PPCISelLowering.cpp revision 51aaadb7bda93040ebfc8341abed7627c99be8f7
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPerfectShuffle.h"
17#include "PPCTargetMachine.h"
18#include "MCTargetDesc/PPCPredicates.h"
19#include "llvm/CallingConv.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
40                                     CCValAssign::LocInfo &LocInfo,
41                                     ISD::ArgFlagsTy &ArgFlags,
42                                     CCState &State);
43static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
44                                            MVT &LocVT,
45                                            CCValAssign::LocInfo &LocInfo,
46                                            ISD::ArgFlagsTy &ArgFlags,
47                                            CCState &State);
48static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
49                                              MVT &LocVT,
50                                              CCValAssign::LocInfo &LocInfo,
51                                              ISD::ArgFlagsTy &ArgFlags,
52                                              CCState &State);
53
54static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
55cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
56
57static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
58cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63
64  return new TargetLoweringObjectFileELF();
65}
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
70
71  setPow2DivIsCheap();
72
73  // Use _setjmp/_longjmp instead of setjmp/longjmp.
74  setUseUnderscoreSetJmp(true);
75  setUseUnderscoreLongJmp(true);
76
77  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
78  // arguments are at least 4/8 bytes aligned.
79  bool isPPC64 = Subtarget->isPPC64();
80  setMinStackArgumentAlignment(isPPC64 ? 8:4);
81
82  // Set up the register classes.
83  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
84  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
85  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
86
87  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
88  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
89  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
90
91  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
92
93  // PowerPC has pre-inc load and store's.
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
95  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
96  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
97  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
98  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
100  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
101  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
102  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
103  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
104
105  // This is used in the ppcf128->int sequence.  Note it has different semantics
106  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
107  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
108
109  // We do not currently implement these libm ops for PowerPC.
110  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
111  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
112  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
113  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
114  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
115
116  // PowerPC has no SREM/UREM instructions
117  setOperationAction(ISD::SREM, MVT::i32, Expand);
118  setOperationAction(ISD::UREM, MVT::i32, Expand);
119  setOperationAction(ISD::SREM, MVT::i64, Expand);
120  setOperationAction(ISD::UREM, MVT::i64, Expand);
121
122  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
123  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
124  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
125  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
126  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
127  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
128  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
129  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
130  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
131
132  // We don't support sin/cos/sqrt/fmod/pow
133  setOperationAction(ISD::FSIN , MVT::f64, Expand);
134  setOperationAction(ISD::FCOS , MVT::f64, Expand);
135  setOperationAction(ISD::FREM , MVT::f64, Expand);
136  setOperationAction(ISD::FPOW , MVT::f64, Expand);
137  setOperationAction(ISD::FMA  , MVT::f64, Legal);
138  setOperationAction(ISD::FSIN , MVT::f32, Expand);
139  setOperationAction(ISD::FCOS , MVT::f32, Expand);
140  setOperationAction(ISD::FREM , MVT::f32, Expand);
141  setOperationAction(ISD::FPOW , MVT::f32, Expand);
142  setOperationAction(ISD::FMA  , MVT::f32, Legal);
143
144  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
145
146  // If we're enabling GP optimizations, use hardware square root
147  if (!Subtarget->hasFSQRT()) {
148    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
149    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
150  }
151
152  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
153  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
154
155  // PowerPC does not have BSWAP, CTPOP or CTTZ
156  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
157  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
158  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
159  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
160  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
161  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
162  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
163  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
164  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
165  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
166
167  // PowerPC does not have ROTR
168  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
169  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
170
171  // PowerPC does not have Select
172  setOperationAction(ISD::SELECT, MVT::i32, Expand);
173  setOperationAction(ISD::SELECT, MVT::i64, Expand);
174  setOperationAction(ISD::SELECT, MVT::f32, Expand);
175  setOperationAction(ISD::SELECT, MVT::f64, Expand);
176
177  // PowerPC wants to turn select_cc of FP into fsel when possible.
178  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
179  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
180
181  // PowerPC wants to optimize integer setcc a bit
182  setOperationAction(ISD::SETCC, MVT::i32, Custom);
183
184  // PowerPC does not have BRCOND which requires SetCC
185  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
186
187  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
188
189  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
190  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
191
192  // PowerPC does not have [U|S]INT_TO_FP
193  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
194  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
195
196  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
197  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
198  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
199  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
200
201  // We cannot sextinreg(i1).  Expand to shifts.
202  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
203
204  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
205  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
206  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
207  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
208
209
210  // We want to legalize GlobalAddress and ConstantPool nodes into the
211  // appropriate instructions to materialize the address.
212  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
213  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
214  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
215  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
216  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
217  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
218  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
219  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
220  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
221  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
222
223  // TRAP is legal.
224  setOperationAction(ISD::TRAP, MVT::Other, Legal);
225
226  // TRAMPOLINE is custom lowered.
227  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
228  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
229
230  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
231  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
232
233  if (Subtarget->isSVR4ABI()) {
234    if (isPPC64) {
235      // VAARG always uses double-word chunks, so promote anything smaller.
236      setOperationAction(ISD::VAARG, MVT::i1, Promote);
237      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
238      setOperationAction(ISD::VAARG, MVT::i8, Promote);
239      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
240      setOperationAction(ISD::VAARG, MVT::i16, Promote);
241      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
242      setOperationAction(ISD::VAARG, MVT::i32, Promote);
243      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
244      setOperationAction(ISD::VAARG, MVT::Other, Expand);
245    } else {
246      // VAARG is custom lowered with the 32-bit SVR4 ABI.
247      setOperationAction(ISD::VAARG, MVT::Other, Custom);
248      setOperationAction(ISD::VAARG, MVT::i64, Custom);
249    }
250  } else
251    setOperationAction(ISD::VAARG, MVT::Other, Expand);
252
253  // Use the default implementation.
254  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
255  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
256  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
257  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
258  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
259  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
260
261  // We want to custom lower some of our intrinsics.
262  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
263
264  // Comparisons that require checking two conditions.
265  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
266  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
267  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
268  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
269  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
270  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
271  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
272  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
273  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
274  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
275  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
276  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
277
278  if (Subtarget->has64BitSupport()) {
279    // They also have instructions for converting between i64 and fp.
280    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
281    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
282    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
283    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
284    // This is just the low 32 bits of a (signed) fp->i64 conversion.
285    // We cannot do this with Promote because i64 is not a legal type.
286    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
287
288    // FIXME: disable this lowered code.  This generates 64-bit register values,
289    // and we don't model the fact that the top part is clobbered by calls.  We
290    // need to flag these together so that the value isn't live across a call.
291    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
292  } else {
293    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
294    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
295  }
296
297  if (Subtarget->use64BitRegs()) {
298    // 64-bit PowerPC implementations can support i64 types directly
299    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
300    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
301    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
302    // 64-bit PowerPC wants to expand i128 shifts itself.
303    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
304    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
305    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
306  } else {
307    // 32-bit PowerPC wants to expand i64 shifts itself.
308    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
309    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
310    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
311  }
312
313  if (Subtarget->hasAltivec()) {
314    // First set operation action for all vector types to expand. Then we
315    // will selectively turn on ones that can be effectively codegen'd.
316    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
317         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
318      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
319
320      // add/sub are legal for all supported vector VT's.
321      setOperationAction(ISD::ADD , VT, Legal);
322      setOperationAction(ISD::SUB , VT, Legal);
323
324      // We promote all shuffles to v16i8.
325      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
326      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
327
328      // We promote all non-typed operations to v4i32.
329      setOperationAction(ISD::AND   , VT, Promote);
330      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
331      setOperationAction(ISD::OR    , VT, Promote);
332      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
333      setOperationAction(ISD::XOR   , VT, Promote);
334      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
335      setOperationAction(ISD::LOAD  , VT, Promote);
336      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
337      setOperationAction(ISD::SELECT, VT, Promote);
338      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
339      setOperationAction(ISD::STORE, VT, Promote);
340      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
341
342      // No other operations are legal.
