // 64 bit PowerPC implementations can support i64 types directly
197    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
198    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
199    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
200  } else {
201    // 32 bit PowerPC wants to expand i64 shifts itself.
202    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
203    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
204    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
205  }
206
207  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
208    // First set operation action for all vector types to expand. Then we
209    // will selectively turn on ones that can be effectively codegen'd.
210    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
211         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
212      // add/sub are legal for all supported vector VT's.
213      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
214      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
215
216      // We promote all shuffles to v16i8.
217      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
218      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
219
220      // We promote all non-typed operations to v4i32.
221      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
222      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
223      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
224      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
225      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
226      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
227      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
228      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
229      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
230      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
231      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
232      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
233
234      // No other operations are legal.
235      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
236      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
237      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
238      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
239      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
240      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
241      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
242      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
243      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
244
245      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
246    }
247
248    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
249    // with merges, splats, etc.
250    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
251
252    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
253    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
254    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
255    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
256    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
257    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
258
259    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
260    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
261    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
262    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
263
264    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
265    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
266    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
267    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
268
269    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
270    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
271
272    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
273    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
274    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
275    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
276  }
277
278  setSetCCResultType(MVT::i32);
279  setShiftAmountType(MVT::i32);
280  setSetCCResultContents(ZeroOrOneSetCCResult);
281
282  if (TM.getSubtarget<PPCSubtarget>().isPPC64())
283    setStackPointerRegisterToSaveRestore(PPC::X1);
284  else
285    setStackPointerRegisterToSaveRestore(PPC::R1);
286
287  // We have target-specific dag combine patterns for the following nodes:
288  setTargetDAGCombine(ISD::SINT_TO_FP);
289  setTargetDAGCombine(ISD::STORE);
290  setTargetDAGCombine(ISD::BR_CC);
291  setTargetDAGCombine(ISD::BSWAP);
292
293  computeRegisterProperties();
294}
295
296const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
297  switch (Opcode) {
298  default: return 0;
299  case PPCISD::FSEL:          return "PPCISD::FSEL";
300  case PPCISD::FCFID:         return "PPCISD::FCFID";
301  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
302  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
303  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
304  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
305  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
306  case PPCISD::VPERM:         return "PPCISD::VPERM";
307  case PPCISD::Hi:            return "PPCISD::Hi";
308  case PPCISD::Lo:            return "PPCISD::Lo";
309  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
310  case PPCISD::SRL:           return "PPCISD::SRL";
311  case PPCISD::SRA:           return "PPCISD::SRA";
312  case PPCISD::SHL:           return "PPCISD::SHL";
313  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
314  case PPCISD::STD_32:        return "PPCISD::STD_32";
315  case PPCISD::CALL:          return "PPCISD::CALL";
316  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
317  case PPCISD::BCTRL:         return "PPCISD::BCTRL";
318  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
319  case PPCISD::MFCR:          return "PPCISD::MFCR";
320  case PPCISD::VCMP:          return "PPCISD::VCMP";
321  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
322  case PPCISD::LBRX:          return "PPCISD::LBRX";
323  case PPCISD::STBRX:         return "PPCISD::STBRX";
324  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
325  }
326}
327
328//===----------------------------------------------------------------------===//
329// Node matching predicates, for use by the tblgen matching code.
330//===----------------------------------------------------------------------===//
331
332/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
333static bool isFloatingPointZero(SDOperand Op) {
334  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
335    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
336  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
337    // Maybe this has already been legalized into the constant pool?
338    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
339      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
340        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
341  }
342  return false;
343}
344
345/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
346/// true if Op is undef or if it matches the specified value.
347static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
348  return Op.getOpcode() == ISD::UNDEF ||
349         cast<ConstantSDNode>(Op)->getValue() == Val;
350}
351
352/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
353/// VPKUHUM instruction.
354bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
355  if (!isUnary) {
356    for (unsigned i = 0; i != 16; ++i)
357      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
358        return false;
359  } else {
360    for (unsigned i = 0; i != 8; ++i)
361      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
362          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
363        return false;
364  }
365  return true;
366}
367
368/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
369/// VPKUWUM instruction.
370bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
371  if (!isUnary) {
372    for (unsigned i = 0; i != 16; i += 2)
373      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
374          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
375        return false;
376  } else {
377    for (unsigned i = 0; i != 8; i += 2)
378      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
379          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
380          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
381          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
382        return false;
383  }
384  return true;
385}
386
387/// isVMerge - Common function, used to match vmrg* shuffles.
388///
389static bool isVMerge(SDNode *N, unsigned UnitSize,
390                     unsigned LHSStart, unsigned RHSStart) {
391  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
392         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
393  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
394         "Unsupported merge size!");
395
396  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
397    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
398      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
399                             LHSStart+j+i*UnitSize) ||
400          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
401                             RHSStart+j+i*UnitSize))
402        return false;
403    }
404      return true;
405}
406
407/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
408/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
409bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
410  if (!isUnary)
411    return isVMerge(N, UnitSize, 8, 24);
412  return isVMerge(N, UnitSize, 8, 8);
413}
414
415/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
416/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
417bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
418  if (!isUnary)
419    return isVMerge(N, UnitSize, 0, 16);
420  return isVMerge(N, UnitSize, 0, 0);
421}
422
423
424/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
425/// amount, otherwise return -1.
426int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
427  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
428         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
429  // Find the first non-undef value in the shuffle mask.
430  unsigned i;
431  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
432    /*search*/;
433
434  if (i == 16) return -1;  // all undef.
435
436  // Otherwise, check to see if the rest of the elements are consequtively
437  // numbered from this value.
438  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
439  if (ShiftAmt < i) return -1;
440  ShiftAmt -= i;
441
442  if (!isUnary) {
443    // Check the rest of the elements to see if they are consequtive.
444    for (++i; i != 16; ++i)
445      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
446        return -1;
447  } else {
448    // Check the rest of the elements to see if they are consequtive.
449    for (++i; i != 16; ++i)
450      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
451        return -1;
452  }
453
454  return ShiftAmt;
455}
456
457/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
458/// specifies a splat of a single element that is suitable for input to
459/// VSPLTB/VSPLTH/VSPLTW.
460bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
461  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
462         N->getNumOperands() == 16 &&
463         (EltSize == 1 || EltSize == 2 || EltSize == 4));
464
465  // This is a splat operation if each element of the permute is the same, and
466  // if the value doesn't reference the second vector.
467  unsigned ElementBase = 0;
468  SDOperand Elt = N->getOperand(0);
469  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
470    ElementBase = EltV->getValue();
471  else
472    return false;   // FIXME: Handle UNDEF elements too!
473
474  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
475    return false;
476
477  // Check that they are consequtive.
478  for (unsigned i = 1; i != EltSize; ++i) {
479    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
480        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
481      return false;
482  }
483
484  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
485  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
486    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
487    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
488           "Invalid VECTOR_SHUFFLE mask!");
489    for (unsigned j = 0; j != EltSize; ++j)
490      if (N->getOperand(i+j) != N->getOperand(j))
491        return false;
492  }
493
494  return true;
495}
496
497/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
498/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
499unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
500  assert(isSplatShuffleMask(N, EltSize));
501  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
502}
503
504/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
505/// by using a vspltis[bhw] instruction of the specified element size, return
506/// the constant being splatted.  The ByteSize field indicates the number of
507/// bytes of each element [124] -> [bhw].
508SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
509  SDOperand OpVal(0, 0);
510
511  // If ByteSize of the splat is bigger than the element size of the
512  // build_vector, then we have a case where we are checking for a splat where
513  // multiple elements of the buildvector are folded together into a single
514  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
515  unsigned EltSize = 16/N->getNumOperands();
516  if (EltSize < ByteSize) {
517    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
518    SDOperand UniquedVals[4];
519    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
520
521    // See if all of the elements in the buildvector agree across.
522    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
523      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
524      // If the element isn't a constant, bail fully out.
525      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
526
527
528      if (UniquedVals[i&(Multiple-1)].Val == 0)
529        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
530      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
531        return SDOperand();  // no match.
532    }
533
534    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
535    // either constant or undef values that are identical for each chunk.  See
536    // if these chunks can form into a larger vspltis*.
537
538    // Check to see if all of the leading entries are either 0 or -1.  If
539    // neither, then this won't fit into the immediate field.
540    bool LeadingZero = true;
541    bool LeadingOnes = true;
542    for (unsigned i = 0; i != Multiple-1; ++i) {
543      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
544
545      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
546      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
547    }
548    // Finally, check the least significant entry.
549    if (LeadingZero) {
550      if (UniquedVals[Multiple-1].Val == 0)
551        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
552      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
553      if (Val < 16)
554        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
555    }
556    if (LeadingOnes) {
557      if (UniquedVals[Multiple-1].Val == 0)
558        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
559      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
560      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
561        return DAG.getTargetConstant(Val, MVT::i32);
562    }
563
564    return SDOperand();
565  }
566
567  // Check to see if this buildvec has a single non-undef value in its elements.
568  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
569    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
570    if (OpVal.Val == 0)
571      OpVal = N->getOperand(i);
572    else if (OpVal != N->getOperand(i))
573      return SDOperand();
574  }
575
576  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
577
578  unsigned ValSizeInBytes = 0;
579  uint64_t Value = 0;
580  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
581    Value = CN->getValue();
582    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
583  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
584    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
585    Value = FloatToBits(CN->getValue());
586    ValSizeInBytes = 4;
587  }
588
589  // If the splat value is larger than the element value, then we can never do
590  // this splat.  The only case that we could fit the replicated bits into our
591  // immediate field for would be zero, and we prefer to use vxor for it.
592  if (ValSizeInBytes < ByteSize) return SDOperand();
593
594  // If the element value is larger than the splat value, cut it in half and
595  // check to see if the two halves are equal.  Continue doing this until we
596  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
597  while (ValSizeInBytes > ByteSize) {
598    ValSizeInBytes >>= 1;
599
600    // If the top half equals the bottom half, we're still ok.
