PPCISelLowering.cpp revision 3ea3c2461932d96d3defa0a9aa93ffaf631bb19d
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Target/TargetLoweringObjectFile.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
46                                            EVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
51                                              EVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63  return new TargetLoweringObjectFileELF();
64}
65
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // Set up the register classes.
77  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
78  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
79  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
80
81  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
82  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
83  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
84
85  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
86
87  // PowerPC has pre-inc load and store's.
88  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
89  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
91  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
93  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
94  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
96  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
98
99  // This is used in the ppcf128->int sequence.  Note it has different semantics
100  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
101  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
102
103  // PowerPC has no SREM/UREM instructions
104  setOperationAction(ISD::SREM, MVT::i32, Expand);
105  setOperationAction(ISD::UREM, MVT::i32, Expand);
106  setOperationAction(ISD::SREM, MVT::i64, Expand);
107  setOperationAction(ISD::UREM, MVT::i64, Expand);
108
109  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
110  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
111  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
112  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
113  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
114  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
115  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
116  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
117  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
118
119  // We don't support sin/cos/sqrt/fmod/pow
120  setOperationAction(ISD::FSIN , MVT::f64, Expand);
121  setOperationAction(ISD::FCOS , MVT::f64, Expand);
122  setOperationAction(ISD::FREM , MVT::f64, Expand);
123  setOperationAction(ISD::FPOW , MVT::f64, Expand);
124  setOperationAction(ISD::FSIN , MVT::f32, Expand);
125  setOperationAction(ISD::FCOS , MVT::f32, Expand);
126  setOperationAction(ISD::FREM , MVT::f32, Expand);
127  setOperationAction(ISD::FPOW , MVT::f32, Expand);
128
129  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
130
131  // If we're enabling GP optimizations, use hardware square root
132  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
133    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
134    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
135  }
136
137  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
138  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
139
140  // PowerPC does not have BSWAP, CTPOP or CTTZ
141  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
142  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
143  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
144  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
145  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
146  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
147
148  // PowerPC does not have ROTR
149  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
150  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
151
152  // PowerPC does not have Select
153  setOperationAction(ISD::SELECT, MVT::i32, Expand);
154  setOperationAction(ISD::SELECT, MVT::i64, Expand);
155  setOperationAction(ISD::SELECT, MVT::f32, Expand);
156  setOperationAction(ISD::SELECT, MVT::f64, Expand);
157
158  // PowerPC wants to turn select_cc of FP into fsel when possible.
159  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
160  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
161
162  // PowerPC wants to optimize integer setcc a bit
163  setOperationAction(ISD::SETCC, MVT::i32, Custom);
164
165  // PowerPC does not have BRCOND which requires SetCC
166  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
167
168  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
169
170  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
171  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
172
173  // PowerPC does not have [U|S]INT_TO_FP
174  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
175  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
176
177  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
178  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
179  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
180  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
181
182  // We cannot sextinreg(i1).  Expand to shifts.
183  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
184
185  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
186  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
187  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
188  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
189
190
191  // We want to legalize GlobalAddress and ConstantPool nodes into the
192  // appropriate instructions to materialize the address.
193  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
194  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
195  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
196  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
197  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
198  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
199  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
200  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
201  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
202  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
203
204  // TRAP is legal.
205  setOperationAction(ISD::TRAP, MVT::Other, Legal);
206
207  // TRAMPOLINE is custom lowered.
208  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
209
210  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
211  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
212
213  // VAARG is custom lowered with the 32-bit SVR4 ABI.
214  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
215      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
216    setOperationAction(ISD::VAARG, MVT::Other, Custom);
217  else
218    setOperationAction(ISD::VAARG, MVT::Other, Expand);
219
220  // Use the default implementation.
221  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
222  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
223  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
224  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
225  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
226  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
227
228  // We want to custom lower some of our intrinsics.
229  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
230
231  // Comparisons that require checking two conditions.
232  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
233  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
234  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
235  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
236  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
244
245  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
246    // They also have instructions for converting between i64 and fp.
247    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
248    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
249    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
250    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
251    // This is just the low 32 bits of a (signed) fp->i64 conversion.
252    // We cannot do this with Promote because i64 is not a legal type.
253    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
254
255    // FIXME: disable this lowered code.  This generates 64-bit register values,
256    // and we don't model the fact that the top part is clobbered by calls.  We
257    // need to flag these together so that the value isn't live across a call.
258    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
259  } else {
260    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
261    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
262  }
263
264  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
265    // 64-bit PowerPC implementations can support i64 types directly
266    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
267    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
268    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
269    // 64-bit PowerPC wants to expand i128 shifts itself.
270    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
271    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
272    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
273  } else {
274    // 32-bit PowerPC wants to expand i64 shifts itself.
275    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
276    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
277    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
278  }
279
280  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
281    // First set operation action for all vector types to expand. Then we
282    // will selectively turn on ones that can be effectively codegen'd.
283    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
284         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
285      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
286
287      // add/sub are legal for all supported vector VT's.
288      setOperationAction(ISD::ADD , VT, Legal);
289      setOperationAction(ISD::SUB , VT, Legal);
290
291      // We promote all shuffles to v16i8.
292      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
293      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
294
295      // We promote all non-typed operations to v4i32.
296      setOperationAction(ISD::AND   , VT, Promote);
297      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
298      setOperationAction(ISD::OR    , VT, Promote);
299      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
300      setOperationAction(ISD::XOR   , VT, Promote);
301      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
302      setOperationAction(ISD::LOAD  , VT, Promote);
303      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
304      setOperationAction(ISD::SELECT, VT, Promote);
305      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
306      setOperationAction(ISD::STORE, VT, Promote);
307      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
308
309      // No other operations are legal.
310      setOperationAction(ISD::MUL , VT, Expand);
311      setOperationAction(ISD::SDIV, VT, Expand);
312      setOperationAction(ISD::SREM, VT, Expand);
313      setOperationAction(ISD::UDIV, VT, Expand);
314      setOperationAction(ISD::UREM, VT, Expand);
315      setOperationAction(ISD::FDIV, VT, Expand);
316      setOperationAction(ISD::FNEG, VT, Expand);
317      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
318      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
319      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
320      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
321      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
322      setOperationAction(ISD::UDIVREM, VT, Expand);
323      setOperationAction(ISD::SDIVREM, VT, Expand);
324      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
325      setOperationAction(ISD::FPOW, VT, Expand);
326      setOperationAction(ISD::CTPOP, VT, Expand);
327      setOperationAction(ISD::CTLZ, VT, Expand);
328      setOperationAction(ISD::CTTZ, VT, Expand);
329    }
330
331    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
332    // with merges, splats, etc.
333    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
334
335    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
336    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
337    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
338    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
339    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
340    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
341
342    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
343    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
344    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
345    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
346
347    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
348    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
349    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
350    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
351
352    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
353    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
354
355    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
356    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
357    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
358    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
359  }
360
361  setShiftAmountType(MVT::i32);
362  setBooleanContents(ZeroOrOneBooleanContent);
363
364  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
365    setStackPointerRegisterToSaveRestore(PPC::X1);
366    setExceptionPointerRegister(PPC::X3);
367    setExceptionSelectorRegister(PPC::X4);
368  } else {
369    setStackPointerRegisterToSaveRestore(PPC::R1);
370    setExceptionPointerRegister(PPC::R3);
371    setExceptionSelectorRegister(PPC::R4);
372  }
373
374  // We have target-specific dag combine patterns for the following nodes:
375  setTargetDAGCombine(ISD::SINT_TO_FP);
376  setTargetDAGCombine(ISD::STORE);
377  setTargetDAGCombine(ISD::BR_CC);
378  setTargetDAGCombine(ISD::BSWAP);
379
380  // Darwin long double math library functions have $LDBL128 appended.
381  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
382    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
383    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
384    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
385    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
386    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
387    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
388    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
389    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
390    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
391    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
392  }
393
394  computeRegisterProperties();
395}
396
397/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
398/// function arguments in the caller parameter area.
399unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
400  TargetMachine &TM = getTargetMachine();
401  // Darwin passes everything on 4 byte boundary.
402  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
403    return 4;
404  // FIXME SVR4 TBD
405  return 4;
406}
407
408const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
409  switch (Opcode) {
410  default: return 0;
411  case PPCISD::FSEL:            return "PPCISD::FSEL";
412  case PPCISD::FCFID:           return "PPCISD::FCFID";
413  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
414  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
415  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
416  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
417  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
418  case PPCISD::VPERM:           return "PPCISD::VPERM";
419  case PPCISD::Hi:              return "PPCISD::Hi";
420  case PPCISD::Lo:              return "PPCISD::Lo";
421  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
422  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
423  case PPCISD::LOAD:            return "PPCISD::LOAD";
424  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
425  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
426  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
427  case PPCISD::SRL:             return "PPCISD::SRL";
428  case PPCISD::SRA:             return "PPCISD::SRA";
429  case PPCISD::SHL:             return "PPCISD::SHL";
430  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
431  case PPCISD::STD_32:          return "PPCISD::STD_32";
432  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
433  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
434  case PPCISD::NOP:             return "PPCISD::NOP";
435  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
436  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
437  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
438  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
439  case PPCISD::MFCR:            return "PPCISD::MFCR";
440  case PPCISD::VCMP:            return "PPCISD::VCMP";
441  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
442  case PPCISD::LBRX:            return "PPCISD::LBRX";
443  case PPCISD::STBRX:           return "PPCISD::STBRX";
444  case PPCISD::LARX:            return "PPCISD::LARX";
445  case PPCISD::STCX:            return "PPCISD::STCX";
446  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
447  case PPCISD::MFFS:            return "PPCISD::MFFS";
448  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
449  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
450  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
451  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
452  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
453  }
454}
455
456MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
457  return MVT::i32;
458}
459
460/// getFunctionAlignment - Return the Log2 alignment of this function.
461unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
462  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
463    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
464  else
465    return 2;
466}
467
468//===----------------------------------------------------------------------===//
469// Node matching predicates, for use by the tblgen matching code.
470//===----------------------------------------------------------------------===//
471
472/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
473static bool isFloatingPointZero(SDValue Op) {
474  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
475    return CFP->getValueAPF().isZero();
476  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
477    // Maybe this has already been legalized into the constant pool?
478    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
479      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
480        return CFP->getValueAPF().isZero();
481  }
482  return false;
483}
484
485/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
486/// true if Op is undef or if it matches the specified value.
487static bool isConstantOrUndef(int Op, int Val) {
488  return Op < 0 || Op == Val;
489}
490
491/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
492/// VPKUHUM instruction.
493bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
494  if (!isUnary) {
495    for (unsigned i = 0; i != 16; ++i)
496      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
497        return false;
498  } else {
499    for (unsigned i = 0; i != 8; ++i)
500      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
501          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
502        return false;
503  }
504  return true;
505}
506
507/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
508/// VPKUWUM instruction.
509bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
510  if (!isUnary) {
511    for (unsigned i = 0; i != 16; i += 2)
512      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
513          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
514        return false;
515  } else {
516    for (unsigned i = 0; i != 8; i += 2)
517      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
518          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
519          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
520          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
521        return false;
522  }
523  return true;
524}
525
526/// isVMerge - Common function, used to match vmrg* shuffles.
527///
528static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
529                     unsigned LHSStart, unsigned RHSStart) {
530  assert(N->getValueType(0) == MVT::v16i8 &&
531         "PPC only supports shuffles by bytes!");
532  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
533         "Unsupported merge size!");
534
535  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
536    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
537      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
538                             LHSStart+j+i*UnitSize) ||
539          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
540                             RHSStart+j+i*UnitSize))
541        return false;
542    }
543  return true;
544}
545
546/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
547/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
548bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
549                             bool isUnary) {
550  if (!isUnary)
551    return isVMerge(N, UnitSize, 8, 24);
552  return isVMerge(N, UnitSize, 8, 8);
553}
554
555/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
556/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
557bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
558                             bool isUnary) {
559  if (!isUnary)
560    return isVMerge(N, UnitSize, 0, 16);
561  return isVMerge(N, UnitSize, 0, 0);
562}
563
564
565/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
566/// amount, otherwise return -1.
567int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
568  assert(N->getValueType(0) == MVT::v16i8 &&
569         "PPC only supports shuffles by bytes!");
570
571  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
572
573  // Find the first non-undef value in the shuffle mask.
574  unsigned i;
575  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
576    /*search*/;
577
578  if (i == 16) return -1;  // all undef.
579
580  // Otherwise, check to see if the rest of the elements are consecutively
581  // numbered from this value.
582  unsigned ShiftAmt = SVOp->getMaskElt(i);
583  if (ShiftAmt < i) return -1;
584  ShiftAmt -= i;
585
586  if (!isUnary) {
587    // Check the rest of the elements to see if they are consecutive.
588    for (++i; i != 16; ++i)
589      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
590        return -1;
591  } else {
592    // Check the rest of the elements to see if they are consecutive.
593    for (++i; i != 16; ++i)
594      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
595        return -1;
596  }
597  return ShiftAmt;
598}
599
600/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
601/// specifies a splat of a single element that is suitable for input to
602/// VSPLTB/VSPLTH/VSPLTW.
603bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
604  assert(N->getValueType(0) == MVT::v16i8 &&
605         (EltSize == 1 || EltSize == 2 || EltSize == 4));
606
607  // This is a splat operation if each element of the permute is the same, and
608  // if the value doesn't reference the second vector.
609  unsigned ElementBase = N->getMaskElt(0);
610
611  // FIXME: Handle UNDEF elements too!
612  if (ElementBase >= 16)
613    return false;
614
615  // Check that the indices are consecutive, in the case of a multi-byte element
616  // splatted with a v16i8 mask.
617  for (unsigned i = 1; i != EltSize; ++i)
618    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
619      return false;
620
621  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
622    if (N->getMaskElt(i) < 0) continue;
623    for (unsigned j = 0; j != EltSize; ++j)
624      if (N->getMaskElt(i+j) != N->getMaskElt(j))
625        return false;
626  }
627  return true;
628}
629
630/// isAllNegativeZeroVector - Returns true if all elements of build_vector
631/// are -0.0.
632bool PPC::isAllNegativeZeroVector(SDNode *N) {
633  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
634
635  APInt APVal, APUndef;
636  unsigned BitSize;
637  bool HasAnyUndefs;
638
639  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
640    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
641      return CFP->getValueAPF().isNegZero();
642
643  return false;
644}
645
646/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
647/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
648unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
649  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
650  assert(isSplatShuffleMask(SVOp, EltSize));
651  return SVOp->getMaskElt(0) / EltSize;
652}
653
654/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
655/// by using a vspltis[bhw] instruction of the specified element size, return
656/// the constant being splatted.  The ByteSize field indicates the number of
657/// bytes of each element [124] -> [bhw].
658SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
659  SDValue OpVal(0, 0);
660
661  // If ByteSize of the splat is bigger than the element size of the
662  // build_vector, then we have a case where we are checking for a splat where
663  // multiple elements of the buildvector are folded together into a single
664  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
665  unsigned EltSize = 16/N->getNumOperands();
666  if (EltSize < ByteSize) {
667    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
668    SDValue UniquedVals[4];
669    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
670
671    // See if all of the elements in the buildvector agree across.
672    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
673      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
674      // If the element isn't a constant, bail fully out.
675      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
676
677
678      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
679        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
680      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
681        return SDValue();  // no match.
682    }
683
684    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
685    // either constant or undef values that are identical for each chunk.  See
686    // if these chunks can form into a larger vspltis*.
687
688    // Check to see if all of the leading entries are either 0 or -1.  If
689    // neither, then this won't fit into the immediate field.
690    bool LeadingZero = true;
691    bool LeadingOnes = true;
692    for (unsigned i = 0; i != Multiple-1; ++i) {
693      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
694
695      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
696      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
697    }
698    // Finally, check the least significant entry.
699    if (LeadingZero) {
700      if (UniquedVals[Multiple-1].getNode() == 0)
701        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
702      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
703      if (Val < 16)
704        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
705    }
706    if (LeadingOnes) {
707      if (UniquedVals[Multiple-1].getNode() == 0)
708        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
709      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
710      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
711        return DAG.getTargetConstant(Val, MVT::i32);
712    }
713
714    return SDValue();
715  }
716
717  // Check to see if this buildvec has a single non-undef value in its elements.
718  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
719    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
720    if (OpVal.getNode() == 0)
721      OpVal = N->getOperand(i);
722    else if (OpVal != N->getOperand(i))
723      return SDValue();
724  }
725
726  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
727
728  unsigned ValSizeInBytes = EltSize;
729  uint64_t Value = 0;
730  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
731    Value = CN->getZExtValue();
732  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
733    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
734    Value = FloatToBits(CN->getValueAPF().convertToFloat());
735  }
736
737  // If the splat value is larger than the element value, then we can never do
738  // this splat.  The only case that we could fit the replicated bits into our
739  // immediate field for would be zero, and we prefer to use vxor for it.
740  if (ValSizeInBytes < ByteSize) return SDValue();
741
742  // If the element value is larger than the splat value, cut it in half and
743  // check to see if the two halves are equal.  Continue doing this until we
744  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
745  while (ValSizeInBytes > ByteSize) {
746    ValSizeInBytes >>= 1;
747
748    // If the top half equals the bottom half, we're still ok.
749    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
750         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
751      return SDValue();
752  }
753
754  // Properly sign extend the value.
755  int ShAmt = (4-ByteSize)*8;
756  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
757
758  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
759  if (MaskVal == 0) return SDValue();
760
761  // Finally, if this value fits in a 5 bit sext field, return it
762  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
763    return DAG.getTargetConstant(MaskVal, MVT::i32);
764  return SDValue();
765}
766
767//===----------------------------------------------------------------------===//
768//  Addressing Mode Selection
769//===----------------------------------------------------------------------===//
770
771/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
772/// or 64-bit immediate, and if the value can be accurately represented as a
773/// sign extension from a 16-bit value.  If so, this returns true and the
774/// immediate.
775static bool isIntS16Immediate(SDNode *N, short &Imm) {
776  if (N->getOpcode() != ISD::Constant)
777    return false;
778
779  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
780  if (N->getValueType(0) == MVT::i32)
781    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
782  else
783    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
784}
785static bool isIntS16Immediate(SDValue Op, short &Imm) {
786  return isIntS16Immediate(Op.getNode(), Imm);
787}
788
789
790/// SelectAddressRegReg - Given the specified addressed, check to see if it
791/// can be represented as an indexed [r+r] operation.  Returns false if it
792/// can be more efficiently represented with [r+imm].
793bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
794                                            SDValue &Index,
795                                            SelectionDAG &DAG) const {
796  short imm = 0;
797  if (N.getOpcode() == ISD::ADD) {
798    if (isIntS16Immediate(N.getOperand(1), imm))
799      return false;    // r+i
800    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
801      return false;    // r+i
802
803    Base = N.getOperand(0);
804    Index = N.getOperand(1);
805    return true;
806  } else if (N.getOpcode() == ISD::OR) {
807    if (isIntS16Immediate(N.getOperand(1), imm))
808      return false;    // r+i can fold it if we can.
809
810    // If this is an or of disjoint bitfields, we can codegen this as an add
811    // (for better address arithmetic) if the LHS and RHS of the OR are provably
812    // disjoint.
813    APInt LHSKnownZero, LHSKnownOne;
814    APInt RHSKnownZero, RHSKnownOne;
815    DAG.ComputeMaskedBits(N.getOperand(0),
816                          APInt::getAllOnesValue(N.getOperand(0)
817                            .getValueSizeInBits()),
818                          LHSKnownZero, LHSKnownOne);
819
820    if (LHSKnownZero.getBoolValue()) {
821      DAG.ComputeMaskedBits(N.getOperand(1),
822                            APInt::getAllOnesValue(N.getOperand(1)
823                              .getValueSizeInBits()),
824                            RHSKnownZero, RHSKnownOne);
825      // If all of the bits are known zero on the LHS or RHS, the add won't
826      // carry.
