PPCISelLowering.cpp revision 3450f800aa65c91f0496816ba6061a422a74c1fe
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPCMachineFunctionInfo.h"
17#include "PPCPerfectShuffle.h"
18#include "PPCTargetMachine.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/Intrinsics.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
40                                       CCValAssign::LocInfo &LocInfo,
41                                       ISD::ArgFlagsTy &ArgFlags,
42                                       CCState &State);
43static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
44                                              MVT &LocVT,
45                                              CCValAssign::LocInfo &LocInfo,
46                                              ISD::ArgFlagsTy &ArgFlags,
47                                              CCState &State);
48static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
49                                                MVT &LocVT,
50                                                CCValAssign::LocInfo &LocInfo,
51                                                ISD::ArgFlagsTy &ArgFlags,
52                                                CCState &State);
53
54static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
55cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
56
57static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
58cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
70
71  setPow2DivIsCheap();
72
73  // Use _setjmp/_longjmp instead of setjmp/longjmp.
74  setUseUnderscoreSetJmp(true);
75  setUseUnderscoreLongJmp(true);
76
77  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
78  // arguments are at least 4/8 bytes aligned.
79  bool isPPC64 = Subtarget->isPPC64();
80  setMinStackArgumentAlignment(isPPC64 ? 8:4);
81
82  // Set up the register classes.
83  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
84  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
85  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
86
87  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
88  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
89  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
90
91  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
92
93  // PowerPC has pre-inc load and store's.
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
97  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
98  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
102  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
103  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
104
105  // This is used in the ppcf128->int sequence.  Note it has different semantics
106  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
107  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
108
109  // We do not currently implement these libm ops for PowerPC.
110  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
111  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
112  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
113  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
114  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
115
116  // PowerPC has no SREM/UREM instructions
117  setOperationAction(ISD::SREM, MVT::i32, Expand);
118  setOperationAction(ISD::UREM, MVT::i32, Expand);
119  setOperationAction(ISD::SREM, MVT::i64, Expand);
120  setOperationAction(ISD::UREM, MVT::i64, Expand);
121
122  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
123  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
124  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
125  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
126  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
127  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
128  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
129  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
130  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
131
132  // We don't support sin/cos/sqrt/fmod/pow
133  setOperationAction(ISD::FSIN , MVT::f64, Expand);
134  setOperationAction(ISD::FCOS , MVT::f64, Expand);
135  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
136  setOperationAction(ISD::FREM , MVT::f64, Expand);
137  setOperationAction(ISD::FPOW , MVT::f64, Expand);
138  setOperationAction(ISD::FMA  , MVT::f64, Legal);
139  setOperationAction(ISD::FSIN , MVT::f32, Expand);
140  setOperationAction(ISD::FCOS , MVT::f32, Expand);
141  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
142  setOperationAction(ISD::FREM , MVT::f32, Expand);
143  setOperationAction(ISD::FPOW , MVT::f32, Expand);
144  setOperationAction(ISD::FMA  , MVT::f32, Legal);
145
146  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
147
148  // If we're enabling GP optimizations, use hardware square root
149  if (!Subtarget->hasFSQRT()) {
150    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
151    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
152  }
153
154  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
155  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
156
157  // PowerPC does not have BSWAP, CTPOP or CTTZ
158  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
159  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
160  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
161  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
162  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
163  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
164  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
165  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
166  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
167  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
168
169  // PowerPC does not have ROTR
170  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
171  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
172
173  // PowerPC does not have Select
174  setOperationAction(ISD::SELECT, MVT::i32, Expand);
175  setOperationAction(ISD::SELECT, MVT::i64, Expand);
176  setOperationAction(ISD::SELECT, MVT::f32, Expand);
177  setOperationAction(ISD::SELECT, MVT::f64, Expand);
178
179  // PowerPC wants to turn select_cc of FP into fsel when possible.
180  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
181  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
182
183  // PowerPC wants to optimize integer setcc a bit
184  setOperationAction(ISD::SETCC, MVT::i32, Custom);
185
186  // PowerPC does not have BRCOND which requires SetCC
187  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
188
189  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
190
191  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
192  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
193
194  // PowerPC does not have [U|S]INT_TO_FP
195  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
196  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
197
198  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
199  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
200  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
201  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
202
203  // We cannot sextinreg(i1).  Expand to shifts.
204  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
205
206  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
207  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
208  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
209  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
210
211
212  // We want to legalize GlobalAddress and ConstantPool nodes into the
213  // appropriate instructions to materialize the address.
214  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
215  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
216  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
217  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
218  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
219  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
220  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
221  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
222  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
223  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
224
225  // TRAP is legal.
226  setOperationAction(ISD::TRAP, MVT::Other, Legal);
227
228  // TRAMPOLINE is custom lowered.
229  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
230  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
231
232  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
233  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
234
235  if (Subtarget->isSVR4ABI()) {
236    if (isPPC64) {
237      // VAARG always uses double-word chunks, so promote anything smaller.
238      setOperationAction(ISD::VAARG, MVT::i1, Promote);
239      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
240      setOperationAction(ISD::VAARG, MVT::i8, Promote);
241      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
242      setOperationAction(ISD::VAARG, MVT::i16, Promote);
243      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
244      setOperationAction(ISD::VAARG, MVT::i32, Promote);
245      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
246      setOperationAction(ISD::VAARG, MVT::Other, Expand);
247    } else {
248      // VAARG is custom lowered with the 32-bit SVR4 ABI.
249      setOperationAction(ISD::VAARG, MVT::Other, Custom);
250      setOperationAction(ISD::VAARG, MVT::i64, Custom);
251    }
252  } else
253    setOperationAction(ISD::VAARG, MVT::Other, Expand);
254
255  // Use the default implementation.
256  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
257  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
258  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
259  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
260  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
261  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
262
263  // We want to custom lower some of our intrinsics.
264  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
265
266  // Comparisons that require checking two conditions.
267  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
268  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
269  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
270  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
271  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
272  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
273  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
274  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
275  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
276  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
277  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
278  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
279
280  if (Subtarget->has64BitSupport()) {
281    // They also have instructions for converting between i64 and fp.
282    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
283    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
284    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
285    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
286    // This is just the low 32 bits of a (signed) fp->i64 conversion.
287    // We cannot do this with Promote because i64 is not a legal type.
288    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
289
290    // FIXME: disable this lowered code.  This generates 64-bit register values,
291    // and we don't model the fact that the top part is clobbered by calls.  We
292    // need to flag these together so that the value isn't live across a call.
293    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
294  } else {
295    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
296    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
297  }
298
299  if (Subtarget->use64BitRegs()) {
300    // 64-bit PowerPC implementations can support i64 types directly
301    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
302    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
303    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
304    // 64-bit PowerPC wants to expand i128 shifts itself.
305    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
306    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
307    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
308  } else {
309    // 32-bit PowerPC wants to expand i64 shifts itself.
310    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
311    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
312    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
313  }
314
315  if (Subtarget->hasAltivec()) {
316    // First set operation action for all vector types to expand. Then we
317    // will selectively turn on ones that can be effectively codegen'd.
318    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
319         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
320      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
321
322      // add/sub are legal for all supported vector VT's.
323      setOperationAction(ISD::ADD , VT, Legal);
324      setOperationAction(ISD::SUB , VT, Legal);
325
326      // We promote all shuffles to v16i8.
327      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
328      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
329
330      // We promote all non-typed operations to v4i32.
331      setOperationAction(ISD::AND   , VT, Promote);
332      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
333      setOperationAction(ISD::OR    , VT, Promote);
334      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
335      setOperationAction(ISD::XOR   , VT, Promote);
336      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
337      setOperationAction(ISD::LOAD  , VT, Promote);
338      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
339      setOperationAction(ISD::SELECT, VT, Promote);
340      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
341      setOperationAction(ISD::STORE, VT, Promote);
342      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
343
344      // No other operations are legal.
345      setOperationAction(ISD::MUL , VT, Expand);
346      setOperationAction(ISD::SDIV, VT, Expand);
347      setOperationAction(ISD::SREM, VT, Expand);
348      setOperationAction(ISD::UDIV, VT, Expand);
349      setOperationAction(ISD::UREM, VT, Expand);
350      setOperationAction(ISD::FDIV, VT, Expand);
351      setOperationAction(ISD::FNEG, VT, Expand);
352      setOperationAction(ISD::FSQRT, VT, Expand);
353      setOperationAction(ISD::FLOG, VT, Expand);
354      setOperationAction(ISD::FLOG10, VT, Expand);
355      setOperationAction(ISD::FLOG2, VT, Expand);
356      setOperationAction(ISD::FEXP, VT, Expand);
357      setOperationAction(ISD::FEXP2, VT, Expand);
358      setOperationAction(ISD::FSIN, VT, Expand);
359      setOperationAction(ISD::FCOS, VT, Expand);
360      setOperationAction(ISD::FABS, VT, Expand);
361      setOperationAction(ISD::FPOWI, VT, Expand);
362      setOperationAction(ISD::FFLOOR, VT, Expand);
363      setOperationAction(ISD::FCEIL,  VT, Expand);
364      setOperationAction(ISD::FTRUNC, VT, Expand);
365      setOperationAction(ISD::FRINT,  VT, Expand);
366      setOperationAction(ISD::FNEARBYINT, VT, Expand);
367      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
368      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
369      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
370      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
371      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
372      setOperationAction(ISD::UDIVREM, VT, Expand);
373      setOperationAction(ISD::SDIVREM, VT, Expand);
374      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
375      setOperationAction(ISD::FPOW, VT, Expand);
376      setOperationAction(ISD::CTPOP, VT, Expand);
377      setOperationAction(ISD::CTLZ, VT, Expand);
378      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
379      setOperationAction(ISD::CTTZ, VT, Expand);
380      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
381      setOperationAction(ISD::VSELECT, VT, Expand);
382      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
383
384      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
385           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
386        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
387        setTruncStoreAction(VT, InnerVT, Expand);
388      }
389      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
390      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
391      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
392    }
393
394    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
395    // with merges, splats, etc.
396    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
397
398    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
399    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
400    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
401    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
402    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
403    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
404    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
405    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
406    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
407    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
408    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
409    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
410    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
411    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
412
413    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
414    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
415    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
416    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
417
418    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
419    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
420    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
421    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
422    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
423
424    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
425    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
426
427    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
428    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
429    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
430    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
431
432    // Altivec does not contain unordered floating-point compare instructions
433    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
434    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
435    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
436    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
437    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
438    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
439  }
440
441  if (Subtarget->has64BitSupport()) {
442    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
443    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
444  }
445
446  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
447  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
448  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
449  setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
450
451  setBooleanContents(ZeroOrOneBooleanContent);
452  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
453
454  if (isPPC64) {
455    setStackPointerRegisterToSaveRestore(PPC::X1);
456    setExceptionPointerRegister(PPC::X3);
457    setExceptionSelectorRegister(PPC::X4);
458  } else {
459    setStackPointerRegisterToSaveRestore(PPC::R1);
460    setExceptionPointerRegister(PPC::R3);
461    setExceptionSelectorRegister(PPC::R4);
462  }
463
464  // We have target-specific dag combine patterns for the following nodes:
465  setTargetDAGCombine(ISD::SINT_TO_FP);
466  setTargetDAGCombine(ISD::STORE);
467  setTargetDAGCombine(ISD::BR_CC);
468  setTargetDAGCombine(ISD::BSWAP);
469
470  // Darwin long double math library functions have $LDBL128 appended.
471  if (Subtarget->isDarwin()) {
472    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
473    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
474    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
475    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
476    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
477    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
478    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
479    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
480    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
481    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
482  }
483
484  setMinFunctionAlignment(2);
485  if (PPCSubTarget.isDarwin())
486    setPrefFunctionAlignment(4);
487
488  if (isPPC64 && Subtarget->isJITCodeModel())
489    // Temporary workaround for the inability of PPC64 JIT to handle jump
490    // tables.
491    setSupportJumpTables(false);
492
493  setInsertFencesForAtomic(true);
494
495  setSchedulingPreference(Sched::Hybrid);
496
497  computeRegisterProperties();
498
499  // The Freescale cores does better with aggressive inlining of memcpy and
500  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
501  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
502      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
503    MaxStoresPerMemset = 32;
504    MaxStoresPerMemsetOptSize = 16;
505    MaxStoresPerMemcpy = 32;
506    MaxStoresPerMemcpyOptSize = 8;
507    MaxStoresPerMemmove = 32;
508    MaxStoresPerMemmoveOptSize = 8;
509
510    setPrefFunctionAlignment(4);
511    BenefitFromCodePlacementOpt = true;
512  }
513}
514
515/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
516/// function arguments in the caller parameter area.
517unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
518  const TargetMachine &TM = getTargetMachine();
519  // Darwin passes everything on 4 byte boundary.
520  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
521    return 4;
522
523  // 16byte and wider vectors are passed on 16byte boundary.
524  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
525    if (VTy->getBitWidth() >= 128)
526      return 16;
527
528  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
529   if (PPCSubTarget.isPPC64())
530     return 8;
531
532  return 4;
533}
534
535const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
536  switch (Opcode) {
537  default: return 0;
538  case PPCISD::FSEL:            return "PPCISD::FSEL";
539  case PPCISD::FCFID:           return "PPCISD::FCFID";
540  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
541  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
542  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
543  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
544  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
545  case PPCISD::VPERM:           return "PPCISD::VPERM";
546  case PPCISD::Hi:              return "PPCISD::Hi";
547  case PPCISD::Lo:              return "PPCISD::Lo";
548  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
549  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
550  case PPCISD::LOAD:            return "PPCISD::LOAD";
551  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
552  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
553  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
554  case PPCISD::SRL:             return "PPCISD::SRL";
555  case PPCISD::SRA:             return "PPCISD::SRA";
556  case PPCISD::SHL:             return "PPCISD::SHL";
557  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
558  case PPCISD::STD_32:          return "PPCISD::STD_32";
559  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
560  case PPCISD::CALL_NOP_SVR4:   return "PPCISD::CALL_NOP_SVR4";
561  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
562  case PPCISD::NOP:             return "PPCISD::NOP";
563  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
564  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
565  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
566  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
567  case PPCISD::MFCR:            return "PPCISD::MFCR";
568  case PPCISD::VCMP:            return "PPCISD::VCMP";
569  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
570  case PPCISD::LBRX:            return "PPCISD::LBRX";
571  case PPCISD::STBRX:           return "PPCISD::STBRX";
572  case PPCISD::LARX:            return "PPCISD::LARX";
573  case PPCISD::STCX:            return "PPCISD::STCX";
574  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
575  case PPCISD::MFFS:            return "PPCISD::MFFS";
576  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
577  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
578  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
579  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
580  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
581  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
582  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
583  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
584  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
585  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
586  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
587  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
588  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
589  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
590  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
591  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
592  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
593  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
594  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
595  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
596  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
597  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
598  }
599}
600
601EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
602  if (!VT.isVector())
603    return MVT::i32;
604  return VT.changeVectorElementTypeToInteger();
605}
606
607//===----------------------------------------------------------------------===//
608// Node matching predicates, for use by the tblgen matching code.
609//===----------------------------------------------------------------------===//
610
611/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
612static bool isFloatingPointZero(SDValue Op) {
613  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
614    return CFP->getValueAPF().isZero();
615  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
616    // Maybe this has already been legalized into the constant pool?
617    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
618      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
619        return CFP->getValueAPF().isZero();
620  }
621  return false;
622}
623
624/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
625/// true if Op is undef or if it matches the specified value.
626static bool isConstantOrUndef(int Op, int Val) {
627  return Op < 0 || Op == Val;
628}
629
630/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
631/// VPKUHUM instruction.
632bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
633  if (!isUnary) {
634    for (unsigned i = 0; i != 16; ++i)
635      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
636        return false;
637  } else {
638    for (unsigned i = 0; i != 8; ++i)
639      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
640          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
641        return false;
642  }
643  return true;
644}
645
646/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
647/// VPKUWUM instruction.
648bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
649  if (!isUnary) {
650    for (unsigned i = 0; i != 16; i += 2)
651      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
652          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
653        return false;
654  } else {
655    for (unsigned i = 0; i != 8; i += 2)
656      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
657          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
658          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
659          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
660        return false;
661  }
662  return true;
663}
664
665/// isVMerge - Common function, used to match vmrg* shuffles.
666///
667static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
668                     unsigned LHSStart, unsigned RHSStart) {
669  assert(N->getValueType(0) == MVT::v16i8 &&
670         "PPC only supports shuffles by bytes!");
671  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
672         "Unsupported merge size!");
673
674  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
675    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
676      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
677                             LHSStart+j+i*UnitSize) ||
678          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
679                             RHSStart+j+i*UnitSize))
680        return false;
681    }
682  return true;
683}
684
685/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
686/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
687bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
688                             bool isUnary) {
689  if (!isUnary)
690    return isVMerge(N, UnitSize, 8, 24);
691  return isVMerge(N, UnitSize, 8, 8);
692}
693
694/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
695/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
696bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
697                             bool isUnary) {
698  if (!isUnary)
699    return isVMerge(N, UnitSize, 0, 16);
700  return isVMerge(N, UnitSize, 0, 0);
701}
702
703
704/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
705/// amount, otherwise return -1.
706int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
707  assert(N->getValueType(0) == MVT::v16i8 &&
708         "PPC only supports shuffles by bytes!");
709
710  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
711
712  // Find the first non-undef value in the shuffle mask.
713  unsigned i;
714  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
715    /*search*/;
716
717  if (i == 16) return -1;  // all undef.
718
719  // Otherwise, check to see if the rest of the elements are consecutively
720  // numbered from this value.
721  unsigned ShiftAmt = SVOp->getMaskElt(i);
722  if (ShiftAmt < i) return -1;
723  ShiftAmt -= i;
724
725  if (!isUnary) {
726    // Check the rest of the elements to see if they are consecutive.
727    for (++i; i != 16; ++i)
728      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
729        return -1;
730  } else {
731    // Check the rest of the elements to see if they are consecutive.
732    for (++i; i != 16; ++i)
733      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
734        return -1;
735  }
736  return ShiftAmt;
737}
738
739/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
740/// specifies a splat of a single element that is suitable for input to
741/// VSPLTB/VSPLTH/VSPLTW.
742bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
743  assert(N->getValueType(0) == MVT::v16i8 &&
744         (EltSize == 1 || EltSize == 2 || EltSize == 4));
745
746  // This is a splat operation if each element of the permute is the same, and
747  // if the value doesn't reference the second vector.
748  unsigned ElementBase = N->getMaskElt(0);
749
750  // FIXME: Handle UNDEF elements too!
751  if (ElementBase >= 16)
752    return false;
753
754  // Check that the indices are consecutive, in the case of a multi-byte element
755  // splatted with a v16i8 mask.
756  for (unsigned i = 1; i != EltSize; ++i)
757    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
758      return false;
759
760  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
761    if (N->getMaskElt(i) < 0) continue;
762    for (unsigned j = 0; j != EltSize; ++j)
763      if (N->getMaskElt(i+j) != N->getMaskElt(j))
764        return false;
765  }
766  return true;
767}
768
769/// isAllNegativeZeroVector - Returns true if all elements of build_vector
770/// are -0.0.
771bool PPC::isAllNegativeZeroVector(SDNode *N) {
772  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
773
774  APInt APVal, APUndef;
775  unsigned BitSize;
776  bool HasAnyUndefs;
777
778  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
779    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
780      return CFP->getValueAPF().isNegZero();
781
782  return false;
783}
784
785/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
786/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
787unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
788  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
789  assert(isSplatShuffleMask(SVOp, EltSize));
790  return SVOp->getMaskElt(0) / EltSize;
791}
792
793/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
794/// by using a vspltis[bhw] instruction of the specified element size, return
795/// the constant being splatted.  The ByteSize field indicates the number of
796/// bytes of each element [124] -> [bhw].
797SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
798  SDValue OpVal(0, 0);
799
800  // If ByteSize of the splat is bigger than the element size of the
801  // build_vector, then we have a case where we are checking for a splat where
802  // multiple elements of the buildvector are folded together into a single
803  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
804  unsigned EltSize = 16/N->getNumOperands();
805  if (EltSize < ByteSize) {
806    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
807    SDValue UniquedVals[4];
808    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
809
810    // See if all of the elements in the buildvector agree across.
811    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
812      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
813      // If the element isn't a constant, bail fully out.
814      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
815
816
817      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
818        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
819      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
820        return SDValue();  // no match.
821    }
822
823    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
824    // either constant or undef values that are identical for each chunk.  See
825    // if these chunks can form into a larger vspltis*.
826
827    // Check to see if all of the leading entries are either 0 or -1.  If
828    // neither, then this won't fit into the immediate field.
829    bool LeadingZero = true;
830    bool LeadingOnes = true;
831    for (unsigned i = 0; i != Multiple-1; ++i) {
832      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
833
834      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
835      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
836    }
837    // Finally, check the least significant entry.
838    if (LeadingZero) {
839      if (UniquedVals[Multiple-1].getNode() == 0)
840        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
841      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
842      if (Val < 16)
843        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
844    }
845    if (LeadingOnes) {
846      if (UniquedVals[Multiple-1].getNode() == 0)
847        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
848      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
849      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
850        return DAG.getTargetConstant(Val, MVT::i32);
851    }
852
853    return SDValue();
854  }
855
856  // Check to see if this buildvec has a single non-undef value in its elements.
857  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
858    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
859    if (OpVal.getNode() == 0)
860      OpVal = N->getOperand(i);
861    else if (OpVal != N->getOperand(i))
862      return SDValue();
863  }
864
865  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
866
867  unsigned ValSizeInBytes = EltSize;
868  uint64_t Value = 0;
869  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
870    Value = CN->getZExtValue();
871  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
872    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
873    Value = FloatToBits(CN->getValueAPF().convertToFloat());
874  }
875
876  // If the splat value is larger than the element value, then we can never do
877  // this splat.  The only case that we could fit the replicated bits into our
878  // immediate field for would be zero, and we prefer to use vxor for it.
879  if (ValSizeInBytes < ByteSize) return SDValue();
880
881  // If the element value is larger than the splat value, cut it in half and
882  // check to see if the two halves are equal.  Continue doing this until we
883  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
884  while (ValSizeInBytes > ByteSize) {
885    ValSizeInBytes >>= 1;
886
887    // If the top half equals the bottom half, we're still ok.
888    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
889         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
890      return SDValue();
891  }
892
893  // Properly sign extend the value.
894  int MaskVal = SignExtend32(Value, ByteSize * 8);
895
896  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
897  if (MaskVal == 0) return SDValue();
898
899  // Finally, if this value fits in a 5 bit sext field, return it
900  if (SignExtend32<5>(MaskVal) == MaskVal)
901    return DAG.getTargetConstant(MaskVal, MVT::i32);
902  return SDValue();
903}
904
905//===----------------------------------------------------------------------===//
906//  Addressing Mode Selection
907//===----------------------------------------------------------------------===//
908
909/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
910/// or 64-bit immediate, and if the value can be accurately represented as a
911/// sign extension from a 16-bit value.  If so, this returns true and the
912/// immediate.
913static bool isIntS16Immediate(SDNode *N, short &Imm) {
914  if (N->getOpcode() != ISD::Constant)
915    return false;
916
917  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
918  if (N->getValueType(0) == MVT::i32)
919    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
920  else
921    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
922}
923static bool isIntS16Immediate(SDValue Op, short &Imm) {
924  return isIntS16Immediate(Op.getNode(), Imm);
925}
926
927
928/// SelectAddressRegReg - Given the specified addressed, check to see if it
929/// can be represented as an indexed [r+r] operation.  Returns false if it
930/// can be more efficiently represented with [r+imm].
931bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
932                                            SDValue &Index,
933                                            SelectionDAG &DAG) const {
934  short imm = 0;
935  if (N.getOpcode() == ISD::ADD) {
936    if (isIntS16Immediate(N.getOperand(1), imm))
937      return false;    // r+i
938    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
939      return false;    // r+i
940
941    Base = N.getOperand(0);
942    Index = N.getOperand(1);
943    return true;
944  } else if (N.getOpcode() == ISD::OR) {
945    if (isIntS16Immediate(N.getOperand(1), imm))
946      return false;    // r+i can fold it if we can.
947
948    // If this is an or of disjoint bitfields, we can codegen this as an add
949    // (for better address arithmetic) if the LHS and RHS of the OR are provably
950    // disjoint.
951    APInt LHSKnownZero, LHSKnownOne;
952    APInt RHSKnownZero, RHSKnownOne;
953    DAG.ComputeMaskedBits(N.getOperand(0),
954                          LHSKnownZero, LHSKnownOne);
955
956    if (LHSKnownZero.getBoolValue()) {
957      DAG.ComputeMaskedBits(N.getOperand(1),
958                            RHSKnownZero, RHSKnownOne);
959      // If all of the bits are known zero on the LHS or RHS, the add won't
960      // carry.
961      if (~(LHSKnownZero | RHSKnownZero) == 0) {
962        Base = N.getOperand(0);
963        Index = N.getOperand(1);
964        return true;
965      }
966    }
967  }
968
969  return false;
970}
971
972/// Returns true if the address N can be represented by a base register plus
973/// a signed 16-bit displacement [r+imm], and if it is not better
974/// represented as reg+reg.
975bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
976                                            SDValue &Base,
977                                            SelectionDAG &DAG) const {
978  // FIXME dl should come from parent load or store, not from address
979  DebugLoc dl = N.getDebugLoc();
980  // If this can be more profitably realized as r+r, fail.