343      setOperationAction(ISD::MUL , VT, Expand);
344      setOperationAction(ISD::SDIV, VT, Expand);
345      setOperationAction(ISD::SREM, VT, Expand);
346      setOperationAction(ISD::UDIV, VT, Expand);
347      setOperationAction(ISD::UREM, VT, Expand);
348      setOperationAction(ISD::FDIV, VT, Expand);
349      setOperationAction(ISD::FNEG, VT, Expand);
350      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
351      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
352      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
353      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
354      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
355      setOperationAction(ISD::UDIVREM, VT, Expand);
356      setOperationAction(ISD::SDIVREM, VT, Expand);
357      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
358      setOperationAction(ISD::FPOW, VT, Expand);
359      setOperationAction(ISD::CTPOP, VT, Expand);
360      setOperationAction(ISD::CTLZ, VT, Expand);
361      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
362      setOperationAction(ISD::CTTZ, VT, Expand);
363      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
364    }
365
366    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
367    // with merges, splats, etc.
368    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
369
370    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
371    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
372    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
373    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
374    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
375    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
376    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
377    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
378    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
379    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
380
381    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
382    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
383    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
384    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
385
386    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
387    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
388    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
389    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
390    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
391
392    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
393    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
394
395    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
396    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
397    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
398    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
399  }
400
401  if (Subtarget->has64BitSupport()) {
402    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
403    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
404  }
405
406  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
407  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
408
409  setBooleanContents(ZeroOrOneBooleanContent);
410  setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
411
412  if (isPPC64) {
413    setStackPointerRegisterToSaveRestore(PPC::X1);
414    setExceptionPointerRegister(PPC::X3);
415    setExceptionSelectorRegister(PPC::X4);
416  } else {
417    setStackPointerRegisterToSaveRestore(PPC::R1);
418    setExceptionPointerRegister(PPC::R3);
419    setExceptionSelectorRegister(PPC::R4);
420  }
421
422  // We have target-specific dag combine patterns for the following nodes:
423  setTargetDAGCombine(ISD::SINT_TO_FP);
424  setTargetDAGCombine(ISD::STORE);
425  setTargetDAGCombine(ISD::BR_CC);
426  setTargetDAGCombine(ISD::BSWAP);
427
428  // Darwin long double math library functions have $LDBL128 appended.
429  if (Subtarget->isDarwin()) {
430    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
431    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
432    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
433    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
434    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
435    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
436    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
437    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
438    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
439    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
440  }
441
442  setMinFunctionAlignment(2);
443  if (PPCSubTarget.isDarwin())
444    setPrefFunctionAlignment(4);
445
446  if (isPPC64 && Subtarget->isJITCodeModel())
447    // Temporary workaround for the inability of PPC64 JIT to handle jump
448    // tables.
449    setSupportJumpTables(false);
450
451  setInsertFencesForAtomic(true);
452
453  setSchedulingPreference(Sched::Hybrid);
454
455  computeRegisterProperties();
456
457  // The Freescale cores does better with aggressive inlining of memcpy and
458  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
459  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
460      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
461    maxStoresPerMemset = 32;
462    maxStoresPerMemsetOptSize = 16;
463    maxStoresPerMemcpy = 32;
464    maxStoresPerMemcpyOptSize = 8;
465    maxStoresPerMemmove = 32;
466    maxStoresPerMemmoveOptSize = 8;
467
468    setPrefFunctionAlignment(4);
469    benefitFromCodePlacementOpt = true;
470  }
471}
472
473/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
474/// function arguments in the caller parameter area.
475unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
476  const TargetMachine &TM = getTargetMachine();
477  // Darwin passes everything on 4 byte boundary.
478  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
479    return 4;
480
481  // 16byte and wider vectors are passed on 16byte boundary.
482  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
483    if (VTy->getBitWidth() >= 128)
484      return 16;
485
486  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
487   if (PPCSubTarget.isPPC64())
488     return 8;
489
490  return 4;
491}
492
493const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
494  switch (Opcode) {
495  default: return 0;
496  case PPCISD::FSEL:            return "PPCISD::FSEL";
497  case PPCISD::FCFID:           return "PPCISD::FCFID";
498  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
499  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
500  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
501  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
502  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
503  case PPCISD::VPERM:           return "PPCISD::VPERM";
504  case PPCISD::Hi:              return "PPCISD::Hi";
505  case PPCISD::Lo:              return "PPCISD::Lo";
506  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
507  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
508  case PPCISD::LOAD:            return "PPCISD::LOAD";
509  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
510  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
511  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
512  case PPCISD::SRL:             return "PPCISD::SRL";
513  case PPCISD::SRA:             return "PPCISD::SRA";
514  case PPCISD::SHL:             return "PPCISD::SHL";
515  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
516  case PPCISD::STD_32:          return "PPCISD::STD_32";
517  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
518  case PPCISD::CALL_NOP_SVR4:   return "PPCISD::CALL_NOP_SVR4";
519  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
520  case PPCISD::NOP:             return "PPCISD::NOP";
521  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
522  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
523  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
524  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
525  case PPCISD::MFCR:            return "PPCISD::MFCR";
526  case PPCISD::VCMP:            return "PPCISD::VCMP";
527  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
528  case PPCISD::LBRX:            return "PPCISD::LBRX";
529  case PPCISD::STBRX:           return "PPCISD::STBRX";
530  case PPCISD::LARX:            return "PPCISD::LARX";
531  case PPCISD::STCX:            return "PPCISD::STCX";
532  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
533  case PPCISD::MFFS:            return "PPCISD::MFFS";
534  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
535  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
536  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
537  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
538  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
539  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
540  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
541  }
542}
543
544EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
545  return MVT::i32;
546}
547
548//===----------------------------------------------------------------------===//
549// Node matching predicates, for use by the tblgen matching code.
550//===----------------------------------------------------------------------===//
551
552/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
553static bool isFloatingPointZero(SDValue Op) {
554  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
555    return CFP->getValueAPF().isZero();
556  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
557    // Maybe this has already been legalized into the constant pool?
558    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
559      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
560        return CFP->getValueAPF().isZero();
561  }
562  return false;
563}
564
565/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
566/// true if Op is undef or if it matches the specified value.
567static bool isConstantOrUndef(int Op, int Val) {
568  return Op < 0 || Op == Val;
569}
570
571/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
572/// VPKUHUM instruction.
573bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
574  if (!isUnary) {
575    for (unsigned i = 0; i != 16; ++i)
576      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
577        return false;
578  } else {
579    for (unsigned i = 0; i != 8; ++i)
580      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
581          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
582        return false;
583  }
584  return true;
585}
586
587/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
588/// VPKUWUM instruction.
589bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
590  if (!isUnary) {
591    for (unsigned i = 0; i != 16; i += 2)
592      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
593          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
594        return false;
595  } else {
596    for (unsigned i = 0; i != 8; i += 2)
597      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
598          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
599          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
600          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
601        return false;
602  }
603  return true;
604}
605
606/// isVMerge - Common function, used to match vmrg* shuffles.
607///
608static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
609                     unsigned LHSStart, unsigned RHSStart) {
610  assert(N->getValueType(0) == MVT::v16i8 &&
611         "PPC only supports shuffles by bytes!");
612  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
613         "Unsupported merge size!");
614
615  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
616    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
617      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
618                             LHSStart+j+i*UnitSize) ||
619          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
620                             RHSStart+j+i*UnitSize))
621        return false;
622    }
623  return true;
624}
625
626/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
627/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
628bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
629                             bool isUnary) {
630  if (!isUnary)
631    return isVMerge(N, UnitSize, 8, 24);
632  return isVMerge(N, UnitSize, 8, 8);
633}
634
635/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
636/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
637bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
638                             bool isUnary) {
639  if (!isUnary)
640    return isVMerge(N, UnitSize, 0, 16);
641  return isVMerge(N, UnitSize, 0, 0);
642}
643
644
645/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
646/// amount, otherwise return -1.
647int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
648  assert(N->getValueType(0) == MVT::v16i8 &&
649         "PPC only supports shuffles by bytes!");
650
651  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
652
653  // Find the first non-undef value in the shuffle mask.
654  unsigned i;
655  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
656    /*search*/;
657
658  if (i == 16) return -1;  // all undef.