827      if (~(LHSKnownZero | RHSKnownZero) == 0) {
828        Base = N.getOperand(0);
829        Index = N.getOperand(1);
830        return true;
831      }
832    }
833  }
834
835  return false;
836}
837
838/// Returns true if the address N can be represented by a base register plus
839/// a signed 16-bit displacement [r+imm], and if it is not better
840/// represented as reg+reg.
841bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
842                                            SDValue &Base,
843                                            SelectionDAG &DAG) const {
844  // FIXME dl should come from parent load or store, not from address
845  DebugLoc dl = N.getDebugLoc();
846  // If this can be more profitably realized as r+r, fail.
847  if (SelectAddressRegReg(N, Disp, Base, DAG))
848    return false;
849
850  if (N.getOpcode() == ISD::ADD) {
851    short imm = 0;
852    if (isIntS16Immediate(N.getOperand(1), imm)) {
853      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
854      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
855        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
856      } else {
857        Base = N.getOperand(0);
858      }
859      return true; // [r+i]
860    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
861      // Match LOAD (ADD (X, Lo(G))).
862     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
863             && "Cannot handle constant offsets yet!");
864      Disp = N.getOperand(1).getOperand(0);  // The global address.
865      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
866             Disp.getOpcode() == ISD::TargetConstantPool ||
867             Disp.getOpcode() == ISD::TargetJumpTable);
868      Base = N.getOperand(0);
869      return true;  // [&g+r]
870    }
871  } else if (N.getOpcode() == ISD::OR) {
872    short imm = 0;
873    if (isIntS16Immediate(N.getOperand(1), imm)) {
874      // If this is an or of disjoint bitfields, we can codegen this as an add
875      // (for better address arithmetic) if the LHS and RHS of the OR are
876      // provably disjoint.
877      APInt LHSKnownZero, LHSKnownOne;
878      DAG.ComputeMaskedBits(N.getOperand(0),
879                            APInt::getAllOnesValue(N.getOperand(0)
880                                                   .getValueSizeInBits()),
881                            LHSKnownZero, LHSKnownOne);
882
883      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
884        // If all of the bits are known zero on the LHS or RHS, the add won't
885        // carry.
886        Base = N.getOperand(0);
887        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
888        return true;
889      }
890    }
891  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
892    // Loading from a constant address.
893
894    // If this address fits entirely in a 16-bit sext immediate field, codegen
895    // this as "d, 0"
896    short Imm;
897    if (isIntS16Immediate(CN, Imm)) {
898      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
899      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
900      return true;
901    }
902
903    // Handle 32-bit sext immediates with LIS + addr mode.
904    if (CN->getValueType(0) == MVT::i32 ||
905        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
906      int Addr = (int)CN->getZExtValue();
907
908      // Otherwise, break this down into an LIS + disp.
909      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
910
911      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
912      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
913      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
914      return true;
915    }
916  }
917
918  Disp = DAG.getTargetConstant(0, getPointerTy());
919  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
920    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
921  else
922    Base = N;
923  return true;      // [r+0]
924}
925
926/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
927/// represented as an indexed [r+r] operation.
928bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
929                                                SDValue &Index,
930                                                SelectionDAG &DAG) const {
931  // Check to see if we can easily represent this as an [r+r] address.  This
932  // will fail if it thinks that the address is more profitably represented as
933  // reg+imm, e.g. where imm = 0.
934  if (SelectAddressRegReg(N, Base, Index, DAG))
935    return true;
936
937  // If the operand is an addition, always emit this as [r+r], since this is
938  // better (for code size, and execution, as the memop does the add for free)
939  // than emitting an explicit add.
940  if (N.getOpcode() == ISD::ADD) {
941    Base = N.getOperand(0);
942    Index = N.getOperand(1);
943    return true;
944  }
945
946  // Otherwise, do it the hard way, using R0 as the base register.
947  Base = DAG.getRegister(PPC::R0, N.getValueType());
948  Index = N;
949  return true;
950}
951
952/// SelectAddressRegImmShift - Returns true if the address N can be
953/// represented by a base register plus a signed 14-bit displacement
954/// [r+imm*4].  Suitable for use by STD and friends.
955bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
956                                                 SDValue &Base,
957                                                 SelectionDAG &DAG) const {
958  // FIXME dl should come from the parent load or store, not the address
959  DebugLoc dl = N.getDebugLoc();
960  // If this can be more profitably realized as r+r, fail.
961  if (SelectAddressRegReg(N, Disp, Base, DAG))
962    return false;
963
964  if (N.getOpcode() == ISD::ADD) {
965    short imm = 0;
966    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
967      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
968      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
969        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
970      } else {
971        Base = N.getOperand(0);
972      }
973      return true; // [r+i]
974    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
975      // Match LOAD (ADD (X, Lo(G))).
976     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
977             && "Cannot handle constant offsets yet!");
978      Disp = N.getOperand(1).getOperand(0);  // The global address.
979      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
980             Disp.getOpcode() == ISD::TargetConstantPool ||
981             Disp.getOpcode() == ISD::TargetJumpTable);
982      Base = N.getOperand(0);
983      return true;  // [&g+r]
984    }
985  } else if (N.getOpcode() == ISD::OR) {
986    short imm = 0;
987    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
988      // If this is an or of disjoint bitfields, we can codegen this as an add
989      // (for better address arithmetic) if the LHS and RHS of the OR are
990      // provably disjoint.
991      APInt LHSKnownZero, LHSKnownOne;
992      DAG.ComputeMaskedBits(N.getOperand(0),
993                            APInt::getAllOnesValue(N.getOperand(0)
994                                                   .getValueSizeInBits()),
995                            LHSKnownZero, LHSKnownOne);
996      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
997        // If all of the bits are known zero on the LHS or RHS, the add won't
998        // carry.
999        Base = N.getOperand(0);
1000        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1001        return true;
1002      }
1003    }
1004  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1005    // Loading from a constant address.  Verify low two bits are clear.
1006    if ((CN->getZExtValue() & 3) == 0) {
1007      // If this address fits entirely in a 14-bit sext immediate field, codegen
1008      // this as "d, 0"
1009      short Imm;
1010      if (isIntS16Immediate(CN, Imm)) {
1011        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1012        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1013        return true;
1014      }
1015
1016      // Fold the low-part of 32-bit absolute addresses into addr mode.
1017      if (CN->getValueType(0) == MVT::i32 ||
1018          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1019        int Addr = (int)CN->getZExtValue();
1020
1021        // Otherwise, break this down into an LIS + disp.
1022        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1023        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1024        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1025        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1026        return true;
1027      }
1028    }
1029  }
1030
1031  Disp = DAG.getTargetConstant(0, getPointerTy());
1032  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1033    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1034  else
1035    Base = N;
1036  return true;      // [r+0]
1037}
1038
1039
1040/// getPreIndexedAddressParts - returns true by value, base pointer and
1041/// offset pointer and addressing mode by reference if the node's address
1042/// can be legally represented as pre-indexed load / store address.
1043bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1044                                                  SDValue &Offset,
1045                                                  ISD::MemIndexedMode &AM,
1046                                                  SelectionDAG &DAG) const {
1047  // Disabled by default for now.
1048  if (!EnablePPCPreinc) return false;
1049
1050  SDValue Ptr;
1051  EVT VT;
1052  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1053    Ptr = LD->getBasePtr();
1054    VT = LD->getMemoryVT();
1055
1056  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1057    ST = ST;
1058    Ptr = ST->getBasePtr();
1059    VT  = ST->getMemoryVT();
1060  } else
1061    return false;
1062
1063  // PowerPC doesn't have preinc load/store instructions for vectors.
1064  if (VT.isVector())
1065    return false;
1066
1067  // TODO: Check reg+reg first.
1068
1069  // LDU/STU use reg+imm*4, others use reg+imm.
1070  if (VT != MVT::i64) {
1071    // reg + imm
1072    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1073      return false;
1074  } else {
1075    // reg + imm * 4.
1076    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1077      return false;
1078  }
1079
1080  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1081    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1082    // sext i32 to i64 when addr mode is r+i.
1083    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1084        LD->getExtensionType() == ISD::SEXTLOAD &&
1085        isa<ConstantSDNode>(Offset))
1086      return false;
1087  }
1088
1089  AM = ISD::PRE_INC;
1090  return true;
1091}
1092
1093//===----------------------------------------------------------------------===//
1094//  LowerOperation implementation
1095//===----------------------------------------------------------------------===//
1096
1097SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1098                                             SelectionDAG &DAG) {
1099  EVT PtrVT = Op.getValueType();
1100  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1101  Constant *C = CP->getConstVal();
1102  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1103  SDValue Zero = DAG.getConstant(0, PtrVT);
1104  // FIXME there isn't really any debug info here
1105  DebugLoc dl = Op.getDebugLoc();
1106
1107  const TargetMachine &TM = DAG.getTarget();
1108
1109  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1110  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1111
1112  // If this is a non-darwin platform, we don't support non-static relo models
1113  // yet.
1114  if (TM.getRelocationModel() == Reloc::Static ||
1115      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1116    // Generate non-pic code that has direct accesses to the constant pool.
1117    // The address of the global is just (hi(&g)+lo(&g)).
1118    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1119  }
1120
1121  if (TM.getRelocationModel() == Reloc::PIC_) {
1122    // With PIC, the first instruction is actually "GR+hi(&G)".
1123    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1124                     DAG.getNode(PPCISD::GlobalBaseReg,
1125                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1126  }
1127
1128  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1129  return Lo;
1130}
1131
1132SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1133  EVT PtrVT = Op.getValueType();
1134  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1135  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1136  SDValue Zero = DAG.getConstant(0, PtrVT);
1137  // FIXME there isn't really any debug loc here
1138  DebugLoc dl = Op.getDebugLoc();
1139
1140  const TargetMachine &TM = DAG.getTarget();
1141
1142  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1143  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1144
1145  // If this is a non-darwin platform, we don't support non-static relo models
1146  // yet.
1147  if (TM.getRelocationModel() == Reloc::Static ||
1148      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1149    // Generate non-pic code that has direct accesses to the constant pool.
1150    // The address of the global is just (hi(&g)+lo(&g)).
1151    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1152  }
1153
1154  if (TM.getRelocationModel() == Reloc::PIC_) {
1155    // With PIC, the first instruction is actually "GR+hi(&G)".
1156    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1157                     DAG.getNode(PPCISD::GlobalBaseReg,
1158                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1159  }
1160
1161  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1162  return Lo;
1163}
1164
1165SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1166                                                   SelectionDAG &DAG) {
1167  llvm_unreachable("TLS not implemented for PPC.");
1168  return SDValue(); // Not reached
1169}
1170
1171SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
1172  EVT PtrVT = Op.getValueType();
1173  DebugLoc DL = Op.getDebugLoc();
1174
1175  BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1176  SDValue TgtBA = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true);
1177  SDValue Zero = DAG.getConstant(0, PtrVT);
1178  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, TgtBA, Zero);
1179  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, TgtBA, Zero);
1180
1181  // If this is a non-darwin platform, we don't support non-static relo models
1182  // yet.
1183  const TargetMachine &TM = DAG.getTarget();
1184  if (TM.getRelocationModel() == Reloc::Static ||
1185      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1186    // Generate non-pic code that has direct accesses to globals.
1187    // The address of the global is just (hi(&g)+lo(&g)).
1188    return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1189  }
1190
1191  if (TM.getRelocationModel() == Reloc::PIC_) {
1192    // With PIC, the first instruction is actually "GR+hi(&G)".
1193    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1194                     DAG.getNode(PPCISD::GlobalBaseReg,
1195                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1196  }
1197
1198  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1199}
1200
1201SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1202                                              SelectionDAG &DAG) {
1203  EVT PtrVT = Op.getValueType();
1204  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1205  GlobalValue *GV = GSDN->getGlobal();
1206  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1207  SDValue Zero = DAG.getConstant(0, PtrVT);
1208  // FIXME there isn't really any debug info here
1209  DebugLoc dl = GSDN->getDebugLoc();
1210
1211  const TargetMachine &TM = DAG.getTarget();
1212
1213  // 64-bit SVR4 ABI code is always position-independent.
1214  // The actual address of the GlobalValue is stored in the TOC.
1215  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1216    return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
1217                       DAG.getRegister(PPC::X2, MVT::i64));
1218  }
1219
1220  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1221  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1222
1223  // If this is a non-darwin platform, we don't support non-static relo models
1224  // yet.
1225  if (TM.getRelocationModel() == Reloc::Static ||
1226      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1227    // Generate non-pic code that has direct accesses to globals.
1228    // The address of the global is just (hi(&g)+lo(&g)).
1229    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1230  }
1231
1232  if (TM.getRelocationModel() == Reloc::PIC_) {
1233    // With PIC, the first instruction is actually "GR+hi(&G)".
1234    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1235                     DAG.getNode(PPCISD::GlobalBaseReg,
1236                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1237  }
1238
1239  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1240
1241  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1242    return Lo;
1243
1244  // If the global is weak or external, we have to go through the lazy
1245  // resolution stub.
1246  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1247}
1248
1249SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1250  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1251  DebugLoc dl = Op.getDebugLoc();
1252
1253  // If we're comparing for equality to zero, expose the fact that this is
1254  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1255  // fold the new nodes.
1256  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1257    if (C->isNullValue() && CC == ISD::SETEQ) {
1258      EVT VT = Op.getOperand(0).getValueType();
1259      SDValue Zext = Op.getOperand(0);
1260      if (VT.bitsLT(MVT::i32)) {
1261        VT = MVT::i32;
1262        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1263      }
1264      unsigned Log2b = Log2_32(VT.getSizeInBits());
1265      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1266      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1267                                DAG.getConstant(Log2b, MVT::i32));
1268      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1269    }
1270    // Leave comparisons against 0 and -1 alone for now, since they're usually
1271    // optimized.  FIXME: revisit this when we can custom lower all setcc
1272    // optimizations.
1273    if (C->isAllOnesValue() || C->isNullValue())
1274      return SDValue();
1275  }
1276
1277  // If we have an integer seteq/setne, turn it into a compare against zero
1278  // by xor'ing the rhs with the lhs, which is faster than setting a
1279  // condition register, reading it back out, and masking the correct bit.  The
1280  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1281  // the result to other bit-twiddling opportunities.
1282  EVT LHSVT = Op.getOperand(0).getValueType();
1283  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1284    EVT VT = Op.getValueType();
1285    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1286                                Op.getOperand(1));
1287    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1288  }
1289  return SDValue();
1290}
1291
1292SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1293                              int VarArgsFrameIndex,
1294                              int VarArgsStackOffset,
1295                              unsigned VarArgsNumGPR,
1296                              unsigned VarArgsNumFPR,
1297                              const PPCSubtarget &Subtarget) {
1298
1299  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1300  return SDValue(); // Not reached
1301}
1302
1303SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1304  SDValue Chain = Op.getOperand(0);
1305  SDValue Trmp = Op.getOperand(1); // trampoline
1306  SDValue FPtr = Op.getOperand(2); // nested function
1307  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1308  DebugLoc dl = Op.getDebugLoc();
1309
1310  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1311  bool isPPC64 = (PtrVT == MVT::i64);
1312  const Type *IntPtrTy =
1313    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1314                                                             *DAG.getContext());
1315
1316  TargetLowering::ArgListTy Args;
1317  TargetLowering::ArgListEntry Entry;
1318
1319  Entry.Ty = IntPtrTy;
1320  Entry.Node = Trmp; Args.push_back(Entry);
1321
1322  // TrampSize == (isPPC64 ? 48 : 40);
1323  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1324                               isPPC64 ? MVT::i64 : MVT::i32);
1325  Args.push_back(Entry);
1326
1327  Entry.Node = FPtr; Args.push_back(Entry);
1328  Entry.Node = Nest; Args.push_back(Entry);
1329
1330  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1331  std::pair<SDValue, SDValue> CallResult =
1332    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1333                false, false, false, false, 0, CallingConv::C, false,
1334                /*isReturnValueUsed=*/true,
1335                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1336                Args, DAG, dl, DAG.GetOrdering(Chain.getNode()));
1337
1338  SDValue Ops[] =
1339    { CallResult.first, CallResult.second };
1340
1341  return DAG.getMergeValues(Ops, 2, dl);
1342}
1343
1344SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1345                                        int VarArgsFrameIndex,
1346                                        int VarArgsStackOffset,
1347                                        unsigned VarArgsNumGPR,
1348                                        unsigned VarArgsNumFPR,
1349                                        const PPCSubtarget &Subtarget) {
1350  DebugLoc dl = Op.getDebugLoc();
1351
1352  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1353    // vastart just stores the address of the VarArgsFrameIndex slot into the
1354    // memory location argument.
1355    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1356    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1357    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1358    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1359  }
1360
1361  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1362  // We suppose the given va_list is already allocated.
1363  //
1364  // typedef struct {
1365  //  char gpr;     /* index into the array of 8 GPRs
1366  //                 * stored in the register save area
1367  //                 * gpr=0 corresponds to r3,
1368  //                 * gpr=1 to r4, etc.
1369  //                 */
1370  //  char fpr;     /* index into the array of 8 FPRs
1371  //                 * stored in the register save area
1372  //                 * fpr=0 corresponds to f1,
1373  //                 * fpr=1 to f2, etc.
1374  //                 */
1375  //  char *overflow_arg_area;
1376  //                /* location on stack that holds
1377  //                 * the next overflow argument
1378  //                 */
1379  //  char *reg_save_area;
1380  //               /* where r3:r10 and f1:f8 (if saved)
1381  //                * are stored
1382  //                */
1383  // } va_list[1];
1384
1385
1386  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32);
1387  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
1388
1389
1390  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1391
1392  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1393  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1394
1395  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1396  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1397
1398  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1399  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1400
1401  uint64_t FPROffset = 1;
1402  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1403
1404  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1405
1406  // Store first byte : number of int regs
1407  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1408                                         Op.getOperand(1), SV, 0, MVT::i8);
1409  uint64_t nextOffset = FPROffset;
1410  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1411                                  ConstFPROffset);
1412
1413  // Store second byte : number of float regs
1414  SDValue secondStore =
1415    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8);
1416  nextOffset += StackOffset;
1417  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1418
1419  // Store second word : arguments given on stack
1420  SDValue thirdStore =
1421    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1422  nextOffset += FrameOffset;
1423  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1424
1425  // Store third word : arguments given in registers
1426  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1427
1428}
1429
1430#include "PPCGenCallingConv.inc"
1431
1432static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
1433                                     CCValAssign::LocInfo &LocInfo,
1434                                     ISD::ArgFlagsTy &ArgFlags,
1435                                     CCState &State) {
1436  return true;
1437}
1438
1439static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
1440                                            EVT &LocVT,
1441                                            CCValAssign::LocInfo &LocInfo,
1442                                            ISD::ArgFlagsTy &ArgFlags,
1443                                            CCState &State) {
1444  static const unsigned ArgRegs[] = {
1445    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1446    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1447  };
1448  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1449
1450  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1451
1452  // Skip one register if the first unallocated register has an even register
1453  // number and there are still argument registers available which have not been
1454  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1455  // need to skip a register if RegNum is odd.
1456  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1457    State.AllocateReg(ArgRegs[RegNum]);
1458  }
1459
1460  // Always return false here, as this function only makes sure that the first
1461  // unallocated register has an odd register number and does not actually
1462  // allocate a register for the current argument.