601    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
602         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
603      return SDOperand();
604  }
605
606  // Properly sign extend the value.
607  int ShAmt = (4-ByteSize)*8;
608  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
609
610  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
611  if (MaskVal == 0) return SDOperand();
612
613  // Finally, if this value fits in a 5 bit sext field, return it
614  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
615    return DAG.getTargetConstant(MaskVal, MVT::i32);
616  return SDOperand();
617}
618
619//===----------------------------------------------------------------------===//
620//  Addressing Mode Selection
621//===----------------------------------------------------------------------===//
622
623/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
624/// or 64-bit immediate, and if the value can be accurately represented as a
625/// sign extension from a 16-bit value.  If so, this returns true and the
626/// immediate.
627static bool isIntS16Immediate(SDNode *N, short &Imm) {
628  if (N->getOpcode() != ISD::Constant)
629    return false;
630
631  Imm = (short)cast<ConstantSDNode>(N)->getValue();
632  if (N->getValueType(0) == MVT::i32)
633    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
634  else
635    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
636}
637static bool isIntS16Immediate(SDOperand Op, short &Imm) {
638  return isIntS16Immediate(Op.Val, Imm);
639}
640
641
642/// SelectAddressRegReg - Given the specified addressed, check to see if it
643/// can be represented as an indexed [r+r] operation.  Returns false if it
644/// can be more efficiently represented with [r+imm].
645bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
646                                            SDOperand &Index,
647                                            SelectionDAG &DAG) {
648  short imm = 0;
649  if (N.getOpcode() == ISD::ADD) {
650    if (isIntS16Immediate(N.getOperand(1), imm))
651      return false;    // r+i
652    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
653      return false;    // r+i
654
655    Base = N.getOperand(0);
656    Index = N.getOperand(1);
657    return true;
658  } else if (N.getOpcode() == ISD::OR) {
659    if (isIntS16Immediate(N.getOperand(1), imm))
660      return false;    // r+i can fold it if we can.
661
662    // If this is an or of disjoint bitfields, we can codegen this as an add
663    // (for better address arithmetic) if the LHS and RHS of the OR are provably
664    // disjoint.
665    uint64_t LHSKnownZero, LHSKnownOne;
666    uint64_t RHSKnownZero, RHSKnownOne;
667    ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
668
669    if (LHSKnownZero) {
670      ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
671      // If all of the bits are known zero on the LHS or RHS, the add won't
672      // carry.
673      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
674        Base = N.getOperand(0);
675        Index = N.getOperand(1);
676        return true;
677      }
678    }
679  }
680
681  return false;
682}
683
684/// Returns true if the address N can be represented by a base register plus
685/// a signed 16-bit displacement [r+imm], and if it is not better
686/// represented as reg+reg.
687bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
688                                            SDOperand &Base, SelectionDAG &DAG){
689  // If this can be more profitably realized as r+r, fail.
690  if (SelectAddressRegReg(N, Disp, Base, DAG))
691    return false;
692
693  if (N.getOpcode() == ISD::ADD) {
694    short imm = 0;
695    if (isIntS16Immediate(N.getOperand(1), imm)) {
696      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
697      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
698        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
699      } else {
700        Base = N.getOperand(0);
701      }
702      return true; // [r+i]
703    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
704      // Match LOAD (ADD (X, Lo(G))).
705      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
706             && "Cannot handle constant offsets yet!");
707      Disp = N.getOperand(1).getOperand(0);  // The global address.
708      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
709             Disp.getOpcode() == ISD::TargetConstantPool ||
710             Disp.getOpcode() == ISD::TargetJumpTable);
711      Base = N.getOperand(0);
712      return true;  // [&g+r]
713    }
714  } else if (N.getOpcode() == ISD::OR) {
715    short imm = 0;
716    if (isIntS16Immediate(N.getOperand(1), imm)) {
717      // If this is an or of disjoint bitfields, we can codegen this as an add
718      // (for better address arithmetic) if the LHS and RHS of the OR are
719      // provably disjoint.
720      uint64_t LHSKnownZero, LHSKnownOne;
721      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
722      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
723        // If all of the bits are known zero on the LHS or RHS, the add won't
724        // carry.
725        Base = N.getOperand(0);
726        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
727        return true;
728      }
729    }
730  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
731    // Loading from a constant address.
732
733    // If this address fits entirely in a 16-bit sext immediate field, codegen
734    // this as "d, 0"
735    short Imm;
736    if (isIntS16Immediate(CN, Imm)) {
737      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
738      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
739      return true;
740    }
741
742    // FIXME: Handle small sext constant offsets in PPC64 mode also!
743    if (CN->getValueType(0) == MVT::i32) {
744      int Addr = (int)CN->getValue();
745
746      // Otherwise, break this down into an LIS + disp.
747      Disp =  DAG.getTargetConstant((short)Addr, MVT::i32);
748      Base = DAG.getConstant(Addr - (signed short)Addr, MVT::i32);
749      return true;
750    }
751  }
752
753  Disp = DAG.getTargetConstant(0, getPointerTy());
754  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
755    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
756  else
757    Base = N;
758  return true;      // [r+0]
759}
760
761/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
762/// represented as an indexed [r+r] operation.
763bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
764                                                SDOperand &Index,
765                                                SelectionDAG &DAG) {
766  // Check to see if we can easily represent this as an [r+r] address.  This
767  // will fail if it thinks that the address is more profitably represented as
768  // reg+imm, e.g. where imm = 0.
769  if (SelectAddressRegReg(N, Base, Index, DAG))
770    return true;
771
772  // If the operand is an addition, always emit this as [r+r], since this is
773  // better (for code size, and execution, as the memop does the add for free)
774  // than emitting an explicit add.
775  if (N.getOpcode() == ISD::ADD) {
776    Base = N.getOperand(0);
777    Index = N.getOperand(1);
778    return true;
779  }
780
781  // Otherwise, do it the hard way, using R0 as the base register.
782  Base = DAG.getRegister(PPC::R0, N.getValueType());
783  Index = N;
784  return true;
785}
786
787/// SelectAddressRegImmShift - Returns true if the address N can be
788/// represented by a base register plus a signed 14-bit displacement
789/// [r+imm*4].  Suitable for use by STD and friends.
790bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
791                                                 SDOperand &Base,
792                                                 SelectionDAG &DAG) {
793  // If this can be more profitably realized as r+r, fail.
794  if (SelectAddressRegReg(N, Disp, Base, DAG))
795    return false;
796
797  if (N.getOpcode() == ISD::ADD) {
798    short imm = 0;
799    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
800      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
801      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
802        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
803      } else {
804        Base = N.getOperand(0);
805      }
806      return true; // [r+i]
807    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
808      // Match LOAD (ADD (X, Lo(G))).
809      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
810             && "Cannot handle constant offsets yet!");
811      Disp = N.getOperand(1).getOperand(0);  // The global address.
812      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
813             Disp.getOpcode() == ISD::TargetConstantPool ||
814             Disp.getOpcode() == ISD::TargetJumpTable);
815      Base = N.getOperand(0);
816      return true;  // [&g+r]
817    }
818  } else if (N.getOpcode() == ISD::OR) {
819    short imm = 0;
820    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
821      // If this is an or of disjoint bitfields, we can codegen this as an add
822      // (for better address arithmetic) if the LHS and RHS of the OR are
823      // provably disjoint.
824      uint64_t LHSKnownZero, LHSKnownOne;
825      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
826      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
827        // If all of the bits are known zero on the LHS or RHS, the add won't
828        // carry.
829        Base = N.getOperand(0);
830        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
831        return true;
832      }
833    }
834  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
835    // Loading from a constant address.
836
837    // If this address fits entirely in a 14-bit sext immediate field, codegen
838    // this as "d, 0"
839    short Imm;
840    if (isIntS16Immediate(CN, Imm)) {
841      Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
842      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
843      return true;
844    }
845
846    // FIXME: Handle small sext constant offsets in PPC64 mode also!
847    if (CN->getValueType(0) == MVT::i32) {
848      int Addr = (int)CN->getValue();
849
850      // Otherwise, break this down into an LIS + disp.
851      Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
852      Base = DAG.getConstant(Addr - (signed short)Addr, MVT::i32);
853      return true;
854    }
855  }
856
857  Disp = DAG.getTargetConstant(0, getPointerTy());
858  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
859    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
860  else
861    Base = N;
862  return true;      // [r+0]
863}
864
865
866/// getPreIndexedAddressParts - returns true by value, base pointer and
867/// offset pointer and addressing mode by reference if the node's address
868/// can be legally represented as pre-indexed load / store address.
869bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
870                                                  SDOperand &Offset,
871                                                  ISD::MemIndexedMode &AM,
872                                                  SelectionDAG &DAG) {
873  // Disabled by default for now.
874  if (!EnablePPCPreinc) return false;
875
876  SDOperand Ptr;
877  MVT::ValueType VT;
878  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
879    Ptr = LD->getBasePtr();
880    VT = LD->getValueType(0);
881  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
882    ST = ST;
883    Ptr = ST->getBasePtr();
884    VT  = ST->getStoredVT();
885    return false;  // TODO: Stores.
886  } else
887    return false;
888
889  // PowerPC doesn't have preinc load/store instructions for vectors.
890  if (MVT::isVector(VT))
891    return false;
892
893  // TODO: Handle reg+reg.
894  if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
895    return false;
896
897  // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
898  // sext i32 to i64 when addr mode is r+i.
899  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
900    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
901        LD->getExtensionType() == ISD::SEXTLOAD &&
902        isa<ConstantSDNode>(Offset))
903      return false;
904  }
905
906  AM = ISD::PRE_INC;
907  return true;
908}
909
910//===----------------------------------------------------------------------===//
911//  LowerOperation implementation
912//===----------------------------------------------------------------------===//
913
914static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
915  MVT::ValueType PtrVT = Op.getValueType();
916  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
917  Constant *C = CP->getConstVal();
918  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
919  SDOperand Zero = DAG.getConstant(0, PtrVT);
920
921  const TargetMachine &TM = DAG.getTarget();
922
923  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
924  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
925
926  // If this is a non-darwin platform, we don't support non-static relo models
927  // yet.