659
660  // Otherwise, check to see if the rest of the elements are consecutively
661  // numbered from this value.
662  unsigned ShiftAmt = SVOp->getMaskElt(i);
663  if (ShiftAmt < i) return -1;
664  ShiftAmt -= i;
665
666  if (!isUnary) {
667    // Check the rest of the elements to see if they are consecutive.
668    for (++i; i != 16; ++i)
669      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
670        return -1;
671  } else {
672    // Check the rest of the elements to see if they are consecutive.
673    for (++i; i != 16; ++i)
674      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
675        return -1;
676  }
677  return ShiftAmt;
678}
679
680/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
681/// specifies a splat of a single element that is suitable for input to
682/// VSPLTB/VSPLTH/VSPLTW.
683bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
684  assert(N->getValueType(0) == MVT::v16i8 &&
685         (EltSize == 1 || EltSize == 2 || EltSize == 4));
686
687  // This is a splat operation if each element of the permute is the same, and
688  // if the value doesn't reference the second vector.
689  unsigned ElementBase = N->getMaskElt(0);
690
691  // FIXME: Handle UNDEF elements too!
692  if (ElementBase >= 16)
693    return false;
694
695  // Check that the indices are consecutive, in the case of a multi-byte element
696  // splatted with a v16i8 mask.
697  for (unsigned i = 1; i != EltSize; ++i)
698    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
699      return false;
700
701  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
702    if (N->getMaskElt(i) < 0) continue;
703    for (unsigned j = 0; j != EltSize; ++j)
704      if (N->getMaskElt(i+j) != N->getMaskElt(j))
705        return false;
706  }
707  return true;
708}
709
710/// isAllNegativeZeroVector - Returns true if all elements of build_vector
711/// are -0.0.
712bool PPC::isAllNegativeZeroVector(SDNode *N) {
713  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
714
715  APInt APVal, APUndef;
716  unsigned BitSize;
717  bool HasAnyUndefs;
718
719  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
720    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
721      return CFP->getValueAPF().isNegZero();
722
723  return false;
724}
725
726/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
727/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
728unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
729  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
730  assert(isSplatShuffleMask(SVOp, EltSize));
731  return SVOp->getMaskElt(0) / EltSize;
732}
733
734/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
735/// by using a vspltis[bhw] instruction of the specified element size, return
736/// the constant being splatted.  The ByteSize field indicates the number of
737/// bytes of each element [124] -> [bhw].
738SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
739  SDValue OpVal(0, 0);
740
741  // If ByteSize of the splat is bigger than the element size of the
742  // build_vector, then we have a case where we are checking for a splat where
743  // multiple elements of the buildvector are folded together into a single
744  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
745  unsigned EltSize = 16/N->getNumOperands();
746  if (EltSize < ByteSize) {
747    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
748    SDValue UniquedVals[4];
749    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
750
751    // See if all of the elements in the buildvector agree across.
752    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
753      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
754      // If the element isn't a constant, bail fully out.
755      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
756
757
758      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
759        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
760      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
761        return SDValue();  // no match.
762    }
763
764    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
765    // either constant or undef values that are identical for each chunk.  See
766    // if these chunks can form into a larger vspltis*.
767
768    // Check to see if all of the leading entries are either 0 or -1.  If
769    // neither, then this won't fit into the immediate field.
770    bool LeadingZero = true;
771    bool LeadingOnes = true;
772    for (unsigned i = 0; i != Multiple-1; ++i) {
773      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
774
775      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
776      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
777    }
778    // Finally, check the least significant entry.
779    if (LeadingZero) {
780      if (UniquedVals[Multiple-1].getNode() == 0)
781        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
782      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
783      if (Val < 16)
784        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
785    }
786    if (LeadingOnes) {
787      if (UniquedVals[Multiple-1].getNode() == 0)
788        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
789      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
790      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
791        return DAG.getTargetConstant(Val, MVT::i32);
792    }
793
794    return SDValue();
795  }
796
797  // Check to see if this buildvec has a single non-undef value in its elements.
798  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
799    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
800    if (OpVal.getNode() == 0)
801      OpVal = N->getOperand(i);
802    else if (OpVal != N->getOperand(i))
803      return SDValue();
804  }
805
806  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
807
808  unsigned ValSizeInBytes = EltSize;
809  uint64_t Value = 0;
810  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
811    Value = CN->getZExtValue();
812  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
813    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
814    Value = FloatToBits(CN->getValueAPF().convertToFloat());
815  }
816
817  // If the splat value is larger than the element value, then we can never do
818  // this splat.  The only case that we could fit the replicated bits into our
819  // immediate field for would be zero, and we prefer to use vxor for it.
820  if (ValSizeInBytes < ByteSize) return SDValue();
821
822  // If the element value is larger than the splat value, cut it in half and
823  // check to see if the two halves are equal.  Continue doing this until we
824  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
825  while (ValSizeInBytes > ByteSize) {
826    ValSizeInBytes >>= 1;
827
828    // If the top half equals the bottom half, we're still ok.
829    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
830         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
831      return SDValue();
832  }
833
834  // Properly sign extend the value.
835  int MaskVal = SignExtend32(Value, ByteSize * 8);
836
837  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
838  if (MaskVal == 0) return SDValue();
839
840  // Finally, if this value fits in a 5 bit sext field, return it
841  if (SignExtend32<5>(MaskVal) == MaskVal)
842    return DAG.getTargetConstant(MaskVal, MVT::i32);
843  return SDValue();
844}
845
846//===----------------------------------------------------------------------===//
847//  Addressing Mode Selection
848//===----------------------------------------------------------------------===//
849
850/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
851/// or 64-bit immediate, and if the value can be accurately represented as a
852/// sign extension from a 16-bit value.  If so, this returns true and the
853/// immediate.
854static bool isIntS16Immediate(SDNode *N, short &Imm) {
855  if (N->getOpcode() != ISD::Constant)
856    return false;
857
858  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
859  if (N->getValueType(0) == MVT::i32)
860    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
861  else
862    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
863}
864static bool isIntS16Immediate(SDValue Op, short &Imm) {
865  return isIntS16Immediate(Op.getNode(), Imm);
866}
867
868
869/// SelectAddressRegReg - Given the specified addressed, check to see if it
870/// can be represented as an indexed [r+r] operation.  Returns false if it
871/// can be more efficiently represented with [r+imm].
872bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
873                                            SDValue &Index,
874                                            SelectionDAG &DAG) const {
875  short imm = 0;
876  if (N.getOpcode() == ISD::ADD) {
877    if (isIntS16Immediate(N.getOperand(1), imm))
878      return false;    // r+i
879    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
880      return false;    // r+i
881
882    Base = N.getOperand(0);
883    Index = N.getOperand(1);
884    return true;
885  } else if (N.getOpcode() == ISD::OR) {
886    if (isIntS16Immediate(N.getOperand(1), imm))
887      return false;    // r+i can fold it if we can.
888
889    // If this is an or of disjoint bitfields, we can codegen this as an add
890    // (for better address arithmetic) if the LHS and RHS of the OR are provably
891    // disjoint.
892    APInt LHSKnownZero, LHSKnownOne;
893    APInt RHSKnownZero, RHSKnownOne;
894    DAG.ComputeMaskedBits(N.getOperand(0),
895                          LHSKnownZero, LHSKnownOne);
896
897    if (LHSKnownZero.getBoolValue()) {
898      DAG.ComputeMaskedBits(N.getOperand(1),
899                            RHSKnownZero, RHSKnownOne);
900      // If all of the bits are known zero on the LHS or RHS, the add won't
901      // carry.
902      if (~(LHSKnownZero | RHSKnownZero) == 0) {
903        Base = N.getOperand(0);
904        Index = N.getOperand(1);
905        return true;
906      }
907    }
908  }
909
910  return false;
911}
912
913/// Returns true if the address N can be represented by a base register plus
914/// a signed 16-bit displacement [r+imm], and if it is not better
915/// represented as reg+reg.
916bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
917                                            SDValue &Base,
918                                            SelectionDAG &DAG) const {
919  // FIXME dl should come from parent load or store, not from address
920  DebugLoc dl = N.getDebugLoc();
921  // If this can be more profitably realized as r+r, fail.