1463  return false;
1464}
1465
1466static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
1467                                              EVT &LocVT,
1468                                              CCValAssign::LocInfo &LocInfo,
1469                                              ISD::ArgFlagsTy &ArgFlags,
1470                                              CCState &State) {
1471  static const unsigned ArgRegs[] = {
1472    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1473    PPC::F8
1474  };
1475
1476  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1477
1478  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1479
1480  // If there is only one Floating-point register left we need to put both f64
1481  // values of a split ppc_fp128 value on the stack.
1482  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1483    State.AllocateReg(ArgRegs[RegNum]);
1484  }
1485
1486  // Always return false here, as this function only makes sure that the two f64
1487  // values a ppc_fp128 value is split into are both passed in registers or both
1488  // passed on the stack and does not actually allocate a register for the
1489  // current argument.
1490  return false;
1491}
1492
1493/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1494/// on Darwin.
1495static const unsigned *GetFPR() {
1496  static const unsigned FPR[] = {
1497    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1498    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1499  };
1500
1501  return FPR;
1502}
1503
1504/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1505/// the stack.
1506static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1507                                       unsigned PtrByteSize) {
1508  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1509  if (Flags.isByVal())
1510    ArgSize = Flags.getByValSize();
1511  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1512
1513  return ArgSize;
1514}
1515
1516SDValue
1517PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1518                                        CallingConv::ID CallConv, bool isVarArg,
1519                                        const SmallVectorImpl<ISD::InputArg>
1520                                          &Ins,
1521                                        DebugLoc dl, SelectionDAG &DAG,
1522                                        SmallVectorImpl<SDValue> &InVals) {
1523  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1524    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1525                                     dl, DAG, InVals);
1526  } else {
1527    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1528                                       dl, DAG, InVals);
1529  }
1530}
1531
1532SDValue
1533PPCTargetLowering::LowerFormalArguments_SVR4(
1534                                      SDValue Chain,
1535                                      CallingConv::ID CallConv, bool isVarArg,
1536                                      const SmallVectorImpl<ISD::InputArg>
1537                                        &Ins,
1538                                      DebugLoc dl, SelectionDAG &DAG,
1539                                      SmallVectorImpl<SDValue> &InVals) {
1540
1541  // 32-bit SVR4 ABI Stack Frame Layout:
1542  //              +-----------------------------------+
1543  //        +-->  |            Back chain             |
1544  //        |     +-----------------------------------+
1545  //        |     | Floating-point register save area |
1546  //        |     +-----------------------------------+
1547  //        |     |    General register save area     |
1548  //        |     +-----------------------------------+
1549  //        |     |          CR save word             |
1550  //        |     +-----------------------------------+
1551  //        |     |         VRSAVE save word          |
1552  //        |     +-----------------------------------+
1553  //        |     |         Alignment padding         |
1554  //        |     +-----------------------------------+
1555  //        |     |     Vector register save area     |
1556  //        |     +-----------------------------------+
1557  //        |     |       Local variable space        |
1558  //        |     +-----------------------------------+
1559  //        |     |        Parameter list area        |
1560  //        |     +-----------------------------------+
1561  //        |     |           LR save word            |
1562  //        |     +-----------------------------------+
1563  // SP-->  +---  |            Back chain             |
1564  //              +-----------------------------------+
1565  //
1566  // Specifications:
1567  //   System V Application Binary Interface PowerPC Processor Supplement
1568  //   AltiVec Technology Programming Interface Manual
1569
1570  MachineFunction &MF = DAG.getMachineFunction();
1571  MachineFrameInfo *MFI = MF.getFrameInfo();
1572
1573  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1574  // Potential tail calls could cause overwriting of argument stack slots.
1575  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1576  unsigned PtrByteSize = 4;
1577
1578  // Assign locations to all of the incoming arguments.
1579  SmallVector<CCValAssign, 16> ArgLocs;
1580  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1581                 *DAG.getContext());
1582
1583  // Reserve space for the linkage area on the stack.
1584  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1585
1586  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1587
1588  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1589    CCValAssign &VA = ArgLocs[i];
1590
1591    // Arguments stored in registers.
1592    if (VA.isRegLoc()) {
1593      TargetRegisterClass *RC;
1594      EVT ValVT = VA.getValVT();
1595
1596      switch (ValVT.getSimpleVT().SimpleTy) {
1597        default:
1598          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1599        case MVT::i32:
1600          RC = PPC::GPRCRegisterClass;
1601          break;
1602        case MVT::f32:
1603          RC = PPC::F4RCRegisterClass;
1604          break;
1605        case MVT::f64:
1606          RC = PPC::F8RCRegisterClass;
1607          break;
1608        case MVT::v16i8:
1609        case MVT::v8i16:
1610        case MVT::v4i32:
1611        case MVT::v4f32:
1612          RC = PPC::VRRCRegisterClass;
1613          break;
1614      }
1615
1616      // Transform the arguments stored in physical registers into virtual ones.
1617      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1618      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1619
1620      InVals.push_back(ArgValue);
1621    } else {
1622      // Argument stored in memory.
1623      assert(VA.isMemLoc());
1624
1625      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1626      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1627                                      isImmutable, false);
1628
1629      // Create load nodes to retrieve arguments from the stack.
1630      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1631      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
1632    }
1633  }
1634
1635  // Assign locations to all of the incoming aggregate by value arguments.
1636  // Aggregates passed by value are stored in the local variable space of the
1637  // caller's stack frame, right above the parameter list area.
1638  SmallVector<CCValAssign, 16> ByValArgLocs;
1639  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1640                      ByValArgLocs, *DAG.getContext());
1641
1642  // Reserve stack space for the allocations in CCInfo.
1643  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1644
1645  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1646
1647  // Area that is at least reserved in the caller of this function.
1648  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1649
1650  // Set the size that is at least reserved in caller of this function.  Tail
1651  // call optimized function's reserved stack space needs to be aligned so that
1652  // taking the difference between two stack areas will result in an aligned
1653  // stack.
1654  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1655
1656  MinReservedArea =
1657    std::max(MinReservedArea,
1658             PPCFrameInfo::getMinCallFrameSize(false, false));
1659
1660  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1661    getStackAlignment();
1662  unsigned AlignMask = TargetAlign-1;
1663  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1664
1665  FI->setMinReservedArea(MinReservedArea);
1666
1667  SmallVector<SDValue, 8> MemOps;
1668
1669  // If the function takes variable number of arguments, make a frame index for
1670  // the start of the first vararg value... for expansion of llvm.va_start.
1671  if (isVarArg) {
1672    static const unsigned GPArgRegs[] = {
1673      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1674      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1675    };
1676    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1677
1678    static const unsigned FPArgRegs[] = {
1679      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1680      PPC::F8
1681    };
1682    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1683
1684    VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs);
1685    VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs);
1686
1687    // Make room for NumGPArgRegs and NumFPArgRegs.
1688    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1689                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1690
1691    VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1692                                                CCInfo.getNextStackOffset(),
1693                                                true, false);
1694
1695    VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8, false);
1696    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1697
1698    // The fixed integer arguments of a variadic function are
1699    // stored to the VarArgsFrameIndex on the stack.
1700    unsigned GPRIndex = 0;
1701    for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
1702      SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
1703      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1704      MemOps.push_back(Store);
1705      // Increment the address by four for the next argument to store
1706      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1707      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1708    }
1709
1710    // If this function is vararg, store any remaining integer argument regs
1711    // to their spots on the stack so that they may be loaded by deferencing the
1712    // result of va_next.
1713    for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1714      unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1715
1716      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1717      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1718      MemOps.push_back(Store);
1719      // Increment the address by four for the next argument to store
1720      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1721      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1722    }
1723
1724    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1725    // is set.
1726
1727    // The double arguments are stored to the VarArgsFrameIndex
1728    // on the stack.
1729    unsigned FPRIndex = 0;
1730    for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
1731      SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
1732      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1733      MemOps.push_back(Store);
1734      // Increment the address by eight for the next argument to store
1735      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1736                                         PtrVT);
1737      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1738    }
1739
1740    for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1741      unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1742
1743      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1744      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1745      MemOps.push_back(Store);
1746      // Increment the address by eight for the next argument to store
1747      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1748                                         PtrVT);
1749      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1750    }
1751  }
1752
1753  if (!MemOps.empty())
1754    Chain = DAG.getNode(ISD::TokenFactor, dl,
1755                        MVT::Other, &MemOps[0], MemOps.size());
1756
1757  return Chain;
1758}
1759
1760SDValue
1761PPCTargetLowering::LowerFormalArguments_Darwin(
1762                                      SDValue Chain,
1763                                      CallingConv::ID CallConv, bool isVarArg,
1764                                      const SmallVectorImpl<ISD::InputArg>
1765                                        &Ins,
1766                                      DebugLoc dl, SelectionDAG &DAG,
1767                                      SmallVectorImpl<SDValue> &InVals) {
1768  // TODO: add description of PPC stack frame format, or at least some docs.
1769  //
1770  MachineFunction &MF = DAG.getMachineFunction();
1771  MachineFrameInfo *MFI = MF.getFrameInfo();
1772
1773  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1774  bool isPPC64 = PtrVT == MVT::i64;
1775  // Potential tail calls could cause overwriting of argument stack slots.
1776  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1777  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1778
1779  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1780  // Area that is at least reserved in caller of this function.
1781  unsigned MinReservedArea = ArgOffset;
1782
1783  static const unsigned GPR_32[] = {           // 32-bit registers.
1784    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1785    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1786  };
1787  static const unsigned GPR_64[] = {           // 64-bit registers.
1788    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1789    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1790  };
1791
1792  static const unsigned *FPR = GetFPR();
1793
1794  static const unsigned VR[] = {
1795    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1796    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1797  };
1798
1799  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1800  const unsigned Num_FPR_Regs = 13;
1801  const unsigned Num_VR_Regs  = array_lengthof( VR);
1802
1803  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1804
1805  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1806
1807  // In 32-bit non-varargs functions, the stack space for vectors is after the
1808  // stack space for non-vectors.  We do not use this space unless we have
1809  // too many vectors to fit in registers, something that only occurs in
1810  // constructed examples:), but we have to walk the arglist to figure
1811  // that out...for the pathological case, compute VecArgOffset as the
1812  // start of the vector parameter area.  Computing VecArgOffset is the
1813  // entire point of the following loop.
1814  unsigned VecArgOffset = ArgOffset;
1815  if (!isVarArg && !isPPC64) {
1816    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1817         ++ArgNo) {
1818      EVT ObjectVT = Ins[ArgNo].VT;
1819      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1820      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1821
1822      if (Flags.isByVal()) {
1823        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1824        ObjSize = Flags.getByValSize();
1825        unsigned ArgSize =
1826                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1827        VecArgOffset += ArgSize;
1828        continue;
1829      }
1830
1831      switch(ObjectVT.getSimpleVT().SimpleTy) {
1832      default: llvm_unreachable("Unhandled argument type!");
1833      case MVT::i32:
1834      case MVT::f32:
1835        VecArgOffset += isPPC64 ? 8 : 4;
1836        break;
1837      case MVT::i64:  // PPC64
1838      case MVT::f64:
1839        VecArgOffset += 8;
1840        break;
1841      case MVT::v4f32:
1842      case MVT::v4i32:
1843      case MVT::v8i16:
1844      case MVT::v16i8:
1845        // Nothing to do, we're only looking at Nonvector args here.
1846        break;
1847      }
1848    }
1849  }
1850  // We've found where the vector parameter area in memory is.  Skip the
1851  // first 12 parameters; these don't use that memory.
1852  VecArgOffset = ((VecArgOffset+15)/16)*16;
1853  VecArgOffset += 12*16;
1854
1855  // Add DAG nodes to load the arguments or copy them out of registers.  On
1856  // entry to a function on PPC, the arguments start after the linkage area,
1857  // although the first ones are often in registers.
1858
1859  SmallVector<SDValue, 8> MemOps;
1860  unsigned nAltivecParamsAtEnd = 0;
1861  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1862    SDValue ArgVal;
1863    bool needsLoad = false;
1864    EVT ObjectVT = Ins[ArgNo].VT;
1865    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1866    unsigned ArgSize = ObjSize;
1867    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1868
1869    unsigned CurArgOffset = ArgOffset;
1870
1871    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1872    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1873        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1874      if (isVarArg || isPPC64) {
1875        MinReservedArea = ((MinReservedArea+15)/16)*16;
1876        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1877                                                  Flags,
1878                                                  PtrByteSize);
1879      } else  nAltivecParamsAtEnd++;
1880    } else
1881      // Calculate min reserved area.
1882      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1883                                                Flags,
1884                                                PtrByteSize);
1885
1886    // FIXME the codegen can be much improved in some cases.
1887    // We do not have to keep everything in memory.
1888    if (Flags.isByVal()) {
1889      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1890      ObjSize = Flags.getByValSize();
1891      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1892      // Objects of size 1 and 2 are right justified, everything else is
1893      // left justified.  This means the memory address is adjusted forwards.
1894      if (ObjSize==1 || ObjSize==2) {
1895        CurArgOffset = CurArgOffset + (4 - ObjSize);
1896      }
1897      // The value of the object is its address.
1898      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true, false);
1899      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1900      InVals.push_back(FIN);
1901      if (ObjSize==1 || ObjSize==2) {
1902        if (GPR_idx != Num_GPR_Regs) {
1903          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1904          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1905          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1906                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1907          MemOps.push_back(Store);
1908          ++GPR_idx;
1909        }
1910
1911        ArgOffset += PtrByteSize;
1912
1913        continue;
1914      }
1915      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1916        // Store whatever pieces of the object are in registers
1917        // to memory.  ArgVal will be address of the beginning of
1918        // the object.
1919        if (GPR_idx != Num_GPR_Regs) {
1920          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1921          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true, false);
1922          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1923          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1924          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1925          MemOps.push_back(Store);
1926          ++GPR_idx;
1927          ArgOffset += PtrByteSize;
1928        } else {
1929          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1930          break;
1931        }
1932      }
1933      continue;
1934    }
1935
1936    switch (ObjectVT.getSimpleVT().SimpleTy) {
1937    default: llvm_unreachable("Unhandled argument type!");
1938    case MVT::i32:
1939      if (!isPPC64) {
1940        if (GPR_idx != Num_GPR_Regs) {
1941          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1942          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1943          ++GPR_idx;
1944        } else {
1945          needsLoad = true;
1946          ArgSize = PtrByteSize;
1947        }
1948        // All int arguments reserve stack space in the Darwin ABI.
1949        ArgOffset += PtrByteSize;
1950        break;
1951      }
1952      // FALLTHROUGH
1953    case MVT::i64:  // PPC64
1954      if (GPR_idx != Num_GPR_Regs) {
1955        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1956        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1957
1958        if (ObjectVT == MVT::i32) {
1959          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1960          // value to MVT::i64 and then truncate to the correct register size.
1961          if (Flags.isSExt())
1962            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1963                                 DAG.getValueType(ObjectVT));
1964          else if (Flags.isZExt())
1965            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1966                                 DAG.getValueType(ObjectVT));
1967
1968          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1969        }
1970
1971        ++GPR_idx;
1972      } else {
1973        needsLoad = true;
1974        ArgSize = PtrByteSize;
1975      }
1976      // All int arguments reserve stack space in the Darwin ABI.
1977      ArgOffset += 8;
1978      break;
1979
1980    case MVT::f32:
1981    case MVT::f64:
1982      // Every 4 bytes of argument space consumes one of the GPRs available for
1983      // argument passing.
1984      if (GPR_idx != Num_GPR_Regs) {
1985        ++GPR_idx;
1986        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1987          ++GPR_idx;
1988      }
1989      if (FPR_idx != Num_FPR_Regs) {
1990        unsigned VReg;
1991
1992        if (ObjectVT == MVT::f32)
1993          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1994        else
1995          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1996
1997        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
1998        ++FPR_idx;
1999      } else {
2000        needsLoad = true;
2001      }
2002
2003      // All FP arguments reserve stack space in the Darwin ABI.
2004      ArgOffset += isPPC64 ? 8 : ObjSize;
2005      break;
2006    case MVT::v4f32:
2007    case MVT::v4i32:
2008    case MVT::v8i16:
2009    case MVT::v16i8:
2010      // Note that vector arguments in registers don't reserve stack space,
2011      // except in varargs functions.
2012      if (VR_idx != Num_VR_Regs) {
2013        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2014        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2015        if (isVarArg) {
2016          while ((ArgOffset % 16) != 0) {
2017            ArgOffset += PtrByteSize;
2018            if (GPR_idx != Num_GPR_Regs)
2019              GPR_idx++;
2020          }
2021          ArgOffset += 16;
2022          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2023        }
2024        ++VR_idx;
2025      } else {
2026        if (!isVarArg && !isPPC64) {
2027          // Vectors go after all the nonvectors.
2028          CurArgOffset = VecArgOffset;
2029          VecArgOffset += 16;
2030        } else {
2031          // Vectors are aligned.
2032          ArgOffset = ((ArgOffset+15)/16)*16;
2033          CurArgOffset = ArgOffset;
2034          ArgOffset += 16;
2035        }
2036        needsLoad = true;
2037      }
2038      break;
2039    }
2040
2041    // We need to load the argument to a virtual register if we determined above
2042    // that we ran out of physical registers of the appropriate type.
2043    if (needsLoad) {
2044      int FI = MFI->CreateFixedObject(ObjSize,
2045                                      CurArgOffset + (ArgSize - ObjSize),
2046                                      isImmutable, false);
2047      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2048      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
2049    }
2050
2051    InVals.push_back(ArgVal);
2052  }
2053
2054  // Set the size that is at least reserved in caller of this function.  Tail
2055  // call optimized function's reserved stack space needs to be aligned so that
2056  // taking the difference between two stack areas will result in an aligned
2057  // stack.
2058  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2059  // Add the Altivec parameters at the end, if needed.
2060  if (nAltivecParamsAtEnd) {
2061    MinReservedArea = ((MinReservedArea+15)/16)*16;
2062    MinReservedArea += 16*nAltivecParamsAtEnd;
2063  }
2064  MinReservedArea =
2065    std::max(MinReservedArea,
2066             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2067  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2068    getStackAlignment();
2069  unsigned AlignMask = TargetAlign-1;
2070  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2071  FI->setMinReservedArea(MinReservedArea);
2072
2073  // If the function takes variable number of arguments, make a frame index for
2074  // the start of the first vararg value... for expansion of llvm.va_start.
2075  if (isVarArg) {
2076    int Depth = ArgOffset;
2077
2078    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2079                                               Depth, true, false);
2080    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
2081
2082    // If this function is vararg, store any remaining integer argument regs
2083    // to their spots on the stack so that they may be loaded by deferencing the
2084    // result of va_next.
2085    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2086      unsigned VReg;
2087
2088      if (isPPC64)
2089        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2090      else
2091        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2092
2093      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2094      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
2095      MemOps.push_back(Store);
2096      // Increment the address by four for the next argument to store
2097      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2098      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2099    }
2100  }
2101
2102  if (!MemOps.empty())
2103    Chain = DAG.getNode(ISD::TokenFactor, dl,
2104                        MVT::Other, &MemOps[0], MemOps.size());
2105
2106  return Chain;
2107}
2108
2109/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2110/// linkage area for the Darwin ABI.
2111static unsigned
2112CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2113                                     bool isPPC64,
2114                                     bool isVarArg,
2115                                     unsigned CC,
2116                                     const SmallVectorImpl<ISD::OutputArg>
2117                                       &Outs,
2118                                     unsigned &nAltivecParamsAtEnd) {
2119  // Count how many bytes are to be pushed on the stack, including the linkage
2120  // area, and parameter passing area.  We start with 24/48 bytes, which is
2121  // prereserved space for [SP][CR][LR][3 x unused].
2122  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2123  unsigned NumOps = Outs.size();
2124  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2125
2126  // Add up all the space actually used.