981  if (SelectAddressRegReg(N, Disp, Base, DAG))
982    return false;
983
984  if (N.getOpcode() == ISD::ADD) {
985    short imm = 0;
986    if (isIntS16Immediate(N.getOperand(1), imm)) {
987      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
988      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
989        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
990      } else {
991        Base = N.getOperand(0);
992      }
993      return true; // [r+i]
994    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
995      // Match LOAD (ADD (X, Lo(G))).
996      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
997             && "Cannot handle constant offsets yet!");
998      Disp = N.getOperand(1).getOperand(0);  // The global address.
999      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1000             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1001             Disp.getOpcode() == ISD::TargetConstantPool ||
1002             Disp.getOpcode() == ISD::TargetJumpTable);
1003      Base = N.getOperand(0);
1004      return true;  // [&g+r]
1005    }
1006  } else if (N.getOpcode() == ISD::OR) {
1007    short imm = 0;
1008    if (isIntS16Immediate(N.getOperand(1), imm)) {
1009      // If this is an or of disjoint bitfields, we can codegen this as an add
1010      // (for better address arithmetic) if the LHS and RHS of the OR are
1011      // provably disjoint.
1012      APInt LHSKnownZero, LHSKnownOne;
1013      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1014
1015      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1016        // If all of the bits are known zero on the LHS or RHS, the add won't
1017        // carry.
1018        Base = N.getOperand(0);
1019        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
1020        return true;
1021      }
1022    }
1023  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1024    // Loading from a constant address.
1025
1026    // If this address fits entirely in a 16-bit sext immediate field, codegen
1027    // this as "d, 0"
1028    short Imm;
1029    if (isIntS16Immediate(CN, Imm)) {
1030      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1031      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1032                             CN->getValueType(0));
1033      return true;
1034    }
1035
1036    // Handle 32-bit sext immediates with LIS + addr mode.
1037    if (CN->getValueType(0) == MVT::i32 ||
1038        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1039      int Addr = (int)CN->getZExtValue();
1040
1041      // Otherwise, break this down into an LIS + disp.
1042      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1043
1044      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1045      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1046      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1047      return true;
1048    }
1049  }
1050
1051  Disp = DAG.getTargetConstant(0, getPointerTy());
1052  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1053    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1054  else
1055    Base = N;
1056  return true;      // [r+0]
1057}
1058
1059/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1060/// represented as an indexed [r+r] operation.
1061bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1062                                                SDValue &Index,
1063                                                SelectionDAG &DAG) const {
1064  // Check to see if we can easily represent this as an [r+r] address.  This
1065  // will fail if it thinks that the address is more profitably represented as
1066  // reg+imm, e.g. where imm = 0.
1067  if (SelectAddressRegReg(N, Base, Index, DAG))
1068    return true;
1069
1070  // If the operand is an addition, always emit this as [r+r], since this is
1071  // better (for code size, and execution, as the memop does the add for free)
1072  // than emitting an explicit add.
1073  if (N.getOpcode() == ISD::ADD) {
1074    Base = N.getOperand(0);
1075    Index = N.getOperand(1);
1076    return true;
1077  }
1078
1079  // Otherwise, do it the hard way, using R0 as the base register.
1080  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1081                         N.getValueType());
1082  Index = N;
1083  return true;
1084}
1085
1086/// SelectAddressRegImmShift - Returns true if the address N can be
1087/// represented by a base register plus a signed 14-bit displacement
1088/// [r+imm*4].  Suitable for use by STD and friends.
1089bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
1090                                                 SDValue &Base,
1091                                                 SelectionDAG &DAG) const {
1092  // FIXME dl should come from the parent load or store, not the address
1093  DebugLoc dl = N.getDebugLoc();
1094  // If this can be more profitably realized as r+r, fail.
1095  if (SelectAddressRegReg(N, Disp, Base, DAG))
1096    return false;
1097
1098  if (N.getOpcode() == ISD::ADD) {
1099    short imm = 0;
1100    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1101      Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1102      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1103        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1104      } else {
1105        Base = N.getOperand(0);
1106      }
1107      return true; // [r+i]
1108    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1109      // Match LOAD (ADD (X, Lo(G))).
1110      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1111             && "Cannot handle constant offsets yet!");
1112      Disp = N.getOperand(1).getOperand(0);  // The global address.
1113      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1114             Disp.getOpcode() == ISD::TargetConstantPool ||
1115             Disp.getOpcode() == ISD::TargetJumpTable);
1116      Base = N.getOperand(0);
1117      return true;  // [&g+r]
1118    }
1119  } else if (N.getOpcode() == ISD::OR) {
1120    short imm = 0;
1121    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1122      // If this is an or of disjoint bitfields, we can codegen this as an add
1123      // (for better address arithmetic) if the LHS and RHS of the OR are
1124      // provably disjoint.
1125      APInt LHSKnownZero, LHSKnownOne;
1126      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1127      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1128        // If all of the bits are known zero on the LHS or RHS, the add won't
1129        // carry.
1130        Base = N.getOperand(0);
1131        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1132        return true;
1133      }
1134    }
1135  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1136    // Loading from a constant address.  Verify low two bits are clear.
1137    if ((CN->getZExtValue() & 3) == 0) {
1138      // If this address fits entirely in a 14-bit sext immediate field, codegen
1139      // this as "d, 0"
1140      short Imm;
1141      if (isIntS16Immediate(CN, Imm)) {
1142        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1143        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1144                               CN->getValueType(0));
1145        return true;
1146      }
1147
1148      // Fold the low-part of 32-bit absolute addresses into addr mode.
1149      if (CN->getValueType(0) == MVT::i32 ||
1150          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1151        int Addr = (int)CN->getZExtValue();
1152
1153        // Otherwise, break this down into an LIS + disp.
1154        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1155        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1156        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1157        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1158        return true;
1159      }
1160    }
1161  }
1162
1163  Disp = DAG.getTargetConstant(0, getPointerTy());
1164  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1165    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1166  else
1167    Base = N;
1168  return true;      // [r+0]
1169}
1170
1171
1172/// getPreIndexedAddressParts - returns true by value, base pointer and
1173/// offset pointer and addressing mode by reference if the node's address
1174/// can be legally represented as pre-indexed load / store address.
1175bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1176                                                  SDValue &Offset,
1177                                                  ISD::MemIndexedMode &AM,
1178                                                  SelectionDAG &DAG) const {
1179  if (DisablePPCPreinc) return false;
1180
1181  SDValue Ptr;
1182  EVT VT;
1183  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1184    Ptr = LD->getBasePtr();
1185    VT = LD->getMemoryVT();
1186
1187  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1188    Ptr = ST->getBasePtr();
1189    VT  = ST->getMemoryVT();
1190  } else
1191    return false;
1192
1193  // PowerPC doesn't have preinc load/store instructions for vectors.
1194  if (VT.isVector())
1195    return false;
1196
1197  if (SelectAddressRegReg(Ptr, Offset, Base, DAG)) {
1198    AM = ISD::PRE_INC;
1199    return true;
1200  }
1201
1202  // LDU/STU use reg+imm*4, others use reg+imm.
1203  if (VT != MVT::i64) {
1204    // reg + imm
1205    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1206      return false;
1207  } else {
1208    // reg + imm * 4.
1209    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1210      return false;
1211  }
1212
1213  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1214    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1215    // sext i32 to i64 when addr mode is r+i.
1216    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1217        LD->getExtensionType() == ISD::SEXTLOAD &&
1218        isa<ConstantSDNode>(Offset))
1219      return false;
1220  }
1221
1222  AM = ISD::PRE_INC;
1223  return true;
1224}
1225
1226//===----------------------------------------------------------------------===//
1227//  LowerOperation implementation
1228//===----------------------------------------------------------------------===//
1229
1230/// GetLabelAccessInfo - Return true if we should reference labels using a
1231/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1232static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1233                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1234  HiOpFlags = PPCII::MO_HA16;
1235  LoOpFlags = PPCII::MO_LO16;
1236
1237  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1238  // non-darwin platform.  We don't support PIC on other platforms yet.
1239  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1240               TM.getSubtarget<PPCSubtarget>().isDarwin();
1241  if (isPIC) {
1242    HiOpFlags |= PPCII::MO_PIC_FLAG;
1243    LoOpFlags |= PPCII::MO_PIC_FLAG;
1244  }
1245
1246  // If this is a reference to a global value that requires a non-lazy-ptr, make
1247  // sure that instruction lowering adds it.
1248  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1249    HiOpFlags |= PPCII::MO_NLP_FLAG;
1250    LoOpFlags |= PPCII::MO_NLP_FLAG;
1251
1252    if (GV->hasHiddenVisibility()) {
1253      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1254      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1255    }
1256  }
1257
1258  return isPIC;
1259}
1260
1261static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1262                             SelectionDAG &DAG) {
1263  EVT PtrVT = HiPart.getValueType();
1264  SDValue Zero = DAG.getConstant(0, PtrVT);
1265  DebugLoc DL = HiPart.getDebugLoc();
1266
1267  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1268  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1269
1270  // With PIC, the first instruction is actually "GR+hi(&G)".
1271  if (isPIC)
1272    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1273                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1274
1275  // Generate non-pic code that has direct accesses to the constant pool.
1276  // The address of the global is just (hi(&g)+lo(&g)).
1277  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1278}
1279
1280SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1281                                             SelectionDAG &DAG) const {
1282  EVT PtrVT = Op.getValueType();
1283  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1284  const Constant *C = CP->getConstVal();
1285
1286  // 64-bit SVR4 ABI code is always position-independent.
1287  // The actual address of the GlobalValue is stored in the TOC.
1288  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1289    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1290    return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA,
1291                       DAG.getRegister(PPC::X2, MVT::i64));
1292  }
1293
1294  unsigned MOHiFlag, MOLoFlag;
1295  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1296  SDValue CPIHi =
1297    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1298  SDValue CPILo =
1299    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1300  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1301}
1302
1303SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1304  EVT PtrVT = Op.getValueType();
1305  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1306
1307  // 64-bit SVR4 ABI code is always position-independent.
1308  // The actual address of the GlobalValue is stored in the TOC.
1309  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1310    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1311    return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA,
1312                       DAG.getRegister(PPC::X2, MVT::i64));
1313  }
1314
1315  unsigned MOHiFlag, MOLoFlag;
1316  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1317  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1318  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1319  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1320}
1321
1322SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1323                                             SelectionDAG &DAG) const {
1324  EVT PtrVT = Op.getValueType();
1325
1326  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1327
1328  unsigned MOHiFlag, MOLoFlag;
1329  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1330  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1331  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1332  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1333}
1334
1335SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1336                                              SelectionDAG &DAG) const {
1337
1338  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1339  DebugLoc dl = GA->getDebugLoc();
1340  const GlobalValue *GV = GA->getGlobal();
1341  EVT PtrVT = getPointerTy();
1342  bool is64bit = PPCSubTarget.isPPC64();
1343
1344  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1345
1346  if (Model == TLSModel::LocalExec) {
1347    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1348                                               PPCII::MO_TPREL16_HA);
1349    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1350                                               PPCII::MO_TPREL16_LO);
1351    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1352                                     is64bit ? MVT::i64 : MVT::i32);
1353    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1354    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1355  }
1356
1357  if (!is64bit)
1358    llvm_unreachable("only local-exec is currently supported for ppc32");
1359
1360  if (Model == TLSModel::InitialExec) {
1361    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1362    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1363    SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1364                                     PtrVT, GOTReg, TGA);
1365    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1366                                   PtrVT, TGA, TPOffsetHi);
1367    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA);
1368  }
1369
1370  if (Model == TLSModel::GeneralDynamic) {
1371    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1372    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1373    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1374                                     GOTReg, TGA);
1375    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1376                                   GOTEntryHi, TGA);
1377
1378    // We need a chain node, and don't have one handy.  The underlying
1379    // call has no side effects, so using the function entry node
1380    // suffices.
1381    SDValue Chain = DAG.getEntryNode();
1382    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1383    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1384    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1385                                  PtrVT, ParmReg, TGA);
1386    // The return value from GET_TLS_ADDR really is in X3 already, but
1387    // some hacks are needed here to tie everything together.  The extra
1388    // copies dissolve during subsequent transforms.
1389    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1390    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1391  }
1392
1393  if (Model == TLSModel::LocalDynamic) {
1394    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1395    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1396    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1397                                     GOTReg, TGA);
1398    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1399                                   GOTEntryHi, TGA);
1400
1401    // We need a chain node, and don't have one handy.  The underlying
1402    // call has no side effects, so using the function entry node
1403    // suffices.
1404    SDValue Chain = DAG.getEntryNode();
1405    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1406    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1407    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1408                                  PtrVT, ParmReg, TGA);
1409    // The return value from GET_TLSLD_ADDR really is in X3 already, but
1410    // some hacks are needed here to tie everything together.  The extra
1411    // copies dissolve during subsequent transforms.
1412    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1413    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1414                                      Chain, ParmReg, TGA);
1415    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1416  }
1417
1418  llvm_unreachable("Unknown TLS model!");
1419}
1420
1421SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1422                                              SelectionDAG &DAG) const {
1423  EVT PtrVT = Op.getValueType();
1424  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1425  DebugLoc DL = GSDN->getDebugLoc();
1426  const GlobalValue *GV = GSDN->getGlobal();
1427
1428  // 64-bit SVR4 ABI code is always position-independent.
1429  // The actual address of the GlobalValue is stored in the TOC.
1430  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1431    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1432    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1433                       DAG.getRegister(PPC::X2, MVT::i64));
1434  }
1435
1436  unsigned MOHiFlag, MOLoFlag;
1437  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1438
1439  SDValue GAHi =
1440    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1441  SDValue GALo =
1442    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1443
1444  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1445
1446  // If the global reference is actually to a non-lazy-pointer, we have to do an
1447  // extra load to get the address of the global.
1448  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1449    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1450                      false, false, false, 0);
1451  return Ptr;
1452}
1453
1454SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1455  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1456  DebugLoc dl = Op.getDebugLoc();
1457
1458  // If we're comparing for equality to zero, expose the fact that this is
1459  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1460  // fold the new nodes.
1461  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1462    if (C->isNullValue() && CC == ISD::SETEQ) {
1463      EVT VT = Op.getOperand(0).getValueType();
1464      SDValue Zext = Op.getOperand(0);
1465      if (VT.bitsLT(MVT::i32)) {
1466        VT = MVT::i32;
1467        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1468      }
1469      unsigned Log2b = Log2_32(VT.getSizeInBits());
1470      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1471      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1472                                DAG.getConstant(Log2b, MVT::i32));
1473      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1474    }
1475    // Leave comparisons against 0 and -1 alone for now, since they're usually
1476    // optimized.  FIXME: revisit this when we can custom lower all setcc
1477    // optimizations.
1478    if (C->isAllOnesValue() || C->isNullValue())
1479      return SDValue();
1480  }
1481
1482  // If we have an integer seteq/setne, turn it into a compare against zero
1483  // by xor'ing the rhs with the lhs, which is faster than setting a
1484  // condition register, reading it back out, and masking the correct bit.  The
1485  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1486  // the result to other bit-twiddling opportunities.
1487  EVT LHSVT = Op.getOperand(0).getValueType();
1488  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1489    EVT VT = Op.getValueType();
1490    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1491                                Op.getOperand(1));
1492    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1493  }
1494  return SDValue();
1495}
1496
1497SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1498                                      const PPCSubtarget &Subtarget) const {
1499  SDNode *Node = Op.getNode();
1500  EVT VT = Node->getValueType(0);
1501  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1502  SDValue InChain = Node->getOperand(0);
1503  SDValue VAListPtr = Node->getOperand(1);
1504  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1505  DebugLoc dl = Node->getDebugLoc();
1506
1507  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1508
1509  // gpr_index
1510  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1511                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1512                                    false, false, 0);
1513  InChain = GprIndex.getValue(1);
1514
1515  if (VT == MVT::i64) {
1516    // Check if GprIndex is even
1517    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1518                                 DAG.getConstant(1, MVT::i32));
1519    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1520                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1521    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1522                                          DAG.getConstant(1, MVT::i32));
1523    // Align GprIndex to be even if it isn't
1524    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1525                           GprIndex);
1526  }
1527
1528  // fpr index is 1 byte after gpr
1529  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1530                               DAG.getConstant(1, MVT::i32));
1531
1532  // fpr
1533  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1534                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1535                                    false, false, 0);
1536  InChain = FprIndex.getValue(1);
1537
1538  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1539                                       DAG.getConstant(8, MVT::i32));
1540
1541  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1542                                        DAG.getConstant(4, MVT::i32));
1543
1544  // areas
1545  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1546                                     MachinePointerInfo(), false, false,
1547                                     false, 0);
1548  InChain = OverflowArea.getValue(1);
1549
1550  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1551                                    MachinePointerInfo(), false, false,
1552                                    false, 0);
1553  InChain = RegSaveArea.getValue(1);
1554
1555  // select overflow_area if index > 8
1556  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1557                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1558
1559  // adjustment constant gpr_index * 4/8
1560  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1561                                    VT.isInteger() ? GprIndex : FprIndex,
1562                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1563                                                    MVT::i32));
1564
1565  // OurReg = RegSaveArea + RegConstant
1566  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1567                               RegConstant);
1568
1569  // Floating types are 32 bytes into RegSaveArea
1570  if (VT.isFloatingPoint())
1571    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1572                         DAG.getConstant(32, MVT::i32));
1573
1574  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1575  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1576                                   VT.isInteger() ? GprIndex : FprIndex,
1577                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1578                                                   MVT::i32));
1579
1580  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1581                              VT.isInteger() ? VAListPtr : FprPtr,
1582                              MachinePointerInfo(SV),
1583                              MVT::i8, false, false, 0);
1584
1585  // determine if we should load from reg_save_area or overflow_area
1586  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1587
1588  // increase overflow_area by 4/8 if gpr/fpr > 8
1589  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1590                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1591                                          MVT::i32));
1592
1593  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1594                             OverflowAreaPlusN);
1595
1596  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1597                              OverflowAreaPtr,
1598                              MachinePointerInfo(),
1599                              MVT::i32, false, false, 0);
1600
1601  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1602                     false, false, false, 0);
1603}
1604
1605SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1606                                                  SelectionDAG &DAG) const {
1607  return Op.getOperand(0);
1608}
1609
1610SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1611                                                SelectionDAG &DAG) const {
1612  SDValue Chain = Op.getOperand(0);
1613  SDValue Trmp = Op.getOperand(1); // trampoline
1614  SDValue FPtr = Op.getOperand(2); // nested function
1615  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1616  DebugLoc dl = Op.getDebugLoc();
1617
1618  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1619  bool isPPC64 = (PtrVT == MVT::i64);
1620  Type *IntPtrTy =
1621    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1622                                                             *DAG.getContext());
1623
1624  TargetLowering::ArgListTy Args;
1625  TargetLowering::ArgListEntry Entry;
1626
1627  Entry.Ty = IntPtrTy;
1628  Entry.Node = Trmp; Args.push_back(Entry);
1629
1630  // TrampSize == (isPPC64 ? 48 : 40);
1631  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1632                               isPPC64 ? MVT::i64 : MVT::i32);
1633  Args.push_back(Entry);
1634
1635  Entry.Node = FPtr; Args.push_back(Entry);
1636  Entry.Node = Nest; Args.push_back(Entry);
1637
1638  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1639  TargetLowering::CallLoweringInfo CLI(Chain,
1640                                       Type::getVoidTy(*DAG.getContext()),
1641                                       false, false, false, false, 0,
1642                                       CallingConv::C,
1643                /*isTailCall=*/false,
1644                                       /*doesNotRet=*/false,
1645                                       /*isReturnValueUsed=*/true,
1646                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1647                Args, DAG, dl);
1648  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1649
1650  return CallResult.second;
1651}
1652
1653SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1654                                        const PPCSubtarget &Subtarget) const {
1655  MachineFunction &MF = DAG.getMachineFunction();
1656  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1657
1658  DebugLoc dl = Op.getDebugLoc();
1659
1660  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1661    // vastart just stores the address of the VarArgsFrameIndex slot into the
1662    // memory location argument.
1663    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1664    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1665    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1666    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1667                        MachinePointerInfo(SV),
1668                        false, false, 0);
1669  }
1670
1671  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1672  // We suppose the given va_list is already allocated.
1673  //
1674  // typedef struct {
1675  //  char gpr;     /* index into the array of 8 GPRs
1676  //                 * stored in the register save area
1677  //                 * gpr=0 corresponds to r3,
1678  //                 * gpr=1 to r4, etc.
1679  //                 */
1680  //  char fpr;     /* index into the array of 8 FPRs
1681  //                 * stored in the register save area
1682  //                 * fpr=0 corresponds to f1,
1683  //                 * fpr=1 to f2, etc.
1684  //                 */
1685  //  char *overflow_arg_area;
1686  //                /* location on stack that holds
1687  //                 * the next overflow argument
1688  //                 */
1689  //  char *reg_save_area;
1690  //               /* where r3:r10 and f1:f8 (if saved)
1691  //                * are stored
1692  //                */
1693  // } va_list[1];
1694
1695
1696  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1697  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1698
1699
1700  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1701
1702  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1703                                            PtrVT);
1704  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1705                                 PtrVT);
1706
1707  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1708  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1709
1710  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1711  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1712
1713  uint64_t FPROffset = 1;
1714  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1715
1716  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1717
1718  // Store first byte : number of int regs
1719  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1720                                         Op.getOperand(1),
1721                                         MachinePointerInfo(SV),
1722                                         MVT::i8, false, false, 0);
1723  uint64_t nextOffset = FPROffset;
1724  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1725                                  ConstFPROffset);
1726
1727  // Store second byte : number of float regs
1728  SDValue secondStore =
1729    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1730                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1731                      false, false, 0);
1732  nextOffset += StackOffset;
1733  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1734
1735  // Store second word : arguments given on stack
1736  SDValue thirdStore =
1737    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1738                 MachinePointerInfo(SV, nextOffset),
1739                 false, false, 0);
1740  nextOffset += FrameOffset;
1741  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1742
1743  // Store third word : arguments given in registers
1744  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1745                      MachinePointerInfo(SV, nextOffset),
1746                      false, false, 0);
1747
1748}
1749
1750#include "PPCGenCallingConv.inc"
1751
1752static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1753                                       CCValAssign::LocInfo &LocInfo,
1754                                       ISD::ArgFlagsTy &ArgFlags,
1755                                       CCState &State) {
1756  return true;
1757}
1758
1759static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1760                                              MVT &LocVT,
1761                                              CCValAssign::LocInfo &LocInfo,
1762                                              ISD::ArgFlagsTy &ArgFlags,
1763                                              CCState &State) {
1764  static const uint16_t ArgRegs[] = {
1765    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1766    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1767  };
1768  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1769
1770  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1771
1772  // Skip one register if the first unallocated register has an even register
1773  // number and there are still argument registers available which have not been
1774  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1775  // need to skip a register if RegNum is odd.
1776  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1777    State.AllocateReg(ArgRegs[RegNum]);
1778  }
1779
1780  // Always return false here, as this function only makes sure that the first
1781  // unallocated register has an odd register number and does not actually
1782  // allocate a register for the current argument.
1783  return false;
1784}
1785
1786static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1787                                                MVT &LocVT,
1788                                                CCValAssign::LocInfo &LocInfo,
1789                                                ISD::ArgFlagsTy &ArgFlags,
1790                                                CCState &State) {
1791  static const uint16_t ArgRegs[] = {
1792    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1793    PPC::F8
1794  };
1795
1796  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1797
1798  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1799
1800  // If there is only one Floating-point register left we need to put both f64
1801  // values of a split ppc_fp128 value on the stack.
1802  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1803    State.AllocateReg(ArgRegs[RegNum]);
1804  }
1805
1806  // Always return false here, as this function only makes sure that the two f64
1807  // values a ppc_fp128 value is split into are both passed in registers or both
1808  // passed on the stack and does not actually allocate a register for the
1809  // current argument.
1810  return false;
1811}
1812
1813/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1814/// on Darwin.
1815static const uint16_t *GetFPR() {
1816  static const uint16_t FPR[] = {
1817    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1818    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1819  };
1820
1821  return FPR;
1822}
1823
1824/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1825/// the stack.
1826static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1827                                       unsigned PtrByteSize) {
1828  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1829  if (Flags.isByVal())
1830    ArgSize = Flags.getByValSize();
1831  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1832
1833  return ArgSize;
1834}
1835
1836SDValue
1837PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1838                                        CallingConv::ID CallConv, bool isVarArg,
1839                                        const SmallVectorImpl<ISD::InputArg>
1840                                          &Ins,
1841                                        DebugLoc dl, SelectionDAG &DAG,
1842                                        SmallVectorImpl<SDValue> &InVals)
1843                                          const {
1844  if (PPCSubTarget.isSVR4ABI()) {
1845    if (PPCSubTarget.isPPC64())
1846      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1847                                         dl, DAG, InVals);
1848    else
1849      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1850                                         dl, DAG, InVals);
1851  } else {
1852    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1853                                       dl, DAG, InVals);
1854  }
1855}
1856
1857SDValue
1858PPCTargetLowering::LowerFormalArguments_32SVR4(
1859                                      SDValue Chain,
1860                                      CallingConv::ID CallConv, bool isVarArg,
1861                                      const SmallVectorImpl<ISD::InputArg>
1862                                        &Ins,
1863                                      DebugLoc dl, SelectionDAG &DAG,
1864                                      SmallVectorImpl<SDValue> &InVals) const {
1865
1866  // 32-bit SVR4 ABI Stack Frame Layout:
1867  //              +-----------------------------------+
1868  //        +-->  |            Back chain             |
1869  //        |     +-----------------------------------+
1870  //        |     | Floating-point register save area |
1871  //        |     +-----------------------------------+
1872  //        |     |    General register save area     |
1873  //        |     +-----------------------------------+
1874  //        |     |          CR save word             |
1875  //        |     +-----------------------------------+
1876  //        |     |         VRSAVE save word          |
1877  //        |     +-----------------------------------+
1878  //        |     |         Alignment padding         |
1879  //        |     +-----------------------------------+
1880  //        |     |     Vector register save area     |
1881  //        |     +-----------------------------------+
1882  //        |     |       Local variable space        |
1883  //        |     +-----------------------------------+
1884  //        |     |        Parameter list area        |
1885  //        |     +-----------------------------------+
1886  //        |     |           LR save word            |
1887  //        |     +-----------------------------------+
1888  // SP-->  +---  |            Back chain             |
1889  //              +-----------------------------------+
1890  //
1891  // Specifications:
1892  //   System V Application Binary Interface PowerPC Processor Supplement
1893  //   AltiVec Technology Programming Interface Manual
1894
1895  MachineFunction &MF = DAG.getMachineFunction();
1896  MachineFrameInfo *MFI = MF.getFrameInfo();
1897  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1898
1899  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1900  // Potential tail calls could cause overwriting of argument stack slots.