922  if (SelectAddressRegReg(N, Disp, Base, DAG))
923    return false;
924
925  if (N.getOpcode() == ISD::ADD) {
926    short imm = 0;
927    if (isIntS16Immediate(N.getOperand(1), imm)) {
928      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
929      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
930        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
931      } else {
932        Base = N.getOperand(0);
933      }
934      return true; // [r+i]
935    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
936      // Match LOAD (ADD (X, Lo(G))).
937      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
938             && "Cannot handle constant offsets yet!");
939      Disp = N.getOperand(1).getOperand(0);  // The global address.
940      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
941             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
942             Disp.getOpcode() == ISD::TargetConstantPool ||
943             Disp.getOpcode() == ISD::TargetJumpTable);
944      Base = N.getOperand(0);
945      return true;  // [&g+r]
946    }
947  } else if (N.getOpcode() == ISD::OR) {
948    short imm = 0;
949    if (isIntS16Immediate(N.getOperand(1), imm)) {
950      // If this is an or of disjoint bitfields, we can codegen this as an add
951      // (for better address arithmetic) if the LHS and RHS of the OR are
952      // provably disjoint.
953      APInt LHSKnownZero, LHSKnownOne;
954      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
955
956      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
957        // If all of the bits are known zero on the LHS or RHS, the add won't
958        // carry.
959        Base = N.getOperand(0);
960        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
961        return true;
962      }
963    }
964  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
965    // Loading from a constant address.
966
967    // If this address fits entirely in a 16-bit sext immediate field, codegen
968    // this as "d, 0"
969    short Imm;
970    if (isIntS16Immediate(CN, Imm)) {
971      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
972      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
973                             CN->getValueType(0));
974      return true;
975    }
976
977    // Handle 32-bit sext immediates with LIS + addr mode.
978    if (CN->getValueType(0) == MVT::i32 ||
979        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
980      int Addr = (int)CN->getZExtValue();
981
982      // Otherwise, break this down into an LIS + disp.
983      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
984
985      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
986      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
987      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
988      return true;
989    }
990  }
991
992  Disp = DAG.getTargetConstant(0, getPointerTy());
993  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
994    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
995  else
996    Base = N;
997  return true;      // [r+0]
998}
999
1000/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1001/// represented as an indexed [r+r] operation.
1002bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1003                                                SDValue &Index,
1004                                                SelectionDAG &DAG) const {
1005  // Check to see if we can easily represent this as an [r+r] address.  This
1006  // will fail if it thinks that the address is more profitably represented as
1007  // reg+imm, e.g. where imm = 0.
1008  if (SelectAddressRegReg(N, Base, Index, DAG))
1009    return true;
1010
1011  // If the operand is an addition, always emit this as [r+r], since this is
1012  // better (for code size, and execution, as the memop does the add for free)
1013  // than emitting an explicit add.
1014  if (N.getOpcode() == ISD::ADD) {
1015    Base = N.getOperand(0);
1016    Index = N.getOperand(1);
1017    return true;
1018  }
1019
1020  // Otherwise, do it the hard way, using R0 as the base register.
1021  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1022                         N.getValueType());
1023  Index = N;
1024  return true;
1025}
1026
1027/// SelectAddressRegImmShift - Returns true if the address N can be
1028/// represented by a base register plus a signed 14-bit displacement
1029/// [r+imm*4].  Suitable for use by STD and friends.
1030bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
1031                                                 SDValue &Base,
1032                                                 SelectionDAG &DAG) const {
1033  // FIXME dl should come from the parent load or store, not the address
1034  DebugLoc dl = N.getDebugLoc();
1035  // If this can be more profitably realized as r+r, fail.
1036  if (SelectAddressRegReg(N, Disp, Base, DAG))
1037    return false;
1038
1039  if (N.getOpcode() == ISD::ADD) {
1040    short imm = 0;
1041    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1042      Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1043      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1044        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1045      } else {
1046        Base = N.getOperand(0);
1047      }
1048      return true; // [r+i]
1049    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1050      // Match LOAD (ADD (X, Lo(G))).
1051      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1052             && "Cannot handle constant offsets yet!");
1053      Disp = N.getOperand(1).getOperand(0);  // The global address.
1054      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1055             Disp.getOpcode() == ISD::TargetConstantPool ||
1056             Disp.getOpcode() == ISD::TargetJumpTable);
1057      Base = N.getOperand(0);
1058      return true;  // [&g+r]
1059    }
1060  } else if (N.getOpcode() == ISD::OR) {
1061    short imm = 0;
1062    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1063      // If this is an or of disjoint bitfields, we can codegen this as an add
1064      // (for better address arithmetic) if the LHS and RHS of the OR are
1065      // provably disjoint.
1066      APInt LHSKnownZero, LHSKnownOne;
1067      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1068      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1069        // If all of the bits are known zero on the LHS or RHS, the add won't
1070        // carry.
1071        Base = N.getOperand(0);
1072        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1073        return true;
1074      }
1075    }
1076  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1077    // Loading from a constant address.  Verify low two bits are clear.
1078    if ((CN->getZExtValue() & 3) == 0) {
1079      // If this address fits entirely in a 14-bit sext immediate field, codegen
1080      // this as "d, 0"
1081      short Imm;
1082      if (isIntS16Immediate(CN, Imm)) {
1083        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1084        Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1085                               CN->getValueType(0));
1086        return true;
1087      }
1088
1089      // Fold the low-part of 32-bit absolute addresses into addr mode.
1090      if (CN->getValueType(0) == MVT::i32 ||
1091          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1092        int Addr = (int)CN->getZExtValue();
1093
1094        // Otherwise, break this down into an LIS + disp.
1095        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1096        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1097        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1098        Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1099        return true;
1100      }
1101    }
1102  }
1103
1104  Disp = DAG.getTargetConstant(0, getPointerTy());
1105  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1106    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1107  else
1108    Base = N;
1109  return true;      // [r+0]
1110}
1111
1112
1113/// getPreIndexedAddressParts - returns true by value, base pointer and
1114/// offset pointer and addressing mode by reference if the node's address
1115/// can be legally represented as pre-indexed load / store address.
1116bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1117                                                  SDValue &Offset,
1118                                                  ISD::MemIndexedMode &AM,
1119                                                  SelectionDAG &DAG) const {
1120  if (DisablePPCPreinc) return false;
1121
1122  SDValue Ptr;
1123  EVT VT;
1124  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1125    Ptr = LD->getBasePtr();
1126    VT = LD->getMemoryVT();
1127
1128  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1129    Ptr = ST->getBasePtr();
1130    VT  = ST->getMemoryVT();
1131  } else
1132    return false;
1133
1134  // PowerPC doesn't have preinc load/store instructions for vectors.
1135  if (VT.isVector())
1136    return false;
1137
1138  if (SelectAddressRegReg(Ptr, Offset, Base, DAG)) {
1139    AM = ISD::PRE_INC;
1140    return true;
1141  }
1142
1143  // LDU/STU use reg+imm*4, others use reg+imm.
1144  if (VT != MVT::i64) {
1145    // reg + imm
1146    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1147      return false;
1148  } else {
1149    // reg + imm * 4.
1150    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1151      return false;
1152  }
1153
1154  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1155    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1156    // sext i32 to i64 when addr mode is r+i.
1157    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1158        LD->getExtensionType() == ISD::SEXTLOAD &&
1159        isa<ConstantSDNode>(Offset))
1160      return false;
1161  }
1162
1163  AM = ISD::PRE_INC;
1164  return true;
1165}
1166
1167//===----------------------------------------------------------------------===//
1168//  LowerOperation implementation
1169//===----------------------------------------------------------------------===//
1170
1171/// GetLabelAccessInfo - Return true if we should reference labels using a
1172/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1173static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1174                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1175  HiOpFlags = PPCII::MO_HA16;
1176  LoOpFlags = PPCII::MO_LO16;
1177
1178  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1179  // non-darwin platform.  We don't support PIC on other platforms yet.