2127  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2128  // they all go in registers, but we must reserve stack space for them for
2129  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2130  // assigned stack space in order, with padding so Altivec parameters are
2131  // 16-byte aligned.
2132  nAltivecParamsAtEnd = 0;
2133  for (unsigned i = 0; i != NumOps; ++i) {
2134    SDValue Arg = Outs[i].Val;
2135    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2136    EVT ArgVT = Arg.getValueType();
2137    // Varargs Altivec parameters are padded to a 16 byte boundary.
2138    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2139        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2140      if (!isVarArg && !isPPC64) {
2141        // Non-varargs Altivec parameters go after all the non-Altivec
2142        // parameters; handle those later so we know how much padding we need.
2143        nAltivecParamsAtEnd++;
2144        continue;
2145      }
2146      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2147      NumBytes = ((NumBytes+15)/16)*16;
2148    }
2149    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2150  }
2151
2152   // Allow for Altivec parameters at the end, if needed.
2153  if (nAltivecParamsAtEnd) {
2154    NumBytes = ((NumBytes+15)/16)*16;
2155    NumBytes += 16*nAltivecParamsAtEnd;
2156  }
2157
2158  // The prolog code of the callee may store up to 8 GPR argument registers to
2159  // the stack, allowing va_start to index over them in memory if its varargs.
2160  // Because we cannot tell if this is needed on the caller side, we have to
2161  // conservatively assume that it is needed.  As such, make sure we have at
2162  // least enough stack space for the caller to store the 8 GPRs.
2163  NumBytes = std::max(NumBytes,
2164                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2165
2166  // Tail call needs the stack to be aligned.
2167  if (CC==CallingConv::Fast && PerformTailCallOpt) {
2168    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2169      getStackAlignment();
2170    unsigned AlignMask = TargetAlign-1;
2171    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2172  }
2173
2174  return NumBytes;
2175}
2176
2177/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2178/// adjusted to accomodate the arguments for the tailcall.
2179static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2180                                   unsigned ParamSize) {
2181
2182  if (!isTailCall) return 0;
2183
2184  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2185  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2186  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2187  // Remember only if the new adjustement is bigger.
2188  if (SPDiff < FI->getTailCallSPDelta())
2189    FI->setTailCallSPDelta(SPDiff);
2190
2191  return SPDiff;
2192}
2193
2194/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2195/// for tail call optimization. Targets which want to do tail call
2196/// optimization should implement this function.
2197bool
2198PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2199                                                     CallingConv::ID CalleeCC,
2200                                                     bool isVarArg,
2201                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2202                                                     SelectionDAG& DAG) const {
2203  // Variable argument functions are not supported.
2204  if (isVarArg)
2205    return false;
2206
2207  MachineFunction &MF = DAG.getMachineFunction();
2208  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2209  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2210    // Functions containing by val parameters are not supported.
2211    for (unsigned i = 0; i != Ins.size(); i++) {
2212       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2213       if (Flags.isByVal()) return false;
2214    }
2215
2216    // Non PIC/GOT  tail calls are supported.
2217    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2218      return true;
2219
2220    // At the moment we can only do local tail calls (in same module, hidden
2221    // or protected) if we are generating PIC.
2222    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2223      return G->getGlobal()->hasHiddenVisibility()
2224          || G->getGlobal()->hasProtectedVisibility();
2225  }
2226
2227  return false;
2228}
2229
2230/// isCallCompatibleAddress - Return the immediate to use if the specified
2231/// 32-bit value is representable in the immediate field of a BxA instruction.
2232static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2233  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2234  if (!C) return 0;
2235
2236  int Addr = C->getZExtValue();
2237  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2238      (Addr << 6 >> 6) != Addr)
2239    return 0;  // Top 6 bits have to be sext of immediate.
2240
2241  return DAG.getConstant((int)C->getZExtValue() >> 2,
2242                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2243}
2244
2245namespace {
2246
2247struct TailCallArgumentInfo {
2248  SDValue Arg;
2249  SDValue FrameIdxOp;
2250  int       FrameIdx;
2251
2252  TailCallArgumentInfo() : FrameIdx(0) {}
2253};
2254
2255}
2256
2257/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2258static void
2259StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2260                                           SDValue Chain,
2261                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2262                   SmallVector<SDValue, 8> &MemOpChains,
2263                   DebugLoc dl) {
2264  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2265    SDValue Arg = TailCallArgs[i].Arg;
2266    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2267    int FI = TailCallArgs[i].FrameIdx;
2268    // Store relative to framepointer.
2269    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2270                                       PseudoSourceValue::getFixedStack(FI),
2271                                       0));
2272  }
2273}
2274
2275/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2276/// the appropriate stack slot for the tail call optimized function call.
2277static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2278                                               MachineFunction &MF,
2279                                               SDValue Chain,
2280                                               SDValue OldRetAddr,
2281                                               SDValue OldFP,
2282                                               int SPDiff,
2283                                               bool isPPC64,
2284                                               bool isDarwinABI,
2285                                               DebugLoc dl) {
2286  if (SPDiff) {
2287    // Calculate the new stack slot for the return address.
2288    int SlotSize = isPPC64 ? 8 : 4;
2289    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2290                                                                   isDarwinABI);
2291    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2292                                                          NewRetAddrLoc,
2293                                                          true, false);
2294    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2295    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2296    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2297                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2298
2299    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2300    // slot as the FP is never overwritten.
2301    if (isDarwinABI) {
2302      int NewFPLoc =
2303        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2304      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2305                                                          true, false);
2306      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2307      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2308                           PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2309    }
2310  }
2311  return Chain;
2312}
2313
2314/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2315/// the position of the argument.
2316static void
2317CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2318                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2319                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2320  int Offset = ArgOffset + SPDiff;
2321  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2322  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true,false);
2323  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2324  SDValue FIN = DAG.getFrameIndex(FI, VT);
2325  TailCallArgumentInfo Info;
2326  Info.Arg = Arg;
2327  Info.FrameIdxOp = FIN;
2328  Info.FrameIdx = FI;
2329  TailCallArguments.push_back(Info);
2330}
2331
2332/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2333/// stack slot. Returns the chain as result and the loaded frame pointers in
2334/// LROpOut/FPOpout. Used when tail calling.
2335SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2336                                                        int SPDiff,
2337                                                        SDValue Chain,
2338                                                        SDValue &LROpOut,
2339                                                        SDValue &FPOpOut,
2340                                                        bool isDarwinABI,
2341                                                        DebugLoc dl) {
2342  if (SPDiff) {
2343    // Load the LR and FP stack slot for later adjusting.
2344    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2345    LROpOut = getReturnAddrFrameIndex(DAG);
2346    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2347    Chain = SDValue(LROpOut.getNode(), 1);
2348
2349    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2350    // slot as the FP is never overwritten.
2351    if (isDarwinABI) {
2352      FPOpOut = getFramePointerFrameIndex(DAG);
2353      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2354      Chain = SDValue(FPOpOut.getNode(), 1);
2355    }
2356  }
2357  return Chain;
2358}
2359
2360/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2361/// by "Src" to address "Dst" of size "Size".  Alignment information is
2362/// specified by the specific parameter attribute. The copy will be passed as
2363/// a byval function parameter.
2364/// Sometimes what we are copying is the end of a larger object, the part that
2365/// does not fit in registers.
2366static SDValue
2367CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2368                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2369                          DebugLoc dl) {
2370  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2371  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2372                       false, NULL, 0, NULL, 0);
2373}
2374
2375/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2376/// tail calls.
2377static void
2378LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2379                 SDValue Arg, SDValue PtrOff, int SPDiff,
2380                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2381                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2382                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2383                 DebugLoc dl) {
2384  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2385  if (!isTailCall) {
2386    if (isVector) {
2387      SDValue StackPtr;
2388      if (isPPC64)
2389        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2390      else
2391        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2392      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2393                           DAG.getConstant(ArgOffset, PtrVT));
2394    }
2395    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2396  // Calculate and remember argument location.
2397  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2398                                  TailCallArguments);
2399}
2400
2401static
2402void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2403                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2404                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2405                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2406  MachineFunction &MF = DAG.getMachineFunction();
2407
2408  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2409  // might overwrite each other in case of tail call optimization.
2410  SmallVector<SDValue, 8> MemOpChains2;
2411  // Do not flag preceeding copytoreg stuff together with the following stuff.
2412  InFlag = SDValue();
2413  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2414                                    MemOpChains2, dl);
2415  if (!MemOpChains2.empty())
2416    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2417                        &MemOpChains2[0], MemOpChains2.size());
2418
2419  // Store the return address to the appropriate stack slot.
2420  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2421                                        isPPC64, isDarwinABI, dl);
2422
2423  // Emit callseq_end just before tailcall node.
2424  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2425                             DAG.getIntPtrConstant(0, true), InFlag);
2426  InFlag = Chain.getValue(1);
2427}
2428
2429static
2430unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2431                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2432                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2433                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2434                     bool isPPC64, bool isSVR4ABI) {
2435  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2436  NodeTys.push_back(MVT::Other);   // Returns a chain
2437  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2438
2439  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2440
2441  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2442  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2443  // node so that legalize doesn't hack it.
2444  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2445    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2446  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2447    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2448  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2449    // If this is an absolute destination address, use the munged value.
2450    Callee = SDValue(Dest, 0);
2451  else {
2452    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2453    // to do the call, we can't use PPCISD::CALL.
2454    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2455
2456    if (isSVR4ABI && isPPC64) {
2457      // Function pointers in the 64-bit SVR4 ABI do not point to the function
2458      // entry point, but to the function descriptor (the function entry point
2459      // address is part of the function descriptor though).
2460      // The function descriptor is a three doubleword structure with the
2461      // following fields: function entry point, TOC base address and
2462      // environment pointer.
2463      // Thus for a call through a function pointer, the following actions need
2464      // to be performed:
2465      //   1. Save the TOC of the caller in the TOC save area of its stack
2466      //      frame (this is done in LowerCall_Darwin()).
2467      //   2. Load the address of the function entry point from the function
2468      //      descriptor.
2469      //   3. Load the TOC of the callee from the function descriptor into r2.
2470      //   4. Load the environment pointer from the function descriptor into
2471      //      r11.
2472      //   5. Branch to the function entry point address.
2473      //   6. On return of the callee, the TOC of the caller needs to be
2474      //      restored (this is done in FinishCall()).
2475      //
2476      // All those operations are flagged together to ensure that no other
2477      // operations can be scheduled in between. E.g. without flagging the
2478      // operations together, a TOC access in the caller could be scheduled
2479      // between the load of the callee TOC and the branch to the callee, which
2480      // results in the TOC access going through the TOC of the callee instead
2481      // of going through the TOC of the caller, which leads to incorrect code.
2482
2483      // Load the address of the function entry point from the function
2484      // descriptor.
2485      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Flag);
2486      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2487                                        InFlag.getNode() ? 3 : 2);
2488      Chain = LoadFuncPtr.getValue(1);
2489      InFlag = LoadFuncPtr.getValue(2);
2490
2491      // Load environment pointer into r11.
2492      // Offset of the environment pointer within the function descriptor.
2493      SDValue PtrOff = DAG.getIntPtrConstant(16);
2494
2495      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2496      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2497                                       InFlag);
2498      Chain = LoadEnvPtr.getValue(1);
2499      InFlag = LoadEnvPtr.getValue(2);
2500
2501      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2502                                        InFlag);
2503      Chain = EnvVal.getValue(0);
2504      InFlag = EnvVal.getValue(1);
2505
2506      // Load TOC of the callee into r2. We are using a target-specific load
2507      // with r2 hard coded, because the result of a target-independent load
2508      // would never go directly into r2, since r2 is a reserved register (which
2509      // prevents the register allocator from allocating it), resulting in an
2510      // additional register being allocated and an unnecessary move instruction
2511      // being generated.
2512      VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2513      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2514                                       Callee, InFlag);
2515      Chain = LoadTOCPtr.getValue(0);
2516      InFlag = LoadTOCPtr.getValue(1);
2517
2518      MTCTROps[0] = Chain;
2519      MTCTROps[1] = LoadFuncPtr;
2520      MTCTROps[2] = InFlag;
2521    }
2522
2523    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2524                        2 + (InFlag.getNode() != 0));
2525    InFlag = Chain.getValue(1);
2526
2527    NodeTys.clear();
2528    NodeTys.push_back(MVT::Other);
2529    NodeTys.push_back(MVT::Flag);
2530    Ops.push_back(Chain);
2531    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2532    Callee.setNode(0);
2533    // Add CTR register as callee so a bctr can be emitted later.
2534    if (isTailCall)
2535      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2536  }
2537
2538  // If this is a direct call, pass the chain and the callee.
2539  if (Callee.getNode()) {
2540    Ops.push_back(Chain);
2541    Ops.push_back(Callee);
2542  }
2543  // If this is a tail call add stack pointer delta.
2544  if (isTailCall)
2545    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2546
2547  // Add argument registers to the end of the list so that they are known live
2548  // into the call.
2549  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2550    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2551                                  RegsToPass[i].second.getValueType()));
2552
2553  return CallOpc;
2554}
2555
2556SDValue
2557PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2558                                   CallingConv::ID CallConv, bool isVarArg,
2559                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2560                                   DebugLoc dl, SelectionDAG &DAG,
2561                                   SmallVectorImpl<SDValue> &InVals) {
2562
2563  SmallVector<CCValAssign, 16> RVLocs;
2564  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2565                    RVLocs, *DAG.getContext());
2566  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2567
2568  // Copy all of the result registers out of their specified physreg.
2569  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2570    CCValAssign &VA = RVLocs[i];
2571    EVT VT = VA.getValVT();
2572    assert(VA.isRegLoc() && "Can only return in registers!");
2573    Chain = DAG.getCopyFromReg(Chain, dl,
2574                               VA.getLocReg(), VT, InFlag).getValue(1);
2575    InVals.push_back(Chain.getValue(0));
2576    InFlag = Chain.getValue(2);
2577  }
2578
2579  return Chain;
2580}
2581
2582SDValue
2583PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2584                              bool isTailCall, bool isVarArg,
2585                              SelectionDAG &DAG,
2586                              SmallVector<std::pair<unsigned, SDValue>, 8>
2587                                &RegsToPass,
2588                              SDValue InFlag, SDValue Chain,
2589                              SDValue &Callee,
2590                              int SPDiff, unsigned NumBytes,
2591                              const SmallVectorImpl<ISD::InputArg> &Ins,
2592                              SmallVectorImpl<SDValue> &InVals) {
2593  std::vector<EVT> NodeTys;
2594  SmallVector<SDValue, 8> Ops;
2595  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2596                                 isTailCall, RegsToPass, Ops, NodeTys,
2597                                 PPCSubTarget.isPPC64(),
2598                                 PPCSubTarget.isSVR4ABI());
2599
2600  // When performing tail call optimization the callee pops its arguments off
2601  // the stack. Account for this here so these bytes can be pushed back on in
2602  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2603  int BytesCalleePops =
2604    (CallConv==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2605
2606  if (InFlag.getNode())
2607    Ops.push_back(InFlag);
2608
2609  // Emit tail call.
2610  if (isTailCall) {
2611    // If this is the first return lowered for this function, add the regs
2612    // to the liveout set for the function.
2613    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2614      SmallVector<CCValAssign, 16> RVLocs;
2615      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2616                     *DAG.getContext());
2617      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2618      for (unsigned i = 0; i != RVLocs.size(); ++i)
2619        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2620    }
2621
2622    assert(((Callee.getOpcode() == ISD::Register &&
2623             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2624            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2625            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2626            isa<ConstantSDNode>(Callee)) &&
2627    "Expecting an global address, external symbol, absolute value or register");
2628
2629    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2630  }
2631
2632  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2633  InFlag = Chain.getValue(1);
2634
2635  // Add a NOP immediately after the branch instruction when using the 64-bit
2636  // SVR4 ABI. At link time, if caller and callee are in a different module and
2637  // thus have a different TOC, the call will be replaced with a call to a stub
2638  // function which saves the current TOC, loads the TOC of the callee and
2639  // branches to the callee. The NOP will be replaced with a load instruction
2640  // which restores the TOC of the caller from the TOC save slot of the current
2641  // stack frame. If caller and callee belong to the same module (and have the
2642  // same TOC), the NOP will remain unchanged.
2643  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2644    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag);
2645    if (CallOpc == PPCISD::BCTRL_SVR4) {
2646      // This is a call through a function pointer.
2647      // Restore the caller TOC from the save area into R2.
2648      // See PrepareCall() for more information about calls through function
2649      // pointers in the 64-bit SVR4 ABI.
2650      // We are using a target-specific load with r2 hard coded, because the
2651      // result of a target-independent load would never go directly into r2,
2652      // since r2 is a reserved register (which prevents the register allocator
2653      // from allocating it), resulting in an additional register being
2654      // allocated and an unnecessary move instruction being generated.
2655      Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2656      InFlag = Chain.getValue(1);
2657    } else {
2658      // Otherwise insert NOP.
2659      InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
2660    }
2661  }
2662
2663  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2664                             DAG.getIntPtrConstant(BytesCalleePops, true),
2665                             InFlag);
2666  if (!Ins.empty())
2667    InFlag = Chain.getValue(1);
2668
2669  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2670                         Ins, dl, DAG, InVals);
2671}
2672
2673SDValue
2674PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2675                             CallingConv::ID CallConv, bool isVarArg,
2676                             bool isTailCall,
2677                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2678                             const SmallVectorImpl<ISD::InputArg> &Ins,
2679                             DebugLoc dl, SelectionDAG &DAG,
2680                             SmallVectorImpl<SDValue> &InVals) {
2681  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
2682    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2683                          isTailCall, Outs, Ins,
2684                          dl, DAG, InVals);
2685  } else {
2686    return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2687                            isTailCall, Outs, Ins,
2688                            dl, DAG, InVals);
2689  }
2690}
2691
2692SDValue
2693PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2694                                  CallingConv::ID CallConv, bool isVarArg,
2695                                  bool isTailCall,
2696                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2697                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2698                                  DebugLoc dl, SelectionDAG &DAG,
2699                                  SmallVectorImpl<SDValue> &InVals) {
2700  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2701  // of the 32-bit SVR4 ABI stack frame layout.
2702
2703  assert((!isTailCall ||
2704          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
2705         "IsEligibleForTailCallOptimization missed a case!");
2706
2707  assert((CallConv == CallingConv::C ||
2708          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2709
2710  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2711  unsigned PtrByteSize = 4;
2712
2713  MachineFunction &MF = DAG.getMachineFunction();
2714
2715  // Mark this function as potentially containing a function that contains a
2716  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2717  // and restoring the callers stack pointer in this functions epilog. This is
2718  // done because by tail calling the called function might overwrite the value
2719  // in this function's (MF) stack pointer stack slot 0(SP).
2720  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2721    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2722
2723  // Count how many bytes are to be pushed on the stack, including the linkage
2724  // area, parameter list area and the part of the local variable space which
2725  // contains copies of aggregates which are passed by value.
2726
2727  // Assign locations to all of the outgoing arguments.
2728  SmallVector<CCValAssign, 16> ArgLocs;
2729  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2730                 ArgLocs, *DAG.getContext());
2731
2732  // Reserve space for the linkage area on the stack.
2733  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2734
2735  if (isVarArg) {
2736    // Handle fixed and variable vector arguments differently.
2737    // Fixed vector arguments go into registers as long as registers are
2738    // available. Variable vector arguments always go into memory.