928  if (TM.getRelocationModel() == Reloc::Static ||
929      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
930    // Generate non-pic code that has direct accesses to the constant pool.
931    // The address of the global is just (hi(&g)+lo(&g)).
932    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
933  }
934
935  if (TM.getRelocationModel() == Reloc::PIC_) {
936    // With PIC, the first instruction is actually "GR+hi(&G)".
937    Hi = DAG.getNode(ISD::ADD, PtrVT,
938                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
939  }
940
941  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
942  return Lo;
943}
944
945static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
946  MVT::ValueType PtrVT = Op.getValueType();
947  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
948  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
949  SDOperand Zero = DAG.getConstant(0, PtrVT);
950
951  const TargetMachine &TM = DAG.getTarget();
952
953  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
954  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
955
956  // If this is a non-darwin platform, we don't support non-static relo models
957  // yet.
958  if (TM.getRelocationModel() == Reloc::Static ||
959      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
960    // Generate non-pic code that has direct accesses to the constant pool.
961    // The address of the global is just (hi(&g)+lo(&g)).
962    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
963  }
964
965  if (TM.getRelocationModel() == Reloc::PIC_) {
966    // With PIC, the first instruction is actually "GR+hi(&G)".
967    Hi = DAG.getNode(ISD::ADD, PtrVT,
968                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
969  }
970
971  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
972  return Lo;
973}
974
975static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
976  MVT::ValueType PtrVT = Op.getValueType();
977  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
978  GlobalValue *GV = GSDN->getGlobal();
979  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
980  SDOperand Zero = DAG.getConstant(0, PtrVT);
981
982  const TargetMachine &TM = DAG.getTarget();
983
984  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
985  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
986
987  // If this is a non-darwin platform, we don't support non-static relo models
988  // yet.
989  if (TM.getRelocationModel() == Reloc::Static ||
990      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
991    // Generate non-pic code that has direct accesses to globals.
992    // The address of the global is just (hi(&g)+lo(&g)).
993    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
994  }
995
996  if (TM.getRelocationModel() == Reloc::PIC_) {
997    // With PIC, the first instruction is actually "GR+hi(&G)".
998    Hi = DAG.getNode(ISD::ADD, PtrVT,
999                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1000  }
1001
1002  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1003
1004  if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
1005      (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
1006    return Lo;
1007
1008  // If the global is weak or external, we have to go through the lazy
1009  // resolution stub.
1010  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1011}
1012
1013static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1014  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1015
1016  // If we're comparing for equality to zero, expose the fact that this is
1017  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1018  // fold the new nodes.
1019  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1020    if (C->isNullValue() && CC == ISD::SETEQ) {
1021      MVT::ValueType VT = Op.getOperand(0).getValueType();
1022      SDOperand Zext = Op.getOperand(0);
1023      if (VT < MVT::i32) {
1024        VT = MVT::i32;
1025        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1026      }
1027      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1028      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1029      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1030                                  DAG.getConstant(Log2b, MVT::i32));
1031      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1032    }
1033    // Leave comparisons against 0 and -1 alone for now, since they're usually
1034    // optimized.  FIXME: revisit this when we can custom lower all setcc
1035    // optimizations.
1036    if (C->isAllOnesValue() || C->isNullValue())
1037      return SDOperand();
1038  }
1039
1040  // If we have an integer seteq/setne, turn it into a compare against zero
1041  // by subtracting the rhs from the lhs, which is faster than setting a
1042  // condition register, reading it back out, and masking the correct bit.
1043  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1044  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1045    MVT::ValueType VT = Op.getValueType();
1046    SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
1047                                Op.getOperand(1));
1048    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1049  }
1050  return SDOperand();
1051}
1052
1053static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1054                              unsigned VarArgsFrameIndex) {
1055  // vastart just stores the address of the VarArgsFrameIndex slot into the
1056  // memory location argument.
1057  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1058  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1059  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1060  return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1061                      SV->getOffset());
1062}
1063
1064static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1065                                       int &VarArgsFrameIndex) {
1066  // TODO: add description of PPC stack frame format, or at least some docs.
1067  //
1068  MachineFunction &MF = DAG.getMachineFunction();
1069  MachineFrameInfo *MFI = MF.getFrameInfo();
1070  SSARegMap *RegMap = MF.getSSARegMap();
1071  SmallVector<SDOperand, 8> ArgValues;
1072  SDOperand Root = Op.getOperand(0);
1073
1074  unsigned ArgOffset = 24;
1075  const unsigned Num_GPR_Regs = 8;
1076  const unsigned Num_FPR_Regs = 13;
1077  const unsigned Num_VR_Regs  = 12;
1078  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1079
1080  static const unsigned GPR_32[] = {           // 32-bit registers.
1081    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1082    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1083  };
1084  static const unsigned GPR_64[] = {           // 64-bit registers.
1085    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1086    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1087  };
1088  static const unsigned FPR[] = {
1089    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1090    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1091  };
1092  static const unsigned VR[] = {
1093    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1094    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1095  };
1096
1097  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1098  bool isPPC64 = PtrVT == MVT::i64;
1099  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1100
1101  // Add DAG nodes to load the arguments or copy them out of registers.  On
1102  // entry to a function on PPC, the arguments start at offset 24, although the
1103  // first ones are often in registers.
1104  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1105    SDOperand ArgVal;
1106    bool needsLoad = false;
1107    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1108    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1109
1110    unsigned CurArgOffset = ArgOffset;
1111    switch (ObjectVT) {
1112    default: assert(0 && "Unhandled argument type!");
1113    case MVT::i32:
1114      // All int arguments reserve stack space.
1115      ArgOffset += isPPC64 ? 8 : 4;
1116
1117      if (GPR_idx != Num_GPR_Regs) {
1118        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1119        MF.addLiveIn(GPR[GPR_idx], VReg);
1120        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1121        ++GPR_idx;
1122      } else {
1123        needsLoad = true;
1124      }
1125      break;
1126    case MVT::i64:  // PPC64
1127      // All int arguments reserve stack space.
1128      ArgOffset += 8;
1129
1130      if (GPR_idx != Num_GPR_Regs) {
1131        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1132        MF.addLiveIn(GPR[GPR_idx], VReg);
1133        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1134        ++GPR_idx;
1135      } else {
1136        needsLoad = true;
1137      }
1138      break;
1139    case MVT::f32:
1140    case MVT::f64:
1141      // All FP arguments reserve stack space.
1142      ArgOffset += ObjSize;
1143
1144      // Every 4 bytes of argument space consumes one of the GPRs available for
1145      // argument passing.
1146      if (GPR_idx != Num_GPR_Regs) {
1147        ++GPR_idx;
1148        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs)
1149          ++GPR_idx;
1150      }
1151      if (FPR_idx != Num_FPR_Regs) {
1152        unsigned VReg;
1153        if (ObjectVT == MVT::f32)
1154          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1155        else
1156          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1157        MF.addLiveIn(FPR[FPR_idx], VReg);
1158        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1159        ++FPR_idx;
1160      } else {
1161        needsLoad = true;
1162      }
1163      break;
1164    case MVT::v4f32:
1165    case MVT::v4i32:
1166    case MVT::v8i16:
1167    case MVT::v16i8:
1168      // Note that vector arguments in registers don't reserve stack space.
1169      if (VR_idx != Num_VR_Regs) {
1170        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1171        MF.addLiveIn(VR[VR_idx], VReg);
1172        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1173        ++VR_idx;
1174      } else {
1175        // This should be simple, but requires getting 16-byte aligned stack
1176        // values.
1177        assert(0 && "Loading VR argument not implemented yet!");
1178        needsLoad = true;
1179      }
1180      break;
1181    }
1182
1183    // We need to load the argument to a virtual register if we determined above
1184    // that we ran out of physical registers of the appropriate type
1185    if (needsLoad) {
1186      // If the argument is actually used, emit a load from the right stack
1187      // slot.
1188      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1189        int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1190        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1191        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1192      } else {
1193        // Don't emit a dead load.
1194        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1195      }
1196    }
1197
1198    ArgValues.push_back(ArgVal);
1199  }
1200
1201  // If the function takes variable number of arguments, make a frame index for
1202  // the start of the first vararg value... for expansion of llvm.va_start.
1203  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1204  if (isVarArg) {
1205    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1206                                               ArgOffset);
1207    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1208    // If this function is vararg, store any remaining integer argument regs
1209    // to their spots on the stack so that they may be loaded by deferencing the
1210    // result of va_next.
1211    SmallVector<SDOperand, 8> MemOps;
1212    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1213      unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1214      MF.addLiveIn(GPR[GPR_idx], VReg);
1215      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1216      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1217      MemOps.push_back(Store);
1218      // Increment the address by four for the next argument to store
1219      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1220      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1221    }
1222    if (!MemOps.empty())
1223      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1224  }
1225
1226  ArgValues.push_back(Root);
1227
1228  // Return the new list of results.
1229  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1230                                    Op.Val->value_end());
1231  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1232}
1233
1234/// isCallCompatibleAddress - Return the immediate to use if the specified
1235/// 32-bit value is representable in the immediate field of a BxA instruction.
1236static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1237  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1238  if (!C) return 0;
1239
1240  int Addr = C->getValue();
1241  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1242      (Addr << 6 >> 6) != Addr)
1243    return 0;  // Top 6 bits have to be sext of immediate.
1244
1245  return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1246}
1247
1248
1249static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1250  SDOperand Chain = Op.getOperand(0);
1251  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1252  SDOperand Callee    = Op.getOperand(4);
1253  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
1254
1255  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1256  bool isPPC64 = PtrVT == MVT::i64;
1257  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1258
1259
1260  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1261  // SelectExpr to use to put the arguments in the appropriate registers.
1262  std::vector<SDOperand> args_to_use;
1263
1264  // Count how many bytes are to be pushed on the stack, including the linkage
1265  // area, and parameter passing area.  We start with 24/48 bytes, which is
1266  // prereserved space for [SP][CR][LR][3 x unused].