1180  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1181               TM.getSubtarget<PPCSubtarget>().isDarwin();
1182  if (isPIC) {
1183    HiOpFlags |= PPCII::MO_PIC_FLAG;
1184    LoOpFlags |= PPCII::MO_PIC_FLAG;
1185  }
1186
1187  // If this is a reference to a global value that requires a non-lazy-ptr, make
1188  // sure that instruction lowering adds it.
1189  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1190    HiOpFlags |= PPCII::MO_NLP_FLAG;
1191    LoOpFlags |= PPCII::MO_NLP_FLAG;
1192
1193    if (GV->hasHiddenVisibility()) {
1194      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1195      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1196    }
1197  }
1198
1199  return isPIC;
1200}
1201
1202static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1203                             SelectionDAG &DAG) {
1204  EVT PtrVT = HiPart.getValueType();
1205  SDValue Zero = DAG.getConstant(0, PtrVT);
1206  DebugLoc DL = HiPart.getDebugLoc();
1207
1208  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1209  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1210
1211  // With PIC, the first instruction is actually "GR+hi(&G)".
1212  if (isPIC)
1213    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1214                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1215
1216  // Generate non-pic code that has direct accesses to the constant pool.
1217  // The address of the global is just (hi(&g)+lo(&g)).
1218  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1219}
1220
1221SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1222                                             SelectionDAG &DAG) const {
1223  EVT PtrVT = Op.getValueType();
1224  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1225  const Constant *C = CP->getConstVal();
1226
1227  // 64-bit SVR4 ABI code is always position-independent.
1228  // The actual address of the GlobalValue is stored in the TOC.
1229  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1230    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1231    return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA,
1232                       DAG.getRegister(PPC::X2, MVT::i64));
1233  }
1234
1235  unsigned MOHiFlag, MOLoFlag;
1236  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1237  SDValue CPIHi =
1238    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1239  SDValue CPILo =
1240    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1241  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1242}
1243
1244SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1245  EVT PtrVT = Op.getValueType();
1246  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1247
1248  // 64-bit SVR4 ABI code is always position-independent.
1249  // The actual address of the GlobalValue is stored in the TOC.
1250  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1251    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1252    return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA,
1253                       DAG.getRegister(PPC::X2, MVT::i64));
1254  }
1255
1256  unsigned MOHiFlag, MOLoFlag;
1257  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1258  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1259  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1260  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1261}
1262
1263SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1264                                             SelectionDAG &DAG) const {
1265  EVT PtrVT = Op.getValueType();
1266
1267  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1268
1269  unsigned MOHiFlag, MOLoFlag;
1270  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1271  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1272  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1273  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1274}
1275
1276SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1277                                              SelectionDAG &DAG) const {
1278
1279  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1280  DebugLoc dl = GA->getDebugLoc();
1281  const GlobalValue *GV = GA->getGlobal();
1282  EVT PtrVT = getPointerTy();
1283  bool is64bit = PPCSubTarget.isPPC64();
1284
1285  TLSModel::Model model = getTargetMachine().getTLSModel(GV);
1286
1287  SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1288                                             PPCII::MO_TPREL16_HA);
1289  SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1290                                             PPCII::MO_TPREL16_LO);
1291
1292  if (model != TLSModel::LocalExec)
1293    llvm_unreachable("only local-exec TLS mode supported");
1294  SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1295                                   is64bit ? MVT::i64 : MVT::i32);
1296  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1297  return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1298}
1299
1300SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1301                                              SelectionDAG &DAG) const {
1302  EVT PtrVT = Op.getValueType();
1303  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1304  DebugLoc DL = GSDN->getDebugLoc();
1305  const GlobalValue *GV = GSDN->getGlobal();
1306
1307  // 64-bit SVR4 ABI code is always position-independent.
1308  // The actual address of the GlobalValue is stored in the TOC.
1309  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1310    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1311    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1312                       DAG.getRegister(PPC::X2, MVT::i64));
1313  }
1314
1315  unsigned MOHiFlag, MOLoFlag;
1316  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1317
1318  SDValue GAHi =
1319    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1320  SDValue GALo =
1321    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1322
1323  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1324
1325  // If the global reference is actually to a non-lazy-pointer, we have to do an
1326  // extra load to get the address of the global.
1327  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1328    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1329                      false, false, false, 0);
1330  return Ptr;
1331}
1332
1333SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1334  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1335  DebugLoc dl = Op.getDebugLoc();
1336
1337  // If we're comparing for equality to zero, expose the fact that this is
1338  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1339  // fold the new nodes.
1340  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1341    if (C->isNullValue() && CC == ISD::SETEQ) {
1342      EVT VT = Op.getOperand(0).getValueType();
1343      SDValue Zext = Op.getOperand(0);
1344      if (VT.bitsLT(MVT::i32)) {
1345        VT = MVT::i32;
1346        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1347      }
1348      unsigned Log2b = Log2_32(VT.getSizeInBits());
1349      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1350      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1351                                DAG.getConstant(Log2b, MVT::i32));
1352      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1353    }
1354    // Leave comparisons against 0 and -1 alone for now, since they're usually
1355    // optimized.  FIXME: revisit this when we can custom lower all setcc
1356    // optimizations.
1357    if (C->isAllOnesValue() || C->isNullValue())
1358      return SDValue();
1359  }
1360
1361  // If we have an integer seteq/setne, turn it into a compare against zero
1362  // by xor'ing the rhs with the lhs, which is faster than setting a
1363  // condition register, reading it back out, and masking the correct bit.  The
1364  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1365  // the result to other bit-twiddling opportunities.
1366  EVT LHSVT = Op.getOperand(0).getValueType();
1367  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1368    EVT VT = Op.getValueType();
1369    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1370                                Op.getOperand(1));
1371    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1372  }
1373  return SDValue();
1374}
1375
1376SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1377                                      const PPCSubtarget &Subtarget) const {
1378  SDNode *Node = Op.getNode();
1379  EVT VT = Node->getValueType(0);
1380  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1381  SDValue InChain = Node->getOperand(0);
1382  SDValue VAListPtr = Node->getOperand(1);
1383  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1384  DebugLoc dl = Node->getDebugLoc();
1385
1386  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1387
1388  // gpr_index
1389  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1390                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1391                                    false, false, 0);
1392  InChain = GprIndex.getValue(1);
1393
1394  if (VT == MVT::i64) {
1395    // Check if GprIndex is even
1396    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1397                                 DAG.getConstant(1, MVT::i32));
1398    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1399                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1400    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1401                                          DAG.getConstant(1, MVT::i32));
1402    // Align GprIndex to be even if it isn't
1403    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1404                           GprIndex);
1405  }
1406
1407  // fpr index is 1 byte after gpr
1408  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1409                               DAG.getConstant(1, MVT::i32));
1410
1411  // fpr
1412  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1413                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1414                                    false, false, 0);
1415  InChain = FprIndex.getValue(1);
1416
1417  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1418                                       DAG.getConstant(8, MVT::i32));
1419
1420  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1421                                        DAG.getConstant(4, MVT::i32));
1422
1423  // areas
1424  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1425                                     MachinePointerInfo(), false, false,
1426                                     false, 0);
1427  InChain = OverflowArea.getValue(1);
1428
1429  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1430                                    MachinePointerInfo(), false, false,
1431                                    false, 0);
1432  InChain = RegSaveArea.getValue(1);
1433
1434  // select overflow_area if index > 8
1435  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1436                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1437
1438  // adjustment constant gpr_index * 4/8
1439  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1440                                    VT.isInteger() ? GprIndex : FprIndex,
1441                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1442                                                    MVT::i32));
1443
1444  // OurReg = RegSaveArea + RegConstant
1445  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1446                               RegConstant);
1447
1448  // Floating types are 32 bytes into RegSaveArea
1449  if (VT.isFloatingPoint())
1450    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1451                         DAG.getConstant(32, MVT::i32));
1452
1453  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1454  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1455                                   VT.isInteger() ? GprIndex : FprIndex,
1456                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1457                                                   MVT::i32));
1458
1459  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1460                              VT.isInteger() ? VAListPtr : FprPtr,
1461                              MachinePointerInfo(SV),
1462                              MVT::i8, false, false, 0);
1463
1464  // determine if we should load from reg_save_area or overflow_area
1465  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1466
1467  // increase overflow_area by 4/8 if gpr/fpr > 8
1468  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1469                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1470                                          MVT::i32));
1471
1472  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1473                             OverflowAreaPlusN);
1474
1475  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1476                              OverflowAreaPtr,
1477                              MachinePointerInfo(),
1478                              MVT::i32, false, false, 0);
1479
1480  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1481                     false, false, false, 0);
1482}
1483
1484SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1485                                                  SelectionDAG &DAG) const {
1486  return Op.getOperand(0);
1487}
1488
1489SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1490                                                SelectionDAG &DAG) const {
1491  SDValue Chain = Op.getOperand(0);
1492  SDValue Trmp = Op.getOperand(1); // trampoline
1493  SDValue FPtr = Op.getOperand(2); // nested function
1494  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1495  DebugLoc dl = Op.getDebugLoc();
1496
1497  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1498  bool isPPC64 = (PtrVT == MVT::i64);
1499  Type *IntPtrTy =
1500    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1501                                                             *DAG.getContext());
1502
1503  TargetLowering::ArgListTy Args;
1504  TargetLowering::ArgListEntry Entry;
1505
1506  Entry.Ty = IntPtrTy;
1507  Entry.Node = Trmp; Args.push_back(Entry);
1508
1509  // TrampSize == (isPPC64 ? 48 : 40);
1510  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1511                               isPPC64 ? MVT::i64 : MVT::i32);
1512  Args.push_back(Entry);
1513
1514  Entry.Node = FPtr; Args.push_back(Entry);
1515  Entry.Node = Nest; Args.push_back(Entry);
1516
1517  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1518  TargetLowering::CallLoweringInfo CLI(Chain,
1519                                       Type::getVoidTy(*DAG.getContext()),
1520                                       false, false, false, false, 0,
1521                                       CallingConv::C,
1522                /*isTailCall=*/false,
1523                                       /*doesNotRet=*/false,
1524                                       /*isReturnValueUsed=*/true,
1525                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1526                Args, DAG, dl);
1527  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1528
1529  return CallResult.second;
1530}
1531
1532SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1533                                        const PPCSubtarget &Subtarget) const {
1534  MachineFunction &MF = DAG.getMachineFunction();
1535  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1536
1537  DebugLoc dl = Op.getDebugLoc();
1538
1539  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1540    // vastart just stores the address of the VarArgsFrameIndex slot into the
1541    // memory location argument.