1901  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1902                       (CallConv == CallingConv::Fast));
1903  unsigned PtrByteSize = 4;
1904
1905  // Assign locations to all of the incoming arguments.
1906  SmallVector<CCValAssign, 16> ArgLocs;
1907  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1908                 getTargetMachine(), ArgLocs, *DAG.getContext());
1909
1910  // Reserve space for the linkage area on the stack.
1911  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1912
1913  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
1914
1915  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1916    CCValAssign &VA = ArgLocs[i];
1917
1918    // Arguments stored in registers.
1919    if (VA.isRegLoc()) {
1920      const TargetRegisterClass *RC;
1921      EVT ValVT = VA.getValVT();
1922
1923      switch (ValVT.getSimpleVT().SimpleTy) {
1924        default:
1925          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1926        case MVT::i32:
1927          RC = &PPC::GPRCRegClass;
1928          break;
1929        case MVT::f32:
1930          RC = &PPC::F4RCRegClass;
1931          break;
1932        case MVT::f64:
1933          RC = &PPC::F8RCRegClass;
1934          break;
1935        case MVT::v16i8:
1936        case MVT::v8i16:
1937        case MVT::v4i32:
1938        case MVT::v4f32:
1939          RC = &PPC::VRRCRegClass;
1940          break;
1941      }
1942
1943      // Transform the arguments stored in physical registers into virtual ones.
1944      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1945      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1946
1947      InVals.push_back(ArgValue);
1948    } else {
1949      // Argument stored in memory.
1950      assert(VA.isMemLoc());
1951
1952      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1953      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1954                                      isImmutable);
1955
1956      // Create load nodes to retrieve arguments from the stack.
1957      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1958      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1959                                   MachinePointerInfo(),
1960                                   false, false, false, 0));
1961    }
1962  }
1963
1964  // Assign locations to all of the incoming aggregate by value arguments.
1965  // Aggregates passed by value are stored in the local variable space of the
1966  // caller's stack frame, right above the parameter list area.
1967  SmallVector<CCValAssign, 16> ByValArgLocs;
1968  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1969                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1970
1971  // Reserve stack space for the allocations in CCInfo.
1972  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1973
1974  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
1975
1976  // Area that is at least reserved in the caller of this function.
1977  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1978
1979  // Set the size that is at least reserved in caller of this function.  Tail
1980  // call optimized function's reserved stack space needs to be aligned so that
1981  // taking the difference between two stack areas will result in an aligned
1982  // stack.
1983  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1984
1985  MinReservedArea =
1986    std::max(MinReservedArea,
1987             PPCFrameLowering::getMinCallFrameSize(false, false));
1988
1989  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1990    getStackAlignment();
1991  unsigned AlignMask = TargetAlign-1;
1992  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1993
1994  FI->setMinReservedArea(MinReservedArea);
1995
1996  SmallVector<SDValue, 8> MemOps;
1997
1998  // If the function takes variable number of arguments, make a frame index for
1999  // the start of the first vararg value... for expansion of llvm.va_start.
2000  if (isVarArg) {
2001    static const uint16_t GPArgRegs[] = {
2002      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2003      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2004    };
2005    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2006
2007    static const uint16_t FPArgRegs[] = {
2008      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2009      PPC::F8
2010    };
2011    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2012
2013    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2014                                                          NumGPArgRegs));
2015    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2016                                                          NumFPArgRegs));
2017
2018    // Make room for NumGPArgRegs and NumFPArgRegs.
2019    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2020                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2021
2022    FuncInfo->setVarArgsStackOffset(
2023      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2024                             CCInfo.getNextStackOffset(), true));
2025
2026    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2027    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2028
2029    // The fixed integer arguments of a variadic function are stored to the
2030    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2031    // the result of va_next.
2032    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2033      // Get an existing live-in vreg, or add a new one.
2034      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2035      if (!VReg)
2036        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2037
2038      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2039      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2040                                   MachinePointerInfo(), false, false, 0);
2041      MemOps.push_back(Store);
2042      // Increment the address by four for the next argument to store
2043      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2044      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2045    }
2046
2047    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2048    // is set.
2049    // The double arguments are stored to the VarArgsFrameIndex
2050    // on the stack.
2051    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2052      // Get an existing live-in vreg, or add a new one.
2053      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2054      if (!VReg)
2055        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2056
2057      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2058      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2059                                   MachinePointerInfo(), false, false, 0);
2060      MemOps.push_back(Store);
2061      // Increment the address by eight for the next argument to store
2062      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2063                                         PtrVT);
2064      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2065    }
2066  }
2067
2068  if (!MemOps.empty())
2069    Chain = DAG.getNode(ISD::TokenFactor, dl,
2070                        MVT::Other, &MemOps[0], MemOps.size());
2071
2072  return Chain;
2073}
2074
2075// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2076// value to MVT::i64 and then truncate to the correct register size.
2077SDValue
2078PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2079                                     SelectionDAG &DAG, SDValue ArgVal,
2080                                     DebugLoc dl) const {
2081  if (Flags.isSExt())
2082    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2083                         DAG.getValueType(ObjectVT));
2084  else if (Flags.isZExt())
2085    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2086                         DAG.getValueType(ObjectVT));
2087
2088  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2089}
2090
2091// Set the size that is at least reserved in caller of this function.  Tail
2092// call optimized functions' reserved stack space needs to be aligned so that
2093// taking the difference between two stack areas will result in an aligned
2094// stack.
2095void
2096PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2097                                      unsigned nAltivecParamsAtEnd,
2098                                      unsigned MinReservedArea,
2099                                      bool isPPC64) const {
2100  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2101  // Add the Altivec parameters at the end, if needed.
2102  if (nAltivecParamsAtEnd) {
2103    MinReservedArea = ((MinReservedArea+15)/16)*16;
2104    MinReservedArea += 16*nAltivecParamsAtEnd;
2105  }
2106  MinReservedArea =
2107    std::max(MinReservedArea,
2108             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2109  unsigned TargetAlign
2110    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2111        getStackAlignment();
2112  unsigned AlignMask = TargetAlign-1;
2113  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2114  FI->setMinReservedArea(MinReservedArea);
2115}
2116
2117SDValue
2118PPCTargetLowering::LowerFormalArguments_64SVR4(
2119                                      SDValue Chain,
2120                                      CallingConv::ID CallConv, bool isVarArg,
2121                                      const SmallVectorImpl<ISD::InputArg>
2122                                        &Ins,
2123                                      DebugLoc dl, SelectionDAG &DAG,
2124                                      SmallVectorImpl<SDValue> &InVals) const {
2125  // TODO: add description of PPC stack frame format, or at least some docs.
2126  //
2127  MachineFunction &MF = DAG.getMachineFunction();
2128  MachineFrameInfo *MFI = MF.getFrameInfo();
2129  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2130
2131  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2132  // Potential tail calls could cause overwriting of argument stack slots.
2133  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2134                       (CallConv == CallingConv::Fast));
2135  unsigned PtrByteSize = 8;
2136
2137  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2138  // Area that is at least reserved in caller of this function.
2139  unsigned MinReservedArea = ArgOffset;
2140
2141  static const uint16_t GPR[] = {
2142    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2143    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2144  };
2145
2146  static const uint16_t *FPR = GetFPR();
2147
2148  static const uint16_t VR[] = {
2149    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2150    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2151  };
2152
2153  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2154  const unsigned Num_FPR_Regs = 13;
2155  const unsigned Num_VR_Regs  = array_lengthof(VR);
2156
2157  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2158
2159  // Add DAG nodes to load the arguments or copy them out of registers.  On
2160  // entry to a function on PPC, the arguments start after the linkage area,
2161  // although the first ones are often in registers.
2162
2163  SmallVector<SDValue, 8> MemOps;
2164  unsigned nAltivecParamsAtEnd = 0;
2165  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2166  unsigned CurArgIdx = 0;
2167  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2168    SDValue ArgVal;
2169    bool needsLoad = false;
2170    EVT ObjectVT = Ins[ArgNo].VT;
2171    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2172    unsigned ArgSize = ObjSize;
2173    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2174    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2175    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2176
2177    unsigned CurArgOffset = ArgOffset;
2178
2179    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2180    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2181        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2182      if (isVarArg) {
2183        MinReservedArea = ((MinReservedArea+15)/16)*16;
2184        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2185                                                  Flags,
2186                                                  PtrByteSize);
2187      } else
2188        nAltivecParamsAtEnd++;
2189    } else
2190      // Calculate min reserved area.
2191      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2192                                                Flags,
2193                                                PtrByteSize);
2194
2195    // FIXME the codegen can be much improved in some cases.
2196    // We do not have to keep everything in memory.
2197    if (Flags.isByVal()) {
2198      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2199      ObjSize = Flags.getByValSize();
2200      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2201      // Empty aggregate parameters do not take up registers.  Examples:
2202      //   struct { } a;
2203      //   union  { } b;
2204      //   int c[0];
2205      // etc.  However, we have to provide a place-holder in InVals, so
2206      // pretend we have an 8-byte item at the current address for that
2207      // purpose.
2208      if (!ObjSize) {
2209        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2210        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2211        InVals.push_back(FIN);
2212        continue;
2213      }
2214      // All aggregates smaller than 8 bytes must be passed right-justified.
2215      if (ObjSize < PtrByteSize)
2216        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2217      // The value of the object is its address.
2218      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2219      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2220      InVals.push_back(FIN);
2221
2222      if (ObjSize < 8) {
2223        if (GPR_idx != Num_GPR_Regs) {
2224          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2225          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2226          SDValue Store;
2227
2228          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2229            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2230                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
2231            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2232                                      MachinePointerInfo(FuncArg, CurArgOffset),
2233                                      ObjType, false, false, 0);
2234          } else {
2235            // For sizes that don't fit a truncating store (3, 5, 6, 7),
2236            // store the whole register as-is to the parameter save area
2237            // slot.  The address of the parameter was already calculated
2238            // above (InVals.push_back(FIN)) to be the right-justified
2239            // offset within the slot.  For this store, we need a new
2240            // frame index that points at the beginning of the slot.
2241            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2242            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2243            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2244                                 MachinePointerInfo(FuncArg, ArgOffset),
2245                                 false, false, 0);
2246          }
2247
2248          MemOps.push_back(Store);
2249          ++GPR_idx;
2250        }
2251        // Whether we copied from a register or not, advance the offset
2252        // into the parameter save area by a full doubleword.
2253        ArgOffset += PtrByteSize;
2254        continue;
2255      }
2256
2257      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2258        // Store whatever pieces of the object are in registers
2259        // to memory.  ArgOffset will be the address of the beginning
2260        // of the object.
2261        if (GPR_idx != Num_GPR_Regs) {
2262          unsigned VReg;
2263          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2264          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2265          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2266          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2267          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2268                                       MachinePointerInfo(FuncArg, ArgOffset),
2269                                       false, false, 0);
2270          MemOps.push_back(Store);
2271          ++GPR_idx;
2272          ArgOffset += PtrByteSize;
2273        } else {
2274          ArgOffset += ArgSize - j;
2275          break;
2276        }
2277      }
2278      continue;
2279    }
2280
2281    switch (ObjectVT.getSimpleVT().SimpleTy) {
2282    default: llvm_unreachable("Unhandled argument type!");
2283    case MVT::i32:
2284    case MVT::i64:
2285      if (GPR_idx != Num_GPR_Regs) {
2286        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2287        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2288
2289        if (ObjectVT == MVT::i32)
2290          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2291          // value to MVT::i64 and then truncate to the correct register size.
2292          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2293
2294        ++GPR_idx;
2295      } else {
2296        needsLoad = true;
2297        ArgSize = PtrByteSize;
2298      }
2299      ArgOffset += 8;
2300      break;
2301
2302    case MVT::f32:
2303    case MVT::f64:
2304      // Every 8 bytes of argument space consumes one of the GPRs available for
2305      // argument passing.
2306      if (GPR_idx != Num_GPR_Regs) {
2307        ++GPR_idx;
2308      }
2309      if (FPR_idx != Num_FPR_Regs) {
2310        unsigned VReg;
2311
2312        if (ObjectVT == MVT::f32)
2313          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2314        else
2315          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2316
2317        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2318        ++FPR_idx;
2319      } else {
2320        needsLoad = true;
2321        ArgSize = PtrByteSize;
2322      }
2323
2324      ArgOffset += 8;
2325      break;
2326    case MVT::v4f32:
2327    case MVT::v4i32:
2328    case MVT::v8i16:
2329    case MVT::v16i8:
2330      // Note that vector arguments in registers don't reserve stack space,
2331      // except in varargs functions.
2332      if (VR_idx != Num_VR_Regs) {
2333        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2334        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2335        if (isVarArg) {
2336          while ((ArgOffset % 16) != 0) {
2337            ArgOffset += PtrByteSize;
2338            if (GPR_idx != Num_GPR_Regs)
2339              GPR_idx++;
2340          }
2341          ArgOffset += 16;
2342          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2343        }
2344        ++VR_idx;
2345      } else {
2346        // Vectors are aligned.
2347        ArgOffset = ((ArgOffset+15)/16)*16;
2348        CurArgOffset = ArgOffset;
2349        ArgOffset += 16;
2350        needsLoad = true;
2351      }
2352      break;
2353    }
2354
2355    // We need to load the argument to a virtual register if we determined
2356    // above that we ran out of physical registers of the appropriate type.
2357    if (needsLoad) {
2358      int FI = MFI->CreateFixedObject(ObjSize,
2359                                      CurArgOffset + (ArgSize - ObjSize),
2360                                      isImmutable);
2361      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2362      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2363                           false, false, false, 0);
2364    }
2365
2366    InVals.push_back(ArgVal);
2367  }
2368
2369  // Set the size that is at least reserved in caller of this function.  Tail
2370  // call optimized functions' reserved stack space needs to be aligned so that
2371  // taking the difference between two stack areas will result in an aligned
2372  // stack.
2373  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2374
2375  // If the function takes variable number of arguments, make a frame index for
2376  // the start of the first vararg value... for expansion of llvm.va_start.
2377  if (isVarArg) {
2378    int Depth = ArgOffset;
2379
2380    FuncInfo->setVarArgsFrameIndex(
2381      MFI->CreateFixedObject(PtrByteSize, Depth, true));
2382    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2383
2384    // If this function is vararg, store any remaining integer argument regs
2385    // to their spots on the stack so that they may be loaded by deferencing the
2386    // result of va_next.
2387    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2388      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2389      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2390      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2391                                   MachinePointerInfo(), false, false, 0);
2392      MemOps.push_back(Store);
2393      // Increment the address by four for the next argument to store
2394      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2395      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2396    }
2397  }
2398
2399  if (!MemOps.empty())
2400    Chain = DAG.getNode(ISD::TokenFactor, dl,
2401                        MVT::Other, &MemOps[0], MemOps.size());
2402
2403  return Chain;
2404}
2405
2406SDValue
2407PPCTargetLowering::LowerFormalArguments_Darwin(
2408                                      SDValue Chain,
2409                                      CallingConv::ID CallConv, bool isVarArg,
2410                                      const SmallVectorImpl<ISD::InputArg>
2411                                        &Ins,
2412                                      DebugLoc dl, SelectionDAG &DAG,
2413                                      SmallVectorImpl<SDValue> &InVals) const {
2414  // TODO: add description of PPC stack frame format, or at least some docs.
2415  //
2416  MachineFunction &MF = DAG.getMachineFunction();
2417  MachineFrameInfo *MFI = MF.getFrameInfo();
2418  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2419
2420  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2421  bool isPPC64 = PtrVT == MVT::i64;
2422  // Potential tail calls could cause overwriting of argument stack slots.
2423  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2424                       (CallConv == CallingConv::Fast));
2425  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2426
2427  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2428  // Area that is at least reserved in caller of this function.
2429  unsigned MinReservedArea = ArgOffset;
2430
2431  static const uint16_t GPR_32[] = {           // 32-bit registers.
2432    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2433    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2434  };
2435  static const uint16_t GPR_64[] = {           // 64-bit registers.
2436    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2437    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2438  };
2439
2440  static const uint16_t *FPR = GetFPR();
2441
2442  static const uint16_t VR[] = {
2443    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2444    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2445  };
2446
2447  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2448  const unsigned Num_FPR_Regs = 13;
2449  const unsigned Num_VR_Regs  = array_lengthof( VR);
2450
2451  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2452
2453  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2454
2455  // In 32-bit non-varargs functions, the stack space for vectors is after the
2456  // stack space for non-vectors.  We do not use this space unless we have
2457  // too many vectors to fit in registers, something that only occurs in
2458  // constructed examples:), but we have to walk the arglist to figure
2459  // that out...for the pathological case, compute VecArgOffset as the
2460  // start of the vector parameter area.  Computing VecArgOffset is the
2461  // entire point of the following loop.
2462  unsigned VecArgOffset = ArgOffset;
2463  if (!isVarArg && !isPPC64) {
2464    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2465         ++ArgNo) {
2466      EVT ObjectVT = Ins[ArgNo].VT;
2467      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2468
2469      if (Flags.isByVal()) {
2470        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2471        unsigned ObjSize = Flags.getByValSize();
2472        unsigned ArgSize =
2473                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2474        VecArgOffset += ArgSize;
2475        continue;
2476      }
2477
2478      switch(ObjectVT.getSimpleVT().SimpleTy) {
2479      default: llvm_unreachable("Unhandled argument type!");
2480      case MVT::i32:
2481      case MVT::f32:
2482        VecArgOffset += 4;
2483        break;
2484      case MVT::i64:  // PPC64
2485      case MVT::f64:
2486        // FIXME: We are guaranteed to be !isPPC64 at this point.
2487        // Does MVT::i64 apply?
2488        VecArgOffset += 8;
2489        break;
2490      case MVT::v4f32:
2491      case MVT::v4i32:
2492      case MVT::v8i16:
2493      case MVT::v16i8:
2494        // Nothing to do, we're only looking at Nonvector args here.
2495        break;
2496      }
2497    }
2498  }
2499  // We've found where the vector parameter area in memory is.  Skip the
2500  // first 12 parameters; these don't use that memory.
2501  VecArgOffset = ((VecArgOffset+15)/16)*16;
2502  VecArgOffset += 12*16;
2503
2504  // Add DAG nodes to load the arguments or copy them out of registers.  On
2505  // entry to a function on PPC, the arguments start after the linkage area,
2506  // although the first ones are often in registers.
2507
2508  SmallVector<SDValue, 8> MemOps;
2509  unsigned nAltivecParamsAtEnd = 0;
2510  // FIXME: FuncArg and Ins[ArgNo] must reference the same argument.
2511  // When passing anonymous aggregates, this is currently not true.
2512  // See LowerFormalArguments_64SVR4 for a fix.
2513  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2514  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
2515    SDValue ArgVal;
2516    bool needsLoad = false;
2517    EVT ObjectVT = Ins[ArgNo].VT;
2518    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2519    unsigned ArgSize = ObjSize;
2520    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2521
2522    unsigned CurArgOffset = ArgOffset;
2523
2524    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2525    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2526        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2527      if (isVarArg || isPPC64) {
2528        MinReservedArea = ((MinReservedArea+15)/16)*16;
2529        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2530                                                  Flags,
2531                                                  PtrByteSize);
2532      } else  nAltivecParamsAtEnd++;
2533    } else
2534      // Calculate min reserved area.
2535      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2536                                                Flags,
2537                                                PtrByteSize);
2538
2539    // FIXME the codegen can be much improved in some cases.
2540    // We do not have to keep everything in memory.
2541    if (Flags.isByVal()) {
2542      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2543      ObjSize = Flags.getByValSize();
2544      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2545      // Objects of size 1 and 2 are right justified, everything else is
2546      // left justified.  This means the memory address is adjusted forwards.
2547      if (ObjSize==1 || ObjSize==2) {
2548        CurArgOffset = CurArgOffset + (4 - ObjSize);
2549      }
2550      // The value of the object is its address.
2551      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2552      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2553      InVals.push_back(FIN);
2554      if (ObjSize==1 || ObjSize==2) {
2555        if (GPR_idx != Num_GPR_Regs) {
2556          unsigned VReg;
2557          if (isPPC64)
2558            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2559          else
2560            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2561          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2562          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2563          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2564                                            MachinePointerInfo(FuncArg,
2565                                              CurArgOffset),
2566                                            ObjType, false, false, 0);
2567          MemOps.push_back(Store);
2568          ++GPR_idx;
2569        }
2570
2571        ArgOffset += PtrByteSize;
2572
2573        continue;
2574      }
2575      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2576        // Store whatever pieces of the object are in registers
2577        // to memory.  ArgOffset will be the address of the beginning
2578        // of the object.
2579        if (GPR_idx != Num_GPR_Regs) {
2580          unsigned VReg;
2581          if (isPPC64)
2582            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2583          else
2584            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2585          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2586          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2587          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2588          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2589                                       MachinePointerInfo(FuncArg, ArgOffset),
2590                                       false, false, 0);
2591          MemOps.push_back(Store);
2592          ++GPR_idx;
2593          ArgOffset += PtrByteSize;
2594        } else {
2595          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2596          break;
2597        }
2598      }
2599      continue;
2600    }
2601
2602    switch (ObjectVT.getSimpleVT().SimpleTy) {
2603    default: llvm_unreachable("Unhandled argument type!");
2604    case MVT::i32:
2605      if (!isPPC64) {
2606        if (GPR_idx != Num_GPR_Regs) {
2607          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2608          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2609          ++GPR_idx;
2610        } else {
2611          needsLoad = true;
2612          ArgSize = PtrByteSize;
2613        }
2614        // All int arguments reserve stack space in the Darwin ABI.
2615        ArgOffset += PtrByteSize;
2616        break;
2617      }
2618      // FALLTHROUGH
2619    case MVT::i64:  // PPC64
2620      if (GPR_idx != Num_GPR_Regs) {
2621        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2622        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2623
2624        if (ObjectVT == MVT::i32)
2625          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2626          // value to MVT::i64 and then truncate to the correct register size.
2627          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2628
2629        ++GPR_idx;
2630      } else {
2631        needsLoad = true;
2632        ArgSize = PtrByteSize;
2633      }
2634      // All int arguments reserve stack space in the Darwin ABI.
2635      ArgOffset += 8;
2636      break;
2637
2638    case MVT::f32:
2639    case MVT::f64:
2640      // Every 4 bytes of argument space consumes one of the GPRs available for
2641      // argument passing.
2642      if (GPR_idx != Num_GPR_Regs) {
2643        ++GPR_idx;
2644        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2645          ++GPR_idx;
2646      }
2647      if (FPR_idx != Num_FPR_Regs) {
2648        unsigned VReg;
2649
2650        if (ObjectVT == MVT::f32)
2651          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2652        else
2653          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2654
2655        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2656        ++FPR_idx;
2657      } else {
2658        needsLoad = true;
2659      }
2660
2661      // All FP arguments reserve stack space in the Darwin ABI.
2662      ArgOffset += isPPC64 ? 8 : ObjSize;
2663      break;
2664    case MVT::v4f32:
2665    case MVT::v4i32:
2666    case MVT::v8i16:
2667    case MVT::v16i8:
2668      // Note that vector arguments in registers don't reserve stack space,
2669      // except in varargs functions.
2670      if (VR_idx != Num_VR_Regs) {
2671        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2672        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2673        if (isVarArg) {
2674          while ((ArgOffset % 16) != 0) {
2675            ArgOffset += PtrByteSize;
2676            if (GPR_idx != Num_GPR_Regs)
2677              GPR_idx++;
2678          }
2679          ArgOffset += 16;
2680          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2681        }
2682        ++VR_idx;
2683      } else {
2684        if (!isVarArg && !isPPC64) {
2685          // Vectors go after all the nonvectors.
2686          CurArgOffset = VecArgOffset;
2687          VecArgOffset += 16;
2688        } else {
2689          // Vectors are aligned.
2690          ArgOffset = ((ArgOffset+15)/16)*16;
2691          CurArgOffset = ArgOffset;
2692          ArgOffset += 16;
2693        }
2694        needsLoad = true;
2695      }
2696      break;
2697    }
2698
2699    // We need to load the argument to a virtual register if we determined above
2700    // that we ran out of physical registers of the appropriate type.
2701    if (needsLoad) {
2702      int FI = MFI->CreateFixedObject(ObjSize,
2703                                      CurArgOffset + (ArgSize - ObjSize),
2704                                      isImmutable);
2705      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2706      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2707                           false, false, false, 0);
2708    }
2709
2710    InVals.push_back(ArgVal);
2711  }
2712
2713  // Set the size that is at least reserved in caller of this function.  Tail
2714  // call optimized functions' reserved stack space needs to be aligned so that
2715  // taking the difference between two stack areas will result in an aligned
2716  // stack.