1267  unsigned NumBytes = 6*PtrByteSize;
1268
1269  // Add up all the space actually used.
1270  for (unsigned i = 0; i != NumOps; ++i)
1271    NumBytes += MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1272
1273  // The prolog code of the callee may store up to 8 GPR argument registers to
1274  // the stack, allowing va_start to index over them in memory if its varargs.
1275  // Because we cannot tell if this is needed on the caller side, we have to
1276  // conservatively assume that it is needed.  As such, make sure we have at
1277  // least enough stack space for the caller to store the 8 GPRs.
1278  if (NumBytes < 6*PtrByteSize+8*PtrByteSize)
1279    NumBytes = 6*PtrByteSize+8*PtrByteSize;
1280
1281  // Adjust the stack pointer for the new arguments...
1282  // These operations are automatically eliminated by the prolog/epilog pass
1283  Chain = DAG.getCALLSEQ_START(Chain,
1284                               DAG.getConstant(NumBytes, PtrVT));
1285
1286  // Set up a copy of the stack pointer for use loading and storing any
1287  // arguments that may not fit in the registers available for argument
1288  // passing.
1289  SDOperand StackPtr;
1290  if (isPPC64)
1291    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1292  else
1293    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1294
1295  // Figure out which arguments are going to go in registers, and which in
1296  // memory.  Also, if this is a vararg function, floating point operations
1297  // must be stored to our stack, and loaded into integer regs as well, if
1298  // any integer regs are available for argument passing.
1299  unsigned ArgOffset = 6*PtrByteSize;
1300  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1301  static const unsigned GPR_32[] = {           // 32-bit registers.
1302    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1303    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1304  };
1305  static const unsigned GPR_64[] = {           // 64-bit registers.
1306    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1307    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1308  };
1309  static const unsigned FPR[] = {
1310    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1311    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1312  };
1313  static const unsigned VR[] = {
1314    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1315    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1316  };
1317  const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1318  const unsigned NumFPRs = sizeof(FPR)/sizeof(FPR[0]);
1319  const unsigned NumVRs  = sizeof( VR)/sizeof( VR[0]);
1320
1321  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1322
1323  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1324  SmallVector<SDOperand, 8> MemOpChains;
1325  for (unsigned i = 0; i != NumOps; ++i) {
1326    SDOperand Arg = Op.getOperand(5+2*i);
1327
1328    // PtrOff will be used to store the current argument to the stack if a
1329    // register cannot be found for it.
1330    SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1331    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1332
1333    // On PPC64, promote integers to 64-bit values.
1334    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1335      unsigned ExtOp = ISD::ZERO_EXTEND;
1336      if (cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue())
1337        ExtOp = ISD::SIGN_EXTEND;
1338      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1339    }
1340
1341    switch (Arg.getValueType()) {
1342    default: assert(0 && "Unexpected ValueType for argument!");
1343    case MVT::i32:
1344    case MVT::i64:
1345      if (GPR_idx != NumGPRs) {
1346        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1347      } else {
1348        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1349      }
1350      ArgOffset += PtrByteSize;
1351      break;
1352    case MVT::f32:
1353    case MVT::f64:
1354      if (FPR_idx != NumFPRs) {
1355        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1356
1357        if (isVarArg) {
1358          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1359          MemOpChains.push_back(Store);
1360
1361          // Float varargs are always shadowed in available integer registers
1362          if (GPR_idx != NumGPRs) {
1363            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1364            MemOpChains.push_back(Load.getValue(1));
1365            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1366          }
1367          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64) {
1368            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1369            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1370            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1371            MemOpChains.push_back(Load.getValue(1));
1372            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1373          }
1374        } else {
1375          // If we have any FPRs remaining, we may also have GPRs remaining.
1376          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1377          // GPRs.
1378          if (GPR_idx != NumGPRs)
1379            ++GPR_idx;
1380          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64)
1381            ++GPR_idx;
1382        }
1383      } else {
1384        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1385      }
1386      if (isPPC64)
1387        ArgOffset += 8;
1388      else
1389        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1390      break;
1391    case MVT::v4f32:
1392    case MVT::v4i32:
1393    case MVT::v8i16:
1394    case MVT::v16i8:
1395      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1396      assert(VR_idx != NumVRs &&
1397             "Don't support passing more than 12 vector args yet!");
1398      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1399      break;
1400    }
1401  }
1402  if (!MemOpChains.empty())
1403    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1404                        &MemOpChains[0], MemOpChains.size());
1405
1406  // Build a sequence of copy-to-reg nodes chained together with token chain
1407  // and flag operands which copy the outgoing args into the appropriate regs.
1408  SDOperand InFlag;
1409  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1410    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1411                             InFlag);
1412    InFlag = Chain.getValue(1);
1413  }
1414
1415  std::vector<MVT::ValueType> NodeTys;
1416  NodeTys.push_back(MVT::Other);   // Returns a chain
1417  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1418
1419  SmallVector<SDOperand, 8> Ops;
1420  unsigned CallOpc = PPCISD::CALL;
1421
1422  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1423  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1424  // node so that legalize doesn't hack it.
1425  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1426    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1427  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1428    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1429  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1430    // If this is an absolute destination address, use the munged value.
1431    Callee = SDOperand(Dest, 0);
1432  else {
1433    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1434    // to do the call, we can't use PPCISD::CALL.
1435    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1436    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1437    InFlag = Chain.getValue(1);
1438
1439    // Copy the callee address into R12 on darwin.
1440    Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1441    InFlag = Chain.getValue(1);
1442
1443    NodeTys.clear();
1444    NodeTys.push_back(MVT::Other);
1445    NodeTys.push_back(MVT::Flag);
1446    Ops.push_back(Chain);
1447    CallOpc = PPCISD::BCTRL;
1448    Callee.Val = 0;
1449  }
1450
1451  // If this is a direct call, pass the chain and the callee.
1452  if (Callee.Val) {
1453    Ops.push_back(Chain);
1454    Ops.push_back(Callee);
1455  }
1456
1457  // Add argument registers to the end of the list so that they are known live
1458  // into the call.
1459  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1460    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1461                                  RegsToPass[i].second.getValueType()));
1462
1463  if (InFlag.Val)
1464    Ops.push_back(InFlag);
1465  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1466  InFlag = Chain.getValue(1);
1467
1468  SDOperand ResultVals[3];
1469  unsigned NumResults = 0;
1470  NodeTys.clear();
1471
1472  // If the call has results, copy the values out of the ret val registers.
1473  switch (Op.Val->getValueType(0)) {
1474  default: assert(0 && "Unexpected ret value!");
1475  case MVT::Other: break;
1476  case MVT::i32:
1477    if (Op.Val->getValueType(1) == MVT::i32) {
1478      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1);
1479      ResultVals[0] = Chain.getValue(0);
1480      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32,
1481                                 Chain.getValue(2)).getValue(1);
1482      ResultVals[1] = Chain.getValue(0);
1483      NumResults = 2;
1484      NodeTys.push_back(MVT::i32);
1485    } else {
1486      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1487      ResultVals[0] = Chain.getValue(0);
1488      NumResults = 1;
1489    }
1490    NodeTys.push_back(MVT::i32);
1491    break;
1492  case MVT::i64:
1493    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1494    ResultVals[0] = Chain.getValue(0);
1495    NumResults = 1;
1496    NodeTys.push_back(MVT::i64);
1497    break;
1498  case MVT::f32:
1499  case MVT::f64:
1500    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1501                               InFlag).getValue(1);
1502    ResultVals[0] = Chain.getValue(0);
1503    NumResults = 1;
1504    NodeTys.push_back(Op.Val->getValueType(0));
1505    break;
1506  case MVT::v4f32:
1507  case MVT::v4i32:
1508  case MVT::v8i16:
1509  case MVT::v16i8:
1510    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1511                                   InFlag).getValue(1);
1512    ResultVals[0] = Chain.getValue(0);
1513    NumResults = 1;
1514    NodeTys.push_back(Op.Val->getValueType(0));
1515    break;
1516  }
1517
1518  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1519                      DAG.getConstant(NumBytes, PtrVT));
1520  NodeTys.push_back(MVT::Other);
1521
1522  // If the function returns void, just return the chain.
1523  if (NumResults == 0)
1524    return Chain;
1525
1526  // Otherwise, merge everything together with a MERGE_VALUES node.
1527  ResultVals[NumResults++] = Chain;
1528  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1529                              ResultVals, NumResults);
1530  return Res.getValue(Op.ResNo);
1531}
1532
1533static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
1534  SDOperand Copy;
1535  switch(Op.getNumOperands()) {
1536  default:
1537    assert(0 && "Do not know how to return this many arguments!");
1538    abort();
1539  case 1:
1540    return SDOperand(); // ret void is legal
1541  case 3: {
1542    MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
1543    unsigned ArgReg;
1544    if (ArgVT == MVT::i32) {
1545      ArgReg = PPC::R3;
1546    } else if (ArgVT == MVT::i64) {
1547      ArgReg = PPC::X3;
1548    } else if (MVT::isVector(ArgVT)) {
1549      ArgReg = PPC::V2;
1550    } else {
1551      assert(MVT::isFloatingPoint(ArgVT));
1552      ArgReg = PPC::F1;
1553    }
1554
1555    Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
1556                            SDOperand());
1557
1558    // If we haven't noted the R3/F1 are live out, do so now.
1559    if (DAG.getMachineFunction().liveout_empty())
1560      DAG.getMachineFunction().addLiveOut(ArgReg);
1561    break;
1562  }
1563  case 5:
1564    Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(3),
1565                            SDOperand());
1566    Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
1567    // If we haven't noted the R3+R4 are live out, do so now.
1568    if (DAG.getMachineFunction().liveout_empty()) {
1569      DAG.getMachineFunction().addLiveOut(PPC::R3);
1570      DAG.getMachineFunction().addLiveOut(PPC::R4);
1571    }
1572    break;
1573  }
1574  return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
1575}
1576
1577/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1578/// possible.