1542    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1543    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1544    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1545    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1546                        MachinePointerInfo(SV),
1547                        false, false, 0);
1548  }
1549
1550  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1551  // We suppose the given va_list is already allocated.
1552  //
1553  // typedef struct {
1554  //  char gpr;     /* index into the array of 8 GPRs
1555  //                 * stored in the register save area
1556  //                 * gpr=0 corresponds to r3,
1557  //                 * gpr=1 to r4, etc.
1558  //                 */
1559  //  char fpr;     /* index into the array of 8 FPRs
1560  //                 * stored in the register save area
1561  //                 * fpr=0 corresponds to f1,
1562  //                 * fpr=1 to f2, etc.
1563  //                 */
1564  //  char *overflow_arg_area;
1565  //                /* location on stack that holds
1566  //                 * the next overflow argument
1567  //                 */
1568  //  char *reg_save_area;
1569  //               /* where r3:r10 and f1:f8 (if saved)
1570  //                * are stored
1571  //                */
1572  // } va_list[1];
1573
1574
1575  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1576  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1577
1578
1579  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1580
1581  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1582                                            PtrVT);
1583  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1584                                 PtrVT);
1585
1586  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1587  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1588
1589  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1590  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1591
1592  uint64_t FPROffset = 1;
1593  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1594
1595  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1596
1597  // Store first byte : number of int regs
1598  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1599                                         Op.getOperand(1),
1600                                         MachinePointerInfo(SV),
1601                                         MVT::i8, false, false, 0);
1602  uint64_t nextOffset = FPROffset;
1603  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1604                                  ConstFPROffset);
1605
1606  // Store second byte : number of float regs
1607  SDValue secondStore =
1608    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1609                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1610                      false, false, 0);
1611  nextOffset += StackOffset;
1612  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1613
1614  // Store second word : arguments given on stack
1615  SDValue thirdStore =
1616    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1617                 MachinePointerInfo(SV, nextOffset),
1618                 false, false, 0);
1619  nextOffset += FrameOffset;
1620  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1621
1622  // Store third word : arguments given in registers
1623  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1624                      MachinePointerInfo(SV, nextOffset),
1625                      false, false, 0);
1626
1627}
1628
1629#include "PPCGenCallingConv.inc"
1630
1631static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1632                                     CCValAssign::LocInfo &LocInfo,
1633                                     ISD::ArgFlagsTy &ArgFlags,
1634                                     CCState &State) {
1635  return true;
1636}
1637
1638static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1639                                            MVT &LocVT,
1640                                            CCValAssign::LocInfo &LocInfo,
1641                                            ISD::ArgFlagsTy &ArgFlags,
1642                                            CCState &State) {
1643  static const uint16_t ArgRegs[] = {
1644    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1645    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1646  };
1647  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1648
1649  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1650
1651  // Skip one register if the first unallocated register has an even register
1652  // number and there are still argument registers available which have not been
1653  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1654  // need to skip a register if RegNum is odd.
1655  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1656    State.AllocateReg(ArgRegs[RegNum]);
1657  }
1658
1659  // Always return false here, as this function only makes sure that the first
1660  // unallocated register has an odd register number and does not actually
1661  // allocate a register for the current argument.
1662  return false;
1663}
1664
1665static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1666                                              MVT &LocVT,
1667                                              CCValAssign::LocInfo &LocInfo,
1668                                              ISD::ArgFlagsTy &ArgFlags,
1669                                              CCState &State) {
1670  static const uint16_t ArgRegs[] = {
1671    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1672    PPC::F8
1673  };
1674
1675  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1676
1677  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1678
1679  // If there is only one Floating-point register left we need to put both f64
1680  // values of a split ppc_fp128 value on the stack.
1681  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1682    State.AllocateReg(ArgRegs[RegNum]);
1683  }
1684
1685  // Always return false here, as this function only makes sure that the two f64
1686  // values a ppc_fp128 value is split into are both passed in registers or both
1687  // passed on the stack and does not actually allocate a register for the
1688  // current argument.
1689  return false;
1690}
1691
1692/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1693/// on Darwin.
1694static const uint16_t *GetFPR() {
1695  static const uint16_t FPR[] = {
1696    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1697    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1698  };
1699
1700  return FPR;
1701}
1702
1703/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1704/// the stack.
1705static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1706                                       unsigned PtrByteSize) {
1707  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1708  if (Flags.isByVal())
1709    ArgSize = Flags.getByValSize();
1710  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1711
1712  return ArgSize;
1713}
1714
1715SDValue
1716PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1717                                        CallingConv::ID CallConv, bool isVarArg,
1718                                        const SmallVectorImpl<ISD::InputArg>
1719                                          &Ins,
1720                                        DebugLoc dl, SelectionDAG &DAG,
1721                                        SmallVectorImpl<SDValue> &InVals)
1722                                          const {
1723  if (PPCSubTarget.isSVR4ABI()) {
1724    if (PPCSubTarget.isPPC64())
1725      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1726                                         dl, DAG, InVals);
1727    else
1728      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1729                                         dl, DAG, InVals);
1730  } else {
1731    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1732                                       dl, DAG, InVals);
1733  }
1734}
1735
1736SDValue
1737PPCTargetLowering::LowerFormalArguments_32SVR4(
1738                                      SDValue Chain,
1739                                      CallingConv::ID CallConv, bool isVarArg,
1740                                      const SmallVectorImpl<ISD::InputArg>
1741                                        &Ins,
1742                                      DebugLoc dl, SelectionDAG &DAG,
1743                                      SmallVectorImpl<SDValue> &InVals) const {
1744
1745  // 32-bit SVR4 ABI Stack Frame Layout:
1746  //              +-----------------------------------+
1747  //        +-->  |            Back chain             |
1748  //        |     +-----------------------------------+
1749  //        |     | Floating-point register save area |
1750  //        |     +-----------------------------------+
1751  //        |     |    General register save area     |
1752  //        |     +-----------------------------------+
1753  //        |     |          CR save word             |
1754  //        |     +-----------------------------------+
1755  //        |     |         VRSAVE save word          |
1756  //        |     +-----------------------------------+
1757  //        |     |         Alignment padding         |
1758  //        |     +-----------------------------------+
1759  //        |     |     Vector register save area     |
1760  //        |     +-----------------------------------+
1761  //        |     |       Local variable space        |
1762  //        |     +-----------------------------------+
1763  //        |     |        Parameter list area        |
1764  //        |     +-----------------------------------+
1765  //        |     |           LR save word            |
1766  //        |     +-----------------------------------+
1767  // SP-->  +---  |            Back chain             |
1768  //              +-----------------------------------+
1769  //
1770  // Specifications:
1771  //   System V Application Binary Interface PowerPC Processor Supplement
1772  //   AltiVec Technology Programming Interface Manual
1773
1774  MachineFunction &MF = DAG.getMachineFunction();
1775  MachineFrameInfo *MFI = MF.getFrameInfo();
1776  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1777
1778  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1779  // Potential tail calls could cause overwriting of argument stack slots.