2717  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
2718
2719  // If the function takes variable number of arguments, make a frame index for
2720  // the start of the first vararg value... for expansion of llvm.va_start.
2721  if (isVarArg) {
2722    int Depth = ArgOffset;
2723
2724    FuncInfo->setVarArgsFrameIndex(
2725      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2726                             Depth, true));
2727    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2728
2729    // If this function is vararg, store any remaining integer argument regs
2730    // to their spots on the stack so that they may be loaded by deferencing the
2731    // result of va_next.
2732    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2733      unsigned VReg;
2734
2735      if (isPPC64)
2736        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2737      else
2738        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2739
2740      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2741      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2742                                   MachinePointerInfo(), false, false, 0);
2743      MemOps.push_back(Store);
2744      // Increment the address by four for the next argument to store
2745      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2746      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2747    }
2748  }
2749
2750  if (!MemOps.empty())
2751    Chain = DAG.getNode(ISD::TokenFactor, dl,
2752                        MVT::Other, &MemOps[0], MemOps.size());
2753
2754  return Chain;
2755}
2756
2757/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2758/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2759static unsigned
2760CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2761                                     bool isPPC64,
2762                                     bool isVarArg,
2763                                     unsigned CC,
2764                                     const SmallVectorImpl<ISD::OutputArg>
2765                                       &Outs,
2766                                     const SmallVectorImpl<SDValue> &OutVals,
2767                                     unsigned &nAltivecParamsAtEnd) {
2768  // Count how many bytes are to be pushed on the stack, including the linkage
2769  // area, and parameter passing area.  We start with 24/48 bytes, which is
2770  // prereserved space for [SP][CR][LR][3 x unused].
2771  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2772  unsigned NumOps = Outs.size();
2773  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2774
2775  // Add up all the space actually used.
2776  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2777  // they all go in registers, but we must reserve stack space for them for
2778  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2779  // assigned stack space in order, with padding so Altivec parameters are
2780  // 16-byte aligned.
2781  nAltivecParamsAtEnd = 0;
2782  for (unsigned i = 0; i != NumOps; ++i) {
2783    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2784    EVT ArgVT = Outs[i].VT;
2785    // Varargs Altivec parameters are padded to a 16 byte boundary.
2786    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2787        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2788      if (!isVarArg && !isPPC64) {
2789        // Non-varargs Altivec parameters go after all the non-Altivec
2790        // parameters; handle those later so we know how much padding we need.
2791        nAltivecParamsAtEnd++;
2792        continue;
2793      }
2794      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2795      NumBytes = ((NumBytes+15)/16)*16;
2796    }
2797    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2798  }
2799
2800   // Allow for Altivec parameters at the end, if needed.
2801  if (nAltivecParamsAtEnd) {
2802    NumBytes = ((NumBytes+15)/16)*16;
2803    NumBytes += 16*nAltivecParamsAtEnd;
2804  }
2805
2806  // The prolog code of the callee may store up to 8 GPR argument registers to
2807  // the stack, allowing va_start to index over them in memory if its varargs.
2808  // Because we cannot tell if this is needed on the caller side, we have to
2809  // conservatively assume that it is needed.  As such, make sure we have at
2810  // least enough stack space for the caller to store the 8 GPRs.
2811  NumBytes = std::max(NumBytes,
2812                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2813
2814  // Tail call needs the stack to be aligned.
2815  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2816    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2817      getFrameLowering()->getStackAlignment();
2818    unsigned AlignMask = TargetAlign-1;
2819    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2820  }
2821
2822  return NumBytes;
2823}
2824
2825/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2826/// adjusted to accommodate the arguments for the tailcall.
2827static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2828                                   unsigned ParamSize) {
2829
2830  if (!isTailCall) return 0;
2831
2832  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2833  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2834  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2835  // Remember only if the new adjustement is bigger.
2836  if (SPDiff < FI->getTailCallSPDelta())
2837    FI->setTailCallSPDelta(SPDiff);
2838
2839  return SPDiff;
2840}
2841
2842/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2843/// for tail call optimization. Targets which want to do tail call
2844/// optimization should implement this function.
2845bool
2846PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2847                                                     CallingConv::ID CalleeCC,
2848                                                     bool isVarArg,
2849                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2850                                                     SelectionDAG& DAG) const {
2851  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2852    return false;
2853
2854  // Variable argument functions are not supported.
2855  if (isVarArg)
2856    return false;
2857
2858  MachineFunction &MF = DAG.getMachineFunction();
2859  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2860  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2861    // Functions containing by val parameters are not supported.
2862    for (unsigned i = 0; i != Ins.size(); i++) {
2863       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2864       if (Flags.isByVal()) return false;
2865    }
2866
2867    // Non PIC/GOT  tail calls are supported.
2868    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2869      return true;
2870
2871    // At the moment we can only do local tail calls (in same module, hidden
2872    // or protected) if we are generating PIC.
2873    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2874      return G->getGlobal()->hasHiddenVisibility()
2875          || G->getGlobal()->hasProtectedVisibility();
2876  }
2877
2878  return false;
2879}
2880
2881/// isCallCompatibleAddress - Return the immediate to use if the specified
2882/// 32-bit value is representable in the immediate field of a BxA instruction.
2883static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2884  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2885  if (!C) return 0;
2886
2887  int Addr = C->getZExtValue();
2888  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2889      SignExtend32<26>(Addr) != Addr)
2890    return 0;  // Top 6 bits have to be sext of immediate.
2891
2892  return DAG.getConstant((int)C->getZExtValue() >> 2,
2893                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2894}
2895
2896namespace {
2897
2898struct TailCallArgumentInfo {
2899  SDValue Arg;
2900  SDValue FrameIdxOp;
2901  int       FrameIdx;
2902
2903  TailCallArgumentInfo() : FrameIdx(0) {}
2904};
2905
2906}
2907
2908/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2909static void
2910StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2911                                           SDValue Chain,
2912                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2913                   SmallVector<SDValue, 8> &MemOpChains,
2914                   DebugLoc dl) {
2915  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2916    SDValue Arg = TailCallArgs[i].Arg;
2917    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2918    int FI = TailCallArgs[i].FrameIdx;
2919    // Store relative to framepointer.
2920    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2921                                       MachinePointerInfo::getFixedStack(FI),
2922                                       false, false, 0));
2923  }
2924}
2925
2926/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2927/// the appropriate stack slot for the tail call optimized function call.
2928static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2929                                               MachineFunction &MF,
2930                                               SDValue Chain,
2931                                               SDValue OldRetAddr,
2932                                               SDValue OldFP,
2933                                               int SPDiff,
2934                                               bool isPPC64,
2935                                               bool isDarwinABI,
2936                                               DebugLoc dl) {
2937  if (SPDiff) {
2938    // Calculate the new stack slot for the return address.
2939    int SlotSize = isPPC64 ? 8 : 4;
2940    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2941                                                                   isDarwinABI);
2942    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2943                                                          NewRetAddrLoc, true);
2944    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2945    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2946    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2947                         MachinePointerInfo::getFixedStack(NewRetAddr),
2948                         false, false, 0);
2949
2950    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2951    // slot as the FP is never overwritten.
2952    if (isDarwinABI) {
2953      int NewFPLoc =
2954        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2955      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2956                                                          true);
2957      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2958      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2959                           MachinePointerInfo::getFixedStack(NewFPIdx),
2960                           false, false, 0);
2961    }
2962  }
2963  return Chain;
2964}
2965
2966/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2967/// the position of the argument.
2968static void
2969CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2970                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2971                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2972  int Offset = ArgOffset + SPDiff;
2973  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2974  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2975  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2976  SDValue FIN = DAG.getFrameIndex(FI, VT);
2977  TailCallArgumentInfo Info;
2978  Info.Arg = Arg;
2979  Info.FrameIdxOp = FIN;
2980  Info.FrameIdx = FI;
2981  TailCallArguments.push_back(Info);
2982}
2983
2984/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2985/// stack slot. Returns the chain as result and the loaded frame pointers in
2986/// LROpOut/FPOpout. Used when tail calling.
2987SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2988                                                        int SPDiff,
2989                                                        SDValue Chain,
2990                                                        SDValue &LROpOut,
2991                                                        SDValue &FPOpOut,
2992                                                        bool isDarwinABI,
2993                                                        DebugLoc dl) const {
2994  if (SPDiff) {
2995    // Load the LR and FP stack slot for later adjusting.
2996    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2997    LROpOut = getReturnAddrFrameIndex(DAG);
2998    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2999                          false, false, false, 0);
3000    Chain = SDValue(LROpOut.getNode(), 1);
3001
3002    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3003    // slot as the FP is never overwritten.
3004    if (isDarwinABI) {
3005      FPOpOut = getFramePointerFrameIndex(DAG);
3006      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3007                            false, false, false, 0);
3008      Chain = SDValue(FPOpOut.getNode(), 1);
3009    }
3010  }
3011  return Chain;
3012}
3013
3014/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3015/// by "Src" to address "Dst" of size "Size".  Alignment information is
3016/// specified by the specific parameter attribute. The copy will be passed as
3017/// a byval function parameter.
3018/// Sometimes what we are copying is the end of a larger object, the part that
3019/// does not fit in registers.
3020static SDValue
3021CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3022                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3023                          DebugLoc dl) {
3024  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3025  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3026                       false, false, MachinePointerInfo(0),
3027                       MachinePointerInfo(0));
3028}
3029
3030/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3031/// tail calls.
3032static void
3033LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3034                 SDValue Arg, SDValue PtrOff, int SPDiff,
3035                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3036                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
3037                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
3038                 DebugLoc dl) {
3039  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3040  if (!isTailCall) {
3041    if (isVector) {
3042      SDValue StackPtr;
3043      if (isPPC64)
3044        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3045      else
3046        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3047      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3048                           DAG.getConstant(ArgOffset, PtrVT));
3049    }
3050    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3051                                       MachinePointerInfo(), false, false, 0));
3052  // Calculate and remember argument location.
3053  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3054                                  TailCallArguments);
3055}
3056
3057static
3058void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3059                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3060                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3061                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
3062  MachineFunction &MF = DAG.getMachineFunction();
3063
3064  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3065  // might overwrite each other in case of tail call optimization.
3066  SmallVector<SDValue, 8> MemOpChains2;
3067  // Do not flag preceding copytoreg stuff together with the following stuff.
3068  InFlag = SDValue();
3069  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3070                                    MemOpChains2, dl);
3071  if (!MemOpChains2.empty())
3072    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3073                        &MemOpChains2[0], MemOpChains2.size());
3074
3075  // Store the return address to the appropriate stack slot.
3076  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3077                                        isPPC64, isDarwinABI, dl);
3078
3079  // Emit callseq_end just before tailcall node.
3080  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3081                             DAG.getIntPtrConstant(0, true), InFlag);
3082  InFlag = Chain.getValue(1);
3083}
3084
3085static
3086unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3087                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
3088                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
3089                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
3090                     const PPCSubtarget &PPCSubTarget) {
3091
3092  bool isPPC64 = PPCSubTarget.isPPC64();
3093  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3094
3095  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3096  NodeTys.push_back(MVT::Other);   // Returns a chain
3097  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3098
3099  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
3100
3101  bool needIndirectCall = true;
3102  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3103    // If this is an absolute destination address, use the munged value.
3104    Callee = SDValue(Dest, 0);
3105    needIndirectCall = false;
3106  }
3107
3108  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3109    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3110    // Use indirect calls for ALL functions calls in JIT mode, since the
3111    // far-call stubs may be outside relocation limits for a BL instruction.
3112    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3113      unsigned OpFlags = 0;
3114      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3115          (PPCSubTarget.getTargetTriple().isMacOSX() &&
3116           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3117          (G->getGlobal()->isDeclaration() ||
3118           G->getGlobal()->isWeakForLinker())) {
3119        // PC-relative references to external symbols should go through $stub,
3120        // unless we're building with the leopard linker or later, which
3121        // automatically synthesizes these stubs.
3122        OpFlags = PPCII::MO_DARWIN_STUB;
3123      }
3124
3125      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3126      // every direct call is) turn it into a TargetGlobalAddress /
3127      // TargetExternalSymbol node so that legalize doesn't hack it.
3128      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3129                                          Callee.getValueType(),
3130                                          0, OpFlags);
3131      needIndirectCall = false;
3132    }
3133  }
3134
3135  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3136    unsigned char OpFlags = 0;
3137
3138    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3139        (PPCSubTarget.getTargetTriple().isMacOSX() &&
3140         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3141      // PC-relative references to external symbols should go through $stub,
3142      // unless we're building with the leopard linker or later, which
3143      // automatically synthesizes these stubs.
3144      OpFlags = PPCII::MO_DARWIN_STUB;
3145    }
3146
3147    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3148                                         OpFlags);
3149    needIndirectCall = false;
3150  }
3151
3152  if (needIndirectCall) {
3153    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3154    // to do the call, we can't use PPCISD::CALL.
3155    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3156
3157    if (isSVR4ABI && isPPC64) {
3158      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3159      // entry point, but to the function descriptor (the function entry point
3160      // address is part of the function descriptor though).
3161      // The function descriptor is a three doubleword structure with the
3162      // following fields: function entry point, TOC base address and
3163      // environment pointer.
3164      // Thus for a call through a function pointer, the following actions need
3165      // to be performed:
3166      //   1. Save the TOC of the caller in the TOC save area of its stack
3167      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3168      //   2. Load the address of the function entry point from the function
3169      //      descriptor.
3170      //   3. Load the TOC of the callee from the function descriptor into r2.
3171      //   4. Load the environment pointer from the function descriptor into
3172      //      r11.
3173      //   5. Branch to the function entry point address.
3174      //   6. On return of the callee, the TOC of the caller needs to be
3175      //      restored (this is done in FinishCall()).
3176      //
3177      // All those operations are flagged together to ensure that no other
3178      // operations can be scheduled in between. E.g. without flagging the
3179      // operations together, a TOC access in the caller could be scheduled
3180      // between the load of the callee TOC and the branch to the callee, which
3181      // results in the TOC access going through the TOC of the callee instead
3182      // of going through the TOC of the caller, which leads to incorrect code.
3183
3184      // Load the address of the function entry point from the function
3185      // descriptor.
3186      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3187      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3188                                        InFlag.getNode() ? 3 : 2);
3189      Chain = LoadFuncPtr.getValue(1);
3190      InFlag = LoadFuncPtr.getValue(2);
3191
3192      // Load environment pointer into r11.
3193      // Offset of the environment pointer within the function descriptor.
3194      SDValue PtrOff = DAG.getIntPtrConstant(16);
3195
3196      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3197      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3198                                       InFlag);
3199      Chain = LoadEnvPtr.getValue(1);
3200      InFlag = LoadEnvPtr.getValue(2);
3201
3202      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3203                                        InFlag);
3204      Chain = EnvVal.getValue(0);
3205      InFlag = EnvVal.getValue(1);
3206
3207      // Load TOC of the callee into r2. We are using a target-specific load
3208      // with r2 hard coded, because the result of a target-independent load
3209      // would never go directly into r2, since r2 is a reserved register (which
3210      // prevents the register allocator from allocating it), resulting in an
3211      // additional register being allocated and an unnecessary move instruction
3212      // being generated.
3213      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3214      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3215                                       Callee, InFlag);
3216      Chain = LoadTOCPtr.getValue(0);
3217      InFlag = LoadTOCPtr.getValue(1);
3218
3219      MTCTROps[0] = Chain;
3220      MTCTROps[1] = LoadFuncPtr;
3221      MTCTROps[2] = InFlag;
3222    }
3223
3224    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3225                        2 + (InFlag.getNode() != 0));
3226    InFlag = Chain.getValue(1);
3227
3228    NodeTys.clear();
3229    NodeTys.push_back(MVT::Other);
3230    NodeTys.push_back(MVT::Glue);
3231    Ops.push_back(Chain);
3232    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
3233    Callee.setNode(0);
3234    // Add CTR register as callee so a bctr can be emitted later.
3235    if (isTailCall)
3236      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3237  }
3238
3239  // If this is a direct call, pass the chain and the callee.
3240  if (Callee.getNode()) {
3241    Ops.push_back(Chain);
3242    Ops.push_back(Callee);
3243  }
3244  // If this is a tail call add stack pointer delta.
3245  if (isTailCall)
3246    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3247
3248  // Add argument registers to the end of the list so that they are known live
3249  // into the call.
3250  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3251    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3252                                  RegsToPass[i].second.getValueType()));
3253
3254  return CallOpc;
3255}
3256
3257static
3258bool isLocalCall(const SDValue &Callee)
3259{
3260  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3261    return !G->getGlobal()->isDeclaration() &&
3262           !G->getGlobal()->isWeakForLinker();
3263  return false;
3264}
3265
3266SDValue
3267PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3268                                   CallingConv::ID CallConv, bool isVarArg,
3269                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3270                                   DebugLoc dl, SelectionDAG &DAG,
3271                                   SmallVectorImpl<SDValue> &InVals) const {
3272
3273  SmallVector<CCValAssign, 16> RVLocs;
3274  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3275                    getTargetMachine(), RVLocs, *DAG.getContext());
3276  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3277
3278  // Copy all of the result registers out of their specified physreg.
3279  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3280    CCValAssign &VA = RVLocs[i];
3281    assert(VA.isRegLoc() && "Can only return in registers!");
3282
3283    SDValue Val = DAG.getCopyFromReg(Chain, dl,
3284                                     VA.getLocReg(), VA.getLocVT(), InFlag);
3285    Chain = Val.getValue(1);
3286    InFlag = Val.getValue(2);
3287
3288    switch (VA.getLocInfo()) {
3289    default: llvm_unreachable("Unknown loc info!");
3290    case CCValAssign::Full: break;
3291    case CCValAssign::AExt:
3292      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3293      break;
3294    case CCValAssign::ZExt:
3295      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3296                        DAG.getValueType(VA.getValVT()));
3297      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3298      break;
3299    case CCValAssign::SExt:
3300      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3301                        DAG.getValueType(VA.getValVT()));
3302      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3303      break;
3304    }
3305
3306    InVals.push_back(Val);
3307  }
3308
3309  return Chain;
3310}
3311
3312SDValue
3313PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
3314                              bool isTailCall, bool isVarArg,
3315                              SelectionDAG &DAG,
3316                              SmallVector<std::pair<unsigned, SDValue>, 8>
3317                                &RegsToPass,
3318                              SDValue InFlag, SDValue Chain,
3319                              SDValue &Callee,
3320                              int SPDiff, unsigned NumBytes,
3321                              const SmallVectorImpl<ISD::InputArg> &Ins,
3322                              SmallVectorImpl<SDValue> &InVals) const {
3323  std::vector<EVT> NodeTys;
3324  SmallVector<SDValue, 8> Ops;
3325  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3326                                 isTailCall, RegsToPass, Ops, NodeTys,
3327                                 PPCSubTarget);
3328
3329  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3330  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3331    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3332
3333  // When performing tail call optimization the callee pops its arguments off
3334  // the stack. Account for this here so these bytes can be pushed back on in
3335  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
3336  int BytesCalleePops =
3337    (CallConv == CallingConv::Fast &&
3338     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3339
3340  // Add a register mask operand representing the call-preserved registers.
3341  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3342  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3343  assert(Mask && "Missing call preserved mask for calling convention");
3344  Ops.push_back(DAG.getRegisterMask(Mask));
3345
3346  if (InFlag.getNode())
3347    Ops.push_back(InFlag);
3348
3349  // Emit tail call.
3350  if (isTailCall) {
3351    assert(((Callee.getOpcode() == ISD::Register &&
3352             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3353            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3354            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3355            isa<ConstantSDNode>(Callee)) &&
3356    "Expecting an global address, external symbol, absolute value or register");
3357
3358    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3359  }
3360
3361  // Add a NOP immediately after the branch instruction when using the 64-bit
3362  // SVR4 ABI. At link time, if caller and callee are in a different module and
3363  // thus have a different TOC, the call will be replaced with a call to a stub
3364  // function which saves the current TOC, loads the TOC of the callee and
3365  // branches to the callee. The NOP will be replaced with a load instruction
3366  // which restores the TOC of the caller from the TOC save slot of the current
3367  // stack frame. If caller and callee belong to the same module (and have the
3368  // same TOC), the NOP will remain unchanged.
3369
3370  bool needsTOCRestore = false;
3371  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3372    if (CallOpc == PPCISD::BCTRL_SVR4) {
3373      // This is a call through a function pointer.
3374      // Restore the caller TOC from the save area into R2.
3375      // See PrepareCall() for more information about calls through function
3376      // pointers in the 64-bit SVR4 ABI.
3377      // We are using a target-specific load with r2 hard coded, because the
3378      // result of a target-independent load would never go directly into r2,
3379      // since r2 is a reserved register (which prevents the register allocator
3380      // from allocating it), resulting in an additional register being
3381      // allocated and an unnecessary move instruction being generated.
3382      needsTOCRestore = true;
3383    } else if ((CallOpc == PPCISD::CALL_SVR4) && !isLocalCall(Callee)) {
3384      // Otherwise insert NOP for non-local calls.
3385      CallOpc = PPCISD::CALL_NOP_SVR4;
3386    }
3387  }
3388
3389  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3390  InFlag = Chain.getValue(1);
3391
3392  if (needsTOCRestore) {
3393    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3394    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3395    InFlag = Chain.getValue(1);
3396  }
3397
3398  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3399                             DAG.getIntPtrConstant(BytesCalleePops, true),
3400                             InFlag);
3401  if (!Ins.empty())
3402    InFlag = Chain.getValue(1);
3403
3404  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3405                         Ins, dl, DAG, InVals);
3406}
3407
3408SDValue
3409PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3410                             SmallVectorImpl<SDValue> &InVals) const {
3411  SelectionDAG &DAG                     = CLI.DAG;
3412  DebugLoc &dl                          = CLI.DL;
3413  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3414  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3415  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3416  SDValue Chain                         = CLI.Chain;
3417  SDValue Callee                        = CLI.Callee;
3418  bool &isTailCall                      = CLI.IsTailCall;
3419  CallingConv::ID CallConv              = CLI.CallConv;
3420  bool isVarArg                         = CLI.IsVarArg;
3421
3422  if (isTailCall)
3423    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3424                                                   Ins, DAG);
3425
3426  if (PPCSubTarget.isSVR4ABI()) {
3427    if (PPCSubTarget.isPPC64())
3428      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3429                              isTailCall, Outs, OutVals, Ins,
3430                              dl, DAG, InVals);
3431    else
3432      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3433                              isTailCall, Outs, OutVals, Ins,
3434                              dl, DAG, InVals);
3435  }
3436
3437  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3438                          isTailCall, Outs, OutVals, Ins,
3439                          dl, DAG, InVals);
3440}
3441
3442SDValue
3443PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3444                                    CallingConv::ID CallConv, bool isVarArg,
3445                                    bool isTailCall,
3446                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3447                                    const SmallVectorImpl<SDValue> &OutVals,
3448                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3449                                    DebugLoc dl, SelectionDAG &DAG,
3450                                    SmallVectorImpl<SDValue> &InVals) const {
3451  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3452  // of the 32-bit SVR4 ABI stack frame layout.
3453
3454  assert((CallConv == CallingConv::C ||
3455          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3456
3457  unsigned PtrByteSize = 4;
3458
3459  MachineFunction &MF = DAG.getMachineFunction();
3460
3461  // Mark this function as potentially containing a function that contains a
3462  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3463  // and restoring the callers stack pointer in this functions epilog. This is
3464  // done because by tail calling the called function might overwrite the value
3465  // in this function's (MF) stack pointer stack slot 0(SP).
3466  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3467      CallConv == CallingConv::Fast)
3468    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3469
3470  // Count how many bytes are to be pushed on the stack, including the linkage
3471  // area, parameter list area and the part of the local variable space which
3472  // contains copies of aggregates which are passed by value.
3473
3474  // Assign locations to all of the outgoing arguments.
3475  SmallVector<CCValAssign, 16> ArgLocs;
3476  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3477                 getTargetMachine(), ArgLocs, *DAG.getContext());
3478
3479  // Reserve space for the linkage area on the stack.
3480  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3481
3482  if (isVarArg) {
3483    // Handle fixed and variable vector arguments differently.
3484    // Fixed vector arguments go into registers as long as registers are
3485    // available. Variable vector arguments always go into memory.
3486    unsigned NumArgs = Outs.size();
3487
3488    for (unsigned i = 0; i != NumArgs; ++i) {
3489      MVT ArgVT = Outs[i].VT;
3490      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3491      bool Result;
3492
3493      if (Outs[i].IsFixed) {
3494        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3495                               CCInfo);
3496      } else {
3497        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3498                                      ArgFlags, CCInfo);
3499      }
3500
3501      if (Result) {
3502#ifndef NDEBUG
3503        errs() << "Call operand #" << i << " has unhandled type "
3504             << EVT(ArgVT).getEVTString() << "\n";
3505#endif
3506        llvm_unreachable(0);
3507      }
3508    }
3509  } else {
3510    // All arguments are treated the same.
3511    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3512  }
3513
3514  // Assign locations to all of the outgoing aggregate by value arguments.
3515  SmallVector<CCValAssign, 16> ByValArgLocs;
3516  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3517                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3518
3519  // Reserve stack space for the allocations in CCInfo.
3520  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3521
3522  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3523
3524  // Size of the linkage area, parameter list area and the part of the local
3525  // space variable where copies of aggregates which are passed by value are
3526  // stored.
3527  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3528
3529  // Calculate by how many bytes the stack has to be adjusted in case of tail
3530  // call optimization.