1579static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1580  // Not FP? Not a fsel.
1581  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1582      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1583    return SDOperand();
1584
1585  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1586
1587  // Cannot handle SETEQ/SETNE.
1588  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1589
1590  MVT::ValueType ResVT = Op.getValueType();
1591  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1592  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1593  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
1594
1595  // If the RHS of the comparison is a 0.0, we don't need to do the
1596  // subtraction at all.
1597  if (isFloatingPointZero(RHS))
1598    switch (CC) {
1599    default: break;       // SETUO etc aren't handled by fsel.
1600    case ISD::SETULT:
1601    case ISD::SETOLT:
1602    case ISD::SETLT:
1603      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1604    case ISD::SETUGE:
1605    case ISD::SETOGE:
1606    case ISD::SETGE:
1607      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1608        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1609      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1610    case ISD::SETUGT:
1611    case ISD::SETOGT:
1612    case ISD::SETGT:
1613      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1614    case ISD::SETULE:
1615    case ISD::SETOLE:
1616    case ISD::SETLE:
1617      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1618        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1619      return DAG.getNode(PPCISD::FSEL, ResVT,
1620                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1621    }
1622
1623      SDOperand Cmp;
1624  switch (CC) {
1625  default: break;       // SETUO etc aren't handled by fsel.
1626  case ISD::SETULT:
1627  case ISD::SETOLT:
1628  case ISD::SETLT:
1629    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1630    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1631      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1632      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1633  case ISD::SETUGE:
1634  case ISD::SETOGE:
1635  case ISD::SETGE:
1636    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1637    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1638      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1639      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1640  case ISD::SETUGT:
1641  case ISD::SETOGT:
1642  case ISD::SETGT:
1643    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1644    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1645      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1646      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1647  case ISD::SETULE:
1648  case ISD::SETOLE:
1649  case ISD::SETLE:
1650    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1651    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1652      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1653      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1654  }
1655  return SDOperand();
1656}
1657
1658static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
1659  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
1660  SDOperand Src = Op.getOperand(0);
1661  if (Src.getValueType() == MVT::f32)
1662    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1663
1664  SDOperand Tmp;
1665  switch (Op.getValueType()) {
1666  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1667  case MVT::i32:
1668    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1669    break;
1670  case MVT::i64:
1671    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1672    break;
1673  }
1674
1675  // Convert the FP value to an int value through memory.
1676  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1677  if (Op.getValueType() == MVT::i32)
1678    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1679  return Bits;
1680}
1681
1682static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1683  if (Op.getOperand(0).getValueType() == MVT::i64) {
1684    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1685    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1686    if (Op.getValueType() == MVT::f32)
1687      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1688    return FP;
1689  }
1690
1691  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1692         "Unhandled SINT_TO_FP type in custom expander!");
1693  // Since we only generate this in 64-bit mode, we can take advantage of
1694  // 64-bit registers.  In particular, sign extend the input value into the
1695  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1696  // then lfd it and fcfid it.
1697  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1698  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1699  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1700  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
1701
1702  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1703                                Op.getOperand(0));
1704
1705  // STD the extended value into the stack slot.
1706  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1707                                DAG.getEntryNode(), Ext64, FIdx,
1708                                DAG.getSrcValue(NULL));
1709  // Load the value as a double.
1710  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
1711
1712  // FCFID it and return it.
1713  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1714  if (Op.getValueType() == MVT::f32)
1715    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1716  return FP;
1717}
1718
1719static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1720  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1721         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1722
1723  // Expand into a bunch of logical ops.  Note that these ops
1724  // depend on the PPC behavior for oversized shift amounts.
1725  SDOperand Lo = Op.getOperand(0);
1726  SDOperand Hi = Op.getOperand(1);
1727  SDOperand Amt = Op.getOperand(2);
1728
1729  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1730                               DAG.getConstant(32, MVT::i32), Amt);
1731  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1732  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1733  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1734  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1735                               DAG.getConstant(-32U, MVT::i32));
1736  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1737  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1738  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1739  SDOperand OutOps[] = { OutLo, OutHi };
1740  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1741                     OutOps, 2);
1742}
1743
1744static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
1745  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1746         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
1747
1748  // Otherwise, expand into a bunch of logical ops.  Note that these ops
1749  // depend on the PPC behavior for oversized shift amounts.
1750  SDOperand Lo = Op.getOperand(0);
1751  SDOperand Hi = Op.getOperand(1);
1752  SDOperand Amt = Op.getOperand(2);
1753
1754  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1755                               DAG.getConstant(32, MVT::i32), Amt);
1756  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1757  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1758  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1759  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1760                               DAG.getConstant(-32U, MVT::i32));
1761  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1762  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1763  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1764  SDOperand OutOps[] = { OutLo, OutHi };
1765  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1766                     OutOps, 2);
1767}
1768
1769static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
1770  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
1771         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1772
1773  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1774  SDOperand Lo = Op.getOperand(0);
1775  SDOperand Hi = Op.getOperand(1);
1776  SDOperand Amt = Op.getOperand(2);
1777
1778  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1779                               DAG.getConstant(32, MVT::i32), Amt);
1780  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1781  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1782  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1783  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1784                               DAG.getConstant(-32U, MVT::i32));
1785  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1786  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1787  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1788                                    Tmp4, Tmp6, ISD::SETLE);
1789  SDOperand OutOps[] = { OutLo, OutHi };
1790  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
1791                     OutOps, 2);
1792}
1793
1794//===----------------------------------------------------------------------===//
1795// Vector related lowering.
1796//
1797
1798// If this is a vector of constants or undefs, get the bits.  A bit in
1799// UndefBits is set if the corresponding element of the vector is an
1800// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1801// zero.   Return true if this is not an array of constants, false if it is.
1802//
1803static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1804                                       uint64_t UndefBits[2]) {
1805  // Start with zero'd results.
1806  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1807
1808  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1809  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1810    SDOperand OpVal = BV->getOperand(i);
1811
1812    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
1813    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
1814
1815    uint64_t EltBits = 0;
1816    if (OpVal.getOpcode() == ISD::UNDEF) {
1817      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1818      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1819      continue;
1820    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1821      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1822    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1823      assert(CN->getValueType(0) == MVT::f32 &&
1824             "Only one legal FP vector type!");
1825      EltBits = FloatToBits(CN->getValue());
1826    } else {
1827      // Nonconstant element.
1828      return true;
1829    }
1830
1831    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1832  }
1833
1834  //printf("%llx %llx  %llx %llx\n",
1835  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1836  return false;
1837}
1838
1839// If this is a splat (repetition) of a value across the whole vector, return
1840// the smallest size that splats it.  For example, "0x01010101010101..." is a
1841// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1842// SplatSize = 1 byte.
1843static bool isConstantSplat(const uint64_t Bits128[2],
1844                            const uint64_t Undef128[2],
1845                            unsigned &SplatBits, unsigned &SplatUndef,
1846                            unsigned &SplatSize) {
1847
1848  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
1849  // the same as the lower 64-bits, ignoring undefs.
1850  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1851    return false;  // Can't be a splat if two pieces don't match.
1852
1853  uint64_t Bits64  = Bits128[0] | Bits128[1];
1854  uint64_t Undef64 = Undef128[0] & Undef128[1];
1855
1856  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1857  // undefs.
1858  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1859    return false;  // Can't be a splat if two pieces don't match.
1860
1861  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1862  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1863
1864  // If the top 16-bits are different than the lower 16-bits, ignoring
1865  // undefs, we have an i32 splat.
1866  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1867    SplatBits = Bits32;
1868    SplatUndef = Undef32;
1869    SplatSize = 4;
1870    return true;
1871  }
1872
1873  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
1874  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1875
1876  // If the top 8-bits are different than the lower 8-bits, ignoring
1877  // undefs, we have an i16 splat.
1878  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1879    SplatBits = Bits16;
1880    SplatUndef = Undef16;
1881    SplatSize = 2;
1882    return true;
1883  }
1884
1885  // Otherwise, we have an 8-bit splat.
1886  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
1887  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1888  SplatSize = 1;
1889  return true;
1890}
1891
1892/// BuildSplatI - Build a canonical splati of Val with an element size of
1893/// SplatSize.  Cast the result to VT.
1894static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1895                             SelectionDAG &DAG) {
1896  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
1897
1898  // Force vspltis[hw] -1 to vspltisb -1.
1899  if (Val == -1) SplatSize = 1;
1900
1901  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1902    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1903  };
1904  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1905
1906  // Build a canonical splat for this value.
1907  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1908  SmallVector<SDOperand, 8> Ops;
1909  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
1910  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
1911                              &Ops[0], Ops.size());
1912  return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1913}
1914
1915/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
1916/// specified intrinsic ID.
1917static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1918                                  SelectionDAG &DAG,
1919                                  MVT::ValueType DestVT = MVT::Other) {
1920  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1921  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1922                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
1923}
1924
1925/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1926/// specified intrinsic ID.
1927static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1928                                  SDOperand Op2, SelectionDAG &DAG,
1929                                  MVT::ValueType DestVT = MVT::Other) {
1930  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1931  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1932                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1933}
1934
1935
1936/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1937/// amount.  The result has the specified value type.
1938static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1939                             MVT::ValueType VT, SelectionDAG &DAG) {
1940  // Force LHS/RHS to be the right type.
1941  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
1942  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
1943
1944  SDOperand Ops[16];
1945  for (unsigned i = 0; i != 16; ++i)
1946    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
1947  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
1948                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
1949  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
1950}
1951
1952// If this is a case we can't handle, return null and let the default
1953// expansion code take care of it.  If we CAN select this case, and if it
1954// selects to a single instruction, return Op.  Otherwise, if we can codegen
1955// this case more efficiently than a constant pool load, lower it to the
1956// sequence of ops that should be used.
1957static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1958  // If this is a vector of constants or undefs, get the bits.  A bit in
1959  // UndefBits is set if the corresponding element of the vector is an
1960  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
1961  // zero.