1780  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1781                       (CallConv == CallingConv::Fast));
1782  unsigned PtrByteSize = 4;
1783
1784  // Assign locations to all of the incoming arguments.
1785  SmallVector<CCValAssign, 16> ArgLocs;
1786  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1787                 getTargetMachine(), ArgLocs, *DAG.getContext());
1788
1789  // Reserve space for the linkage area on the stack.
1790  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1791
1792  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1793
1794  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1795    CCValAssign &VA = ArgLocs[i];
1796
1797    // Arguments stored in registers.
1798    if (VA.isRegLoc()) {
1799      const TargetRegisterClass *RC;
1800      EVT ValVT = VA.getValVT();
1801
1802      switch (ValVT.getSimpleVT().SimpleTy) {
1803        default:
1804          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1805        case MVT::i32:
1806          RC = &PPC::GPRCRegClass;
1807          break;
1808        case MVT::f32:
1809          RC = &PPC::F4RCRegClass;
1810          break;
1811        case MVT::f64:
1812          RC = &PPC::F8RCRegClass;
1813          break;
1814        case MVT::v16i8:
1815        case MVT::v8i16:
1816        case MVT::v4i32:
1817        case MVT::v4f32:
1818          RC = &PPC::VRRCRegClass;
1819          break;
1820      }
1821
1822      // Transform the arguments stored in physical registers into virtual ones.
1823      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1824      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1825
1826      InVals.push_back(ArgValue);
1827    } else {
1828      // Argument stored in memory.
1829      assert(VA.isMemLoc());
1830
1831      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1832      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1833                                      isImmutable);
1834
1835      // Create load nodes to retrieve arguments from the stack.
1836      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1837      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1838                                   MachinePointerInfo(),
1839                                   false, false, false, 0));
1840    }
1841  }
1842
1843  // Assign locations to all of the incoming aggregate by value arguments.
1844  // Aggregates passed by value are stored in the local variable space of the
1845  // caller's stack frame, right above the parameter list area.
1846  SmallVector<CCValAssign, 16> ByValArgLocs;
1847  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1848                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1849
1850  // Reserve stack space for the allocations in CCInfo.
1851  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1852
1853  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1854
1855  // Area that is at least reserved in the caller of this function.
1856  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1857
1858  // Set the size that is at least reserved in caller of this function.  Tail
1859  // call optimized function's reserved stack space needs to be aligned so that
1860  // taking the difference between two stack areas will result in an aligned
1861  // stack.
1862  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1863
1864  MinReservedArea =
1865    std::max(MinReservedArea,
1866             PPCFrameLowering::getMinCallFrameSize(false, false));
1867
1868  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1869    getStackAlignment();
1870  unsigned AlignMask = TargetAlign-1;
1871  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1872
1873  FI->setMinReservedArea(MinReservedArea);
1874
1875  SmallVector<SDValue, 8> MemOps;
1876
1877  // If the function takes variable number of arguments, make a frame index for
1878  // the start of the first vararg value... for expansion of llvm.va_start.
1879  if (isVarArg) {
1880    static const uint16_t GPArgRegs[] = {
1881      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1882      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1883    };
1884    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1885
1886    static const uint16_t FPArgRegs[] = {
1887      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1888      PPC::F8
1889    };
1890    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1891
1892    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1893                                                          NumGPArgRegs));
1894    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1895                                                          NumFPArgRegs));
1896
1897    // Make room for NumGPArgRegs and NumFPArgRegs.
1898    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1899                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1900
1901    FuncInfo->setVarArgsStackOffset(
1902      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1903                             CCInfo.getNextStackOffset(), true));
1904
1905    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1906    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1907
1908    // The fixed integer arguments of a variadic function are stored to the
1909    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1910    // the result of va_next.
1911    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1912      // Get an existing live-in vreg, or add a new one.
1913      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1914      if (!VReg)
1915        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1916
1917      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1918      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1919                                   MachinePointerInfo(), false, false, 0);
1920      MemOps.push_back(Store);
1921      // Increment the address by four for the next argument to store
1922      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1923      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1924    }
1925
1926    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1927    // is set.
1928    // The double arguments are stored to the VarArgsFrameIndex
1929    // on the stack.
1930    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1931      // Get an existing live-in vreg, or add a new one.
1932      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1933      if (!VReg)
1934        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1935
1936      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1937      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1938                                   MachinePointerInfo(), false, false, 0);
1939      MemOps.push_back(Store);
1940      // Increment the address by eight for the next argument to store
1941      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1942                                         PtrVT);
1943      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1944    }
1945  }
1946
1947  if (!MemOps.empty())
1948    Chain = DAG.getNode(ISD::TokenFactor, dl,
1949                        MVT::Other, &MemOps[0], MemOps.size());
1950
1951  return Chain;
1952}
1953
1954SDValue
1955PPCTargetLowering::LowerFormalArguments_64SVR4(
1956                                      SDValue Chain,
1957                                      CallingConv::ID CallConv, bool isVarArg,
1958                                      const SmallVectorImpl<ISD::InputArg>
1959                                        &Ins,
1960                                      DebugLoc dl, SelectionDAG &DAG,
1961                                      SmallVectorImpl<SDValue> &InVals) const {
1962  // TODO: add description of PPC stack frame format, or at least some docs.
1963  //
1964  MachineFunction &MF = DAG.getMachineFunction();
1965  MachineFrameInfo *MFI = MF.getFrameInfo();
1966  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1967
1968  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1969  // Potential tail calls could cause overwriting of argument stack slots.
1970  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1971                       (CallConv == CallingConv::Fast));
1972  unsigned PtrByteSize = 8;
1973
1974  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
1975  // Area that is at least reserved in caller of this function.
1976  unsigned MinReservedArea = ArgOffset;
1977
1978  static const uint16_t GPR[] = {
1979    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1980    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1981  };
1982
1983  static const uint16_t *FPR = GetFPR();
1984
1985  static const uint16_t VR[] = {
1986    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1987    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1988  };
1989
1990  const unsigned Num_GPR_Regs = array_lengthof(GPR);
1991  const unsigned Num_FPR_Regs = 13;
1992  const unsigned Num_VR_Regs  = array_lengthof(VR);
1993
1994  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1995
1996  // Add DAG nodes to load the arguments or copy them out of registers.  On
1997  // entry to a function on PPC, the arguments start after the linkage area,
1998  // although the first ones are often in registers.
1999
2000  SmallVector<SDValue, 8> MemOps;
2001  unsigned nAltivecParamsAtEnd = 0;
2002  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2003  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
2004    SDValue ArgVal;
2005    bool needsLoad = false;
2006    EVT ObjectVT = Ins[ArgNo].VT;
2007    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2008    unsigned ArgSize = ObjSize;
2009    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2010
2011    unsigned CurArgOffset = ArgOffset;
2012
2013    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2014    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2015        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2016      if (isVarArg) {
2017        MinReservedArea = ((MinReservedArea+15)/16)*16;
2018        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2019                                                  Flags,
2020                                                  PtrByteSize);
2021      } else
2022        nAltivecParamsAtEnd++;
2023    } else
2024      // Calculate min reserved area.