2739    unsigned NumArgs = Outs.size();
2740
2741    for (unsigned i = 0; i != NumArgs; ++i) {
2742      EVT ArgVT = Outs[i].Val.getValueType();
2743      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2744      bool Result;
2745
2746      if (Outs[i].IsFixed) {
2747        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2748                             CCInfo);
2749      } else {
2750        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2751                                    ArgFlags, CCInfo);
2752      }
2753
2754      if (Result) {
2755#ifndef NDEBUG
2756        errs() << "Call operand #" << i << " has unhandled type "
2757             << ArgVT.getEVTString() << "\n";
2758#endif
2759        llvm_unreachable(0);
2760      }
2761    }
2762  } else {
2763    // All arguments are treated the same.
2764    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2765  }
2766
2767  // Assign locations to all of the outgoing aggregate by value arguments.
2768  SmallVector<CCValAssign, 16> ByValArgLocs;
2769  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2770                      *DAG.getContext());
2771
2772  // Reserve stack space for the allocations in CCInfo.
2773  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2774
2775  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2776
2777  // Size of the linkage area, parameter list area and the part of the local
2778  // space variable where copies of aggregates which are passed by value are
2779  // stored.
2780  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2781
2782  // Calculate by how many bytes the stack has to be adjusted in case of tail
2783  // call optimization.
2784  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2785
2786  // Adjust the stack pointer for the new arguments...
2787  // These operations are automatically eliminated by the prolog/epilog pass
2788  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2789  SDValue CallSeqStart = Chain;
2790
2791  // Load the return address and frame pointer so it can be moved somewhere else
2792  // later.
2793  SDValue LROp, FPOp;
2794  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2795                                       dl);
2796
2797  // Set up a copy of the stack pointer for use loading and storing any
2798  // arguments that may not fit in the registers available for argument
2799  // passing.
2800  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2801
2802  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2803  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2804  SmallVector<SDValue, 8> MemOpChains;
2805
2806  // Walk the register/memloc assignments, inserting copies/loads.
2807  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2808       i != e;
2809       ++i) {
2810    CCValAssign &VA = ArgLocs[i];
2811    SDValue Arg = Outs[i].Val;
2812    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2813
2814    if (Flags.isByVal()) {
2815      // Argument is an aggregate which is passed by value, thus we need to
2816      // create a copy of it in the local variable space of the current stack
2817      // frame (which is the stack frame of the caller) and pass the address of
2818      // this copy to the callee.
2819      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2820      CCValAssign &ByValVA = ByValArgLocs[j++];
2821      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2822
2823      // Memory reserved in the local variable space of the callers stack frame.
2824      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2825
2826      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2827      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2828
2829      // Create a copy of the argument in the local area of the current
2830      // stack frame.
2831      SDValue MemcpyCall =
2832        CreateCopyOfByValArgument(Arg, PtrOff,
2833                                  CallSeqStart.getNode()->getOperand(0),
2834                                  Flags, DAG, dl);
2835
2836      // This must go outside the CALLSEQ_START..END.
2837      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2838                           CallSeqStart.getNode()->getOperand(1));
2839      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2840                             NewCallSeqStart.getNode());
2841      Chain = CallSeqStart = NewCallSeqStart;
2842
2843      // Pass the address of the aggregate copy on the stack either in a
2844      // physical register or in the parameter list area of the current stack
2845      // frame to the callee.
2846      Arg = PtrOff;
2847    }
2848
2849    if (VA.isRegLoc()) {
2850      // Put argument in a physical register.
2851      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2852    } else {
2853      // Put argument in the parameter list area of the current stack frame.
2854      assert(VA.isMemLoc());
2855      unsigned LocMemOffset = VA.getLocMemOffset();
2856
2857      if (!isTailCall) {
2858        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2859        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2860
2861        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2862                              PseudoSourceValue::getStack(), LocMemOffset));
2863      } else {
2864        // Calculate and remember argument location.
2865        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2866                                 TailCallArguments);
2867      }
2868    }
2869  }
2870
2871  if (!MemOpChains.empty())
2872    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2873                        &MemOpChains[0], MemOpChains.size());
2874
2875  // Build a sequence of copy-to-reg nodes chained together with token chain
2876  // and flag operands which copy the outgoing args into the appropriate regs.
2877  SDValue InFlag;
2878  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2879    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2880                             RegsToPass[i].second, InFlag);
2881    InFlag = Chain.getValue(1);
2882  }
2883
2884  // Set CR6 to true if this is a vararg call.
2885  if (isVarArg) {
2886    SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
2887    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2888    InFlag = Chain.getValue(1);
2889  }
2890
2891  if (isTailCall) {
2892    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2893                    false, TailCallArguments);
2894  }
2895
2896  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2897                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2898                    Ins, InVals);
2899}
2900
2901SDValue
2902PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2903                                    CallingConv::ID CallConv, bool isVarArg,
2904                                    bool isTailCall,
2905                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2906                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2907                                    DebugLoc dl, SelectionDAG &DAG,
2908                                    SmallVectorImpl<SDValue> &InVals) {
2909
2910  unsigned NumOps  = Outs.size();
2911
2912  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2913  bool isPPC64 = PtrVT == MVT::i64;
2914  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2915
2916  MachineFunction &MF = DAG.getMachineFunction();
2917
2918  // Mark this function as potentially containing a function that contains a
2919  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2920  // and restoring the callers stack pointer in this functions epilog. This is
2921  // done because by tail calling the called function might overwrite the value
2922  // in this function's (MF) stack pointer stack slot 0(SP).
2923  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2924    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2925
2926  unsigned nAltivecParamsAtEnd = 0;
2927
2928  // Count how many bytes are to be pushed on the stack, including the linkage
2929  // area, and parameter passing area.  We start with 24/48 bytes, which is
2930  // prereserved space for [SP][CR][LR][3 x unused].
2931  unsigned NumBytes =
2932    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2933                                         Outs,
2934                                         nAltivecParamsAtEnd);
2935
2936  // Calculate by how many bytes the stack has to be adjusted in case of tail
2937  // call optimization.
2938  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2939
2940  // To protect arguments on the stack from being clobbered in a tail call,
2941  // force all the loads to happen before doing any other lowering.
2942  if (isTailCall)
2943    Chain = DAG.getStackArgumentTokenFactor(Chain);
2944
2945  // Adjust the stack pointer for the new arguments...
2946  // These operations are automatically eliminated by the prolog/epilog pass
2947  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2948  SDValue CallSeqStart = Chain;
2949
2950  // Load the return address and frame pointer so it can be move somewhere else
2951  // later.
2952  SDValue LROp, FPOp;
2953  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2954                                       dl);
2955
2956  // Set up a copy of the stack pointer for use loading and storing any
2957  // arguments that may not fit in the registers available for argument
2958  // passing.
2959  SDValue StackPtr;
2960  if (isPPC64)
2961    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2962  else
2963    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2964
2965  // Figure out which arguments are going to go in registers, and which in
2966  // memory.  Also, if this is a vararg function, floating point operations
2967  // must be stored to our stack, and loaded into integer regs as well, if
2968  // any integer regs are available for argument passing.
2969  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
2970  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2971
2972  static const unsigned GPR_32[] = {           // 32-bit registers.
2973    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2974    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2975  };
2976  static const unsigned GPR_64[] = {           // 64-bit registers.
2977    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2978    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2979  };
2980  static const unsigned *FPR = GetFPR();
2981
2982  static const unsigned VR[] = {
2983    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2984    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2985  };
2986  const unsigned NumGPRs = array_lengthof(GPR_32);
2987  const unsigned NumFPRs = 13;
2988  const unsigned NumVRs  = array_lengthof(VR);
2989
2990  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2991
2992  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2993  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2994
2995  SmallVector<SDValue, 8> MemOpChains;
2996  for (unsigned i = 0; i != NumOps; ++i) {
2997    SDValue Arg = Outs[i].Val;
2998    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2999
3000    // PtrOff will be used to store the current argument to the stack if a
3001    // register cannot be found for it.
3002    SDValue PtrOff;
3003
3004    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3005
3006    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3007
3008    // On PPC64, promote integers to 64-bit values.
3009    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3010      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3011      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3012      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3013    }
3014
3015    // FIXME memcpy is used way more than necessary.  Correctness first.
3016    if (Flags.isByVal()) {
3017      unsigned Size = Flags.getByValSize();
3018      if (Size==1 || Size==2) {
3019        // Very small objects are passed right-justified.
3020        // Everything else is passed left-justified.
3021        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3022        if (GPR_idx != NumGPRs) {
3023          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3024                                          NULL, 0, VT);
3025          MemOpChains.push_back(Load.getValue(1));
3026          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3027
3028          ArgOffset += PtrByteSize;
3029        } else {
3030          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3031          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3032          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3033                                CallSeqStart.getNode()->getOperand(0),
3034                                Flags, DAG, dl);
3035          // This must go outside the CALLSEQ_START..END.
3036          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3037                               CallSeqStart.getNode()->getOperand(1));
3038          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3039                                 NewCallSeqStart.getNode());
3040          Chain = CallSeqStart = NewCallSeqStart;
3041          ArgOffset += PtrByteSize;
3042        }
3043        continue;
3044      }
3045      // Copy entire object into memory.  There are cases where gcc-generated
3046      // code assumes it is there, even if it could be put entirely into
3047      // registers.  (This is not what the doc says.)
3048      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3049                            CallSeqStart.getNode()->getOperand(0),
3050                            Flags, DAG, dl);
3051      // This must go outside the CALLSEQ_START..END.
3052      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3053                           CallSeqStart.getNode()->getOperand(1));
3054      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3055      Chain = CallSeqStart = NewCallSeqStart;
3056      // And copy the pieces of it that fit into registers.
3057      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3058        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3059        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3060        if (GPR_idx != NumGPRs) {
3061          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
3062          MemOpChains.push_back(Load.getValue(1));
3063          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3064          ArgOffset += PtrByteSize;
3065        } else {
3066          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3067          break;
3068        }
3069      }
3070      continue;
3071    }
3072
3073    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3074    default: llvm_unreachable("Unexpected ValueType for argument!");
3075    case MVT::i32:
3076    case MVT::i64:
3077      if (GPR_idx != NumGPRs) {
3078        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3079      } else {
3080        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3081                         isPPC64, isTailCall, false, MemOpChains,
3082                         TailCallArguments, dl);
3083      }
3084      ArgOffset += PtrByteSize;
3085      break;
3086    case MVT::f32:
3087    case MVT::f64:
3088      if (FPR_idx != NumFPRs) {
3089        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3090
3091        if (isVarArg) {
3092          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
3093          MemOpChains.push_back(Store);
3094
3095          // Float varargs are always shadowed in available integer registers
3096          if (GPR_idx != NumGPRs) {
3097            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
3098            MemOpChains.push_back(Load.getValue(1));
3099            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3100          }
3101          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3102            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3103            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3104            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
3105            MemOpChains.push_back(Load.getValue(1));
3106            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3107          }
3108        } else {
3109          // If we have any FPRs remaining, we may also have GPRs remaining.
3110          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3111          // GPRs.
3112          if (GPR_idx != NumGPRs)
3113            ++GPR_idx;
3114          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3115              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3116            ++GPR_idx;
3117        }
3118      } else {
3119        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3120                         isPPC64, isTailCall, false, MemOpChains,
3121                         TailCallArguments, dl);
3122      }
3123      if (isPPC64)
3124        ArgOffset += 8;
3125      else
3126        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3127      break;
3128    case MVT::v4f32:
3129    case MVT::v4i32:
3130    case MVT::v8i16:
3131    case MVT::v16i8:
3132      if (isVarArg) {
3133        // These go aligned on the stack, or in the corresponding R registers
3134        // when within range.  The Darwin PPC ABI doc claims they also go in
3135        // V registers; in fact gcc does this only for arguments that are
3136        // prototyped, not for those that match the ...  We do it for all
3137        // arguments, seems to work.
3138        while (ArgOffset % 16 !=0) {
3139          ArgOffset += PtrByteSize;
3140          if (GPR_idx != NumGPRs)
3141            GPR_idx++;
3142        }
3143        // We could elide this store in the case where the object fits
3144        // entirely in R registers.  Maybe later.
3145        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3146                            DAG.getConstant(ArgOffset, PtrVT));
3147        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
3148        MemOpChains.push_back(Store);
3149        if (VR_idx != NumVRs) {
3150          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
3151          MemOpChains.push_back(Load.getValue(1));
3152          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3153        }
3154        ArgOffset += 16;
3155        for (unsigned i=0; i<16; i+=PtrByteSize) {
3156          if (GPR_idx == NumGPRs)
3157            break;
3158          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3159                                  DAG.getConstant(i, PtrVT));
3160          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
3161          MemOpChains.push_back(Load.getValue(1));
3162          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3163        }
3164        break;
3165      }
3166
3167      // Non-varargs Altivec params generally go in registers, but have
3168      // stack space allocated at the end.
3169      if (VR_idx != NumVRs) {
3170        // Doesn't have GPR space allocated.
3171        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3172      } else if (nAltivecParamsAtEnd==0) {
3173        // We are emitting Altivec params in order.
3174        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3175                         isPPC64, isTailCall, true, MemOpChains,
3176                         TailCallArguments, dl);
3177        ArgOffset += 16;
3178      }
3179      break;
3180    }
3181  }
3182  // If all Altivec parameters fit in registers, as they usually do,
3183  // they get stack space following the non-Altivec parameters.  We
3184  // don't track this here because nobody below needs it.
3185  // If there are more Altivec parameters than fit in registers emit
3186  // the stores here.
3187  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3188    unsigned j = 0;
3189    // Offset is aligned; skip 1st 12 params which go in V registers.
3190    ArgOffset = ((ArgOffset+15)/16)*16;
3191    ArgOffset += 12*16;
3192    for (unsigned i = 0; i != NumOps; ++i) {
3193      SDValue Arg = Outs[i].Val;
3194      EVT ArgType = Arg.getValueType();
3195      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3196          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3197        if (++j > NumVRs) {
3198          SDValue PtrOff;
3199          // We are emitting Altivec params in order.
3200          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3201                           isPPC64, isTailCall, true, MemOpChains,
3202                           TailCallArguments, dl);
3203          ArgOffset += 16;
3204        }
3205      }
3206    }
3207  }
3208
3209  if (!MemOpChains.empty())
3210    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3211                        &MemOpChains[0], MemOpChains.size());
3212
3213  // Check if this is an indirect call (MTCTR/BCTRL).
3214  // See PrepareCall() for more information about calls through function
3215  // pointers in the 64-bit SVR4 ABI.
3216  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3217      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3218      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3219      !isBLACompatibleAddress(Callee, DAG)) {
3220    // Load r2 into a virtual register and store it to the TOC save area.
3221    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3222    // TOC save area offset.
3223    SDValue PtrOff = DAG.getIntPtrConstant(40);
3224    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3225    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, NULL, 0);
3226  }
3227
3228  // Build a sequence of copy-to-reg nodes chained together with token chain
3229  // and flag operands which copy the outgoing args into the appropriate regs.
3230  SDValue InFlag;
3231  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3232    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3233                             RegsToPass[i].second, InFlag);
3234    InFlag = Chain.getValue(1);
3235  }
3236
3237  if (isTailCall) {
3238    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3239                    FPOp, true, TailCallArguments);
3240  }
3241
3242  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3243                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3244                    Ins, InVals);
3245}
3246
3247SDValue
3248PPCTargetLowering::LowerReturn(SDValue Chain,
3249                               CallingConv::ID CallConv, bool isVarArg,
3250                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3251                               DebugLoc dl, SelectionDAG &DAG) {
3252
3253  SmallVector<CCValAssign, 16> RVLocs;
3254  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3255                 RVLocs, *DAG.getContext());
3256  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3257
3258  // If this is the first return lowered for this function, add the regs to the
3259  // liveout set for the function.
3260  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3261    for (unsigned i = 0; i != RVLocs.size(); ++i)
3262      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3263  }
3264
3265  SDValue Flag;
3266
3267  // Copy the result values into the output registers.
3268  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3269    CCValAssign &VA = RVLocs[i];
3270    assert(VA.isRegLoc() && "Can only return in registers!");
3271    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3272                             Outs[i].Val, Flag);
3273    Flag = Chain.getValue(1);
3274  }
3275
3276  if (Flag.getNode())
3277    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3278  else
3279    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3280}
3281
3282SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3283                                   const PPCSubtarget &Subtarget) {
3284  // When we pop the dynamic allocation we need to restore the SP link.
3285  DebugLoc dl = Op.getDebugLoc();
3286
3287  // Get the corect type for pointers.
3288  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3289
3290  // Construct the stack pointer operand.
3291  bool isPPC64 = Subtarget.isPPC64();
3292  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3293  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3294
3295  // Get the operands for the STACKRESTORE.
3296  SDValue Chain = Op.getOperand(0);
3297  SDValue SaveSP = Op.getOperand(1);
3298
3299  // Load the old link SP.
3300  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
3301
3302  // Restore the stack pointer.
3303  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3304
3305  // Store the old link SP.
3306  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
3307}
3308
3309
3310
3311SDValue
3312PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3313  MachineFunction &MF = DAG.getMachineFunction();
3314  bool isPPC64 = PPCSubTarget.isPPC64();
3315  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3316  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3317
3318  // Get current frame pointer save index.  The users of this index will be
3319  // primarily DYNALLOC instructions.
3320  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3321  int RASI = FI->getReturnAddrSaveIndex();
3322
3323  // If the frame pointer save index hasn't been defined yet.
3324  if (!RASI) {
3325    // Find out what the fix offset of the frame pointer save area.
3326    int LROffset = PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI);
3327    // Allocate the frame index for frame pointer save area.
3328    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset,
3329                                                true, false);
3330    // Save the result.
3331    FI->setReturnAddrSaveIndex(RASI);
3332  }
3333  return DAG.getFrameIndex(RASI, PtrVT);
3334}
3335
3336SDValue
3337PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3338  MachineFunction &MF = DAG.getMachineFunction();
3339  bool isPPC64 = PPCSubTarget.isPPC64();
3340  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3341  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3342
3343  // Get current frame pointer save index.  The users of this index will be
3344  // primarily DYNALLOC instructions.
3345  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3346  int FPSI = FI->getFramePointerSaveIndex();
3347
3348  // If the frame pointer save index hasn't been defined yet.
3349  if (!FPSI) {
3350    // Find out what the fix offset of the frame pointer save area.
3351    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
3352                                                           isDarwinABI);
3353
3354    // Allocate the frame index for frame pointer save area.
3355    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset,
3356                                                true, false);
3357    // Save the result.
3358    FI->setFramePointerSaveIndex(FPSI);
3359  }
3360  return DAG.getFrameIndex(FPSI, PtrVT);
3361}
3362
3363SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3364                                         SelectionDAG &DAG,
3365                                         const PPCSubtarget &Subtarget) {
3366  // Get the inputs.
3367  SDValue Chain = Op.getOperand(0);
3368  SDValue Size  = Op.getOperand(1);
3369  DebugLoc dl = Op.getDebugLoc();
3370
3371  // Get the corect type for pointers.
3372  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3373  // Negate the size.
3374  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3375                                  DAG.getConstant(0, PtrVT), Size);
3376  // Construct a node for the frame pointer save index.
3377  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3378  // Build a DYNALLOC node.
3379  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3380  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3381  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3382}
3383
3384/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3385/// possible.
3386SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
3387  // Not FP? Not a fsel.
3388  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3389      !Op.getOperand(2).getValueType().isFloatingPoint())
3390    return Op;
3391
3392  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3393
3394  // Cannot handle SETEQ/SETNE.
3395  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3396
3397  EVT ResVT = Op.getValueType();
3398  EVT CmpVT = Op.getOperand(0).getValueType();
3399  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3400  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3401  DebugLoc dl = Op.getDebugLoc();
3402
3403  // If the RHS of the comparison is a 0.0, we don't need to do the
3404  // subtraction at all.