1962  uint64_t VectorBits[2];
1963  uint64_t UndefBits[2];
1964  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1965    return SDOperand();   // Not a constant vector.
1966
1967  // If this is a splat (repetition) of a value across the whole vector, return
1968  // the smallest size that splats it.  For example, "0x01010101010101..." is a
1969  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
1970  // SplatSize = 1 byte.
1971  unsigned SplatBits, SplatUndef, SplatSize;
1972  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1973    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1974
1975    // First, handle single instruction cases.
1976
1977    // All zeros?
1978    if (SplatBits == 0) {
1979      // Canonicalize all zero vectors to be v4i32.
1980      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1981        SDOperand Z = DAG.getConstant(0, MVT::i32);
1982        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1983        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1984      }
1985      return Op;
1986    }
1987
1988    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1989    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
1990    if (SextVal >= -16 && SextVal <= 15)
1991      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
1992
1993
1994    // Two instruction sequences.
1995
1996    // If this value is in the range [-32,30] and is even, use:
1997    //    tmp = VSPLTI[bhw], result = add tmp, tmp
1998    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1999      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2000      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2001    }
2002
2003    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2004    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2005    // for fneg/fabs.
2006    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2007      // Make -1 and vspltisw -1:
2008      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2009
2010      // Make the VSLW intrinsic, computing 0x8000_0000.
2011      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2012                                       OnesV, DAG);
2013
2014      // xor by OnesV to invert it.
2015      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2016      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2017    }
2018
2019    // Check to see if this is a wide variety of vsplti*, binop self cases.
2020    unsigned SplatBitSize = SplatSize*8;
2021    static const char SplatCsts[] = {
2022      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2023      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2024    };
2025    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
2026      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2027      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2028      int i = SplatCsts[idx];
2029
2030      // Figure out what shift amount will be used by altivec if shifted by i in
2031      // this splat size.
2032      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2033
2034      // vsplti + shl self.
2035      if (SextVal == (i << (int)TypeShiftAmt)) {
2036        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
2037        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2038          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2039          Intrinsic::ppc_altivec_vslw
2040        };
2041        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
2042      }
2043
2044      // vsplti + srl self.
2045      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2046        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
2047        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2048          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2049          Intrinsic::ppc_altivec_vsrw
2050        };
2051        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
2052      }
2053
2054      // vsplti + sra self.
2055      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2056        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
2057        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2058          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2059          Intrinsic::ppc_altivec_vsraw
2060        };
2061        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
2062      }
2063
2064      // vsplti + rol self.
2065      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2066                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2067        Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
2068        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2069          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2070          Intrinsic::ppc_altivec_vrlw
2071        };
2072        return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
2073      }
2074
2075      // t = vsplti c, result = vsldoi t, t, 1
2076      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2077        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2078        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2079      }
2080      // t = vsplti c, result = vsldoi t, t, 2
2081      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2082        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2083        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2084      }
2085      // t = vsplti c, result = vsldoi t, t, 3
2086      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2087        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2088        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2089      }
2090    }
2091
2092    // Three instruction sequences.
2093
2094    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2095    if (SextVal >= 0 && SextVal <= 31) {
2096      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
2097      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
2098      return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2099    }
2100    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2101    if (SextVal >= -31 && SextVal <= 0) {
2102      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
2103      SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
2104      return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2105    }
2106  }
2107
2108  return SDOperand();
2109}
2110
2111/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2112/// the specified operations to build the shuffle.
2113static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2114                                        SDOperand RHS, SelectionDAG &DAG) {
2115  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2116  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2117  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2118
2119  enum {
2120    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2121    OP_VMRGHW,
2122    OP_VMRGLW,
2123    OP_VSPLTISW0,
2124    OP_VSPLTISW1,
2125    OP_VSPLTISW2,
2126    OP_VSPLTISW3,
2127    OP_VSLDOI4,
2128    OP_VSLDOI8,
2129    OP_VSLDOI12
2130  };
2131
2132  if (OpNum == OP_COPY) {
2133    if (LHSID == (1*9+2)*9+3) return LHS;
2134    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2135    return RHS;
2136  }
2137
2138  SDOperand OpLHS, OpRHS;
2139  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2140  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2141
2142  unsigned ShufIdxs[16];
2143  switch (OpNum) {
2144  default: assert(0 && "Unknown i32 permute!");
2145  case OP_VMRGHW:
2146    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2147    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2148    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2149    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2150    break;
2151  case OP_VMRGLW:
2152    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2153    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2154    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2155    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2156    break;
2157  case OP_VSPLTISW0:
2158    for (unsigned i = 0; i != 16; ++i)
2159      ShufIdxs[i] = (i&3)+0;
2160    break;
2161  case OP_VSPLTISW1:
2162    for (unsigned i = 0; i != 16; ++i)
2163      ShufIdxs[i] = (i&3)+4;
2164    break;
2165  case OP_VSPLTISW2:
2166    for (unsigned i = 0; i != 16; ++i)
2167      ShufIdxs[i] = (i&3)+8;
2168    break;
2169  case OP_VSPLTISW3:
2170    for (unsigned i = 0; i != 16; ++i)
2171      ShufIdxs[i] = (i&3)+12;
2172    break;
2173  case OP_VSLDOI4:
2174    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2175  case OP_VSLDOI8:
2176    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2177  case OP_VSLDOI12:
2178    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2179  }
2180  SDOperand Ops[16];
2181  for (unsigned i = 0; i != 16; ++i)
2182    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2183
2184  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2185                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2186}
2187
2188/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2189/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2190/// return the code it can be lowered into.  Worst case, it can always be
2191/// lowered into a vperm.
2192static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2193  SDOperand V1 = Op.getOperand(0);
2194  SDOperand V2 = Op.getOperand(1);
2195  SDOperand PermMask = Op.getOperand(2);
2196
2197  // Cases that are handled by instructions that take permute immediates
2198  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2199  // selected by the instruction selector.
2200  if (V2.getOpcode() == ISD::UNDEF) {
2201    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2202        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2203        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2204        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2205        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2206        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2207        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2208        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2209        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2210        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2211        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2212        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2213      return Op;
2214    }
2215  }
2216
2217  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2218  // and produce a fixed permutation.  If any of these match, do not lower to
2219  // VPERM.
2220  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2221      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2222      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2223      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2224      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2225      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2226      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2227      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2228      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2229    return Op;
2230
2231  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2232  // perfect shuffle table to emit an optimal matching sequence.
2233  unsigned PFIndexes[4];
2234  bool isFourElementShuffle = true;
2235  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2236    unsigned EltNo = 8;   // Start out undef.
2237    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2238      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2239        continue;   // Undef, ignore it.
2240
2241      unsigned ByteSource =
2242        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2243      if ((ByteSource & 3) != j) {
2244        isFourElementShuffle = false;
2245        break;
2246      }
2247
2248      if (EltNo == 8) {
2249        EltNo = ByteSource/4;
2250      } else if (EltNo != ByteSource/4) {
2251        isFourElementShuffle = false;
2252        break;
2253      }
2254    }
2255    PFIndexes[i] = EltNo;
2256  }
2257
2258  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2259  // perfect shuffle vector to determine if it is cost effective to do this as
2260  // discrete instructions, or whether we should use a vperm.
2261  if (isFourElementShuffle) {
2262    // Compute the index in the perfect shuffle table.
2263    unsigned PFTableIndex =
2264      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2265
2266    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2267    unsigned Cost  = (PFEntry >> 30);
2268
2269    // Determining when to avoid vperm is tricky.  Many things affect the cost
2270    // of vperm, particularly how many times the perm mask needs to be computed.
2271    // For example, if the perm mask can be hoisted out of a loop or is already
2272    // used (perhaps because there are multiple permutes with the same shuffle
2273    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2274    // the loop requires an extra register.
2275    //
2276    // As a compromise, we only emit discrete instructions if the shuffle can be
2277    // generated in 3 or fewer operations.  When we have loop information
2278    // available, if this block is within a loop, we should avoid using vperm
2279    // for 3-operation perms and use a constant pool load instead.
2280    if (Cost < 3)
2281      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2282  }
2283
2284  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2285  // vector that will get spilled to the constant pool.
2286  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2287
2288  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2289  // that it is in input element units, not in bytes.  Convert now.
2290  MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
2291  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2292
2293  SmallVector<SDOperand, 16> ResultMask;
2294  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2295    unsigned SrcElt;
2296    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2297      SrcElt = 0;
2298    else
2299      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2300
2301    for (unsigned j = 0; j != BytesPerElement; ++j)
2302      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2303                                           MVT::i8));
2304  }
2305
2306  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2307                                    &ResultMask[0], ResultMask.size());
2308  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2309}
2310
2311/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2312/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2313/// information about the intrinsic.
2314static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2315                                  bool &isDot) {
2316  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2317  CompareOpc = -1;
2318  isDot = false;
2319  switch (IntrinsicID) {
2320  default: return false;
2321    // Comparison predicates.
2322  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2323  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2324  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2325  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2326  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2327  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2328  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2329  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2330  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2331  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2332  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2333  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2334  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2335
2336    // Normal Comparisons.
2337  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2338  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2339  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2340  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2341  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2342  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2343  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2344  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2345  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2346  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2347  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2348  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2349  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2350  }
2351  return true;
2352}
2353
2354/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2355/// lower, do it, otherwise return null.
2356static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2357  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2358  // opcode number of the comparison.
2359  int CompareOpc;
2360  bool isDot;
2361  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2362    return SDOperand();    // Don't custom lower most intrinsics.
2363
2364  // If this is a non-dot comparison, make the VCMP node and we are done.
2365  if (!isDot) {
2366    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2367                                Op.getOperand(1), Op.getOperand(2),
2368                                DAG.getConstant(CompareOpc, MVT::i32));
2369    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2370  }
2371
2372  // Create the PPCISD altivec 'dot' comparison node.