3531  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3532
3533  // Adjust the stack pointer for the new arguments...
3534  // These operations are automatically eliminated by the prolog/epilog pass
3535  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3536  SDValue CallSeqStart = Chain;
3537
3538  // Load the return address and frame pointer so it can be moved somewhere else
3539  // later.
3540  SDValue LROp, FPOp;
3541  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3542                                       dl);
3543
3544  // Set up a copy of the stack pointer for use loading and storing any
3545  // arguments that may not fit in the registers available for argument
3546  // passing.
3547  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3548
3549  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3550  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3551  SmallVector<SDValue, 8> MemOpChains;
3552
3553  bool seenFloatArg = false;
3554  // Walk the register/memloc assignments, inserting copies/loads.
3555  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3556       i != e;
3557       ++i) {
3558    CCValAssign &VA = ArgLocs[i];
3559    SDValue Arg = OutVals[i];
3560    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3561
3562    if (Flags.isByVal()) {
3563      // Argument is an aggregate which is passed by value, thus we need to
3564      // create a copy of it in the local variable space of the current stack
3565      // frame (which is the stack frame of the caller) and pass the address of
3566      // this copy to the callee.
3567      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3568      CCValAssign &ByValVA = ByValArgLocs[j++];
3569      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3570
3571      // Memory reserved in the local variable space of the callers stack frame.
3572      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3573
3574      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3575      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3576
3577      // Create a copy of the argument in the local area of the current
3578      // stack frame.
3579      SDValue MemcpyCall =
3580        CreateCopyOfByValArgument(Arg, PtrOff,
3581                                  CallSeqStart.getNode()->getOperand(0),
3582                                  Flags, DAG, dl);
3583
3584      // This must go outside the CALLSEQ_START..END.
3585      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3586                           CallSeqStart.getNode()->getOperand(1));
3587      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3588                             NewCallSeqStart.getNode());
3589      Chain = CallSeqStart = NewCallSeqStart;
3590
3591      // Pass the address of the aggregate copy on the stack either in a
3592      // physical register or in the parameter list area of the current stack
3593      // frame to the callee.
3594      Arg = PtrOff;
3595    }
3596
3597    if (VA.isRegLoc()) {
3598      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3599      // Put argument in a physical register.
3600      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3601    } else {
3602      // Put argument in the parameter list area of the current stack frame.
3603      assert(VA.isMemLoc());
3604      unsigned LocMemOffset = VA.getLocMemOffset();
3605
3606      if (!isTailCall) {
3607        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3608        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3609
3610        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3611                                           MachinePointerInfo(),
3612                                           false, false, 0));
3613      } else {
3614        // Calculate and remember argument location.
3615        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3616                                 TailCallArguments);
3617      }
3618    }
3619  }
3620
3621  if (!MemOpChains.empty())
3622    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3623                        &MemOpChains[0], MemOpChains.size());
3624
3625  // Build a sequence of copy-to-reg nodes chained together with token chain
3626  // and flag operands which copy the outgoing args into the appropriate regs.
3627  SDValue InFlag;
3628  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3629    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3630                             RegsToPass[i].second, InFlag);
3631    InFlag = Chain.getValue(1);
3632  }
3633
3634  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3635  // registers.
3636  if (isVarArg) {
3637    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3638    SDValue Ops[] = { Chain, InFlag };
3639
3640    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3641                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3642
3643    InFlag = Chain.getValue(1);
3644  }
3645
3646  if (isTailCall)
3647    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3648                    false, TailCallArguments);
3649
3650  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3651                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3652                    Ins, InVals);
3653}
3654
3655// Copy an argument into memory, being careful to do this outside the
3656// call sequence for the call to which the argument belongs.
3657SDValue
3658PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3659                                              SDValue CallSeqStart,
3660                                              ISD::ArgFlagsTy Flags,
3661                                              SelectionDAG &DAG,
3662                                              DebugLoc dl) const {
3663  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3664                        CallSeqStart.getNode()->getOperand(0),
3665                        Flags, DAG, dl);
3666  // The MEMCPY must go outside the CALLSEQ_START..END.
3667  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3668                             CallSeqStart.getNode()->getOperand(1));
3669  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3670                         NewCallSeqStart.getNode());
3671  return NewCallSeqStart;
3672}
3673
3674SDValue
3675PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3676                                    CallingConv::ID CallConv, bool isVarArg,
3677                                    bool isTailCall,
3678                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3679                                    const SmallVectorImpl<SDValue> &OutVals,
3680                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3681                                    DebugLoc dl, SelectionDAG &DAG,
3682                                    SmallVectorImpl<SDValue> &InVals) const {
3683
3684  unsigned NumOps = Outs.size();
3685
3686  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3687  unsigned PtrByteSize = 8;
3688
3689  MachineFunction &MF = DAG.getMachineFunction();
3690
3691  // Mark this function as potentially containing a function that contains a
3692  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3693  // and restoring the callers stack pointer in this functions epilog. This is
3694  // done because by tail calling the called function might overwrite the value
3695  // in this function's (MF) stack pointer stack slot 0(SP).
3696  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3697      CallConv == CallingConv::Fast)
3698    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3699
3700  unsigned nAltivecParamsAtEnd = 0;
3701
3702  // Count how many bytes are to be pushed on the stack, including the linkage
3703  // area, and parameter passing area.  We start with at least 48 bytes, which
3704  // is reserved space for [SP][CR][LR][3 x unused].
3705  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
3706  // of this call.
3707  unsigned NumBytes =
3708    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
3709                                         Outs, OutVals, nAltivecParamsAtEnd);
3710
3711  // Calculate by how many bytes the stack has to be adjusted in case of tail
3712  // call optimization.
3713  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3714
3715  // To protect arguments on the stack from being clobbered in a tail call,
3716  // force all the loads to happen before doing any other lowering.
3717  if (isTailCall)
3718    Chain = DAG.getStackArgumentTokenFactor(Chain);
3719
3720  // Adjust the stack pointer for the new arguments...
3721  // These operations are automatically eliminated by the prolog/epilog pass
3722  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3723  SDValue CallSeqStart = Chain;
3724
3725  // Load the return address and frame pointer so it can be move somewhere else
3726  // later.
3727  SDValue LROp, FPOp;
3728  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3729                                       dl);
3730
3731  // Set up a copy of the stack pointer for use loading and storing any
3732  // arguments that may not fit in the registers available for argument
3733  // passing.
3734  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3735
3736  // Figure out which arguments are going to go in registers, and which in
3737  // memory.  Also, if this is a vararg function, floating point operations
3738  // must be stored to our stack, and loaded into integer regs as well, if
3739  // any integer regs are available for argument passing.
3740  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
3741  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3742
3743  static const uint16_t GPR[] = {
3744    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3745    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3746  };
3747  static const uint16_t *FPR = GetFPR();
3748
3749  static const uint16_t VR[] = {
3750    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3751    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3752  };
3753  const unsigned NumGPRs = array_lengthof(GPR);
3754  const unsigned NumFPRs = 13;
3755  const unsigned NumVRs  = array_lengthof(VR);
3756
3757  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3758  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3759
3760  SmallVector<SDValue, 8> MemOpChains;
3761  for (unsigned i = 0; i != NumOps; ++i) {
3762    SDValue Arg = OutVals[i];
3763    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3764
3765    // PtrOff will be used to store the current argument to the stack if a
3766    // register cannot be found for it.
3767    SDValue PtrOff;
3768
3769    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3770
3771    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3772
3773    // Promote integers to 64-bit values.
3774    if (Arg.getValueType() == MVT::i32) {
3775      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3776      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3777      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3778    }
3779
3780    // FIXME memcpy is used way more than necessary.  Correctness first.
3781    // Note: "by value" is code for passing a structure by value, not
3782    // basic types.
3783    if (Flags.isByVal()) {
3784      // Note: Size includes alignment padding, so
3785      //   struct x { short a; char b; }
3786      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3787      // These are the proper values we need for right-justifying the
3788      // aggregate in a parameter register.
3789      unsigned Size = Flags.getByValSize();
3790
3791      // An empty aggregate parameter takes up no storage and no
3792      // registers.
3793      if (Size == 0)
3794        continue;
3795
3796      // All aggregates smaller than 8 bytes must be passed right-justified.
3797      if (Size==1 || Size==2 || Size==4) {
3798        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3799        if (GPR_idx != NumGPRs) {
3800          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3801                                        MachinePointerInfo(), VT,
3802                                        false, false, 0);
3803          MemOpChains.push_back(Load.getValue(1));
3804          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3805
3806          ArgOffset += PtrByteSize;
3807          continue;
3808        }
3809      }
3810
3811      if (GPR_idx == NumGPRs && Size < 8) {
3812        SDValue Const = DAG.getConstant(PtrByteSize - Size,
3813                                        PtrOff.getValueType());
3814        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3815        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3816                                                          CallSeqStart,
3817                                                          Flags, DAG, dl);
3818        ArgOffset += PtrByteSize;
3819        continue;
3820      }
3821      // Copy entire object into memory.  There are cases where gcc-generated
3822      // code assumes it is there, even if it could be put entirely into
3823      // registers.  (This is not what the doc says.)
3824
3825      // FIXME: The above statement is likely due to a misunderstanding of the
3826      // documents.  All arguments must be copied into the parameter area BY
3827      // THE CALLEE in the event that the callee takes the address of any
3828      // formal argument.  That has not yet been implemented.  However, it is
3829      // reasonable to use the stack area as a staging area for the register
3830      // load.
3831
3832      // Skip this for small aggregates, as we will use the same slot for a
3833      // right-justified copy, below.
3834      if (Size >= 8)
3835        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
3836                                                          CallSeqStart,
3837                                                          Flags, DAG, dl);
3838
3839      // When a register is available, pass a small aggregate right-justified.
3840      if (Size < 8 && GPR_idx != NumGPRs) {
3841        // The easiest way to get this right-justified in a register
3842        // is to copy the structure into the rightmost portion of a
3843        // local variable slot, then load the whole slot into the
3844        // register.
3845        // FIXME: The memcpy seems to produce pretty awful code for
3846        // small aggregates, particularly for packed ones.
3847        // FIXME: It would be preferable to use the slot in the
3848        // parameter save area instead of a new local variable.
3849        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3850        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3851        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3852                                                          CallSeqStart,
3853                                                          Flags, DAG, dl);
3854
3855        // Load the slot into the register.
3856        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3857                                   MachinePointerInfo(),
3858                                   false, false, false, 0);
3859        MemOpChains.push_back(Load.getValue(1));
3860        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3861
3862        // Done with this argument.
3863        ArgOffset += PtrByteSize;
3864        continue;
3865      }
3866
3867      // For aggregates larger than PtrByteSize, copy the pieces of the
3868      // object that fit into registers from the parameter save area.
3869      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3870        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3871        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3872        if (GPR_idx != NumGPRs) {
3873          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3874                                     MachinePointerInfo(),
3875                                     false, false, false, 0);
3876          MemOpChains.push_back(Load.getValue(1));
3877          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3878          ArgOffset += PtrByteSize;
3879        } else {
3880          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3881          break;
3882        }
3883      }
3884      continue;
3885    }
3886
3887    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3888    default: llvm_unreachable("Unexpected ValueType for argument!");
3889    case MVT::i32:
3890    case MVT::i64:
3891      if (GPR_idx != NumGPRs) {
3892        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3893      } else {
3894        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3895                         true, isTailCall, false, MemOpChains,
3896                         TailCallArguments, dl);
3897      }
3898      ArgOffset += PtrByteSize;
3899      break;
3900    case MVT::f32:
3901    case MVT::f64:
3902      if (FPR_idx != NumFPRs) {
3903        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3904
3905        if (isVarArg) {
3906          // A single float or an aggregate containing only a single float
3907          // must be passed right-justified in the stack doubleword, and
3908          // in the GPR, if one is available.
3909          SDValue StoreOff;
3910          if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
3911            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3912            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3913          } else
3914            StoreOff = PtrOff;
3915
3916          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
3917                                       MachinePointerInfo(), false, false, 0);
3918          MemOpChains.push_back(Store);
3919
3920          // Float varargs are always shadowed in available integer registers
3921          if (GPR_idx != NumGPRs) {
3922            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3923                                       MachinePointerInfo(), false, false,
3924                                       false, 0);
3925            MemOpChains.push_back(Load.getValue(1));
3926            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3927          }
3928        } else if (GPR_idx != NumGPRs)
3929          // If we have any FPRs remaining, we may also have GPRs remaining.
3930          ++GPR_idx;
3931      } else {
3932        // Single-precision floating-point values are mapped to the
3933        // second (rightmost) word of the stack doubleword.
3934        if (Arg.getValueType() == MVT::f32) {
3935          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3936          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3937        }
3938
3939        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3940                         true, isTailCall, false, MemOpChains,
3941                         TailCallArguments, dl);
3942      }
3943      ArgOffset += 8;
3944      break;
3945    case MVT::v4f32:
3946    case MVT::v4i32:
3947    case MVT::v8i16:
3948    case MVT::v16i8:
3949      if (isVarArg) {
3950        // These go aligned on the stack, or in the corresponding R registers
3951        // when within range.  The Darwin PPC ABI doc claims they also go in
3952        // V registers; in fact gcc does this only for arguments that are
3953        // prototyped, not for those that match the ...  We do it for all
3954        // arguments, seems to work.
3955        while (ArgOffset % 16 !=0) {
3956          ArgOffset += PtrByteSize;
3957          if (GPR_idx != NumGPRs)
3958            GPR_idx++;
3959        }
3960        // We could elide this store in the case where the object fits
3961        // entirely in R registers.  Maybe later.
3962        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3963                            DAG.getConstant(ArgOffset, PtrVT));
3964        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3965                                     MachinePointerInfo(), false, false, 0);
3966        MemOpChains.push_back(Store);
3967        if (VR_idx != NumVRs) {
3968          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3969                                     MachinePointerInfo(),
3970                                     false, false, false, 0);
3971          MemOpChains.push_back(Load.getValue(1));
3972          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3973        }
3974        ArgOffset += 16;
3975        for (unsigned i=0; i<16; i+=PtrByteSize) {
3976          if (GPR_idx == NumGPRs)
3977            break;
3978          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3979                                  DAG.getConstant(i, PtrVT));
3980          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3981                                     false, false, false, 0);
3982          MemOpChains.push_back(Load.getValue(1));
3983          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3984        }
3985        break;
3986      }
3987
3988      // Non-varargs Altivec params generally go in registers, but have
3989      // stack space allocated at the end.
3990      if (VR_idx != NumVRs) {
3991        // Doesn't have GPR space allocated.
3992        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3993      } else {
3994        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3995                         true, isTailCall, true, MemOpChains,
3996                         TailCallArguments, dl);
3997        ArgOffset += 16;
3998      }
3999      break;
4000    }
4001  }
4002
4003  if (!MemOpChains.empty())
4004    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4005                        &MemOpChains[0], MemOpChains.size());
4006
4007  // Check if this is an indirect call (MTCTR/BCTRL).
4008  // See PrepareCall() for more information about calls through function
4009  // pointers in the 64-bit SVR4 ABI.
4010  if (!isTailCall &&
4011      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4012      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4013      !isBLACompatibleAddress(Callee, DAG)) {
4014    // Load r2 into a virtual register and store it to the TOC save area.
4015    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4016    // TOC save area offset.
4017    SDValue PtrOff = DAG.getIntPtrConstant(40);
4018    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4019    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4020                         false, false, 0);
4021    // R12 must contain the address of an indirect callee.  This does not
4022    // mean the MTCTR instruction must use R12; it's easier to model this
4023    // as an extra parameter, so do that.
4024    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4025  }
4026
4027  // Build a sequence of copy-to-reg nodes chained together with token chain
4028  // and flag operands which copy the outgoing args into the appropriate regs.
4029  SDValue InFlag;
4030  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4031    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4032                             RegsToPass[i].second, InFlag);
4033    InFlag = Chain.getValue(1);
4034  }
4035
4036  if (isTailCall)
4037    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4038                    FPOp, true, TailCallArguments);
4039
4040  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4041                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4042                    Ins, InVals);
4043}
4044
4045SDValue
4046PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4047                                    CallingConv::ID CallConv, bool isVarArg,
4048                                    bool isTailCall,
4049                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4050                                    const SmallVectorImpl<SDValue> &OutVals,
4051                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4052                                    DebugLoc dl, SelectionDAG &DAG,
4053                                    SmallVectorImpl<SDValue> &InVals) const {
4054
4055  unsigned NumOps = Outs.size();
4056
4057  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4058  bool isPPC64 = PtrVT == MVT::i64;
4059  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4060
4061  MachineFunction &MF = DAG.getMachineFunction();
4062
4063  // Mark this function as potentially containing a function that contains a
4064  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4065  // and restoring the callers stack pointer in this functions epilog. This is
4066  // done because by tail calling the called function might overwrite the value
4067  // in this function's (MF) stack pointer stack slot 0(SP).
4068  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4069      CallConv == CallingConv::Fast)
4070    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4071
4072  unsigned nAltivecParamsAtEnd = 0;
4073
4074  // Count how many bytes are to be pushed on the stack, including the linkage
4075  // area, and parameter passing area.  We start with 24/48 bytes, which is
4076  // prereserved space for [SP][CR][LR][3 x unused].
4077  unsigned NumBytes =
4078    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4079                                         Outs, OutVals,
4080                                         nAltivecParamsAtEnd);
4081
4082  // Calculate by how many bytes the stack has to be adjusted in case of tail
4083  // call optimization.
4084  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4085
4086  // To protect arguments on the stack from being clobbered in a tail call,
4087  // force all the loads to happen before doing any other lowering.
4088  if (isTailCall)
4089    Chain = DAG.getStackArgumentTokenFactor(Chain);
4090
4091  // Adjust the stack pointer for the new arguments...
4092  // These operations are automatically eliminated by the prolog/epilog pass
4093  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
4094  SDValue CallSeqStart = Chain;
4095
4096  // Load the return address and frame pointer so it can be move somewhere else
4097  // later.
4098  SDValue LROp, FPOp;
4099  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4100                                       dl);
4101
4102  // Set up a copy of the stack pointer for use loading and storing any
4103  // arguments that may not fit in the registers available for argument
4104  // passing.
4105  SDValue StackPtr;
4106  if (isPPC64)
4107    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4108  else
4109    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4110
4111  // Figure out which arguments are going to go in registers, and which in
4112  // memory.  Also, if this is a vararg function, floating point operations
4113  // must be stored to our stack, and loaded into integer regs as well, if
4114  // any integer regs are available for argument passing.
4115  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4116  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4117
4118  static const uint16_t GPR_32[] = {           // 32-bit registers.
4119    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4120    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4121  };
4122  static const uint16_t GPR_64[] = {           // 64-bit registers.
4123    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4124    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4125  };
4126  static const uint16_t *FPR = GetFPR();
4127
4128  static const uint16_t VR[] = {
4129    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4130    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4131  };
4132  const unsigned NumGPRs = array_lengthof(GPR_32);
4133  const unsigned NumFPRs = 13;
4134  const unsigned NumVRs  = array_lengthof(VR);
4135
4136  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
4137
4138  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4139  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4140
4141  SmallVector<SDValue, 8> MemOpChains;
4142  for (unsigned i = 0; i != NumOps; ++i) {
4143    SDValue Arg = OutVals[i];
4144    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4145
4146    // PtrOff will be used to store the current argument to the stack if a
4147    // register cannot be found for it.
4148    SDValue PtrOff;
4149
4150    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4151
4152    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4153
4154    // On PPC64, promote integers to 64-bit values.
4155    if (isPPC64 && Arg.getValueType() == MVT::i32) {
4156      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4157      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4158      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4159    }
4160
4161    // FIXME memcpy is used way more than necessary.  Correctness first.
4162    // Note: "by value" is code for passing a structure by value, not
4163    // basic types.
4164    if (Flags.isByVal()) {
4165      unsigned Size = Flags.getByValSize();
4166      // Very small objects are passed right-justified.  Everything else is
4167      // passed left-justified.
4168      if (Size==1 || Size==2) {
4169        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4170        if (GPR_idx != NumGPRs) {
4171          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4172                                        MachinePointerInfo(), VT,
4173                                        false, false, 0);
4174          MemOpChains.push_back(Load.getValue(1));
4175          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4176
4177          ArgOffset += PtrByteSize;
4178        } else {
4179          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4180                                          PtrOff.getValueType());
4181          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4182          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4183                                                            CallSeqStart,
4184                                                            Flags, DAG, dl);
4185          ArgOffset += PtrByteSize;
4186        }
4187        continue;
4188      }
4189      // Copy entire object into memory.  There are cases where gcc-generated
4190      // code assumes it is there, even if it could be put entirely into
4191      // registers.  (This is not what the doc says.)
4192      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4193                                                        CallSeqStart,
4194                                                        Flags, DAG, dl);
4195
4196      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4197      // copy the pieces of the object that fit into registers from the
4198      // parameter save area.
4199      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4200        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4201        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4202        if (GPR_idx != NumGPRs) {
4203          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4204                                     MachinePointerInfo(),
4205                                     false, false, false, 0);
4206          MemOpChains.push_back(Load.getValue(1));
4207          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4208          ArgOffset += PtrByteSize;
4209        } else {
4210          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4211          break;
4212        }
4213      }
4214      continue;
4215    }
4216
4217    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
4218    default: llvm_unreachable("Unexpected ValueType for argument!");
4219    case MVT::i32:
4220    case MVT::i64:
4221      if (GPR_idx != NumGPRs) {
4222        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4223      } else {
4224        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4225                         isPPC64, isTailCall, false, MemOpChains,
4226                         TailCallArguments, dl);
4227      }
4228      ArgOffset += PtrByteSize;
4229      break;
4230    case MVT::f32:
4231    case MVT::f64:
4232      if (FPR_idx != NumFPRs) {
4233        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4234
4235        if (isVarArg) {
4236          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4237                                       MachinePointerInfo(), false, false, 0);
4238          MemOpChains.push_back(Store);
4239
4240          // Float varargs are always shadowed in available integer registers
4241          if (GPR_idx != NumGPRs) {
4242            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4243                                       MachinePointerInfo(), false, false,
4244                                       false, 0);
4245            MemOpChains.push_back(Load.getValue(1));
4246            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4247          }
4248          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4249            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4250            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4251            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4252                                       MachinePointerInfo(),
4253                                       false, false, false, 0);
4254            MemOpChains.push_back(Load.getValue(1));
4255            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4256          }
4257        } else {
4258          // If we have any FPRs remaining, we may also have GPRs remaining.
4259          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4260          // GPRs.
4261          if (GPR_idx != NumGPRs)
4262            ++GPR_idx;
4263          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4264              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4265            ++GPR_idx;
4266        }
4267      } else
4268        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4269                         isPPC64, isTailCall, false, MemOpChains,
4270                         TailCallArguments, dl);
4271      if (isPPC64)
4272        ArgOffset += 8;
4273      else
4274        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4275      break;
4276    case MVT::v4f32:
4277    case MVT::v4i32:
4278    case MVT::v8i16:
4279    case MVT::v16i8:
4280      if (isVarArg) {
4281        // These go aligned on the stack, or in the corresponding R registers
4282        // when within range.  The Darwin PPC ABI doc claims they also go in
4283        // V registers; in fact gcc does this only for arguments that are
4284        // prototyped, not for those that match the ...  We do it for all
4285        // arguments, seems to work.
4286        while (ArgOffset % 16 !=0) {
4287          ArgOffset += PtrByteSize;
4288          if (GPR_idx != NumGPRs)
4289            GPR_idx++;
4290        }
4291        // We could elide this store in the case where the object fits
4292        // entirely in R registers.  Maybe later.
4293        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4294                            DAG.getConstant(ArgOffset, PtrVT));
4295        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4296                                     MachinePointerInfo(), false, false, 0);
4297        MemOpChains.push_back(Store);
4298        if (VR_idx != NumVRs) {
4299          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4300                                     MachinePointerInfo(),
4301                                     false, false, false, 0);
4302          MemOpChains.push_back(Load.getValue(1));
4303          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4304        }
4305        ArgOffset += 16;
4306        for (unsigned i=0; i<16; i+=PtrByteSize) {
4307          if (GPR_idx == NumGPRs)
4308            break;
4309          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4310                                  DAG.getConstant(i, PtrVT));
4311          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4312                                     false, false, false, 0);
4313          MemOpChains.push_back(Load.getValue(1));
4314          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4315        }
4316        break;
4317      }
4318
4319      // Non-varargs Altivec params generally go in registers, but have
4320      // stack space allocated at the end.
4321      if (VR_idx != NumVRs) {
4322        // Doesn't have GPR space allocated.
4323        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4324      } else if (nAltivecParamsAtEnd==0) {
4325        // We are emitting Altivec params in order.
4326        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4327                         isPPC64, isTailCall, true, MemOpChains,
4328                         TailCallArguments, dl);
4329        ArgOffset += 16;
4330      }
4331      break;
4332    }
4333  }
4334  // If all Altivec parameters fit in registers, as they usually do,
4335  // they get stack space following the non-Altivec parameters.  We
4336  // don't track this here because nobody below needs it.
4337  // If there are more Altivec parameters than fit in registers emit
4338  // the stores here.
4339  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4340    unsigned j = 0;
4341    // Offset is aligned; skip 1st 12 params which go in V registers.
4342    ArgOffset = ((ArgOffset+15)/16)*16;
4343    ArgOffset += 12*16;
4344    for (unsigned i = 0; i != NumOps; ++i) {
4345      SDValue Arg = OutVals[i];
4346      EVT ArgType = Outs[i].VT;
4347      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4348          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4349        if (++j > NumVRs) {
4350          SDValue PtrOff;
4351          // We are emitting Altivec params in order.