3405  if (isFloatingPointZero(RHS))
3406    switch (CC) {
3407    default: break;       // SETUO etc aren't handled by fsel.
3408    case ISD::SETULT:
3409    case ISD::SETLT:
3410      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3411    case ISD::SETOGE:
3412    case ISD::SETGE:
3413      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3414        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3415      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3416    case ISD::SETUGT:
3417    case ISD::SETGT:
3418      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3419    case ISD::SETOLE:
3420    case ISD::SETLE:
3421      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3422        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3423      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3424                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3425    }
3426
3427  SDValue Cmp;
3428  switch (CC) {
3429  default: break;       // SETUO etc aren't handled by fsel.
3430  case ISD::SETULT:
3431  case ISD::SETLT:
3432    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3433    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3434      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3435      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3436  case ISD::SETOGE:
3437  case ISD::SETGE:
3438    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3439    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3440      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3441      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3442  case ISD::SETUGT:
3443  case ISD::SETGT:
3444    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3445    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3446      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3447      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3448  case ISD::SETOLE:
3449  case ISD::SETLE:
3450    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3451    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3452      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3453      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3454  }
3455  return Op;
3456}
3457
3458// FIXME: Split this code up when LegalizeDAGTypes lands.
3459SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3460                                           DebugLoc dl) {
3461  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3462  SDValue Src = Op.getOperand(0);
3463  if (Src.getValueType() == MVT::f32)
3464    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3465
3466  SDValue Tmp;
3467  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3468  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3469  case MVT::i32:
3470    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3471                                                         PPCISD::FCTIDZ,
3472                      dl, MVT::f64, Src);
3473    break;
3474  case MVT::i64:
3475    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3476    break;
3477  }
3478
3479  // Convert the FP value to an int value through memory.
3480  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3481
3482  // Emit a store to the stack slot.
3483  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
3484
3485  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3486  // add in a bias.
3487  if (Op.getValueType() == MVT::i32)
3488    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3489                        DAG.getConstant(4, FIPtr.getValueType()));
3490  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
3491}
3492
3493SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3494  DebugLoc dl = Op.getDebugLoc();
3495  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3496  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3497    return SDValue();
3498
3499  if (Op.getOperand(0).getValueType() == MVT::i64) {
3500    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3501                               MVT::f64, Op.getOperand(0));
3502    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3503    if (Op.getValueType() == MVT::f32)
3504      FP = DAG.getNode(ISD::FP_ROUND, dl,
3505                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3506    return FP;
3507  }
3508
3509  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3510         "Unhandled SINT_TO_FP type in custom expander!");
3511  // Since we only generate this in 64-bit mode, we can take advantage of
3512  // 64-bit registers.  In particular, sign extend the input value into the
3513  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3514  // then lfd it and fcfid it.
3515  MachineFunction &MF = DAG.getMachineFunction();
3516  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3517  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3518  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3519  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3520
3521  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3522                                Op.getOperand(0));
3523
3524  // STD the extended value into the stack slot.
3525  MachineMemOperand *MMO =
3526    MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIdx),
3527                            MachineMemOperand::MOStore, 0, 8, 8);
3528  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3529  SDValue Store =
3530    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3531                            Ops, 4, MVT::i64, MMO);
3532  // Load the value as a double.
3533  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
3534
3535  // FCFID it and return it.
3536  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3537  if (Op.getValueType() == MVT::f32)
3538    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3539  return FP;
3540}
3541
3542SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
3543  DebugLoc dl = Op.getDebugLoc();
3544  /*
3545   The rounding mode is in bits 30:31 of FPSR, and has the following
3546   settings:
3547     00 Round to nearest
3548     01 Round to 0
3549     10 Round to +inf
3550     11 Round to -inf
3551
3552  FLT_ROUNDS, on the other hand, expects the following:
3553    -1 Undefined
3554     0 Round to 0
3555     1 Round to nearest
3556     2 Round to +inf
3557     3 Round to -inf
3558
3559  To perform the conversion, we do:
3560    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3561  */
3562
3563  MachineFunction &MF = DAG.getMachineFunction();
3564  EVT VT = Op.getValueType();
3565  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3566  std::vector<EVT> NodeTys;
3567  SDValue MFFSreg, InFlag;
3568
3569  // Save FP Control Word to register
3570  NodeTys.push_back(MVT::f64);    // return register
3571  NodeTys.push_back(MVT::Flag);   // unused in this context
3572  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3573
3574  // Save FP register to stack slot
3575  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3576  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3577  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3578                                 StackSlot, NULL, 0);
3579
3580  // Load FP Control Word from low 32 bits of stack slot.
3581  SDValue Four = DAG.getConstant(4, PtrVT);
3582  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3583  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
3584
3585  // Transform as necessary
3586  SDValue CWD1 =
3587    DAG.getNode(ISD::AND, dl, MVT::i32,
3588                CWD, DAG.getConstant(3, MVT::i32));
3589  SDValue CWD2 =
3590    DAG.getNode(ISD::SRL, dl, MVT::i32,
3591                DAG.getNode(ISD::AND, dl, MVT::i32,
3592                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3593                                        CWD, DAG.getConstant(3, MVT::i32)),
3594                            DAG.getConstant(3, MVT::i32)),
3595                DAG.getConstant(1, MVT::i32));
3596
3597  SDValue RetVal =
3598    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3599
3600  return DAG.getNode((VT.getSizeInBits() < 16 ?
3601                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3602}
3603
3604SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3605  EVT VT = Op.getValueType();
3606  unsigned BitWidth = VT.getSizeInBits();
3607  DebugLoc dl = Op.getDebugLoc();
3608  assert(Op.getNumOperands() == 3 &&
3609         VT == Op.getOperand(1).getValueType() &&
3610         "Unexpected SHL!");
3611
3612  // Expand into a bunch of logical ops.  Note that these ops
3613  // depend on the PPC behavior for oversized shift amounts.
3614  SDValue Lo = Op.getOperand(0);
3615  SDValue Hi = Op.getOperand(1);
3616  SDValue Amt = Op.getOperand(2);
3617  EVT AmtVT = Amt.getValueType();
3618
3619  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3620                             DAG.getConstant(BitWidth, AmtVT), Amt);
3621  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3622  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3623  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3624  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3625                             DAG.getConstant(-BitWidth, AmtVT));
3626  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3627  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3628  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3629  SDValue OutOps[] = { OutLo, OutHi };
3630  return DAG.getMergeValues(OutOps, 2, dl);
3631}
3632
3633SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3634  EVT VT = Op.getValueType();
3635  DebugLoc dl = Op.getDebugLoc();
3636  unsigned BitWidth = VT.getSizeInBits();
3637  assert(Op.getNumOperands() == 3 &&
3638         VT == Op.getOperand(1).getValueType() &&
3639         "Unexpected SRL!");
3640
3641  // Expand into a bunch of logical ops.  Note that these ops
3642  // depend on the PPC behavior for oversized shift amounts.
3643  SDValue Lo = Op.getOperand(0);
3644  SDValue Hi = Op.getOperand(1);
3645  SDValue Amt = Op.getOperand(2);
3646  EVT AmtVT = Amt.getValueType();
3647
3648  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3649                             DAG.getConstant(BitWidth, AmtVT), Amt);
3650  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3651  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3652  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3653  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3654                             DAG.getConstant(-BitWidth, AmtVT));
3655  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3656  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3657  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3658  SDValue OutOps[] = { OutLo, OutHi };
3659  return DAG.getMergeValues(OutOps, 2, dl);
3660}
3661
3662SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3663  DebugLoc dl = Op.getDebugLoc();
3664  EVT VT = Op.getValueType();
3665  unsigned BitWidth = VT.getSizeInBits();
3666  assert(Op.getNumOperands() == 3 &&
3667         VT == Op.getOperand(1).getValueType() &&
3668         "Unexpected SRA!");
3669
3670  // Expand into a bunch of logical ops, followed by a select_cc.
3671  SDValue Lo = Op.getOperand(0);
3672  SDValue Hi = Op.getOperand(1);
3673  SDValue Amt = Op.getOperand(2);
3674  EVT AmtVT = Amt.getValueType();
3675
3676  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3677                             DAG.getConstant(BitWidth, AmtVT), Amt);
3678  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3679  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3680  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3681  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3682                             DAG.getConstant(-BitWidth, AmtVT));
3683  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3684  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3685  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3686                                  Tmp4, Tmp6, ISD::SETLE);
3687  SDValue OutOps[] = { OutLo, OutHi };
3688  return DAG.getMergeValues(OutOps, 2, dl);
3689}
3690
3691//===----------------------------------------------------------------------===//
3692// Vector related lowering.
3693//
3694
3695/// BuildSplatI - Build a canonical splati of Val with an element size of
3696/// SplatSize.  Cast the result to VT.
3697static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3698                             SelectionDAG &DAG, DebugLoc dl) {
3699  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3700
3701  static const EVT VTys[] = { // canonical VT to use for each size.
3702    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3703  };
3704
3705  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3706
3707  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3708  if (Val == -1)
3709    SplatSize = 1;
3710
3711  EVT CanonicalVT = VTys[SplatSize-1];
3712
3713  // Build a canonical splat for this value.
3714  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3715  SmallVector<SDValue, 8> Ops;
3716  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3717  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3718                              &Ops[0], Ops.size());
3719  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3720}
3721
3722/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3723/// specified intrinsic ID.
3724static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3725                                SelectionDAG &DAG, DebugLoc dl,
3726                                EVT DestVT = MVT::Other) {
3727  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3728  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3729                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3730}
3731
3732/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3733/// specified intrinsic ID.
3734static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3735                                SDValue Op2, SelectionDAG &DAG,
3736                                DebugLoc dl, EVT DestVT = MVT::Other) {
3737  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3738  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3739                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3740}
3741
3742
3743/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3744/// amount.  The result has the specified value type.
3745static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3746                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3747  // Force LHS/RHS to be the right type.
3748  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3749  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3750
3751  int Ops[16];
3752  for (unsigned i = 0; i != 16; ++i)
3753    Ops[i] = i + Amt;
3754  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3755  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3756}
3757
3758// If this is a case we can't handle, return null and let the default
3759// expansion code take care of it.  If we CAN select this case, and if it
3760// selects to a single instruction, return Op.  Otherwise, if we can codegen
3761// this case more efficiently than a constant pool load, lower it to the
3762// sequence of ops that should be used.
3763SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3764  DebugLoc dl = Op.getDebugLoc();
3765  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3766  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3767
3768  // Check if this is a splat of a constant value.
3769  APInt APSplatBits, APSplatUndef;
3770  unsigned SplatBitSize;
3771  bool HasAnyUndefs;
3772  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3773                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
3774    return SDValue();
3775
3776  unsigned SplatBits = APSplatBits.getZExtValue();
3777  unsigned SplatUndef = APSplatUndef.getZExtValue();
3778  unsigned SplatSize = SplatBitSize / 8;
3779
3780  // First, handle single instruction cases.
3781
3782  // All zeros?
3783  if (SplatBits == 0) {
3784    // Canonicalize all zero vectors to be v4i32.
3785    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3786      SDValue Z = DAG.getConstant(0, MVT::i32);
3787      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3788      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3789    }
3790    return Op;
3791  }
3792
3793  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3794  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3795                    (32-SplatBitSize));
3796  if (SextVal >= -16 && SextVal <= 15)
3797    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3798
3799
3800  // Two instruction sequences.
3801
3802  // If this value is in the range [-32,30] and is even, use:
3803  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3804  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3805    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3806    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3807    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3808  }
3809
3810  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3811  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3812  // for fneg/fabs.
3813  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3814    // Make -1 and vspltisw -1:
3815    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3816
3817    // Make the VSLW intrinsic, computing 0x8000_0000.
3818    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3819                                   OnesV, DAG, dl);
3820
3821    // xor by OnesV to invert it.
3822    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3823    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3824  }
3825
3826  // Check to see if this is a wide variety of vsplti*, binop self cases.
3827  static const signed char SplatCsts[] = {
3828    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3829    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3830  };
3831
3832  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3833    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3834    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3835    int i = SplatCsts[idx];
3836
3837    // Figure out what shift amount will be used by altivec if shifted by i in
3838    // this splat size.
3839    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3840
3841    // vsplti + shl self.
3842    if (SextVal == (i << (int)TypeShiftAmt)) {
3843      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3844      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3845        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3846        Intrinsic::ppc_altivec_vslw
3847      };
3848      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3849      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3850    }
3851
3852    // vsplti + srl self.
3853    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3854      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3855      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3856        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3857        Intrinsic::ppc_altivec_vsrw
3858      };
3859      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3860      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3861    }
3862
3863    // vsplti + sra self.
3864    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3865      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3866      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3867        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3868        Intrinsic::ppc_altivec_vsraw
3869      };
3870      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3871      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3872    }
3873
3874    // vsplti + rol self.
3875    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3876                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3877      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3878      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3879        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3880        Intrinsic::ppc_altivec_vrlw
3881      };
3882      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3883      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3884    }
3885
3886    // t = vsplti c, result = vsldoi t, t, 1
3887    if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3888      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3889      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3890    }
3891    // t = vsplti c, result = vsldoi t, t, 2
3892    if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3893      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3894      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3895    }
3896    // t = vsplti c, result = vsldoi t, t, 3
3897    if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3898      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3899      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3900    }
3901  }
3902
3903  // Three instruction sequences.
3904
3905  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3906  if (SextVal >= 0 && SextVal <= 31) {
3907    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3908    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3909    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3910    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3911  }
3912  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3913  if (SextVal >= -31 && SextVal <= 0) {
3914    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3915    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3916    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3917    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3918  }
3919
3920  return SDValue();
3921}
3922
3923/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3924/// the specified operations to build the shuffle.
3925static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3926                                      SDValue RHS, SelectionDAG &DAG,
3927                                      DebugLoc dl) {
3928  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3929  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3930  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3931
3932  enum {
3933    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3934    OP_VMRGHW,
3935    OP_VMRGLW,
3936    OP_VSPLTISW0,
3937    OP_VSPLTISW1,
3938    OP_VSPLTISW2,
3939    OP_VSPLTISW3,
3940    OP_VSLDOI4,
3941    OP_VSLDOI8,
3942    OP_VSLDOI12
3943  };
3944
3945  if (OpNum == OP_COPY) {
3946    if (LHSID == (1*9+2)*9+3) return LHS;
3947    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3948    return RHS;
3949  }
3950
3951  SDValue OpLHS, OpRHS;
3952  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3953  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3954
3955  int ShufIdxs[16];
3956  switch (OpNum) {
3957  default: llvm_unreachable("Unknown i32 permute!");
3958  case OP_VMRGHW:
3959    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3960    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3961    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3962    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3963    break;
3964  case OP_VMRGLW:
3965    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3966    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3967    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3968    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3969    break;
3970  case OP_VSPLTISW0:
3971    for (unsigned i = 0; i != 16; ++i)
3972      ShufIdxs[i] = (i&3)+0;
3973    break;
3974  case OP_VSPLTISW1:
3975    for (unsigned i = 0; i != 16; ++i)
3976      ShufIdxs[i] = (i&3)+4;
3977    break;
3978  case OP_VSPLTISW2:
3979    for (unsigned i = 0; i != 16; ++i)
3980      ShufIdxs[i] = (i&3)+8;
3981    break;
3982  case OP_VSPLTISW3:
3983    for (unsigned i = 0; i != 16; ++i)
3984      ShufIdxs[i] = (i&3)+12;
3985    break;
3986  case OP_VSLDOI4:
3987    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3988  case OP_VSLDOI8:
3989    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3990  case OP_VSLDOI12:
3991    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3992  }
3993  EVT VT = OpLHS.getValueType();
3994  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
3995  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
3996  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
3997  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3998}
3999
4000/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4001/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4002/// return the code it can be lowered into.  Worst case, it can always be
4003/// lowered into a vperm.
4004SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4005                                               SelectionDAG &DAG) {
4006  DebugLoc dl = Op.getDebugLoc();
4007  SDValue V1 = Op.getOperand(0);
4008  SDValue V2 = Op.getOperand(1);
4009  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4010  EVT VT = Op.getValueType();
4011
4012  // Cases that are handled by instructions that take permute immediates
4013  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4014  // selected by the instruction selector.
4015  if (V2.getOpcode() == ISD::UNDEF) {
4016    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4017        PPC::isSplatShuffleMask(SVOp, 2) ||
4018        PPC::isSplatShuffleMask(SVOp, 4) ||
4019        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4020        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4021        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4022        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4023        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4024        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4025        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4026        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4027        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4028      return Op;
4029    }
4030  }
4031
4032  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4033  // and produce a fixed permutation.  If any of these match, do not lower to
4034  // VPERM.
4035  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4036      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4037      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4038      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4039      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4040      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4041      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4042      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4043      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4044    return Op;
4045
4046  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4047  // perfect shuffle table to emit an optimal matching sequence.
4048  SmallVector<int, 16> PermMask;
4049  SVOp->getMask(PermMask);
4050
4051  unsigned PFIndexes[4];
4052  bool isFourElementShuffle = true;
4053  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4054    unsigned EltNo = 8;   // Start out undef.
4055    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4056      if (PermMask[i*4+j] < 0)
4057        continue;   // Undef, ignore it.
4058
4059      unsigned ByteSource = PermMask[i*4+j];
4060      if ((ByteSource & 3) != j) {
4061        isFourElementShuffle = false;
4062        break;
4063      }
4064
4065      if (EltNo == 8) {
4066        EltNo = ByteSource/4;
4067      } else if (EltNo != ByteSource/4) {
4068        isFourElementShuffle = false;
4069        break;
4070      }
4071    }
4072    PFIndexes[i] = EltNo;
4073  }
4074
4075  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4076  // perfect shuffle vector to determine if it is cost effective to do this as
4077  // discrete instructions, or whether we should use a vperm.
4078  if (isFourElementShuffle) {
4079    // Compute the index in the perfect shuffle table.
4080    unsigned PFTableIndex =
4081      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4082
4083    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4084    unsigned Cost  = (PFEntry >> 30);
4085
4086    // Determining when to avoid vperm is tricky.  Many things affect the cost
4087    // of vperm, particularly how many times the perm mask needs to be computed.
4088    // For example, if the perm mask can be hoisted out of a loop or is already
4089    // used (perhaps because there are multiple permutes with the same shuffle
4090    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4091    // the loop requires an extra register.
4092    //
4093    // As a compromise, we only emit discrete instructions if the shuffle can be
4094    // generated in 3 or fewer operations.  When we have loop information
4095    // available, if this block is within a loop, we should avoid using vperm
4096    // for 3-operation perms and use a constant pool load instead.
4097    if (Cost < 3)
4098      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4099  }
4100
4101  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4102  // vector that will get spilled to the constant pool.
4103  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4104
4105  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4106  // that it is in input element units, not in bytes.  Convert now.
4107  EVT EltVT = V1.getValueType().getVectorElementType();
4108  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4109
4110  SmallVector<SDValue, 16> ResultMask;
4111  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4112    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4113
4114    for (unsigned j = 0; j != BytesPerElement; ++j)
4115      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4116                                           MVT::i32));
4117  }
4118
4119  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4120                                    &ResultMask[0], ResultMask.size());
4121  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4122}
4123
4124/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4125/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4126/// information about the intrinsic.
4127static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4128                                  bool &isDot) {
4129  unsigned IntrinsicID =
4130    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4131  CompareOpc = -1;
4132  isDot = false;
4133  switch (IntrinsicID) {
4134  default: return false;
4135    // Comparison predicates.
4136  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4137  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4138  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4139  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4140  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4141  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4142  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4143  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4144  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4145  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4146  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4147  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4148  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4149
4150    // Normal Comparisons.