2373  SDOperand Ops[] = {
2374    Op.getOperand(2),  // LHS
2375    Op.getOperand(3),  // RHS
2376    DAG.getConstant(CompareOpc, MVT::i32)
2377  };
2378  std::vector<MVT::ValueType> VTs;
2379  VTs.push_back(Op.getOperand(2).getValueType());
2380  VTs.push_back(MVT::Flag);
2381  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2382
2383  // Now that we have the comparison, emit a copy from the CR to a GPR.
2384  // This is flagged to the above dot comparison.
2385  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2386                                DAG.getRegister(PPC::CR6, MVT::i32),
2387                                CompNode.getValue(1));
2388
2389  // Unpack the result based on how the target uses it.
2390  unsigned BitNo;   // Bit # of CR6.
2391  bool InvertBit;   // Invert result?
2392  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2393  default:  // Can't happen, don't crash on invalid number though.
2394  case 0:   // Return the value of the EQ bit of CR6.
2395    BitNo = 0; InvertBit = false;
2396    break;
2397  case 1:   // Return the inverted value of the EQ bit of CR6.
2398    BitNo = 0; InvertBit = true;
2399    break;
2400  case 2:   // Return the value of the LT bit of CR6.
2401    BitNo = 2; InvertBit = false;
2402    break;
2403  case 3:   // Return the inverted value of the LT bit of CR6.
2404    BitNo = 2; InvertBit = true;
2405    break;
2406  }
2407
2408  // Shift the bit into the low position.
2409  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2410                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2411  // Isolate the bit.
2412  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2413                      DAG.getConstant(1, MVT::i32));
2414
2415  // If we are supposed to, toggle the bit.
2416  if (InvertBit)
2417    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2418                        DAG.getConstant(1, MVT::i32));
2419  return Flags;
2420}
2421
2422static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2423  // Create a stack slot that is 16-byte aligned.
2424  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2425  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2426  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2427  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2428
2429  // Store the input value into Value#0 of the stack slot.
2430  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2431                                 Op.getOperand(0), FIdx, NULL, 0);
2432  // Load it out.
2433  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2434}
2435
2436static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2437  if (Op.getValueType() == MVT::v4i32) {
2438    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2439
2440    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2441    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2442
2443    SDOperand RHSSwap =   // = vrlw RHS, 16
2444      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2445
2446    // Shrinkify inputs to v8i16.
2447    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2448    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2449    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2450
2451    // Low parts multiplied together, generating 32-bit results (we ignore the
2452    // top parts).
2453    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2454                                        LHS, RHS, DAG, MVT::v4i32);
2455
2456    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2457                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2458    // Shift the high parts up 16 bits.
2459    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2460    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2461  } else if (Op.getValueType() == MVT::v8i16) {
2462    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2463
2464    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2465
2466    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2467                            LHS, RHS, Zero, DAG);
2468  } else if (Op.getValueType() == MVT::v16i8) {
2469    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2470
2471    // Multiply the even 8-bit parts, producing 16-bit sums.
2472    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2473                                           LHS, RHS, DAG, MVT::v8i16);
2474    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2475
2476    // Multiply the odd 8-bit parts, producing 16-bit sums.
2477    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2478                                          LHS, RHS, DAG, MVT::v8i16);
2479    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2480
2481    // Merge the results together.
2482    SDOperand Ops[16];
2483    for (unsigned i = 0; i != 8; ++i) {
2484      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2485      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2486    }
2487    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2488                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2489  } else {
2490    assert(0 && "Unknown mul to lower!");
2491    abort();
2492  }
2493}
2494
2495/// LowerOperation - Provide custom lowering hooks for some operations.
2496///
2497SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2498  switch (Op.getOpcode()) {
2499  default: assert(0 && "Wasn't expecting to be able to lower this!");
2500  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2501  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2502  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
2503  case ISD::SETCC:              return LowerSETCC(Op, DAG);
2504  case ISD::VASTART:            return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2505  case ISD::FORMAL_ARGUMENTS:
2506      return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
2507  case ISD::CALL:               return LowerCALL(Op, DAG);
2508  case ISD::RET:                return LowerRET(Op, DAG);
2509
2510  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
2511  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
2512  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
2513
2514  // Lower 64-bit shifts.
2515  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
2516  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
2517  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
2518
2519  // Vector-related lowering.
2520  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
2521  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
2522  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2523  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
2524  case ISD::MUL:                return LowerMUL(Op, DAG);
2525  }
2526  return SDOperand();
2527}
2528
2529//===----------------------------------------------------------------------===//
2530//  Other Lowering Code
2531//===----------------------------------------------------------------------===//
2532
2533MachineBasicBlock *
2534PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2535                                           MachineBasicBlock *BB) {
2536  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2537          MI->getOpcode() == PPC::SELECT_CC_I8 ||
2538          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2539          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2540          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2541         "Unexpected instr type to insert");
2542
2543  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2544  // control-flow pattern.  The incoming instruction knows the destination vreg
2545  // to set, the condition code register to branch on, the true/false values to
2546  // select between, and a branch opcode to use.
2547  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2548  ilist<MachineBasicBlock>::iterator It = BB;
2549  ++It;
2550
2551  //  thisMBB:
2552  //  ...
2553  //   TrueVal = ...
2554  //   cmpTY ccX, r1, r2
2555  //   bCC copy1MBB
2556  //   fallthrough --> copy0MBB
2557  MachineBasicBlock *thisMBB = BB;
2558  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2559  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2560  BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
2561    .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2562  MachineFunction *F = BB->getParent();
2563  F->getBasicBlockList().insert(It, copy0MBB);
2564  F->getBasicBlockList().insert(It, sinkMBB);
2565  // Update machine-CFG edges by first adding all successors of the current
2566  // block to the new block which will contain the Phi node for the select.
2567  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2568      e = BB->succ_end(); i != e; ++i)
2569    sinkMBB->addSuccessor(*i);
2570  // Next, remove all successors of the current block, and add the true
2571  // and fallthrough blocks as its successors.
2572  while(!BB->succ_empty())
2573    BB->removeSuccessor(BB->succ_begin());
2574  BB->addSuccessor(copy0MBB);
2575  BB->addSuccessor(sinkMBB);
2576
2577  //  copy0MBB:
2578  //   %FalseValue = ...
2579  //   # fallthrough to sinkMBB
2580  BB = copy0MBB;
2581
2582  // Update machine-CFG edges
2583  BB->addSuccessor(sinkMBB);
2584
2585  //  sinkMBB:
2586  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2587  //  ...
2588  BB = sinkMBB;
2589  BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2590    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2591    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2592
2593  delete MI;   // The pseudo instruction is gone now.
2594  return BB;
2595}
2596
2597//===----------------------------------------------------------------------===//
2598// Target Optimization Hooks
2599//===----------------------------------------------------------------------===//
2600
2601SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2602                                               DAGCombinerInfo &DCI) const {
2603  TargetMachine &TM = getTargetMachine();
2604  SelectionDAG &DAG = DCI.DAG;
2605  switch (N->getOpcode()) {
2606  default: break;
2607  case PPCISD::SHL:
2608    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2609      if (C->getValue() == 0)   // 0 << V -> 0.
2610        return N->getOperand(0);
2611    }
2612    break;
2613  case PPCISD::SRL:
2614    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2615      if (C->getValue() == 0)   // 0 >>u V -> 0.
2616        return N->getOperand(0);
2617    }
2618    break;
2619  case PPCISD::SRA:
2620    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2621      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
2622          C->isAllOnesValue())    // -1 >>s V -> -1.
2623        return N->getOperand(0);
2624    }
2625    break;
2626
2627  case ISD::SINT_TO_FP:
2628    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
2629      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2630        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2631        // We allow the src/dst to be either f32/f64, but the intermediate
2632        // type must be i64.
2633        if (N->getOperand(0).getValueType() == MVT::i64) {
2634          SDOperand Val = N->getOperand(0).getOperand(0);
2635          if (Val.getValueType() == MVT::f32) {
2636            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2637            DCI.AddToWorklist(Val.Val);
2638          }
2639
2640          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2641          DCI.AddToWorklist(Val.Val);
2642          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2643          DCI.AddToWorklist(Val.Val);
2644          if (N->getValueType(0) == MVT::f32) {
2645            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2646            DCI.AddToWorklist(Val.Val);
2647          }
2648          return Val;
2649        } else if (N->getOperand(0).getValueType() == MVT::i32) {
2650          // If the intermediate type is i32, we can avoid the load/store here
2651          // too.
2652        }
2653      }
2654    }
2655    break;
2656  case ISD::STORE:
2657    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2658    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2659        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2660        N->getOperand(1).getValueType() == MVT::i32) {
2661      SDOperand Val = N->getOperand(1).getOperand(0);
2662      if (Val.getValueType() == MVT::f32) {
2663        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2664        DCI.AddToWorklist(Val.Val);
2665      }
2666      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2667      DCI.AddToWorklist(Val.Val);
2668
2669      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2670                        N->getOperand(2), N->getOperand(3));
2671      DCI.AddToWorklist(Val.Val);
2672      return Val;
2673    }
2674
2675    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
2676    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
2677        N->getOperand(1).Val->hasOneUse() &&
2678        (N->getOperand(1).getValueType() == MVT::i32 ||
2679         N->getOperand(1).getValueType() == MVT::i16)) {
2680      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
2681      // Do an any-extend to 32-bits if this is a half-word input.
2682      if (BSwapOp.getValueType() == MVT::i16)
2683        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
2684
2685      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
2686                         N->getOperand(2), N->getOperand(3),
2687                         DAG.getValueType(N->getOperand(1).getValueType()));
2688    }
2689    break;
2690  case ISD::BSWAP:
2691    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
2692    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
2693        N->getOperand(0).hasOneUse() &&
2694        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
2695      SDOperand Load = N->getOperand(0);
2696      LoadSDNode *LD = cast<LoadSDNode>(Load);
2697      // Create the byte-swapping load.
2698      std::vector<MVT::ValueType> VTs;
2699      VTs.push_back(MVT::i32);
2700      VTs.push_back(MVT::Other);
2701      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
2702      SDOperand Ops[] = {
2703        LD->getChain(),    // Chain
2704        LD->getBasePtr(),  // Ptr
2705        SV,                // SrcValue
2706        DAG.getValueType(N->getValueType(0)) // VT
2707      };
2708      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
2709
2710      // If this is an i16 load, insert the truncate.