4352          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4353                           isPPC64, isTailCall, true, MemOpChains,
4354                           TailCallArguments, dl);
4355          ArgOffset += 16;
4356        }
4357      }
4358    }
4359  }
4360
4361  if (!MemOpChains.empty())
4362    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4363                        &MemOpChains[0], MemOpChains.size());
4364
4365  // On Darwin, R12 must contain the address of an indirect callee.  This does
4366  // not mean the MTCTR instruction must use R12; it's easier to model this as
4367  // an extra parameter, so do that.
4368  if (!isTailCall &&
4369      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4370      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4371      !isBLACompatibleAddress(Callee, DAG))
4372    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4373                                                   PPC::R12), Callee));
4374
4375  // Build a sequence of copy-to-reg nodes chained together with token chain
4376  // and flag operands which copy the outgoing args into the appropriate regs.
4377  SDValue InFlag;
4378  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4379    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4380                             RegsToPass[i].second, InFlag);
4381    InFlag = Chain.getValue(1);
4382  }
4383
4384  if (isTailCall)
4385    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4386                    FPOp, true, TailCallArguments);
4387
4388  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4389                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4390                    Ins, InVals);
4391}
4392
4393bool
4394PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4395                                  MachineFunction &MF, bool isVarArg,
4396                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
4397                                  LLVMContext &Context) const {
4398  SmallVector<CCValAssign, 16> RVLocs;
4399  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4400                 RVLocs, Context);
4401  return CCInfo.CheckReturn(Outs, RetCC_PPC);
4402}
4403
4404SDValue
4405PPCTargetLowering::LowerReturn(SDValue Chain,
4406                               CallingConv::ID CallConv, bool isVarArg,
4407                               const SmallVectorImpl<ISD::OutputArg> &Outs,
4408                               const SmallVectorImpl<SDValue> &OutVals,
4409                               DebugLoc dl, SelectionDAG &DAG) const {
4410
4411  SmallVector<CCValAssign, 16> RVLocs;
4412  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4413                 getTargetMachine(), RVLocs, *DAG.getContext());
4414  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4415
4416  SDValue Flag;
4417  SmallVector<SDValue, 4> RetOps(1, Chain);
4418
4419  // Copy the result values into the output registers.
4420  for (unsigned i = 0; i != RVLocs.size(); ++i) {
4421    CCValAssign &VA = RVLocs[i];
4422    assert(VA.isRegLoc() && "Can only return in registers!");
4423
4424    SDValue Arg = OutVals[i];
4425
4426    switch (VA.getLocInfo()) {
4427    default: llvm_unreachable("Unknown loc info!");
4428    case CCValAssign::Full: break;
4429    case CCValAssign::AExt:
4430      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4431      break;
4432    case CCValAssign::ZExt:
4433      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4434      break;
4435    case CCValAssign::SExt:
4436      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4437      break;
4438    }
4439
4440    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4441    Flag = Chain.getValue(1);
4442    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4443  }
4444
4445  RetOps[0] = Chain;  // Update chain.
4446
4447  // Add the flag if we have it.
4448  if (Flag.getNode())
4449    RetOps.push_back(Flag);
4450
4451  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
4452                     &RetOps[0], RetOps.size());
4453}
4454
4455SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4456                                   const PPCSubtarget &Subtarget) const {
4457  // When we pop the dynamic allocation we need to restore the SP link.
4458  DebugLoc dl = Op.getDebugLoc();
4459
4460  // Get the corect type for pointers.
4461  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4462
4463  // Construct the stack pointer operand.
4464  bool isPPC64 = Subtarget.isPPC64();
4465  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4466  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4467
4468  // Get the operands for the STACKRESTORE.
4469  SDValue Chain = Op.getOperand(0);
4470  SDValue SaveSP = Op.getOperand(1);
4471
4472  // Load the old link SP.
4473  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4474                                   MachinePointerInfo(),
4475                                   false, false, false, 0);
4476
4477  // Restore the stack pointer.
4478  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4479
4480  // Store the old link SP.
4481  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4482                      false, false, 0);
4483}
4484
4485
4486
4487SDValue
4488PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4489  MachineFunction &MF = DAG.getMachineFunction();
4490  bool isPPC64 = PPCSubTarget.isPPC64();
4491  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4492  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4493
4494  // Get current frame pointer save index.  The users of this index will be
4495  // primarily DYNALLOC instructions.
4496  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4497  int RASI = FI->getReturnAddrSaveIndex();
4498
4499  // If the frame pointer save index hasn't been defined yet.
4500  if (!RASI) {
4501    // Find out what the fix offset of the frame pointer save area.
4502    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4503    // Allocate the frame index for frame pointer save area.
4504    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4505    // Save the result.
4506    FI->setReturnAddrSaveIndex(RASI);
4507  }
4508  return DAG.getFrameIndex(RASI, PtrVT);
4509}
4510
4511SDValue
4512PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4513  MachineFunction &MF = DAG.getMachineFunction();
4514  bool isPPC64 = PPCSubTarget.isPPC64();
4515  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4516  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4517
4518  // Get current frame pointer save index.  The users of this index will be
4519  // primarily DYNALLOC instructions.
4520  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4521  int FPSI = FI->getFramePointerSaveIndex();
4522
4523  // If the frame pointer save index hasn't been defined yet.
4524  if (!FPSI) {
4525    // Find out what the fix offset of the frame pointer save area.
4526    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4527                                                           isDarwinABI);
4528
4529    // Allocate the frame index for frame pointer save area.
4530    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4531    // Save the result.
4532    FI->setFramePointerSaveIndex(FPSI);
4533  }
4534  return DAG.getFrameIndex(FPSI, PtrVT);
4535}
4536
4537SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4538                                         SelectionDAG &DAG,
4539                                         const PPCSubtarget &Subtarget) const {
4540  // Get the inputs.
4541  SDValue Chain = Op.getOperand(0);
4542  SDValue Size  = Op.getOperand(1);
4543  DebugLoc dl = Op.getDebugLoc();
4544
4545  // Get the corect type for pointers.
4546  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4547  // Negate the size.
4548  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4549                                  DAG.getConstant(0, PtrVT), Size);
4550  // Construct a node for the frame pointer save index.
4551  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4552  // Build a DYNALLOC node.
4553  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4554  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4555  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4556}
4557
4558/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4559/// possible.
4560SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4561  // Not FP? Not a fsel.
4562  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4563      !Op.getOperand(2).getValueType().isFloatingPoint())
4564    return Op;
4565
4566  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4567
4568  // Cannot handle SETEQ/SETNE.
4569  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
4570
4571  EVT ResVT = Op.getValueType();
4572  EVT CmpVT = Op.getOperand(0).getValueType();
4573  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4574  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4575  DebugLoc dl = Op.getDebugLoc();
4576
4577  // If the RHS of the comparison is a 0.0, we don't need to do the
4578  // subtraction at all.
4579  if (isFloatingPointZero(RHS))
4580    switch (CC) {
4581    default: break;       // SETUO etc aren't handled by fsel.
4582    case ISD::SETULT:
4583    case ISD::SETLT:
4584      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4585    case ISD::SETOGE:
4586    case ISD::SETGE:
4587      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4588        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4589      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4590    case ISD::SETUGT:
4591    case ISD::SETGT:
4592      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4593    case ISD::SETOLE:
4594    case ISD::SETLE:
4595      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4596        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4597      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4598                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4599    }
4600
4601  SDValue Cmp;
4602  switch (CC) {
4603  default: break;       // SETUO etc aren't handled by fsel.
4604  case ISD::SETULT:
4605  case ISD::SETLT:
4606    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4607    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4608      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4609      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4610  case ISD::SETOGE:
4611  case ISD::SETGE:
4612    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4613    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4614      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4615      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4616  case ISD::SETUGT:
4617  case ISD::SETGT:
4618    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4619    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4620      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4621      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4622  case ISD::SETOLE:
4623  case ISD::SETLE:
4624    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4625    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4626      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4627      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4628  }
4629  return Op;
4630}
4631
4632// FIXME: Split this code up when LegalizeDAGTypes lands.
4633SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4634                                           DebugLoc dl) const {
4635  assert(Op.getOperand(0).getValueType().isFloatingPoint());
4636  SDValue Src = Op.getOperand(0);
4637  if (Src.getValueType() == MVT::f32)
4638    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4639
4640  SDValue Tmp;
4641  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4642  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4643  case MVT::i32:
4644    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4645                                                         PPCISD::FCTIDZ,
4646                      dl, MVT::f64, Src);
4647    break;
4648  case MVT::i64:
4649    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
4650    break;
4651  }
4652
4653  // Convert the FP value to an int value through memory.
4654  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
4655
4656  // Emit a store to the stack slot.
4657  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4658                               MachinePointerInfo(), false, false, 0);
4659
4660  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
4661  // add in a bias.
4662  if (Op.getValueType() == MVT::i32)
4663    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4664                        DAG.getConstant(4, FIPtr.getValueType()));
4665  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
4666                     false, false, false, 0);
4667}
4668
4669SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
4670                                           SelectionDAG &DAG) const {
4671  DebugLoc dl = Op.getDebugLoc();
4672  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4673  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4674    return SDValue();
4675
4676  if (Op.getOperand(0).getValueType() == MVT::i64) {
4677    SDValue SINT = Op.getOperand(0);
4678    // When converting to single-precision, we actually need to convert
4679    // to double-precision first and then round to single-precision.
4680    // To avoid double-rounding effects during that operation, we have
4681    // to prepare the input operand.  Bits that might be truncated when
4682    // converting to double-precision are replaced by a bit that won't
4683    // be lost at this stage, but is below the single-precision rounding
4684    // position.
4685    //
4686    // However, if -enable-unsafe-fp-math is in effect, accept double
4687    // rounding to avoid the extra overhead.
4688    if (Op.getValueType() == MVT::f32 &&
4689        !DAG.getTarget().Options.UnsafeFPMath) {
4690
4691      // Twiddle input to make sure the low 11 bits are zero.  (If this
4692      // is the case, we are guaranteed the value will fit into the 53 bit
4693      // mantissa of an IEEE double-precision value without rounding.)
4694      // If any of those low 11 bits were not zero originally, make sure
4695      // bit 12 (value 2048) is set instead, so that the final rounding
4696      // to single-precision gets the correct result.
4697      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4698                                  SINT, DAG.getConstant(2047, MVT::i64));
4699      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
4700                          Round, DAG.getConstant(2047, MVT::i64));
4701      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
4702      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4703                          Round, DAG.getConstant(-2048, MVT::i64));
4704
4705      // However, we cannot use that value unconditionally: if the magnitude
4706      // of the input value is small, the bit-twiddling we did above might
4707      // end up visibly changing the output.  Fortunately, in that case, we
4708      // don't need to twiddle bits since the original input will convert
4709      // exactly to double-precision floating-point already.  Therefore,
4710      // construct a conditional to use the original value if the top 11
4711      // bits are all sign-bit copies, and use the rounded value computed
4712      // above otherwise.
4713      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
4714                                 SINT, DAG.getConstant(53, MVT::i32));
4715      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
4716                         Cond, DAG.getConstant(1, MVT::i64));
4717      Cond = DAG.getSetCC(dl, MVT::i32,
4718                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
4719
4720      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
4721    }
4722    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
4723    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
4724    if (Op.getValueType() == MVT::f32)
4725      FP = DAG.getNode(ISD::FP_ROUND, dl,
4726                       MVT::f32, FP, DAG.getIntPtrConstant(0));
4727    return FP;
4728  }
4729
4730  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4731         "Unhandled SINT_TO_FP type in custom expander!");
4732  // Since we only generate this in 64-bit mode, we can take advantage of
4733  // 64-bit registers.  In particular, sign extend the input value into the
4734  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4735  // then lfd it and fcfid it.
4736  MachineFunction &MF = DAG.getMachineFunction();
4737  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4738  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4739  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4740  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4741
4742  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
4743                                Op.getOperand(0));
4744
4745  // STD the extended value into the stack slot.
4746  MachineMemOperand *MMO =
4747    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4748                            MachineMemOperand::MOStore, 8, 8);
4749  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
4750  SDValue Store =
4751    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
4752                            Ops, 4, MVT::i64, MMO);
4753  // Load the value as a double.
4754  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
4755                           false, false, false, 0);
4756
4757  // FCFID it and return it.
4758  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
4759  if (Op.getValueType() == MVT::f32)
4760    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4761  return FP;
4762}
4763
4764SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4765                                            SelectionDAG &DAG) const {
4766  DebugLoc dl = Op.getDebugLoc();
4767  /*
4768   The rounding mode is in bits 30:31 of FPSR, and has the following
4769   settings:
4770     00 Round to nearest
4771     01 Round to 0
4772     10 Round to +inf
4773     11 Round to -inf
4774
4775  FLT_ROUNDS, on the other hand, expects the following:
4776    -1 Undefined
4777     0 Round to 0
4778     1 Round to nearest
4779     2 Round to +inf
4780     3 Round to -inf
4781
4782  To perform the conversion, we do:
4783    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
4784  */
4785
4786  MachineFunction &MF = DAG.getMachineFunction();
4787  EVT VT = Op.getValueType();
4788  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4789  std::vector<EVT> NodeTys;
4790  SDValue MFFSreg, InFlag;
4791
4792  // Save FP Control Word to register
4793  NodeTys.push_back(MVT::f64);    // return register
4794  NodeTys.push_back(MVT::Glue);   // unused in this context
4795  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4796
4797  // Save FP register to stack slot
4798  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
4799  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
4800  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
4801                               StackSlot, MachinePointerInfo(), false, false,0);
4802
4803  // Load FP Control Word from low 32 bits of stack slot.
4804  SDValue Four = DAG.getConstant(4, PtrVT);
4805  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
4806  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
4807                            false, false, false, 0);
4808
4809  // Transform as necessary
4810  SDValue CWD1 =
4811    DAG.getNode(ISD::AND, dl, MVT::i32,
4812                CWD, DAG.getConstant(3, MVT::i32));
4813  SDValue CWD2 =
4814    DAG.getNode(ISD::SRL, dl, MVT::i32,
4815                DAG.getNode(ISD::AND, dl, MVT::i32,
4816                            DAG.getNode(ISD::XOR, dl, MVT::i32,
4817                                        CWD, DAG.getConstant(3, MVT::i32)),
4818                            DAG.getConstant(3, MVT::i32)),
4819                DAG.getConstant(1, MVT::i32));
4820
4821  SDValue RetVal =
4822    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
4823
4824  return DAG.getNode((VT.getSizeInBits() < 16 ?
4825                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
4826}
4827
4828SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4829  EVT VT = Op.getValueType();
4830  unsigned BitWidth = VT.getSizeInBits();
4831  DebugLoc dl = Op.getDebugLoc();
4832  assert(Op.getNumOperands() == 3 &&
4833         VT == Op.getOperand(1).getValueType() &&
4834         "Unexpected SHL!");
4835
4836  // Expand into a bunch of logical ops.  Note that these ops
4837  // depend on the PPC behavior for oversized shift amounts.
4838  SDValue Lo = Op.getOperand(0);
4839  SDValue Hi = Op.getOperand(1);
4840  SDValue Amt = Op.getOperand(2);
4841  EVT AmtVT = Amt.getValueType();
4842
4843  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4844                             DAG.getConstant(BitWidth, AmtVT), Amt);
4845  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
4846  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
4847  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
4848  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4849                             DAG.getConstant(-BitWidth, AmtVT));
4850  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
4851  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4852  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
4853  SDValue OutOps[] = { OutLo, OutHi };
4854  return DAG.getMergeValues(OutOps, 2, dl);
4855}
4856
4857SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4858  EVT VT = Op.getValueType();
4859  DebugLoc dl = Op.getDebugLoc();
4860  unsigned BitWidth = VT.getSizeInBits();
4861  assert(Op.getNumOperands() == 3 &&
4862         VT == Op.getOperand(1).getValueType() &&
4863         "Unexpected SRL!");
4864
4865  // Expand into a bunch of logical ops.  Note that these ops
4866  // depend on the PPC behavior for oversized shift amounts.
4867  SDValue Lo = Op.getOperand(0);
4868  SDValue Hi = Op.getOperand(1);
4869  SDValue Amt = Op.getOperand(2);
4870  EVT AmtVT = Amt.getValueType();
4871
4872  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4873                             DAG.getConstant(BitWidth, AmtVT), Amt);
4874  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4875  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4876  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4877  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4878                             DAG.getConstant(-BitWidth, AmtVT));
4879  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
4880  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4881  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
4882  SDValue OutOps[] = { OutLo, OutHi };
4883  return DAG.getMergeValues(OutOps, 2, dl);
4884}
4885
4886SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
4887  DebugLoc dl = Op.getDebugLoc();
4888  EVT VT = Op.getValueType();
4889  unsigned BitWidth = VT.getSizeInBits();
4890  assert(Op.getNumOperands() == 3 &&
4891         VT == Op.getOperand(1).getValueType() &&
4892         "Unexpected SRA!");
4893
4894  // Expand into a bunch of logical ops, followed by a select_cc.
4895  SDValue Lo = Op.getOperand(0);
4896  SDValue Hi = Op.getOperand(1);
4897  SDValue Amt = Op.getOperand(2);
4898  EVT AmtVT = Amt.getValueType();
4899
4900  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4901                             DAG.getConstant(BitWidth, AmtVT), Amt);
4902  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4903  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4904  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4905  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4906                             DAG.getConstant(-BitWidth, AmtVT));
4907  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
4908  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
4909  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
4910                                  Tmp4, Tmp6, ISD::SETLE);
4911  SDValue OutOps[] = { OutLo, OutHi };
4912  return DAG.getMergeValues(OutOps, 2, dl);
4913}
4914
4915//===----------------------------------------------------------------------===//
4916// Vector related lowering.
4917//
4918
4919/// BuildSplatI - Build a canonical splati of Val with an element size of
4920/// SplatSize.  Cast the result to VT.
4921static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
4922                             SelectionDAG &DAG, DebugLoc dl) {
4923  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
4924
4925  static const EVT VTys[] = { // canonical VT to use for each size.
4926    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
4927  };
4928
4929  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
4930
4931  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
4932  if (Val == -1)
4933    SplatSize = 1;
4934
4935  EVT CanonicalVT = VTys[SplatSize-1];
4936
4937  // Build a canonical splat for this value.
4938  SDValue Elt = DAG.getConstant(Val, MVT::i32);
4939  SmallVector<SDValue, 8> Ops;
4940  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
4941  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
4942                              &Ops[0], Ops.size());
4943  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
4944}
4945
4946/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
4947/// specified intrinsic ID.
4948static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
4949                                SelectionDAG &DAG, DebugLoc dl,
4950                                EVT DestVT = MVT::Other) {
4951  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
4952  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4953                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
4954}
4955
4956/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
4957/// specified intrinsic ID.
4958static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
4959                                SDValue Op2, SelectionDAG &DAG,
4960                                DebugLoc dl, EVT DestVT = MVT::Other) {
4961  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
4962  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4963                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
4964}
4965
4966
4967/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
4968/// amount.  The result has the specified value type.
4969static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
4970                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4971  // Force LHS/RHS to be the right type.
4972  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
4973  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
4974
4975  int Ops[16];
4976  for (unsigned i = 0; i != 16; ++i)
4977    Ops[i] = i + Amt;
4978  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
4979  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4980}
4981
4982// If this is a case we can't handle, return null and let the default
4983// expansion code take care of it.  If we CAN select this case, and if it
4984// selects to a single instruction, return Op.  Otherwise, if we can codegen
4985// this case more efficiently than a constant pool load, lower it to the
4986// sequence of ops that should be used.
4987SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
4988                                             SelectionDAG &DAG) const {
4989  DebugLoc dl = Op.getDebugLoc();
4990  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4991  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
4992
4993  // Check if this is a splat of a constant value.
4994  APInt APSplatBits, APSplatUndef;
4995  unsigned SplatBitSize;
4996  bool HasAnyUndefs;
4997  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
4998                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
4999    return SDValue();
5000
5001  unsigned SplatBits = APSplatBits.getZExtValue();
5002  unsigned SplatUndef = APSplatUndef.getZExtValue();
5003  unsigned SplatSize = SplatBitSize / 8;
5004
5005  // First, handle single instruction cases.
5006
5007  // All zeros?
5008  if (SplatBits == 0) {
5009    // Canonicalize all zero vectors to be v4i32.
5010    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5011      SDValue Z = DAG.getConstant(0, MVT::i32);
5012      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5013      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5014    }
5015    return Op;
5016  }
5017
5018  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5019  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5020                    (32-SplatBitSize));
5021  if (SextVal >= -16 && SextVal <= 15)
5022    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5023
5024
5025  // Two instruction sequences.
5026
5027  // If this value is in the range [-32,30] and is even, use:
5028  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5029  // If this value is in the range [17,31] and is odd, use:
5030  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5031  // If this value is in the range [-31,-17] and is odd, use:
5032  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5033  // Note the last two are three-instruction sequences.
5034  if (SextVal >= -32 && SextVal <= 31) {
5035    // To avoid having these optimizations undone by constant folding,
5036    // we convert to a pseudo that will be expanded later into one of
5037    // the above forms.
5038    SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5039    EVT VT = Op.getValueType();
5040    int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
5041    SDValue EltSize = DAG.getConstant(Size, MVT::i32);
5042    return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5043  }
5044
5045  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5046  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5047  // for fneg/fabs.
5048  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5049    // Make -1 and vspltisw -1:
5050    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5051
5052    // Make the VSLW intrinsic, computing 0x8000_0000.
5053    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5054                                   OnesV, DAG, dl);
5055
5056    // xor by OnesV to invert it.
5057    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5058    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5059  }
5060
5061  // Check to see if this is a wide variety of vsplti*, binop self cases.
5062  static const signed char SplatCsts[] = {
5063    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5064    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5065  };
5066
5067  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5068    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5069    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5070    int i = SplatCsts[idx];
5071
5072    // Figure out what shift amount will be used by altivec if shifted by i in
5073    // this splat size.
5074    unsigned TypeShiftAmt = i & (SplatBitSize-1);
5075
5076    // vsplti + shl self.
5077    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5078      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5079      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5080        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5081        Intrinsic::ppc_altivec_vslw
5082      };
5083      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5084      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5085    }
5086
5087    // vsplti + srl self.
5088    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5089      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5090      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5091        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5092        Intrinsic::ppc_altivec_vsrw
5093      };
5094      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5095      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5096    }
5097
5098    // vsplti + sra self.
5099    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5100      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5101      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5102        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5103        Intrinsic::ppc_altivec_vsraw
5104      };
5105      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5106      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5107    }
5108
5109    // vsplti + rol self.
5110    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5111                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5112      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5113      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5114        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5115        Intrinsic::ppc_altivec_vrlw
5116      };
5117      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5118      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5119    }
5120
5121    // t = vsplti c, result = vsldoi t, t, 1
5122    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5123      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5124      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5125    }
5126    // t = vsplti c, result = vsldoi t, t, 2
5127    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5128      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5129      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5130    }
5131    // t = vsplti c, result = vsldoi t, t, 3
5132    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5133      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5134      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5135    }
5136  }
5137
5138  return SDValue();
5139}
5140
5141/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5142/// the specified operations to build the shuffle.
5143static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5144                                      SDValue RHS, SelectionDAG &DAG,
5145                                      DebugLoc dl) {
5146  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5147  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5148  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5149
5150  enum {
5151    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5152    OP_VMRGHW,
5153    OP_VMRGLW,
5154    OP_VSPLTISW0,
5155    OP_VSPLTISW1,
5156    OP_VSPLTISW2,
5157    OP_VSPLTISW3,
5158    OP_VSLDOI4,
5159    OP_VSLDOI8,
5160    OP_VSLDOI12
5161  };
5162
5163  if (OpNum == OP_COPY) {
5164    if (LHSID == (1*9+2)*9+3) return LHS;
5165    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5166    return RHS;
5167  }
5168
5169  SDValue OpLHS, OpRHS;
5170  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5171  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5172
5173  int ShufIdxs[16];
5174  switch (OpNum) {
5175  default: llvm_unreachable("Unknown i32 permute!");
5176  case OP_VMRGHW:
5177    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5178    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5179    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5180    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5181    break;
5182  case OP_VMRGLW:
5183    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5184    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5185    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5186    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5187    break;
5188  case OP_VSPLTISW0:
5189    for (unsigned i = 0; i != 16; ++i)
5190      ShufIdxs[i] = (i&3)+0;
5191    break;
5192  case OP_VSPLTISW1:
5193    for (unsigned i = 0; i != 16; ++i)
5194      ShufIdxs[i] = (i&3)+4;
5195    break;
5196  case OP_VSPLTISW2:
5197    for (unsigned i = 0; i != 16; ++i)
5198      ShufIdxs[i] = (i&3)+8;
5199    break;
5200  case OP_VSPLTISW3:
5201    for (unsigned i = 0; i != 16; ++i)
5202      ShufIdxs[i] = (i&3)+12;
5203    break;
5204  case OP_VSLDOI4:
5205    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5206  case OP_VSLDOI8:
5207    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5208  case OP_VSLDOI12:
5209    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5210  }
5211  EVT VT = OpLHS.getValueType();
5212  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5213  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5214  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5215  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5216}
5217
5218/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5219/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5220/// return the code it can be lowered into.  Worst case, it can always be
5221/// lowered into a vperm.
5222SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5223                                               SelectionDAG &DAG) const {
5224  DebugLoc dl = Op.getDebugLoc();
5225  SDValue V1 = Op.getOperand(0);
5226  SDValue V2 = Op.getOperand(1);
5227  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5228  EVT VT = Op.getValueType();
5229
5230  // Cases that are handled by instructions that take permute immediates
5231  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5232  // selected by the instruction selector.