4151  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4152  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4153  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4154  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4155  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4156  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4157  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4158  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4159  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4160  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4161  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4162  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4163  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4164  }
4165  return true;
4166}
4167
4168/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4169/// lower, do it, otherwise return null.
4170SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4171                                                     SelectionDAG &DAG) {
4172  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4173  // opcode number of the comparison.
4174  DebugLoc dl = Op.getDebugLoc();
4175  int CompareOpc;
4176  bool isDot;
4177  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4178    return SDValue();    // Don't custom lower most intrinsics.
4179
4180  // If this is a non-dot comparison, make the VCMP node and we are done.
4181  if (!isDot) {
4182    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4183                                Op.getOperand(1), Op.getOperand(2),
4184                                DAG.getConstant(CompareOpc, MVT::i32));
4185    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4186  }
4187
4188  // Create the PPCISD altivec 'dot' comparison node.
4189  SDValue Ops[] = {
4190    Op.getOperand(2),  // LHS
4191    Op.getOperand(3),  // RHS
4192    DAG.getConstant(CompareOpc, MVT::i32)
4193  };
4194  std::vector<EVT> VTs;
4195  VTs.push_back(Op.getOperand(2).getValueType());
4196  VTs.push_back(MVT::Flag);
4197  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4198
4199  // Now that we have the comparison, emit a copy from the CR to a GPR.
4200  // This is flagged to the above dot comparison.
4201  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4202                                DAG.getRegister(PPC::CR6, MVT::i32),
4203                                CompNode.getValue(1));
4204
4205  // Unpack the result based on how the target uses it.
4206  unsigned BitNo;   // Bit # of CR6.
4207  bool InvertBit;   // Invert result?
4208  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4209  default:  // Can't happen, don't crash on invalid number though.
4210  case 0:   // Return the value of the EQ bit of CR6.
4211    BitNo = 0; InvertBit = false;
4212    break;
4213  case 1:   // Return the inverted value of the EQ bit of CR6.
4214    BitNo = 0; InvertBit = true;
4215    break;
4216  case 2:   // Return the value of the LT bit of CR6.
4217    BitNo = 2; InvertBit = false;
4218    break;
4219  case 3:   // Return the inverted value of the LT bit of CR6.
4220    BitNo = 2; InvertBit = true;
4221    break;
4222  }
4223
4224  // Shift the bit into the low position.
4225  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4226                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4227  // Isolate the bit.
4228  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4229                      DAG.getConstant(1, MVT::i32));
4230
4231  // If we are supposed to, toggle the bit.
4232  if (InvertBit)
4233    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4234                        DAG.getConstant(1, MVT::i32));
4235  return Flags;
4236}
4237
4238SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4239                                                   SelectionDAG &DAG) {
4240  DebugLoc dl = Op.getDebugLoc();
4241  // Create a stack slot that is 16-byte aligned.
4242  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4243  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4244  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4245  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4246
4247  // Store the input value into Value#0 of the stack slot.
4248  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4249                                 Op.getOperand(0), FIdx, NULL, 0);
4250  // Load it out.
4251  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
4252}
4253
4254SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
4255  DebugLoc dl = Op.getDebugLoc();
4256  if (Op.getValueType() == MVT::v4i32) {
4257    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4258
4259    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4260    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4261
4262    SDValue RHSSwap =   // = vrlw RHS, 16
4263      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4264
4265    // Shrinkify inputs to v8i16.
4266    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4267    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4268    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4269
4270    // Low parts multiplied together, generating 32-bit results (we ignore the
4271    // top parts).
4272    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4273                                        LHS, RHS, DAG, dl, MVT::v4i32);
4274
4275    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4276                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4277    // Shift the high parts up 16 bits.
4278    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4279                              Neg16, DAG, dl);
4280    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4281  } else if (Op.getValueType() == MVT::v8i16) {
4282    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4283
4284    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4285
4286    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4287                            LHS, RHS, Zero, DAG, dl);
4288  } else if (Op.getValueType() == MVT::v16i8) {
4289    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4290
4291    // Multiply the even 8-bit parts, producing 16-bit sums.
4292    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4293                                           LHS, RHS, DAG, dl, MVT::v8i16);
4294    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4295
4296    // Multiply the odd 8-bit parts, producing 16-bit sums.
4297    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4298                                          LHS, RHS, DAG, dl, MVT::v8i16);
4299    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4300
4301    // Merge the results together.
4302    int Ops[16];
4303    for (unsigned i = 0; i != 8; ++i) {
4304      Ops[i*2  ] = 2*i+1;
4305      Ops[i*2+1] = 2*i+1+16;
4306    }
4307    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4308  } else {
4309    llvm_unreachable("Unknown mul to lower!");
4310  }
4311}
4312
4313/// LowerOperation - Provide custom lowering hooks for some operations.
4314///
4315SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4316  switch (Op.getOpcode()) {
4317  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4318  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4319  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4320  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4321  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4322  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4323  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4324  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4325  case ISD::VASTART:
4326    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4327                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4328
4329  case ISD::VAARG:
4330    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4331                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4332
4333  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4334  case ISD::DYNAMIC_STACKALLOC:
4335    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4336
4337  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4338  case ISD::FP_TO_UINT:
4339  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4340                                                       Op.getDebugLoc());
4341  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4342  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4343
4344  // Lower 64-bit shifts.
4345  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4346  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4347  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4348
4349  // Vector-related lowering.
4350  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4351  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4352  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4353  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4354  case ISD::MUL:                return LowerMUL(Op, DAG);
4355
4356  // Frame & Return address.
4357  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4358  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4359  }
4360  return SDValue();
4361}
4362
4363void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4364                                           SmallVectorImpl<SDValue>&Results,
4365                                           SelectionDAG &DAG) {
4366  DebugLoc dl = N->getDebugLoc();
4367  switch (N->getOpcode()) {
4368  default:
4369    assert(false && "Do not know how to custom type legalize this operation!");
4370    return;
4371  case ISD::FP_ROUND_INREG: {
4372    assert(N->getValueType(0) == MVT::ppcf128);
4373    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4374    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4375                             MVT::f64, N->getOperand(0),
4376                             DAG.getIntPtrConstant(0));
4377    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4378                             MVT::f64, N->getOperand(0),
4379                             DAG.getIntPtrConstant(1));
4380
4381    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4382    // of the long double, and puts FPSCR back the way it was.  We do not
4383    // actually model FPSCR.
4384    std::vector<EVT> NodeTys;
4385    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4386
4387    NodeTys.push_back(MVT::f64);   // Return register
4388    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4389    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4390    MFFSreg = Result.getValue(0);
4391    InFlag = Result.getValue(1);
4392
4393    NodeTys.clear();
4394    NodeTys.push_back(MVT::Flag);   // Returns a flag
4395    Ops[0] = DAG.getConstant(31, MVT::i32);
4396    Ops[1] = InFlag;
4397    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4398    InFlag = Result.getValue(0);
4399
4400    NodeTys.clear();
4401    NodeTys.push_back(MVT::Flag);   // Returns a flag
4402    Ops[0] = DAG.getConstant(30, MVT::i32);
4403    Ops[1] = InFlag;
4404    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4405    InFlag = Result.getValue(0);
4406
4407    NodeTys.clear();
4408    NodeTys.push_back(MVT::f64);    // result of add
4409    NodeTys.push_back(MVT::Flag);   // Returns a flag
4410    Ops[0] = Lo;
4411    Ops[1] = Hi;
4412    Ops[2] = InFlag;
4413    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4414    FPreg = Result.getValue(0);
4415    InFlag = Result.getValue(1);
4416
4417    NodeTys.clear();
4418    NodeTys.push_back(MVT::f64);
4419    Ops[0] = DAG.getConstant(1, MVT::i32);
4420    Ops[1] = MFFSreg;
4421    Ops[2] = FPreg;
4422    Ops[3] = InFlag;
4423    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4424    FPreg = Result.getValue(0);
4425
4426    // We know the low half is about to be thrown away, so just use something
4427    // convenient.
4428    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4429                                FPreg, FPreg));
4430    return;
4431  }
4432  case ISD::FP_TO_SINT:
4433    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4434    return;
4435  }
4436}
4437
4438
4439//===----------------------------------------------------------------------===//
4440//  Other Lowering Code
4441//===----------------------------------------------------------------------===//
4442
4443MachineBasicBlock *
4444PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4445                                    bool is64bit, unsigned BinOpcode) const {
4446  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4447  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4448
4449  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4450  MachineFunction *F = BB->getParent();
4451  MachineFunction::iterator It = BB;
4452  ++It;
4453
4454  unsigned dest = MI->getOperand(0).getReg();
4455  unsigned ptrA = MI->getOperand(1).getReg();
4456  unsigned ptrB = MI->getOperand(2).getReg();
4457  unsigned incr = MI->getOperand(3).getReg();
4458  DebugLoc dl = MI->getDebugLoc();
4459
4460  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4461  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4462  F->insert(It, loopMBB);
4463  F->insert(It, exitMBB);
4464  exitMBB->transferSuccessors(BB);
4465
4466  MachineRegisterInfo &RegInfo = F->getRegInfo();
4467  unsigned TmpReg = (!BinOpcode) ? incr :
4468    RegInfo.createVirtualRegister(
4469       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4470                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4471
4472  //  thisMBB:
4473  //   ...
4474  //   fallthrough --> loopMBB
4475  BB->addSuccessor(loopMBB);
4476
4477  //  loopMBB:
4478  //   l[wd]arx dest, ptr
4479  //   add r0, dest, incr
4480  //   st[wd]cx. r0, ptr
4481  //   bne- loopMBB
4482  //   fallthrough --> exitMBB
4483  BB = loopMBB;
4484  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4485    .addReg(ptrA).addReg(ptrB);
4486  if (BinOpcode)
4487    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4488  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4489    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4490  BuildMI(BB, dl, TII->get(PPC::BCC))
4491    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4492  BB->addSuccessor(loopMBB);
4493  BB->addSuccessor(exitMBB);
4494
4495  //  exitMBB:
4496  //   ...
4497  BB = exitMBB;
4498  return BB;
4499}
4500
4501MachineBasicBlock *
4502PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4503                                            MachineBasicBlock *BB,
4504                                            bool is8bit,    // operation
4505                                            unsigned BinOpcode) const {
4506  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4507  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4508  // In 64 bit mode we have to use 64 bits for addresses, even though the
4509  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4510  // registers without caring whether they're 32 or 64, but here we're
4511  // doing actual arithmetic on the addresses.
4512  bool is64bit = PPCSubTarget.isPPC64();
4513
4514  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4515  MachineFunction *F = BB->getParent();
4516  MachineFunction::iterator It = BB;
4517  ++It;
4518
4519  unsigned dest = MI->getOperand(0).getReg();
4520  unsigned ptrA = MI->getOperand(1).getReg();
4521  unsigned ptrB = MI->getOperand(2).getReg();
4522  unsigned incr = MI->getOperand(3).getReg();
4523  DebugLoc dl = MI->getDebugLoc();
4524
4525  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4526  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4527  F->insert(It, loopMBB);
4528  F->insert(It, exitMBB);
4529  exitMBB->transferSuccessors(BB);
4530
4531  MachineRegisterInfo &RegInfo = F->getRegInfo();
4532  const TargetRegisterClass *RC =
4533    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4534              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4535  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4536  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4537  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4538  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4539  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4540  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4541  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4542  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4543  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4544  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4545  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4546  unsigned Ptr1Reg;
4547  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4548
4549  //  thisMBB:
4550  //   ...
4551  //   fallthrough --> loopMBB
4552  BB->addSuccessor(loopMBB);
4553
4554  // The 4-byte load must be aligned, while a char or short may be
4555  // anywhere in the word.  Hence all this nasty bookkeeping code.
4556  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4557  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4558  //   xori shift, shift1, 24 [16]
4559  //   rlwinm ptr, ptr1, 0, 0, 29
4560  //   slw incr2, incr, shift
4561  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4562  //   slw mask, mask2, shift
4563  //  loopMBB:
4564  //   lwarx tmpDest, ptr
4565  //   add tmp, tmpDest, incr2
4566  //   andc tmp2, tmpDest, mask
4567  //   and tmp3, tmp, mask
4568  //   or tmp4, tmp3, tmp2
4569  //   stwcx. tmp4, ptr
4570  //   bne- loopMBB
4571  //   fallthrough --> exitMBB
4572  //   srw dest, tmpDest, shift
4573
4574  if (ptrA!=PPC::R0) {
4575    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4576    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4577      .addReg(ptrA).addReg(ptrB);
4578  } else {
4579    Ptr1Reg = ptrB;
4580  }
4581  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4582      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4583  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4584      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4585  if (is64bit)
4586    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4587      .addReg(Ptr1Reg).addImm(0).addImm(61);
4588  else
4589    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4590      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4591  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4592      .addReg(incr).addReg(ShiftReg);
4593  if (is8bit)
4594    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4595  else {
4596    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4597    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4598  }
4599  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4600      .addReg(Mask2Reg).addReg(ShiftReg);
4601
4602  BB = loopMBB;
4603  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4604    .addReg(PPC::R0).addReg(PtrReg);
4605  if (BinOpcode)
4606    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4607      .addReg(Incr2Reg).addReg(TmpDestReg);
4608  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4609    .addReg(TmpDestReg).addReg(MaskReg);
4610  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4611    .addReg(TmpReg).addReg(MaskReg);
4612  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4613    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4614  BuildMI(BB, dl, TII->get(PPC::STWCX))
4615    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4616  BuildMI(BB, dl, TII->get(PPC::BCC))
4617    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4618  BB->addSuccessor(loopMBB);
4619  BB->addSuccessor(exitMBB);
4620
4621  //  exitMBB:
4622  //   ...
4623  BB = exitMBB;
4624  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4625  return BB;
4626}
4627
4628MachineBasicBlock *
4629PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4630                                               MachineBasicBlock *BB,
4631                   DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
4632  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4633
4634  // To "insert" these instructions we actually have to insert their
4635  // control-flow patterns.
4636  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4637  MachineFunction::iterator It = BB;
4638  ++It;
4639
4640  MachineFunction *F = BB->getParent();
4641
4642  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4643      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4644      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4645      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4646      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4647
4648    // The incoming instruction knows the destination vreg to set, the
4649    // condition code register to branch on, the true/false values to
4650    // select between, and a branch opcode to use.
4651
4652    //  thisMBB:
4653    //  ...
4654    //   TrueVal = ...
4655    //   cmpTY ccX, r1, r2
4656    //   bCC copy1MBB
4657    //   fallthrough --> copy0MBB
4658    MachineBasicBlock *thisMBB = BB;
4659    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4660    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4661    unsigned SelectPred = MI->getOperand(4).getImm();
4662    DebugLoc dl = MI->getDebugLoc();
4663    BuildMI(BB, dl, TII->get(PPC::BCC))
4664      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4665    F->insert(It, copy0MBB);
4666    F->insert(It, sinkMBB);
4667    // Update machine-CFG edges by first adding all successors of the current
4668    // block to the new block which will contain the Phi node for the select.
4669    // Also inform sdisel of the edge changes.
4670    for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
4671           E = BB->succ_end(); I != E; ++I) {
4672      EM->insert(std::make_pair(*I, sinkMBB));
4673      sinkMBB->addSuccessor(*I);
4674    }
4675    // Next, remove all successors of the current block, and add the true
4676    // and fallthrough blocks as its successors.
4677    while (!BB->succ_empty())
4678      BB->removeSuccessor(BB->succ_begin());
4679    // Next, add the true and fallthrough blocks as its successors.
4680    BB->addSuccessor(copy0MBB);
4681    BB->addSuccessor(sinkMBB);
4682
4683    //  copy0MBB:
4684    //   %FalseValue = ...
4685    //   # fallthrough to sinkMBB
4686    BB = copy0MBB;
4687
4688    // Update machine-CFG edges
4689    BB->addSuccessor(sinkMBB);
4690
4691    //  sinkMBB:
4692    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4693    //  ...
4694    BB = sinkMBB;
4695    BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4696      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4697      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4698  }
4699  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4700    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4701  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4702    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4703  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4704    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4705  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4706    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4707
4708  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4709    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4710  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4711    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4712  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4713    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4714  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4715    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4716
4717  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4718    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4719  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4720    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4721  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4722    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4723  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4724    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4725
4726  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4727    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4728  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4729    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4730  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4731    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4732  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4733    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4734
4735  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4736    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4737  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4738    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4739  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4740    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4741  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4742    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4743
4744  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4745    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4746  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4747    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4748  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4749    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4750  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4751    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4752
4753  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4754    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4755  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4756    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4757  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4758    BB = EmitAtomicBinary(MI, BB, false, 0);
4759  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4760    BB = EmitAtomicBinary(MI, BB, true, 0);
4761
4762  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4763           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4764    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4765
4766    unsigned dest   = MI->getOperand(0).getReg();
4767    unsigned ptrA   = MI->getOperand(1).getReg();
4768    unsigned ptrB   = MI->getOperand(2).getReg();
4769    unsigned oldval = MI->getOperand(3).getReg();
4770    unsigned newval = MI->getOperand(4).getReg();
4771    DebugLoc dl     = MI->getDebugLoc();
4772
4773    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4774    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4775    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4776    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4777    F->insert(It, loop1MBB);
4778    F->insert(It, loop2MBB);
4779    F->insert(It, midMBB);
4780    F->insert(It, exitMBB);
4781    exitMBB->transferSuccessors(BB);
4782
4783    //  thisMBB:
4784    //   ...
4785    //   fallthrough --> loopMBB
4786    BB->addSuccessor(loop1MBB);
4787
4788    // loop1MBB:
4789    //   l[wd]arx dest, ptr
4790    //   cmp[wd] dest, oldval
4791    //   bne- midMBB
4792    // loop2MBB:
4793    //   st[wd]cx. newval, ptr
4794    //   bne- loopMBB
4795    //   b exitBB
4796    // midMBB:
4797    //   st[wd]cx. dest, ptr
4798    // exitBB:
4799    BB = loop1MBB;
4800    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4801      .addReg(ptrA).addReg(ptrB);
4802    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4803      .addReg(oldval).addReg(dest);
4804    BuildMI(BB, dl, TII->get(PPC::BCC))
4805      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4806    BB->addSuccessor(loop2MBB);
4807    BB->addSuccessor(midMBB);
4808
4809    BB = loop2MBB;
4810    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4811      .addReg(newval).addReg(ptrA).addReg(ptrB);
4812    BuildMI(BB, dl, TII->get(PPC::BCC))
4813      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4814    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4815    BB->addSuccessor(loop1MBB);
4816    BB->addSuccessor(exitMBB);
4817
4818    BB = midMBB;
4819    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4820      .addReg(dest).addReg(ptrA).addReg(ptrB);
4821    BB->addSuccessor(exitMBB);
4822
4823    //  exitMBB:
4824    //   ...
4825    BB = exitMBB;
4826  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4827             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4828    // We must use 64-bit registers for addresses when targeting 64-bit,
4829    // since we're actually doing arithmetic on them.  Other registers
4830    // can be 32-bit.
4831    bool is64bit = PPCSubTarget.isPPC64();
4832    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4833
4834    unsigned dest   = MI->getOperand(0).getReg();
4835    unsigned ptrA   = MI->getOperand(1).getReg();
4836    unsigned ptrB   = MI->getOperand(2).getReg();
4837    unsigned oldval = MI->getOperand(3).getReg();
4838    unsigned newval = MI->getOperand(4).getReg();
4839    DebugLoc dl     = MI->getDebugLoc();
4840
4841    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4842    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4843    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4844    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4845    F->insert(It, loop1MBB);
4846    F->insert(It, loop2MBB);
4847    F->insert(It, midMBB);
4848    F->insert(It, exitMBB);
4849    exitMBB->transferSuccessors(BB);
4850
4851    MachineRegisterInfo &RegInfo = F->getRegInfo();
4852    const TargetRegisterClass *RC =
4853      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4854                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4855    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4856    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4857    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4858    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4859    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4860    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4861    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4862    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4863    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4864    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4865    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4866    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4867    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4868    unsigned Ptr1Reg;
4869    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4870    //  thisMBB:
4871    //   ...