2711      SDOperand ResVal = BSLoad;
2712      if (N->getValueType(0) == MVT::i16)
2713        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
2714
2715      // First, combine the bswap away.  This makes the value produced by the
2716      // load dead.
2717      DCI.CombineTo(N, ResVal);
2718
2719      // Next, combine the load away, we give it a bogus result value but a real
2720      // chain result.  The result value is dead because the bswap is dead.
2721      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
2722
2723      // Return N so it doesn't get rechecked!
2724      return SDOperand(N, 0);
2725    }
2726
2727    break;
2728  case PPCISD::VCMP: {
2729    // If a VCMPo node already exists with exactly the same operands as this
2730    // node, use its result instead of this node (VCMPo computes both a CR6 and
2731    // a normal output).
2732    //
2733    if (!N->getOperand(0).hasOneUse() &&
2734        !N->getOperand(1).hasOneUse() &&
2735        !N->getOperand(2).hasOneUse()) {
2736
2737      // Scan all of the users of the LHS, looking for VCMPo's that match.
2738      SDNode *VCMPoNode = 0;
2739
2740      SDNode *LHSN = N->getOperand(0).Val;
2741      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2742           UI != E; ++UI)
2743        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2744            (*UI)->getOperand(1) == N->getOperand(1) &&
2745            (*UI)->getOperand(2) == N->getOperand(2) &&
2746            (*UI)->getOperand(0) == N->getOperand(0)) {
2747          VCMPoNode = *UI;
2748          break;
2749        }
2750
2751      // If there is no VCMPo node, or if the flag value has a single use, don't
2752      // transform this.
2753      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2754        break;
2755
2756      // Look at the (necessarily single) use of the flag value.  If it has a
2757      // chain, this transformation is more complex.  Note that multiple things
2758      // could use the value result, which we should ignore.
2759      SDNode *FlagUser = 0;
2760      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2761           FlagUser == 0; ++UI) {
2762        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2763        SDNode *User = *UI;
2764        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2765          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2766            FlagUser = User;
2767            break;
2768          }
2769        }
2770      }
2771
2772      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
2773      // give up for right now.
2774      if (FlagUser->getOpcode() == PPCISD::MFCR)
2775        return SDOperand(VCMPoNode, 0);
2776    }
2777    break;
2778  }
2779  case ISD::BR_CC: {
2780    // If this is a branch on an altivec predicate comparison, lower this so
2781    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
2782    // lowering is done pre-legalize, because the legalizer lowers the predicate
2783    // compare down to code that is difficult to reassemble.
2784    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2785    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2786    int CompareOpc;
2787    bool isDot;
2788
2789    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2790        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2791        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2792      assert(isDot && "Can't compare against a vector result!");
2793
2794      // If this is a comparison against something other than 0/1, then we know
2795      // that the condition is never/always true.
2796      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2797      if (Val != 0 && Val != 1) {
2798        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
2799          return N->getOperand(0);
2800        // Always !=, turn it into an unconditional branch.
2801        return DAG.getNode(ISD::BR, MVT::Other,
2802                           N->getOperand(0), N->getOperand(4));
2803      }
2804
2805      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2806
2807      // Create the PPCISD altivec 'dot' comparison node.
2808      std::vector<MVT::ValueType> VTs;
2809      SDOperand Ops[] = {
2810        LHS.getOperand(2),  // LHS of compare
2811        LHS.getOperand(3),  // RHS of compare
2812        DAG.getConstant(CompareOpc, MVT::i32)
2813      };
2814      VTs.push_back(LHS.getOperand(2).getValueType());
2815      VTs.push_back(MVT::Flag);
2816      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2817
2818      // Unpack the result based on how the target uses it.
2819      unsigned CompOpc;
2820      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2821      default:  // Can't happen, don't crash on invalid number though.
2822      case 0:   // Branch on the value of the EQ bit of CR6.
2823        CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
2824        break;
2825      case 1:   // Branch on the inverted value of the EQ bit of CR6.
2826        CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
2827        break;
2828      case 2:   // Branch on the value of the LT bit of CR6.
2829        CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
2830        break;
2831      case 3:   // Branch on the inverted value of the LT bit of CR6.
2832        CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
2833        break;
2834      }
2835
2836      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2837                         DAG.getRegister(PPC::CR6, MVT::i32),
2838                         DAG.getConstant(CompOpc, MVT::i32),
2839                         N->getOperand(4), CompNode.getValue(1));
2840    }
2841    break;
2842  }
2843  }
2844
2845  return SDOperand();
2846}
2847
2848//===----------------------------------------------------------------------===//
2849// Inline Assembly Support
2850//===----------------------------------------------------------------------===//
2851
2852void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2853                                                       uint64_t Mask,
2854                                                       uint64_t &KnownZero,
2855                                                       uint64_t &KnownOne,
2856                                                       unsigned Depth) const {
2857  KnownZero = 0;
2858  KnownOne = 0;
2859  switch (Op.getOpcode()) {
2860  default: break;
2861  case PPCISD::LBRX: {
2862    // lhbrx is known to have the top bits cleared out.
2863    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
2864      KnownZero = 0xFFFF0000;
2865    break;
2866  }
2867  case ISD::INTRINSIC_WO_CHAIN: {
2868    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2869    default: break;
2870    case Intrinsic::ppc_altivec_vcmpbfp_p:
2871    case Intrinsic::ppc_altivec_vcmpeqfp_p:
2872    case Intrinsic::ppc_altivec_vcmpequb_p:
2873    case Intrinsic::ppc_altivec_vcmpequh_p:
2874    case Intrinsic::ppc_altivec_vcmpequw_p:
2875    case Intrinsic::ppc_altivec_vcmpgefp_p:
2876    case Intrinsic::ppc_altivec_vcmpgtfp_p:
2877    case Intrinsic::ppc_altivec_vcmpgtsb_p:
2878    case Intrinsic::ppc_altivec_vcmpgtsh_p:
2879    case Intrinsic::ppc_altivec_vcmpgtsw_p:
2880    case Intrinsic::ppc_altivec_vcmpgtub_p:
2881    case Intrinsic::ppc_altivec_vcmpgtuh_p:
2882    case Intrinsic::ppc_altivec_vcmpgtuw_p:
2883      KnownZero = ~1U;  // All bits but the low one are known to be zero.
2884      break;
2885    }
2886  }
2887  }
2888}
2889
2890
2891/// getConstraintType - Given a constraint letter, return the type of
2892/// constraint it is for this target.
2893PPCTargetLowering::ConstraintType
2894PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2895  switch (ConstraintLetter) {
2896  default: break;
2897  case 'b':
2898  case 'r':
2899  case 'f':
2900  case 'v':
2901  case 'y':
2902    return C_RegisterClass;
2903  }
2904  return TargetLowering::getConstraintType(ConstraintLetter);
2905}
2906
2907std::pair<unsigned, const TargetRegisterClass*>
2908PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
2909                                                MVT::ValueType VT) const {
2910  if (Constraint.size() == 1) {
2911    // GCC RS6000 Constraint Letters
2912    switch (Constraint[0]) {
2913    case 'b':   // R1-R31
2914    case 'r':   // R0-R31
2915      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
2916        return std::make_pair(0U, PPC::G8RCRegisterClass);
2917      return std::make_pair(0U, PPC::GPRCRegisterClass);
2918    case 'f':
2919      if (VT == MVT::f32)
2920        return std::make_pair(0U, PPC::F4RCRegisterClass);
2921      else if (VT == MVT::f64)
2922        return std::make_pair(0U, PPC::F8RCRegisterClass);
2923      break;
2924    case 'v':
2925      return std::make_pair(0U, PPC::VRRCRegisterClass);
2926    case 'y':   // crrc
2927      return std::make_pair(0U, PPC::CRRCRegisterClass);
2928    }
2929  }
2930
2931  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
2932}
2933
2934
2935// isOperandValidForConstraint
2936SDOperand PPCTargetLowering::
2937isOperandValidForConstraint(SDOperand Op, char Letter, SelectionDAG &DAG) {
2938  switch (Letter) {
2939  default: break;
2940  case 'I':
2941  case 'J':
2942  case 'K':
2943  case 'L':
2944  case 'M':
2945  case 'N':
2946  case 'O':
2947  case 'P': {
2948    if (!isa<ConstantSDNode>(Op)) return SDOperand(0,0);// Must be an immediate.
2949    unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2950    switch (Letter) {
2951    default: assert(0 && "Unknown constraint letter!");
2952    case 'I':  // "I" is a signed 16-bit constant.
2953      if ((short)Value == (int)Value) return Op;
2954      break;
2955    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
2956    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
2957      if ((short)Value == 0) return Op;
2958      break;
2959    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
2960      if ((Value >> 16) == 0) return Op;
2961      break;
2962    case 'M':  // "M" is a constant that is greater than 31.
2963      if (Value > 31) return Op;
2964      break;
2965    case 'N':  // "N" is a positive constant that is an exact power of two.
2966      if ((int)Value > 0 && isPowerOf2_32(Value)) return Op;
2967      break;
2968    case 'O':  // "O" is the constant zero.
2969      if (Value == 0) return Op;
2970      break;
2971    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
2972      if ((short)-Value == (int)-Value) return Op;
2973      break;
2974    }
2975    break;
2976  }
2977  }
2978
2979  // Handle standard constraint letters.
2980  return TargetLowering::isOperandValidForConstraint(Op, Letter, DAG);
2981}
2982
2983/// isLegalAddressImmediate - Return true if the integer value can be used
2984/// as the offset of the target addressing mode.
2985bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2986  // PPC allows a sign-extended 16-bit immediate field.
2987  return (V > -(1 << 16) && V < (1 << 16)-1);
2988}
2989
2990bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
2991  return TargetLowering::isLegalAddressImmediate(GV);
2992}
2993