5233  if (V2.getOpcode() == ISD::UNDEF) {
5234    if (PPC::isSplatShuffleMask(SVOp, 1) ||
5235        PPC::isSplatShuffleMask(SVOp, 2) ||
5236        PPC::isSplatShuffleMask(SVOp, 4) ||
5237        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5238        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5239        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5240        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5241        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5242        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5243        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5244        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5245        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5246      return Op;
5247    }
5248  }
5249
5250  // Altivec has a variety of "shuffle immediates" that take two vector inputs
5251  // and produce a fixed permutation.  If any of these match, do not lower to
5252  // VPERM.
5253  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5254      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5255      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5256      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5257      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5258      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5259      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5260      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5261      PPC::isVMRGHShuffleMask(SVOp, 4, false))
5262    return Op;
5263
5264  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5265  // perfect shuffle table to emit an optimal matching sequence.
5266  ArrayRef<int> PermMask = SVOp->getMask();
5267
5268  unsigned PFIndexes[4];
5269  bool isFourElementShuffle = true;
5270  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5271    unsigned EltNo = 8;   // Start out undef.
5272    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5273      if (PermMask[i*4+j] < 0)
5274        continue;   // Undef, ignore it.
5275
5276      unsigned ByteSource = PermMask[i*4+j];
5277      if ((ByteSource & 3) != j) {
5278        isFourElementShuffle = false;
5279        break;
5280      }
5281
5282      if (EltNo == 8) {
5283        EltNo = ByteSource/4;
5284      } else if (EltNo != ByteSource/4) {
5285        isFourElementShuffle = false;
5286        break;
5287      }
5288    }
5289    PFIndexes[i] = EltNo;
5290  }
5291
5292  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5293  // perfect shuffle vector to determine if it is cost effective to do this as
5294  // discrete instructions, or whether we should use a vperm.
5295  if (isFourElementShuffle) {
5296    // Compute the index in the perfect shuffle table.
5297    unsigned PFTableIndex =
5298      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5299
5300    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5301    unsigned Cost  = (PFEntry >> 30);
5302
5303    // Determining when to avoid vperm is tricky.  Many things affect the cost
5304    // of vperm, particularly how many times the perm mask needs to be computed.
5305    // For example, if the perm mask can be hoisted out of a loop or is already
5306    // used (perhaps because there are multiple permutes with the same shuffle
5307    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5308    // the loop requires an extra register.
5309    //
5310    // As a compromise, we only emit discrete instructions if the shuffle can be
5311    // generated in 3 or fewer operations.  When we have loop information
5312    // available, if this block is within a loop, we should avoid using vperm
5313    // for 3-operation perms and use a constant pool load instead.
5314    if (Cost < 3)
5315      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5316  }
5317
5318  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5319  // vector that will get spilled to the constant pool.
5320  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5321
5322  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5323  // that it is in input element units, not in bytes.  Convert now.
5324  EVT EltVT = V1.getValueType().getVectorElementType();
5325  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5326
5327  SmallVector<SDValue, 16> ResultMask;
5328  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5329    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5330
5331    for (unsigned j = 0; j != BytesPerElement; ++j)
5332      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5333                                           MVT::i32));
5334  }
5335
5336  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5337                                    &ResultMask[0], ResultMask.size());
5338  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5339}
5340
5341/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5342/// altivec comparison.  If it is, return true and fill in Opc/isDot with
5343/// information about the intrinsic.
5344static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5345                                  bool &isDot) {
5346  unsigned IntrinsicID =
5347    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5348  CompareOpc = -1;
5349  isDot = false;
5350  switch (IntrinsicID) {
5351  default: return false;
5352    // Comparison predicates.
5353  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5354  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5355  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5356  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5357  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5358  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5359  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5360  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5361  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5362  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5363  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5364  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5365  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5366
5367    // Normal Comparisons.
5368  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5369  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5370  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5371  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5372  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5373  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5374  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5375  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5376  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5377  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5378  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5379  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5380  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5381  }
5382  return true;
5383}
5384
5385/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5386/// lower, do it, otherwise return null.
5387SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5388                                                   SelectionDAG &DAG) const {
5389  // If this is a lowered altivec predicate compare, CompareOpc is set to the
5390  // opcode number of the comparison.
5391  DebugLoc dl = Op.getDebugLoc();
5392  int CompareOpc;
5393  bool isDot;
5394  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5395    return SDValue();    // Don't custom lower most intrinsics.
5396
5397  // If this is a non-dot comparison, make the VCMP node and we are done.
5398  if (!isDot) {
5399    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5400                              Op.getOperand(1), Op.getOperand(2),
5401                              DAG.getConstant(CompareOpc, MVT::i32));
5402    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5403  }
5404
5405  // Create the PPCISD altivec 'dot' comparison node.
5406  SDValue Ops[] = {
5407    Op.getOperand(2),  // LHS
5408    Op.getOperand(3),  // RHS
5409    DAG.getConstant(CompareOpc, MVT::i32)
5410  };
5411  std::vector<EVT> VTs;
5412  VTs.push_back(Op.getOperand(2).getValueType());
5413  VTs.push_back(MVT::Glue);
5414  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5415
5416  // Now that we have the comparison, emit a copy from the CR to a GPR.
5417  // This is flagged to the above dot comparison.
5418  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
5419                                DAG.getRegister(PPC::CR6, MVT::i32),
5420                                CompNode.getValue(1));
5421
5422  // Unpack the result based on how the target uses it.
5423  unsigned BitNo;   // Bit # of CR6.
5424  bool InvertBit;   // Invert result?
5425  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5426  default:  // Can't happen, don't crash on invalid number though.
5427  case 0:   // Return the value of the EQ bit of CR6.
5428    BitNo = 0; InvertBit = false;
5429    break;
5430  case 1:   // Return the inverted value of the EQ bit of CR6.
5431    BitNo = 0; InvertBit = true;
5432    break;
5433  case 2:   // Return the value of the LT bit of CR6.
5434    BitNo = 2; InvertBit = false;
5435    break;
5436  case 3:   // Return the inverted value of the LT bit of CR6.
5437    BitNo = 2; InvertBit = true;
5438    break;
5439  }
5440
5441  // Shift the bit into the low position.
5442  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5443                      DAG.getConstant(8-(3-BitNo), MVT::i32));
5444  // Isolate the bit.
5445  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5446                      DAG.getConstant(1, MVT::i32));
5447
5448  // If we are supposed to, toggle the bit.
5449  if (InvertBit)
5450    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5451                        DAG.getConstant(1, MVT::i32));
5452  return Flags;
5453}
5454
5455SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5456                                                   SelectionDAG &DAG) const {
5457  DebugLoc dl = Op.getDebugLoc();
5458  // Create a stack slot that is 16-byte aligned.
5459  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5460  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5461  EVT PtrVT = getPointerTy();
5462  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5463
5464  // Store the input value into Value#0 of the stack slot.
5465  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5466                               Op.getOperand(0), FIdx, MachinePointerInfo(),
5467                               false, false, 0);
5468  // Load it out.
5469  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5470                     false, false, false, 0);
5471}
5472
5473SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5474  DebugLoc dl = Op.getDebugLoc();
5475  if (Op.getValueType() == MVT::v4i32) {
5476    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5477
5478    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
5479    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
5480
5481    SDValue RHSSwap =   // = vrlw RHS, 16
5482      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
5483
5484    // Shrinkify inputs to v8i16.
5485    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
5486    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
5487    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
5488
5489    // Low parts multiplied together, generating 32-bit results (we ignore the
5490    // top parts).
5491    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
5492                                        LHS, RHS, DAG, dl, MVT::v4i32);
5493
5494    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
5495                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
5496    // Shift the high parts up 16 bits.
5497    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
5498                              Neg16, DAG, dl);
5499    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
5500  } else if (Op.getValueType() == MVT::v8i16) {
5501    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5502
5503    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
5504
5505    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
5506                            LHS, RHS, Zero, DAG, dl);
5507  } else if (Op.getValueType() == MVT::v16i8) {
5508    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5509
5510    // Multiply the even 8-bit parts, producing 16-bit sums.
5511    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
5512                                           LHS, RHS, DAG, dl, MVT::v8i16);
5513    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
5514
5515    // Multiply the odd 8-bit parts, producing 16-bit sums.
5516    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5517                                          LHS, RHS, DAG, dl, MVT::v8i16);
5518    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5519
5520    // Merge the results together.
5521    int Ops[16];
5522    for (unsigned i = 0; i != 8; ++i) {
5523      Ops[i*2  ] = 2*i+1;
5524      Ops[i*2+1] = 2*i+1+16;
5525    }
5526    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5527  } else {
5528    llvm_unreachable("Unknown mul to lower!");
5529  }
5530}
5531
5532/// LowerOperation - Provide custom lowering hooks for some operations.
5533///
5534SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5535  switch (Op.getOpcode()) {
5536  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5537  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5538  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
5539  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5540  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5541  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5542  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5543  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
5544  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
5545  case ISD::VASTART:
5546    return LowerVASTART(Op, DAG, PPCSubTarget);
5547
5548  case ISD::VAARG:
5549    return LowerVAARG(Op, DAG, PPCSubTarget);
5550
5551  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5552  case ISD::DYNAMIC_STACKALLOC:
5553    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5554
5555  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
5556  case ISD::FP_TO_UINT:
5557  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
5558                                                       Op.getDebugLoc());
5559  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5560  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5561
5562  // Lower 64-bit shifts.
5563  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
5564  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
5565  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
5566
5567  // Vector-related lowering.
5568  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5569  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5570  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5571  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5572  case ISD::MUL:                return LowerMUL(Op, DAG);
5573
5574  // Frame & Return address.
5575  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5576  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5577  }
5578}
5579
5580void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5581                                           SmallVectorImpl<SDValue>&Results,
5582                                           SelectionDAG &DAG) const {
5583  const TargetMachine &TM = getTargetMachine();
5584  DebugLoc dl = N->getDebugLoc();
5585  switch (N->getOpcode()) {
5586  default:
5587    llvm_unreachable("Do not know how to custom type legalize this operation!");
5588  case ISD::VAARG: {
5589    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5590        || TM.getSubtarget<PPCSubtarget>().isPPC64())
5591      return;
5592
5593    EVT VT = N->getValueType(0);
5594
5595    if (VT == MVT::i64) {
5596      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5597
5598      Results.push_back(NewNode);
5599      Results.push_back(NewNode.getValue(1));
5600    }
5601    return;
5602  }
5603  case ISD::FP_ROUND_INREG: {
5604    assert(N->getValueType(0) == MVT::ppcf128);
5605    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5606    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5607                             MVT::f64, N->getOperand(0),
5608                             DAG.getIntPtrConstant(0));
5609    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5610                             MVT::f64, N->getOperand(0),
5611                             DAG.getIntPtrConstant(1));
5612
5613    // This sequence changes FPSCR to do round-to-zero, adds the two halves
5614    // of the long double, and puts FPSCR back the way it was.  We do not
5615    // actually model FPSCR.
5616    std::vector<EVT> NodeTys;
5617    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
5618
5619    NodeTys.push_back(MVT::f64);   // Return register
5620    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
5621    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
5622    MFFSreg = Result.getValue(0);
5623    InFlag = Result.getValue(1);
5624
5625    NodeTys.clear();
5626    NodeTys.push_back(MVT::Glue);   // Returns a flag
5627    Ops[0] = DAG.getConstant(31, MVT::i32);
5628    Ops[1] = InFlag;
5629    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
5630    InFlag = Result.getValue(0);
5631
5632    NodeTys.clear();
5633    NodeTys.push_back(MVT::Glue);   // Returns a flag
5634    Ops[0] = DAG.getConstant(30, MVT::i32);
5635    Ops[1] = InFlag;
5636    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
5637    InFlag = Result.getValue(0);
5638
5639    NodeTys.clear();
5640    NodeTys.push_back(MVT::f64);    // result of add
5641    NodeTys.push_back(MVT::Glue);   // Returns a flag
5642    Ops[0] = Lo;
5643    Ops[1] = Hi;
5644    Ops[2] = InFlag;
5645    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
5646    FPreg = Result.getValue(0);
5647    InFlag = Result.getValue(1);
5648
5649    NodeTys.clear();
5650    NodeTys.push_back(MVT::f64);
5651    Ops[0] = DAG.getConstant(1, MVT::i32);
5652    Ops[1] = MFFSreg;
5653    Ops[2] = FPreg;
5654    Ops[3] = InFlag;
5655    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
5656    FPreg = Result.getValue(0);
5657
5658    // We know the low half is about to be thrown away, so just use something
5659    // convenient.
5660    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5661                                FPreg, FPreg));
5662    return;
5663  }
5664  case ISD::FP_TO_SINT:
5665    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5666    return;
5667  }
5668}
5669
5670
5671//===----------------------------------------------------------------------===//
5672//  Other Lowering Code
5673//===----------------------------------------------------------------------===//
5674
5675MachineBasicBlock *
5676PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5677                                    bool is64bit, unsigned BinOpcode) const {
5678  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5679  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5680
5681  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5682  MachineFunction *F = BB->getParent();
5683  MachineFunction::iterator It = BB;
5684  ++It;
5685
5686  unsigned dest = MI->getOperand(0).getReg();
5687  unsigned ptrA = MI->getOperand(1).getReg();
5688  unsigned ptrB = MI->getOperand(2).getReg();
5689  unsigned incr = MI->getOperand(3).getReg();
5690  DebugLoc dl = MI->getDebugLoc();
5691
5692  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5693  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5694  F->insert(It, loopMBB);
5695  F->insert(It, exitMBB);
5696  exitMBB->splice(exitMBB->begin(), BB,
5697                  llvm::next(MachineBasicBlock::iterator(MI)),
5698                  BB->end());
5699  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5700
5701  MachineRegisterInfo &RegInfo = F->getRegInfo();
5702  unsigned TmpReg = (!BinOpcode) ? incr :
5703    RegInfo.createVirtualRegister(
5704       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5705                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5706
5707  //  thisMBB:
5708  //   ...
5709  //   fallthrough --> loopMBB
5710  BB->addSuccessor(loopMBB);
5711
5712  //  loopMBB:
5713  //   l[wd]arx dest, ptr
5714  //   add r0, dest, incr
5715  //   st[wd]cx. r0, ptr
5716  //   bne- loopMBB
5717  //   fallthrough --> exitMBB
5718  BB = loopMBB;
5719  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5720    .addReg(ptrA).addReg(ptrB);
5721  if (BinOpcode)
5722    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5723  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5724    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5725  BuildMI(BB, dl, TII->get(PPC::BCC))
5726    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5727  BB->addSuccessor(loopMBB);
5728  BB->addSuccessor(exitMBB);
5729
5730  //  exitMBB:
5731  //   ...
5732  BB = exitMBB;
5733  return BB;
5734}
5735
5736MachineBasicBlock *
5737PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5738                                            MachineBasicBlock *BB,
5739                                            bool is8bit,    // operation
5740                                            unsigned BinOpcode) const {
5741  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5742  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5743  // In 64 bit mode we have to use 64 bits for addresses, even though the
5744  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
5745  // registers without caring whether they're 32 or 64, but here we're
5746  // doing actual arithmetic on the addresses.
5747  bool is64bit = PPCSubTarget.isPPC64();
5748  unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5749
5750  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5751  MachineFunction *F = BB->getParent();
5752  MachineFunction::iterator It = BB;
5753  ++It;
5754
5755  unsigned dest = MI->getOperand(0).getReg();
5756  unsigned ptrA = MI->getOperand(1).getReg();
5757  unsigned ptrB = MI->getOperand(2).getReg();
5758  unsigned incr = MI->getOperand(3).getReg();
5759  DebugLoc dl = MI->getDebugLoc();
5760
5761  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5762  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5763  F->insert(It, loopMBB);
5764  F->insert(It, exitMBB);
5765  exitMBB->splice(exitMBB->begin(), BB,
5766                  llvm::next(MachineBasicBlock::iterator(MI)),
5767                  BB->end());
5768  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5769
5770  MachineRegisterInfo &RegInfo = F->getRegInfo();
5771  const TargetRegisterClass *RC =
5772    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5773              (const TargetRegisterClass *) &PPC::GPRCRegClass;
5774  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5775  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5776  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5777  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5778  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5779  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5780  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5781  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5782  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
5783  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5784  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5785  unsigned Ptr1Reg;
5786  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
5787
5788  //  thisMBB:
5789  //   ...
5790  //   fallthrough --> loopMBB
5791  BB->addSuccessor(loopMBB);
5792
5793  // The 4-byte load must be aligned, while a char or short may be
5794  // anywhere in the word.  Hence all this nasty bookkeeping code.
5795  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5796  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5797  //   xori shift, shift1, 24 [16]
5798  //   rlwinm ptr, ptr1, 0, 0, 29
5799  //   slw incr2, incr, shift
5800  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5801  //   slw mask, mask2, shift
5802  //  loopMBB:
5803  //   lwarx tmpDest, ptr
5804  //   add tmp, tmpDest, incr2
5805  //   andc tmp2, tmpDest, mask
5806  //   and tmp3, tmp, mask
5807  //   or tmp4, tmp3, tmp2
5808  //   stwcx. tmp4, ptr
5809  //   bne- loopMBB
5810  //   fallthrough --> exitMBB
5811  //   srw dest, tmpDest, shift
5812  if (ptrA != ZeroReg) {
5813    Ptr1Reg = RegInfo.createVirtualRegister(RC);
5814    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5815      .addReg(ptrA).addReg(ptrB);
5816  } else {
5817    Ptr1Reg = ptrB;
5818  }
5819  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5820      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5821  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5822      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5823  if (is64bit)
5824    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5825      .addReg(Ptr1Reg).addImm(0).addImm(61);
5826  else
5827    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5828      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5829  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5830      .addReg(incr).addReg(ShiftReg);
5831  if (is8bit)
5832    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5833  else {
5834    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5835    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5836  }
5837  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5838      .addReg(Mask2Reg).addReg(ShiftReg);
5839
5840  BB = loopMBB;
5841  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5842    .addReg(ZeroReg).addReg(PtrReg);
5843  if (BinOpcode)
5844    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
5845      .addReg(Incr2Reg).addReg(TmpDestReg);
5846  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
5847    .addReg(TmpDestReg).addReg(MaskReg);
5848  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
5849    .addReg(TmpReg).addReg(MaskReg);
5850  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
5851    .addReg(Tmp3Reg).addReg(Tmp2Reg);
5852  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5853    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
5854  BuildMI(BB, dl, TII->get(PPC::BCC))
5855    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5856  BB->addSuccessor(loopMBB);
5857  BB->addSuccessor(exitMBB);
5858
5859  //  exitMBB:
5860  //   ...
5861  BB = exitMBB;
5862  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
5863    .addReg(ShiftReg);
5864  return BB;
5865}
5866
5867MachineBasicBlock *
5868PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5869                                               MachineBasicBlock *BB) const {
5870  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5871
5872  // To "insert" these instructions we actually have to insert their
5873  // control-flow patterns.
5874  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5875  MachineFunction::iterator It = BB;
5876  ++It;
5877
5878  MachineFunction *F = BB->getParent();
5879
5880  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
5881                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
5882    unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ?
5883                                         PPC::ISEL8 : PPC::ISEL;
5884    unsigned SelectPred = MI->getOperand(4).getImm();
5885    DebugLoc dl = MI->getDebugLoc();
5886
5887    // The SelectPred is ((BI << 5) | BO) for a BCC
5888    unsigned BO = SelectPred & 0xF;
5889    assert((BO == 12 || BO == 4) && "invalid predicate BO field for isel");
5890
5891    unsigned TrueOpNo, FalseOpNo;
5892    if (BO == 12) {
5893      TrueOpNo = 2;
5894      FalseOpNo = 3;
5895    } else {
5896      TrueOpNo = 3;
5897      FalseOpNo = 2;
5898      SelectPred = PPC::InvertPredicate((PPC::Predicate)SelectPred);
5899    }
5900
5901    BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg())
5902      .addReg(MI->getOperand(TrueOpNo).getReg())
5903      .addReg(MI->getOperand(FalseOpNo).getReg())
5904      .addImm(SelectPred).addReg(MI->getOperand(1).getReg());
5905  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
5906             MI->getOpcode() == PPC::SELECT_CC_I8 ||
5907             MI->getOpcode() == PPC::SELECT_CC_F4 ||
5908             MI->getOpcode() == PPC::SELECT_CC_F8 ||
5909             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
5910
5911
5912    // The incoming instruction knows the destination vreg to set, the
5913    // condition code register to branch on, the true/false values to
5914    // select between, and a branch opcode to use.
5915
5916    //  thisMBB:
5917    //  ...
5918    //   TrueVal = ...
5919    //   cmpTY ccX, r1, r2
5920    //   bCC copy1MBB
5921    //   fallthrough --> copy0MBB
5922    MachineBasicBlock *thisMBB = BB;
5923    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
5924    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
5925    unsigned SelectPred = MI->getOperand(4).getImm();
5926    DebugLoc dl = MI->getDebugLoc();
5927    F->insert(It, copy0MBB);
5928    F->insert(It, sinkMBB);
5929
5930    // Transfer the remainder of BB and its successor edges to sinkMBB.
5931    sinkMBB->splice(sinkMBB->begin(), BB,
5932                    llvm::next(MachineBasicBlock::iterator(MI)),
5933                    BB->end());
5934    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
5935
5936    // Next, add the true and fallthrough blocks as its successors.
5937    BB->addSuccessor(copy0MBB);
5938    BB->addSuccessor(sinkMBB);
5939
5940    BuildMI(BB, dl, TII->get(PPC::BCC))
5941      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
5942
5943    //  copy0MBB:
5944    //   %FalseValue = ...
5945    //   # fallthrough to sinkMBB
5946    BB = copy0MBB;
5947
5948    // Update machine-CFG edges
5949    BB->addSuccessor(sinkMBB);
5950
5951    //  sinkMBB:
5952    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5953    //  ...
5954    BB = sinkMBB;
5955    BuildMI(*BB, BB->begin(), dl,
5956            TII->get(PPC::PHI), MI->getOperand(0).getReg())
5957      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
5958      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5959  }
5960  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
5961    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
5962  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
5963    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
5964  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
5965    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
5966  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
5967    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
5968
5969  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
5970    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
5971  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
5972    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
5973  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
5974    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
5975  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
5976    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
5977
5978  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
5979    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
5980  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
5981    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
5982  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
5983    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
5984  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
5985    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
5986
5987  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
5988    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
5989  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
5990    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
5991  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
5992    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
5993  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
5994    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
5995
5996  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
5997    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
5998  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
5999    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6000  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6001    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6002  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6003    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6004
6005  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6006    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6007  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6008    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6009  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6010    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6011  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6012    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6013
6014  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6015    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6016  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6017    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6018  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6019    BB = EmitAtomicBinary(MI, BB, false, 0);
6020  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6021    BB = EmitAtomicBinary(MI, BB, true, 0);
6022
6023  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6024           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6025    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6026
6027    unsigned dest   = MI->getOperand(0).getReg();
6028    unsigned ptrA   = MI->getOperand(1).getReg();
6029    unsigned ptrB   = MI->getOperand(2).getReg();
6030    unsigned oldval = MI->getOperand(3).getReg();
6031    unsigned newval = MI->getOperand(4).getReg();
6032    DebugLoc dl     = MI->getDebugLoc();
6033
6034    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6035    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6036    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6037    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6038    F->insert(It, loop1MBB);
6039    F->insert(It, loop2MBB);
6040    F->insert(It, midMBB);
6041    F->insert(It, exitMBB);
6042    exitMBB->splice(exitMBB->begin(), BB,
6043                    llvm::next(MachineBasicBlock::iterator(MI)),
6044                    BB->end());
6045    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6046
6047    //  thisMBB:
6048    //   ...
6049    //   fallthrough --> loopMBB
6050    BB->addSuccessor(loop1MBB);
6051
6052    // loop1MBB:
6053    //   l[wd]arx dest, ptr
6054    //   cmp[wd] dest, oldval
6055    //   bne- midMBB
6056    // loop2MBB:
6057    //   st[wd]cx. newval, ptr
6058    //   bne- loopMBB
6059    //   b exitBB
6060    // midMBB:
6061    //   st[wd]cx. dest, ptr
6062    // exitBB:
6063    BB = loop1MBB;
6064    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6065      .addReg(ptrA).addReg(ptrB);
6066    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6067      .addReg(oldval).addReg(dest);
6068    BuildMI(BB, dl, TII->get(PPC::BCC))
6069      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6070    BB->addSuccessor(loop2MBB);
6071    BB->addSuccessor(midMBB);
6072
6073    BB = loop2MBB;
6074    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6075      .addReg(newval).addReg(ptrA).addReg(ptrB);
6076    BuildMI(BB, dl, TII->get(PPC::BCC))
6077      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6078    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6079    BB->addSuccessor(loop1MBB);
6080    BB->addSuccessor(exitMBB);
6081
6082    BB = midMBB;
6083    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6084      .addReg(dest).addReg(ptrA).addReg(ptrB);
6085    BB->addSuccessor(exitMBB);
6086
6087    //  exitMBB:
6088    //   ...
6089    BB = exitMBB;
6090  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6091             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6092    // We must use 64-bit registers for addresses when targeting 64-bit,
6093    // since we're actually doing arithmetic on them.  Other registers
6094    // can be 32-bit.