4872    //   fallthrough --> loopMBB
4873    BB->addSuccessor(loop1MBB);
4874
4875    // The 4-byte load must be aligned, while a char or short may be
4876    // anywhere in the word.  Hence all this nasty bookkeeping code.
4877    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4878    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4879    //   xori shift, shift1, 24 [16]
4880    //   rlwinm ptr, ptr1, 0, 0, 29
4881    //   slw newval2, newval, shift
4882    //   slw oldval2, oldval,shift
4883    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4884    //   slw mask, mask2, shift
4885    //   and newval3, newval2, mask
4886    //   and oldval3, oldval2, mask
4887    // loop1MBB:
4888    //   lwarx tmpDest, ptr
4889    //   and tmp, tmpDest, mask
4890    //   cmpw tmp, oldval3
4891    //   bne- midMBB
4892    // loop2MBB:
4893    //   andc tmp2, tmpDest, mask
4894    //   or tmp4, tmp2, newval3
4895    //   stwcx. tmp4, ptr
4896    //   bne- loop1MBB
4897    //   b exitBB
4898    // midMBB:
4899    //   stwcx. tmpDest, ptr
4900    // exitBB:
4901    //   srw dest, tmpDest, shift
4902    if (ptrA!=PPC::R0) {
4903      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4904      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4905        .addReg(ptrA).addReg(ptrB);
4906    } else {
4907      Ptr1Reg = ptrB;
4908    }
4909    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4910        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4911    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4912        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4913    if (is64bit)
4914      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4915        .addReg(Ptr1Reg).addImm(0).addImm(61);
4916    else
4917      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4918        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4919    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4920        .addReg(newval).addReg(ShiftReg);
4921    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4922        .addReg(oldval).addReg(ShiftReg);
4923    if (is8bit)
4924      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4925    else {
4926      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4927      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4928        .addReg(Mask3Reg).addImm(65535);
4929    }
4930    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4931        .addReg(Mask2Reg).addReg(ShiftReg);
4932    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4933        .addReg(NewVal2Reg).addReg(MaskReg);
4934    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4935        .addReg(OldVal2Reg).addReg(MaskReg);
4936
4937    BB = loop1MBB;
4938    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4939        .addReg(PPC::R0).addReg(PtrReg);
4940    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4941        .addReg(TmpDestReg).addReg(MaskReg);
4942    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4943        .addReg(TmpReg).addReg(OldVal3Reg);
4944    BuildMI(BB, dl, TII->get(PPC::BCC))
4945        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4946    BB->addSuccessor(loop2MBB);
4947    BB->addSuccessor(midMBB);
4948
4949    BB = loop2MBB;
4950    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
4951        .addReg(TmpDestReg).addReg(MaskReg);
4952    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
4953        .addReg(Tmp2Reg).addReg(NewVal3Reg);
4954    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4955        .addReg(PPC::R0).addReg(PtrReg);
4956    BuildMI(BB, dl, TII->get(PPC::BCC))
4957      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4958    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4959    BB->addSuccessor(loop1MBB);
4960    BB->addSuccessor(exitMBB);
4961
4962    BB = midMBB;
4963    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4964      .addReg(PPC::R0).addReg(PtrReg);
4965    BB->addSuccessor(exitMBB);
4966
4967    //  exitMBB:
4968    //   ...
4969    BB = exitMBB;
4970    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4971  } else {
4972    llvm_unreachable("Unexpected instr type to insert");
4973  }
4974
4975  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4976  return BB;
4977}
4978
4979//===----------------------------------------------------------------------===//
4980// Target Optimization Hooks
4981//===----------------------------------------------------------------------===//
4982
4983SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4984                                             DAGCombinerInfo &DCI) const {
4985  TargetMachine &TM = getTargetMachine();
4986  SelectionDAG &DAG = DCI.DAG;
4987  DebugLoc dl = N->getDebugLoc();
4988  switch (N->getOpcode()) {
4989  default: break;
4990  case PPCISD::SHL:
4991    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4992      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4993        return N->getOperand(0);
4994    }
4995    break;
4996  case PPCISD::SRL:
4997    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4998      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4999        return N->getOperand(0);
5000    }
5001    break;
5002  case PPCISD::SRA:
5003    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5004      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
5005          C->isAllOnesValue())    // -1 >>s V -> -1.
5006        return N->getOperand(0);
5007    }
5008    break;
5009
5010  case ISD::SINT_TO_FP:
5011    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5012      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5013        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5014        // We allow the src/dst to be either f32/f64, but the intermediate
5015        // type must be i64.
5016        if (N->getOperand(0).getValueType() == MVT::i64 &&
5017            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5018          SDValue Val = N->getOperand(0).getOperand(0);
5019          if (Val.getValueType() == MVT::f32) {
5020            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5021            DCI.AddToWorklist(Val.getNode());
5022          }
5023
5024          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5025          DCI.AddToWorklist(Val.getNode());
5026          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5027          DCI.AddToWorklist(Val.getNode());
5028          if (N->getValueType(0) == MVT::f32) {
5029            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5030                              DAG.getIntPtrConstant(0));
5031            DCI.AddToWorklist(Val.getNode());
5032          }
5033          return Val;
5034        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5035          // If the intermediate type is i32, we can avoid the load/store here
5036          // too.
5037        }
5038      }
5039    }
5040    break;
5041  case ISD::STORE:
5042    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5043    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5044        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5045        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5046        N->getOperand(1).getValueType() == MVT::i32 &&
5047        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5048      SDValue Val = N->getOperand(1).getOperand(0);
5049      if (Val.getValueType() == MVT::f32) {
5050        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5051        DCI.AddToWorklist(Val.getNode());
5052      }
5053      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5054      DCI.AddToWorklist(Val.getNode());
5055
5056      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5057                        N->getOperand(2), N->getOperand(3));
5058      DCI.AddToWorklist(Val.getNode());
5059      return Val;
5060    }
5061
5062    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5063    if (cast<StoreSDNode>(N)->isUnindexed() &&
5064        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5065        N->getOperand(1).getNode()->hasOneUse() &&
5066        (N->getOperand(1).getValueType() == MVT::i32 ||
5067         N->getOperand(1).getValueType() == MVT::i16)) {
5068      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5069      // Do an any-extend to 32-bits if this is a half-word input.
5070      if (BSwapOp.getValueType() == MVT::i16)
5071        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5072
5073      SDValue Ops[] = {
5074        N->getOperand(0), BSwapOp, N->getOperand(2),
5075        DAG.getValueType(N->getOperand(1).getValueType())
5076      };
5077      return
5078        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5079                                Ops, array_lengthof(Ops),
5080                                cast<StoreSDNode>(N)->getMemoryVT(),
5081                                cast<StoreSDNode>(N)->getMemOperand());
5082    }
5083    break;
5084  case ISD::BSWAP:
5085    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5086    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5087        N->getOperand(0).hasOneUse() &&
5088        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5089      SDValue Load = N->getOperand(0);
5090      LoadSDNode *LD = cast<LoadSDNode>(Load);
5091      // Create the byte-swapping load.
5092      SDValue Ops[] = {
5093        LD->getChain(),    // Chain
5094        LD->getBasePtr(),  // Ptr
5095        DAG.getValueType(N->getValueType(0)) // VT
5096      };
5097      SDValue BSLoad =
5098        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5099                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5100                                LD->getMemoryVT(), LD->getMemOperand());
5101
5102      // If this is an i16 load, insert the truncate.
5103      SDValue ResVal = BSLoad;
5104      if (N->getValueType(0) == MVT::i16)
5105        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5106
5107      // First, combine the bswap away.  This makes the value produced by the
5108      // load dead.
5109      DCI.CombineTo(N, ResVal);
5110
5111      // Next, combine the load away, we give it a bogus result value but a real
5112      // chain result.  The result value is dead because the bswap is dead.
5113      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5114
5115      // Return N so it doesn't get rechecked!
5116      return SDValue(N, 0);
5117    }
5118
5119    break;
5120  case PPCISD::VCMP: {
5121    // If a VCMPo node already exists with exactly the same operands as this
5122    // node, use its result instead of this node (VCMPo computes both a CR6 and
5123    // a normal output).
5124    //
5125    if (!N->getOperand(0).hasOneUse() &&
5126        !N->getOperand(1).hasOneUse() &&
5127        !N->getOperand(2).hasOneUse()) {
5128
5129      // Scan all of the users of the LHS, looking for VCMPo's that match.
5130      SDNode *VCMPoNode = 0;
5131
5132      SDNode *LHSN = N->getOperand(0).getNode();
5133      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5134           UI != E; ++UI)
5135        if (UI->getOpcode() == PPCISD::VCMPo &&
5136            UI->getOperand(1) == N->getOperand(1) &&
5137            UI->getOperand(2) == N->getOperand(2) &&
5138            UI->getOperand(0) == N->getOperand(0)) {
5139          VCMPoNode = *UI;
5140          break;
5141        }
5142
5143      // If there is no VCMPo node, or if the flag value has a single use, don't
5144      // transform this.
5145      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5146        break;
5147
5148      // Look at the (necessarily single) use of the flag value.  If it has a
5149      // chain, this transformation is more complex.  Note that multiple things
5150      // could use the value result, which we should ignore.
5151      SDNode *FlagUser = 0;
5152      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5153           FlagUser == 0; ++UI) {
5154        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5155        SDNode *User = *UI;
5156        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5157          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5158            FlagUser = User;
5159            break;
5160          }
5161        }
5162      }
5163
5164      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5165      // give up for right now.
5166      if (FlagUser->getOpcode() == PPCISD::MFCR)
5167        return SDValue(VCMPoNode, 0);
5168    }
5169    break;
5170  }
5171  case ISD::BR_CC: {
5172    // If this is a branch on an altivec predicate comparison, lower this so
5173    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5174    // lowering is done pre-legalize, because the legalizer lowers the predicate
5175    // compare down to code that is difficult to reassemble.
5176    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5177    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5178    int CompareOpc;
5179    bool isDot;
5180
5181    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5182        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5183        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5184      assert(isDot && "Can't compare against a vector result!");
5185
5186      // If this is a comparison against something other than 0/1, then we know
5187      // that the condition is never/always true.
5188      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5189      if (Val != 0 && Val != 1) {
5190        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5191          return N->getOperand(0);
5192        // Always !=, turn it into an unconditional branch.
5193        return DAG.getNode(ISD::BR, dl, MVT::Other,
5194                           N->getOperand(0), N->getOperand(4));
5195      }
5196
5197      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5198
5199      // Create the PPCISD altivec 'dot' comparison node.
5200      std::vector<EVT> VTs;
5201      SDValue Ops[] = {
5202        LHS.getOperand(2),  // LHS of compare
5203        LHS.getOperand(3),  // RHS of compare
5204        DAG.getConstant(CompareOpc, MVT::i32)
5205      };
5206      VTs.push_back(LHS.getOperand(2).getValueType());
5207      VTs.push_back(MVT::Flag);
5208      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5209
5210      // Unpack the result based on how the target uses it.
5211      PPC::Predicate CompOpc;
5212      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5213      default:  // Can't happen, don't crash on invalid number though.
5214      case 0:   // Branch on the value of the EQ bit of CR6.
5215        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5216        break;
5217      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5218        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5219        break;
5220      case 2:   // Branch on the value of the LT bit of CR6.
5221        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5222        break;
5223      case 3:   // Branch on the inverted value of the LT bit of CR6.
5224        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5225        break;
5226      }
5227
5228      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5229                         DAG.getConstant(CompOpc, MVT::i32),
5230                         DAG.getRegister(PPC::CR6, MVT::i32),
5231                         N->getOperand(4), CompNode.getValue(1));
5232    }
5233    break;
5234  }
5235  }
5236
5237  return SDValue();
5238}
5239
5240//===----------------------------------------------------------------------===//
5241// Inline Assembly Support
5242//===----------------------------------------------------------------------===//
5243
5244void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5245                                                       const APInt &Mask,
5246                                                       APInt &KnownZero,
5247                                                       APInt &KnownOne,
5248                                                       const SelectionDAG &DAG,
5249                                                       unsigned Depth) const {
5250  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5251  switch (Op.getOpcode()) {
5252  default: break;
5253  case PPCISD::LBRX: {
5254    // lhbrx is known to have the top bits cleared out.
5255    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5256      KnownZero = 0xFFFF0000;
5257    break;
5258  }
5259  case ISD::INTRINSIC_WO_CHAIN: {
5260    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5261    default: break;
5262    case Intrinsic::ppc_altivec_vcmpbfp_p:
5263    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5264    case Intrinsic::ppc_altivec_vcmpequb_p:
5265    case Intrinsic::ppc_altivec_vcmpequh_p:
5266    case Intrinsic::ppc_altivec_vcmpequw_p:
5267    case Intrinsic::ppc_altivec_vcmpgefp_p:
5268    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5269    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5270    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5271    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5272    case Intrinsic::ppc_altivec_vcmpgtub_p:
5273    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5274    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5275      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5276      break;
5277    }
5278  }
5279  }
5280}
5281
5282
5283/// getConstraintType - Given a constraint, return the type of
5284/// constraint it is for this target.
5285PPCTargetLowering::ConstraintType
5286PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5287  if (Constraint.size() == 1) {
5288    switch (Constraint[0]) {
5289    default: break;
5290    case 'b':
5291    case 'r':
5292    case 'f':
5293    case 'v':
5294    case 'y':
5295      return C_RegisterClass;
5296    }
5297  }
5298  return TargetLowering::getConstraintType(Constraint);
5299}
5300
5301std::pair<unsigned, const TargetRegisterClass*>
5302PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5303                                                EVT VT) const {
5304  if (Constraint.size() == 1) {
5305    // GCC RS6000 Constraint Letters
5306    switch (Constraint[0]) {
5307    case 'b':   // R1-R31
5308    case 'r':   // R0-R31
5309      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5310        return std::make_pair(0U, PPC::G8RCRegisterClass);
5311      return std::make_pair(0U, PPC::GPRCRegisterClass);
5312    case 'f':
5313      if (VT == MVT::f32)
5314        return std::make_pair(0U, PPC::F4RCRegisterClass);
5315      else if (VT == MVT::f64)
5316        return std::make_pair(0U, PPC::F8RCRegisterClass);
5317      break;
5318    case 'v':
5319      return std::make_pair(0U, PPC::VRRCRegisterClass);
5320    case 'y':   // crrc
5321      return std::make_pair(0U, PPC::CRRCRegisterClass);
5322    }
5323  }
5324
5325  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5326}
5327
5328
5329/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5330/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
5331/// it means one of the asm constraint of the inline asm instruction being
5332/// processed is 'm'.
5333void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5334                                                     bool hasMemory,
5335                                                     std::vector<SDValue>&Ops,
5336                                                     SelectionDAG &DAG) const {
5337  SDValue Result(0,0);
5338  switch (Letter) {
5339  default: break;
5340  case 'I':
5341  case 'J':
5342  case 'K':
5343  case 'L':
5344  case 'M':
5345  case 'N':
5346  case 'O':
5347  case 'P': {
5348    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5349    if (!CST) return; // Must be an immediate to match.
5350    unsigned Value = CST->getZExtValue();
5351    switch (Letter) {
5352    default: llvm_unreachable("Unknown constraint letter!");
5353    case 'I':  // "I" is a signed 16-bit constant.
5354      if ((short)Value == (int)Value)
5355        Result = DAG.getTargetConstant(Value, Op.getValueType());
5356      break;
5357    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5358    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5359      if ((short)Value == 0)
5360        Result = DAG.getTargetConstant(Value, Op.getValueType());
5361      break;
5362    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5363      if ((Value >> 16) == 0)
5364        Result = DAG.getTargetConstant(Value, Op.getValueType());
5365      break;
5366    case 'M':  // "M" is a constant that is greater than 31.
5367      if (Value > 31)
5368        Result = DAG.getTargetConstant(Value, Op.getValueType());
5369      break;
5370    case 'N':  // "N" is a positive constant that is an exact power of two.
5371      if ((int)Value > 0 && isPowerOf2_32(Value))
5372        Result = DAG.getTargetConstant(Value, Op.getValueType());
5373      break;
5374    case 'O':  // "O" is the constant zero.
5375      if (Value == 0)
5376        Result = DAG.getTargetConstant(Value, Op.getValueType());
5377      break;
5378    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5379      if ((short)-Value == (int)-Value)
5380        Result = DAG.getTargetConstant(Value, Op.getValueType());
5381      break;
5382    }
5383    break;
5384  }
5385  }
5386
5387  if (Result.getNode()) {
5388    Ops.push_back(Result);
5389    return;
5390  }
5391
5392  // Handle standard constraint letters.
5393  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
5394}
5395
5396// isLegalAddressingMode - Return true if the addressing mode represented
5397// by AM is legal for this target, for a load/store of the specified type.
5398bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5399                                              const Type *Ty) const {
5400  // FIXME: PPC does not allow r+i addressing modes for vectors!
5401
5402  // PPC allows a sign-extended 16-bit immediate field.
5403  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5404    return false;
5405
5406  // No global is ever allowed as a base.
5407  if (AM.BaseGV)
5408    return false;
5409
5410  // PPC only support r+r,
5411  switch (AM.Scale) {
5412  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5413    break;
5414  case 1:
5415    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5416      return false;
5417    // Otherwise we have r+r or r+i.
5418    break;
5419  case 2:
5420    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5421      return false;
5422    // Allow 2*r as r+r.
5423    break;
5424  default:
5425    // No other scales are supported.
5426    return false;
5427  }
5428
5429  return true;
5430}
5431
5432/// isLegalAddressImmediate - Return true if the integer value can be used
5433/// as the offset of the target addressing mode for load / store of the
5434/// given type.
5435bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5436  // PPC allows a sign-extended 16-bit immediate field.
5437  return (V > -(1 << 16) && V < (1 << 16)-1);
5438}
5439
5440bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5441  return false;
5442}
5443
5444SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5445  DebugLoc dl = Op.getDebugLoc();
5446  // Depths > 0 not supported yet!
5447  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5448    return SDValue();
5449
5450  MachineFunction &MF = DAG.getMachineFunction();
5451  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5452
5453  // Just load the return address off the stack.
5454  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5455
5456  // Make sure the function really does not optimize away the store of the RA
5457  // to the stack.
5458  FuncInfo->setLRStoreRequired();
5459  return DAG.getLoad(getPointerTy(), dl,
5460                     DAG.getEntryNode(), RetAddrFI, NULL, 0);
5461}
5462
5463SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5464  DebugLoc dl = Op.getDebugLoc();
5465  // Depths > 0 not supported yet!
5466  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5467    return SDValue();
5468
5469  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5470  bool isPPC64 = PtrVT == MVT::i64;
5471
5472  MachineFunction &MF = DAG.getMachineFunction();
5473  MachineFrameInfo *MFI = MF.getFrameInfo();
5474  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
5475                  && MFI->getStackSize();
5476
5477  if (isPPC64)
5478    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
5479      MVT::i64);
5480  else
5481    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
5482      MVT::i32);
5483}
5484
5485bool
5486PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5487  // The PowerPC target isn't yet aware of offsets.
5488  return false;
5489}
5490
5491EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
5492                                           bool isSrcConst, bool isSrcStr,
5493                                           SelectionDAG &DAG) const {
5494  if (this->PPCSubTarget.isPPC64()) {
5495    return MVT::i64;
5496  } else {
5497    return MVT::i32;
5498  }
5499}
5500