6095    bool is64bit = PPCSubTarget.isPPC64();
6096    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6097
6098    unsigned dest   = MI->getOperand(0).getReg();
6099    unsigned ptrA   = MI->getOperand(1).getReg();
6100    unsigned ptrB   = MI->getOperand(2).getReg();
6101    unsigned oldval = MI->getOperand(3).getReg();
6102    unsigned newval = MI->getOperand(4).getReg();
6103    DebugLoc dl     = MI->getDebugLoc();
6104
6105    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6106    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6107    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6108    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6109    F->insert(It, loop1MBB);
6110    F->insert(It, loop2MBB);
6111    F->insert(It, midMBB);
6112    F->insert(It, exitMBB);
6113    exitMBB->splice(exitMBB->begin(), BB,
6114                    llvm::next(MachineBasicBlock::iterator(MI)),
6115                    BB->end());
6116    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6117
6118    MachineRegisterInfo &RegInfo = F->getRegInfo();
6119    const TargetRegisterClass *RC =
6120      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6121                (const TargetRegisterClass *) &PPC::GPRCRegClass;
6122    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6123    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6124    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6125    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6126    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6127    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6128    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6129    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6130    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6131    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6132    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6133    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6134    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6135    unsigned Ptr1Reg;
6136    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6137    unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
6138    //  thisMBB:
6139    //   ...
6140    //   fallthrough --> loopMBB
6141    BB->addSuccessor(loop1MBB);
6142
6143    // The 4-byte load must be aligned, while a char or short may be
6144    // anywhere in the word.  Hence all this nasty bookkeeping code.
6145    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6146    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6147    //   xori shift, shift1, 24 [16]
6148    //   rlwinm ptr, ptr1, 0, 0, 29
6149    //   slw newval2, newval, shift
6150    //   slw oldval2, oldval,shift
6151    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6152    //   slw mask, mask2, shift
6153    //   and newval3, newval2, mask
6154    //   and oldval3, oldval2, mask
6155    // loop1MBB:
6156    //   lwarx tmpDest, ptr
6157    //   and tmp, tmpDest, mask
6158    //   cmpw tmp, oldval3
6159    //   bne- midMBB
6160    // loop2MBB:
6161    //   andc tmp2, tmpDest, mask
6162    //   or tmp4, tmp2, newval3
6163    //   stwcx. tmp4, ptr
6164    //   bne- loop1MBB
6165    //   b exitBB
6166    // midMBB:
6167    //   stwcx. tmpDest, ptr
6168    // exitBB:
6169    //   srw dest, tmpDest, shift
6170    if (ptrA != ZeroReg) {
6171      Ptr1Reg = RegInfo.createVirtualRegister(RC);
6172      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6173        .addReg(ptrA).addReg(ptrB);
6174    } else {
6175      Ptr1Reg = ptrB;
6176    }
6177    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6178        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6179    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6180        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6181    if (is64bit)
6182      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6183        .addReg(Ptr1Reg).addImm(0).addImm(61);
6184    else
6185      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6186        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6187    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6188        .addReg(newval).addReg(ShiftReg);
6189    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6190        .addReg(oldval).addReg(ShiftReg);
6191    if (is8bit)
6192      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6193    else {
6194      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6195      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6196        .addReg(Mask3Reg).addImm(65535);
6197    }
6198    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6199        .addReg(Mask2Reg).addReg(ShiftReg);
6200    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6201        .addReg(NewVal2Reg).addReg(MaskReg);
6202    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6203        .addReg(OldVal2Reg).addReg(MaskReg);
6204
6205    BB = loop1MBB;
6206    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6207        .addReg(ZeroReg).addReg(PtrReg);
6208    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6209        .addReg(TmpDestReg).addReg(MaskReg);
6210    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6211        .addReg(TmpReg).addReg(OldVal3Reg);
6212    BuildMI(BB, dl, TII->get(PPC::BCC))
6213        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6214    BB->addSuccessor(loop2MBB);
6215    BB->addSuccessor(midMBB);
6216
6217    BB = loop2MBB;
6218    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6219        .addReg(TmpDestReg).addReg(MaskReg);
6220    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6221        .addReg(Tmp2Reg).addReg(NewVal3Reg);
6222    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6223        .addReg(ZeroReg).addReg(PtrReg);
6224    BuildMI(BB, dl, TII->get(PPC::BCC))
6225      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6226    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6227    BB->addSuccessor(loop1MBB);
6228    BB->addSuccessor(exitMBB);
6229
6230    BB = midMBB;
6231    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
6232      .addReg(ZeroReg).addReg(PtrReg);
6233    BB->addSuccessor(exitMBB);
6234
6235    //  exitMBB:
6236    //   ...
6237    BB = exitMBB;
6238    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
6239      .addReg(ShiftReg);
6240  } else {
6241    llvm_unreachable("Unexpected instr type to insert");
6242  }
6243
6244  MI->eraseFromParent();   // The pseudo instruction is gone now.
6245  return BB;
6246}
6247
6248//===----------------------------------------------------------------------===//
6249// Target Optimization Hooks
6250//===----------------------------------------------------------------------===//
6251
6252SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
6253                                             DAGCombinerInfo &DCI) const {
6254  const TargetMachine &TM = getTargetMachine();
6255  SelectionDAG &DAG = DCI.DAG;
6256  DebugLoc dl = N->getDebugLoc();
6257  switch (N->getOpcode()) {
6258  default: break;
6259  case PPCISD::SHL:
6260    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6261      if (C->isNullValue())   // 0 << V -> 0.
6262        return N->getOperand(0);
6263    }
6264    break;
6265  case PPCISD::SRL:
6266    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6267      if (C->isNullValue())   // 0 >>u V -> 0.
6268        return N->getOperand(0);
6269    }
6270    break;
6271  case PPCISD::SRA:
6272    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6273      if (C->isNullValue() ||   //  0 >>s V -> 0.
6274          C->isAllOnesValue())    // -1 >>s V -> -1.
6275        return N->getOperand(0);
6276    }
6277    break;
6278
6279  case ISD::SINT_TO_FP:
6280    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
6281      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
6282        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
6283        // We allow the src/dst to be either f32/f64, but the intermediate
6284        // type must be i64.
6285        if (N->getOperand(0).getValueType() == MVT::i64 &&
6286            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
6287          SDValue Val = N->getOperand(0).getOperand(0);
6288          if (Val.getValueType() == MVT::f32) {
6289            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6290            DCI.AddToWorklist(Val.getNode());
6291          }
6292
6293          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
6294          DCI.AddToWorklist(Val.getNode());
6295          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
6296          DCI.AddToWorklist(Val.getNode());
6297          if (N->getValueType(0) == MVT::f32) {
6298            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
6299                              DAG.getIntPtrConstant(0));
6300            DCI.AddToWorklist(Val.getNode());
6301          }
6302          return Val;
6303        } else if (N->getOperand(0).getValueType() == MVT::i32) {
6304          // If the intermediate type is i32, we can avoid the load/store here
6305          // too.
6306        }
6307      }
6308    }
6309    break;
6310  case ISD::STORE:
6311    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
6312    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
6313        !cast<StoreSDNode>(N)->isTruncatingStore() &&
6314        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
6315        N->getOperand(1).getValueType() == MVT::i32 &&
6316        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
6317      SDValue Val = N->getOperand(1).getOperand(0);
6318      if (Val.getValueType() == MVT::f32) {
6319        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6320        DCI.AddToWorklist(Val.getNode());
6321      }
6322      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
6323      DCI.AddToWorklist(Val.getNode());
6324
6325      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
6326                        N->getOperand(2), N->getOperand(3));
6327      DCI.AddToWorklist(Val.getNode());
6328      return Val;
6329    }
6330
6331    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
6332    if (cast<StoreSDNode>(N)->isUnindexed() &&
6333        N->getOperand(1).getOpcode() == ISD::BSWAP &&
6334        N->getOperand(1).getNode()->hasOneUse() &&
6335        (N->getOperand(1).getValueType() == MVT::i32 ||
6336         N->getOperand(1).getValueType() == MVT::i16)) {
6337      SDValue BSwapOp = N->getOperand(1).getOperand(0);
6338      // Do an any-extend to 32-bits if this is a half-word input.
6339      if (BSwapOp.getValueType() == MVT::i16)
6340        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
6341
6342      SDValue Ops[] = {
6343        N->getOperand(0), BSwapOp, N->getOperand(2),
6344        DAG.getValueType(N->getOperand(1).getValueType())
6345      };
6346      return
6347        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
6348                                Ops, array_lengthof(Ops),
6349                                cast<StoreSDNode>(N)->getMemoryVT(),
6350                                cast<StoreSDNode>(N)->getMemOperand());
6351    }
6352    break;
6353  case ISD::BSWAP:
6354    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
6355    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6356        N->getOperand(0).hasOneUse() &&
6357        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
6358      SDValue Load = N->getOperand(0);
6359      LoadSDNode *LD = cast<LoadSDNode>(Load);
6360      // Create the byte-swapping load.
6361      SDValue Ops[] = {
6362        LD->getChain(),    // Chain
6363        LD->getBasePtr(),  // Ptr
6364        DAG.getValueType(N->getValueType(0)) // VT
6365      };
6366      SDValue BSLoad =
6367        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
6368                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
6369                                LD->getMemoryVT(), LD->getMemOperand());
6370
6371      // If this is an i16 load, insert the truncate.
6372      SDValue ResVal = BSLoad;
6373      if (N->getValueType(0) == MVT::i16)
6374        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
6375
6376      // First, combine the bswap away.  This makes the value produced by the
6377      // load dead.
6378      DCI.CombineTo(N, ResVal);
6379
6380      // Next, combine the load away, we give it a bogus result value but a real
6381      // chain result.  The result value is dead because the bswap is dead.
6382      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6383
6384      // Return N so it doesn't get rechecked!
6385      return SDValue(N, 0);
6386    }
6387
6388    break;
6389  case PPCISD::VCMP: {
6390    // If a VCMPo node already exists with exactly the same operands as this
6391    // node, use its result instead of this node (VCMPo computes both a CR6 and
6392    // a normal output).
6393    //
6394    if (!N->getOperand(0).hasOneUse() &&
6395        !N->getOperand(1).hasOneUse() &&
6396        !N->getOperand(2).hasOneUse()) {
6397
6398      // Scan all of the users of the LHS, looking for VCMPo's that match.
6399      SDNode *VCMPoNode = 0;
6400
6401      SDNode *LHSN = N->getOperand(0).getNode();
6402      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
6403           UI != E; ++UI)
6404        if (UI->getOpcode() == PPCISD::VCMPo &&
6405            UI->getOperand(1) == N->getOperand(1) &&
6406            UI->getOperand(2) == N->getOperand(2) &&
6407            UI->getOperand(0) == N->getOperand(0)) {
6408          VCMPoNode = *UI;
6409          break;
6410        }
6411
6412      // If there is no VCMPo node, or if the flag value has a single use, don't
6413      // transform this.
6414      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
6415        break;
6416
6417      // Look at the (necessarily single) use of the flag value.  If it has a
6418      // chain, this transformation is more complex.  Note that multiple things
6419      // could use the value result, which we should ignore.
6420      SDNode *FlagUser = 0;
6421      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
6422           FlagUser == 0; ++UI) {
6423        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
6424        SDNode *User = *UI;
6425        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
6426          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
6427            FlagUser = User;
6428            break;
6429          }
6430        }
6431      }
6432
6433      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
6434      // give up for right now.
6435      if (FlagUser->getOpcode() == PPCISD::MFCR)
6436        return SDValue(VCMPoNode, 0);
6437    }
6438    break;
6439  }
6440  case ISD::BR_CC: {
6441    // If this is a branch on an altivec predicate comparison, lower this so
6442    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
6443    // lowering is done pre-legalize, because the legalizer lowers the predicate
6444    // compare down to code that is difficult to reassemble.
6445    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
6446    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
6447    int CompareOpc;
6448    bool isDot;
6449
6450    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
6451        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
6452        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
6453      assert(isDot && "Can't compare against a vector result!");
6454
6455      // If this is a comparison against something other than 0/1, then we know
6456      // that the condition is never/always true.
6457      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
6458      if (Val != 0 && Val != 1) {
6459        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
6460          return N->getOperand(0);
6461        // Always !=, turn it into an unconditional branch.
6462        return DAG.getNode(ISD::BR, dl, MVT::Other,
6463                           N->getOperand(0), N->getOperand(4));
6464      }
6465
6466      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
6467
6468      // Create the PPCISD altivec 'dot' comparison node.
6469      std::vector<EVT> VTs;
6470      SDValue Ops[] = {
6471        LHS.getOperand(2),  // LHS of compare
6472        LHS.getOperand(3),  // RHS of compare
6473        DAG.getConstant(CompareOpc, MVT::i32)
6474      };
6475      VTs.push_back(LHS.getOperand(2).getValueType());
6476      VTs.push_back(MVT::Glue);
6477      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
6478
6479      // Unpack the result based on how the target uses it.
6480      PPC::Predicate CompOpc;
6481      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
6482      default:  // Can't happen, don't crash on invalid number though.
6483      case 0:   // Branch on the value of the EQ bit of CR6.
6484        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
6485        break;
6486      case 1:   // Branch on the inverted value of the EQ bit of CR6.
6487        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
6488        break;
6489      case 2:   // Branch on the value of the LT bit of CR6.
6490        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
6491        break;
6492      case 3:   // Branch on the inverted value of the LT bit of CR6.
6493        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
6494        break;
6495      }
6496
6497      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
6498                         DAG.getConstant(CompOpc, MVT::i32),
6499                         DAG.getRegister(PPC::CR6, MVT::i32),
6500                         N->getOperand(4), CompNode.getValue(1));
6501    }
6502    break;
6503  }
6504  }
6505
6506  return SDValue();
6507}
6508
6509//===----------------------------------------------------------------------===//
6510// Inline Assembly Support
6511//===----------------------------------------------------------------------===//
6512
6513void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
6514                                                       APInt &KnownZero,
6515                                                       APInt &KnownOne,
6516                                                       const SelectionDAG &DAG,
6517                                                       unsigned Depth) const {
6518  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
6519  switch (Op.getOpcode()) {
6520  default: break;
6521  case PPCISD::LBRX: {
6522    // lhbrx is known to have the top bits cleared out.
6523    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
6524      KnownZero = 0xFFFF0000;
6525    break;
6526  }
6527  case ISD::INTRINSIC_WO_CHAIN: {
6528    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
6529    default: break;
6530    case Intrinsic::ppc_altivec_vcmpbfp_p:
6531    case Intrinsic::ppc_altivec_vcmpeqfp_p:
6532    case Intrinsic::ppc_altivec_vcmpequb_p:
6533    case Intrinsic::ppc_altivec_vcmpequh_p:
6534    case Intrinsic::ppc_altivec_vcmpequw_p:
6535    case Intrinsic::ppc_altivec_vcmpgefp_p:
6536    case Intrinsic::ppc_altivec_vcmpgtfp_p:
6537    case Intrinsic::ppc_altivec_vcmpgtsb_p:
6538    case Intrinsic::ppc_altivec_vcmpgtsh_p:
6539    case Intrinsic::ppc_altivec_vcmpgtsw_p:
6540    case Intrinsic::ppc_altivec_vcmpgtub_p:
6541    case Intrinsic::ppc_altivec_vcmpgtuh_p:
6542    case Intrinsic::ppc_altivec_vcmpgtuw_p:
6543      KnownZero = ~1U;  // All bits but the low one are known to be zero.
6544      break;
6545    }
6546  }
6547  }
6548}
6549
6550
6551/// getConstraintType - Given a constraint, return the type of
6552/// constraint it is for this target.
6553PPCTargetLowering::ConstraintType
6554PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
6555  if (Constraint.size() == 1) {
6556    switch (Constraint[0]) {
6557    default: break;
6558    case 'b':
6559    case 'r':
6560    case 'f':
6561    case 'v':
6562    case 'y':
6563      return C_RegisterClass;
6564    case 'Z':
6565      // FIXME: While Z does indicate a memory constraint, it specifically
6566      // indicates an r+r address (used in conjunction with the 'y' modifier
6567      // in the replacement string). Currently, we're forcing the base
6568      // register to be r0 in the asm printer (which is interpreted as zero)
6569      // and forming the complete address in the second register. This is
6570      // suboptimal.
6571      return C_Memory;
6572    }
6573  }
6574  return TargetLowering::getConstraintType(Constraint);
6575}
6576
6577/// Examine constraint type and operand type and determine a weight value.
6578/// This object must already have been set up with the operand type
6579/// and the current alternative constraint selected.
6580TargetLowering::ConstraintWeight
6581PPCTargetLowering::getSingleConstraintMatchWeight(
6582    AsmOperandInfo &info, const char *constraint) const {
6583  ConstraintWeight weight = CW_Invalid;
6584  Value *CallOperandVal = info.CallOperandVal;
6585    // If we don't have a value, we can't do a match,
6586    // but allow it at the lowest weight.
6587  if (CallOperandVal == NULL)
6588    return CW_Default;
6589  Type *type = CallOperandVal->getType();
6590  // Look at the constraint type.
6591  switch (*constraint) {
6592  default:
6593    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
6594    break;
6595  case 'b':
6596    if (type->isIntegerTy())
6597      weight = CW_Register;
6598    break;
6599  case 'f':
6600    if (type->isFloatTy())
6601      weight = CW_Register;
6602    break;
6603  case 'd':
6604    if (type->isDoubleTy())
6605      weight = CW_Register;
6606    break;
6607  case 'v':
6608    if (type->isVectorTy())
6609      weight = CW_Register;
6610    break;
6611  case 'y':
6612    weight = CW_Register;
6613    break;
6614  case 'Z':
6615    weight = CW_Memory;
6616    break;
6617  }
6618  return weight;
6619}
6620
6621std::pair<unsigned, const TargetRegisterClass*>
6622PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6623                                                EVT VT) const {
6624  if (Constraint.size() == 1) {
6625    // GCC RS6000 Constraint Letters
6626    switch (Constraint[0]) {
6627    case 'b':   // R1-R31
6628    case 'r':   // R0-R31
6629      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
6630        return std::make_pair(0U, &PPC::G8RCRegClass);
6631      return std::make_pair(0U, &PPC::GPRCRegClass);
6632    case 'f':
6633      if (VT == MVT::f32 || VT == MVT::i32)
6634        return std::make_pair(0U, &PPC::F4RCRegClass);
6635      if (VT == MVT::f64 || VT == MVT::i64)
6636        return std::make_pair(0U, &PPC::F8RCRegClass);
6637      break;
6638    case 'v':
6639      return std::make_pair(0U, &PPC::VRRCRegClass);
6640    case 'y':   // crrc
6641      return std::make_pair(0U, &PPC::CRRCRegClass);
6642    }
6643  }
6644
6645  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6646}
6647
6648
6649/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6650/// vector.  If it is invalid, don't add anything to Ops.
6651void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
6652                                                     std::string &Constraint,
6653                                                     std::vector<SDValue>&Ops,
6654                                                     SelectionDAG &DAG) const {
6655  SDValue Result(0,0);
6656
6657  // Only support length 1 constraints.
6658  if (Constraint.length() > 1) return;
6659
6660  char Letter = Constraint[0];
6661  switch (Letter) {
6662  default: break;
6663  case 'I':
6664  case 'J':
6665  case 'K':
6666  case 'L':
6667  case 'M':
6668  case 'N':
6669  case 'O':
6670  case 'P': {
6671    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
6672    if (!CST) return; // Must be an immediate to match.
6673    unsigned Value = CST->getZExtValue();
6674    switch (Letter) {
6675    default: llvm_unreachable("Unknown constraint letter!");
6676    case 'I':  // "I" is a signed 16-bit constant.
6677      if ((short)Value == (int)Value)
6678        Result = DAG.getTargetConstant(Value, Op.getValueType());
6679      break;
6680    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
6681    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
6682      if ((short)Value == 0)
6683        Result = DAG.getTargetConstant(Value, Op.getValueType());
6684      break;
6685    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
6686      if ((Value >> 16) == 0)
6687        Result = DAG.getTargetConstant(Value, Op.getValueType());
6688      break;
6689    case 'M':  // "M" is a constant that is greater than 31.
6690      if (Value > 31)
6691        Result = DAG.getTargetConstant(Value, Op.getValueType());
6692      break;
6693    case 'N':  // "N" is a positive constant that is an exact power of two.
6694      if ((int)Value > 0 && isPowerOf2_32(Value))
6695        Result = DAG.getTargetConstant(Value, Op.getValueType());
6696      break;
6697    case 'O':  // "O" is the constant zero.
6698      if (Value == 0)
6699        Result = DAG.getTargetConstant(Value, Op.getValueType());
6700      break;
6701    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
6702      if ((short)-Value == (int)-Value)
6703        Result = DAG.getTargetConstant(Value, Op.getValueType());
6704      break;
6705    }
6706    break;
6707  }
6708  }
6709
6710  if (Result.getNode()) {
6711    Ops.push_back(Result);
6712    return;
6713  }
6714
6715  // Handle standard constraint letters.
6716  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6717}
6718
6719// isLegalAddressingMode - Return true if the addressing mode represented
6720// by AM is legal for this target, for a load/store of the specified type.
6721bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
6722                                              Type *Ty) const {
6723  // FIXME: PPC does not allow r+i addressing modes for vectors!
6724
6725  // PPC allows a sign-extended 16-bit immediate field.
6726  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
6727    return false;
6728
6729  // No global is ever allowed as a base.
6730  if (AM.BaseGV)
6731    return false;
6732
6733  // PPC only support r+r,
6734  switch (AM.Scale) {
6735  case 0:  // "r+i" or just "i", depending on HasBaseReg.
6736    break;
6737  case 1:
6738    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
6739      return false;
6740    // Otherwise we have r+r or r+i.
6741    break;
6742  case 2:
6743    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
6744      return false;
6745    // Allow 2*r as r+r.
6746    break;
6747  default:
6748    // No other scales are supported.
6749    return false;
6750  }
6751
6752  return true;
6753}
6754
6755/// isLegalAddressImmediate - Return true if the integer value can be used
6756/// as the offset of the target addressing mode for load / store of the
6757/// given type.
6758bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
6759  // PPC allows a sign-extended 16-bit immediate field.
6760  return (V > -(1 << 16) && V < (1 << 16)-1);
6761}
6762
6763bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
6764  return false;
6765}
6766
6767SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
6768                                           SelectionDAG &DAG) const {
6769  MachineFunction &MF = DAG.getMachineFunction();
6770  MachineFrameInfo *MFI = MF.getFrameInfo();
6771  MFI->setReturnAddressIsTaken(true);
6772
6773  DebugLoc dl = Op.getDebugLoc();
6774  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6775
6776  // Make sure the function does not optimize away the store of the RA to
6777  // the stack.
6778  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6779  FuncInfo->setLRStoreRequired();
6780  bool isPPC64 = PPCSubTarget.isPPC64();
6781  bool isDarwinABI = PPCSubTarget.isDarwinABI();
6782
6783  if (Depth > 0) {
6784    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6785    SDValue Offset =
6786
6787      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
6788                      isPPC64? MVT::i64 : MVT::i32);
6789    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6790                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6791                                   FrameAddr, Offset),
6792                       MachinePointerInfo(), false, false, false, 0);
6793  }
6794
6795  // Just load the return address off the stack.
6796  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
6797  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6798                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
6799}
6800
6801SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
6802                                          SelectionDAG &DAG) const {
6803  DebugLoc dl = Op.getDebugLoc();
6804  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6805
6806  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
6807  bool isPPC64 = PtrVT == MVT::i64;
6808
6809  MachineFunction &MF = DAG.getMachineFunction();
6810  MachineFrameInfo *MFI = MF.getFrameInfo();
6811  MFI->setFrameAddressIsTaken(true);
6812  bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) ||
6813               MFI->hasVarSizedObjects()) &&
6814                  MFI->getStackSize() &&
6815                  !MF.getFunction()->getAttributes().
6816                    hasAttribute(AttributeSet::FunctionIndex, Attribute::Naked);
6817  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
6818                                (is31 ? PPC::R31 : PPC::R1);
6819  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
6820                                         PtrVT);
6821  while (Depth--)
6822    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
6823                            FrameAddr, MachinePointerInfo(), false, false,
6824                            false, 0);
6825  return FrameAddr;
6826}
6827
6828bool
6829PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
6830  // The PowerPC target isn't yet aware of offsets.
6831  return false;
6832}
6833
6834/// getOptimalMemOpType - Returns the target specific optimal type for load
6835/// and store operations as a result of memset, memcpy, and memmove
6836/// lowering. If DstAlign is zero that means it's safe to destination
6837/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
6838/// means there isn't a need to check it against alignment requirement,
6839/// probably because the source does not need to be loaded. If 'IsMemset' is
6840/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
6841/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
6842/// source is constant so it does not need to be loaded.
6843/// It returns EVT::Other if the type should be determined using generic
6844/// target-independent logic.
6845EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
6846                                           unsigned DstAlign, unsigned SrcAlign,
6847                                           bool IsMemset, bool ZeroMemset,
6848                                           bool MemcpyStrSrc,
6849                                           MachineFunction &MF) const {
6850  if (this->PPCSubTarget.isPPC64()) {
6851    return MVT::i64;
6852  } else {
6853    return MVT::i32;
6854  }
6855}
6856
6857/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
6858/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
6859/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
6860/// is expanded to mul + add.
6861bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
6862  if (!VT.isSimple())
6863    return false;
6864
6865  switch (VT.getSimpleVT().SimpleTy) {
6866  case MVT::f32:
6867  case MVT::f64:
6868  case MVT::v4f32:
6869    return true;
6870  default:
6871    break;
6872  }
6873
6874  return false;
6875}
6876
6877Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
6878  if (DisableILPPref)
6879    return TargetLowering::getSchedulingPreference(N);
6880
6881  return Sched::ILP;
6882}
6883
6884