2025      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2026                                                Flags,
2027                                                PtrByteSize);
2028
2029    // FIXME the codegen can be much improved in some cases.
2030    // We do not have to keep everything in memory.
2031    if (Flags.isByVal()) {
2032      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2033      ObjSize = Flags.getByValSize();
2034      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2035      // All aggregates smaller than 8 bytes must be passed right-justified.
2036      if (ObjSize==1 || ObjSize==2) {
2037        CurArgOffset = CurArgOffset + (4 - ObjSize);
2038      }
2039      // The value of the object is its address.
2040      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2041      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2042      InVals.push_back(FIN);
2043      if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2044        if (GPR_idx != Num_GPR_Regs) {
2045          unsigned VReg;
2046          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2047          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2048          EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2049                         (ObjSize == 2 ? MVT::i16 : MVT::i32));
2050          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2051                                            MachinePointerInfo(FuncArg,
2052                                              CurArgOffset),
2053                                            ObjType, false, false, 0);
2054          MemOps.push_back(Store);
2055          ++GPR_idx;
2056        }
2057
2058        ArgOffset += PtrByteSize;
2059
2060        continue;
2061      }
2062      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2063        // Store whatever pieces of the object are in registers
2064        // to memory.  ArgOffset will be the address of the beginning
2065        // of the object.
2066        if (GPR_idx != Num_GPR_Regs) {
2067          unsigned VReg;
2068          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2069          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2070          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2071          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2072          SDValue Shifted = Val;
2073
2074          // For 64-bit SVR4, small structs come in right-adjusted.
2075          // Shift them left so the following logic works as expected.
2076          if (ObjSize < 8) {
2077            SDValue ShiftAmt = DAG.getConstant(64 - 8 * ObjSize, PtrVT);
2078            Shifted = DAG.getNode(ISD::SHL, dl, PtrVT, Val, ShiftAmt);
2079          }
2080
2081          SDValue Store = DAG.getStore(Val.getValue(1), dl, Shifted, FIN,
2082                                       MachinePointerInfo(FuncArg, ArgOffset),
2083                                       false, false, 0);
2084          MemOps.push_back(Store);
2085          ++GPR_idx;
2086          ArgOffset += PtrByteSize;
2087        } else {
2088          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2089          break;
2090        }
2091      }
2092      continue;
2093    }
2094
2095    switch (ObjectVT.getSimpleVT().SimpleTy) {
2096    default: llvm_unreachable("Unhandled argument type!");
2097    case MVT::i32:
2098    case MVT::i64:
2099      if (GPR_idx != Num_GPR_Regs) {
2100        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2101        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2102
2103        if (ObjectVT == MVT::i32) {
2104          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2105          // value to MVT::i64 and then truncate to the correct register size.
2106          if (Flags.isSExt())
2107            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2108                                 DAG.getValueType(ObjectVT));
2109          else if (Flags.isZExt())
2110            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2111                                 DAG.getValueType(ObjectVT));
2112
2113          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2114        }
2115
2116        ++GPR_idx;
2117      } else {
2118        needsLoad = true;
2119        ArgSize = PtrByteSize;
2120      }
2121      ArgOffset += 8;
2122      break;
2123
2124    case MVT::f32:
2125    case MVT::f64:
2126      // Every 8 bytes of argument space consumes one of the GPRs available for
2127      // argument passing.
2128      if (GPR_idx != Num_GPR_Regs) {
2129        ++GPR_idx;
2130      }
2131      if (FPR_idx != Num_FPR_Regs) {
2132        unsigned VReg;
2133
2134        if (ObjectVT == MVT::f32)
2135          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2136        else
2137          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2138
2139        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2140        ++FPR_idx;
2141      } else {
2142        needsLoad = true;
2143      }
2144
2145      ArgOffset += 8;
2146      break;
2147    case MVT::v4f32:
2148    case MVT::v4i32:
2149    case MVT::v8i16:
2150    case MVT::v16i8:
2151      // Note that vector arguments in registers don't reserve stack space,
2152      // except in varargs functions.
2153      if (VR_idx != Num_VR_Regs) {
2154        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2155        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2156        if (isVarArg) {
2157          while ((ArgOffset % 16) != 0) {
2158            ArgOffset += PtrByteSize;
2159            if (GPR_idx != Num_GPR_Regs)
2160              GPR_idx++;
2161          }
2162          ArgOffset += 16;
2163          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2164        }
2165        ++VR_idx;
2166      } else {
2167        // Vectors are aligned.
2168        ArgOffset = ((ArgOffset+15)/16)*16;
2169        CurArgOffset = ArgOffset;
2170        ArgOffset += 16;
2171        needsLoad = true;
2172      }
2173      break;
2174    }
2175
2176    // We need to load the argument to a virtual register if we determined
2177    // above that we ran out of physical registers of the appropriate type.
2178    if (needsLoad) {
2179      int FI = MFI->CreateFixedObject(ObjSize,
2180                                      CurArgOffset + (ArgSize - ObjSize),
2181                                      isImmutable);
2182      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2183      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2184                           false, false, false, 0);
2185    }
2186
2187    InVals.push_back(ArgVal);
2188  }
2189
2190  // Set the size that is at least reserved in caller of this function.  Tail
2191  // call optimized function's reserved stack space needs to be aligned so that
2192  // taking the difference between two stack areas will result in an aligned
2193  // stack.
2194  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2195  // Add the Altivec parameters at the end, if needed.
2196  if (nAltivecParamsAtEnd) {
2197    MinReservedArea = ((MinReservedArea+15)/16)*16;
2198    MinReservedArea += 16*nAltivecParamsAtEnd;
2199  }
2200  MinReservedArea =
2201    std::max(MinReservedArea,
2202             PPCFrameLowering::getMinCallFrameSize(true, true));
2203  unsigned TargetAlign
2204    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2205        getStackAlignment();
2206  unsigned AlignMask = TargetAlign-1;
2207  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2208  FI->setMinReservedArea(MinReservedArea);
2209
2210  // If the function takes variable number of arguments, make a frame index for
2211  // the start of the first vararg value... for expansion of llvm.va_start.
2212  if (isVarArg) {
2213    int Depth = ArgOffset;
2214
2215    FuncInfo->setVarArgsFrameIndex(
2216      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2217                             Depth, true));
2218    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2219
2220    // If this function is vararg, store any remaining integer argument regs
2221    // to their spots on the stack so that they may be loaded by deferencing the
2222    // result of va_next.
2223    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2224      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2225      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2226      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2227                                   MachinePointerInfo(), false, false, 0);
2228      MemOps.push_back(Store);
2229      // Increment the address by four for the next argument to store
2230      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2231      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2232    }
2233  }
2234
2235  if (!MemOps.empty())
2236    Chain = DAG.getNode(ISD::TokenFactor, dl,
2237                        MVT::Other, &MemOps[0], MemOps.size());
2238
2239  return Chain;
2240}
2241
2242SDValue
2243PPCTargetLowering::LowerFormalArguments_Darwin(
2244                                      SDValue Chain,
2245                                      CallingConv::ID CallConv, bool isVarArg,
2246                                      const SmallVectorImpl<ISD::InputArg>
2247                                        &Ins,
2248                                      DebugLoc dl, SelectionDAG &DAG,
2249                                      SmallVectorImpl<SDValue> &InVals) const {
2250  // TODO: add description of PPC stack frame format, or at least some docs.
2251  //
2252  MachineFunction &MF = DAG.getMachineFunction();
2253  MachineFrameInfo *MFI = MF.getFrameInfo();
2254  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2255
2256  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2257  bool isPPC64 = PtrVT == MVT::i64;
2258  // Potential tail calls could cause overwriting of argument stack slots.
2259  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2260                       (CallConv == CallingConv::Fast));
2261  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2262
2263  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2264  // Area that is at least reserved in caller of this function.
2265  unsigned MinReservedArea = ArgOffset;
2266
2267  static const uint16_t GPR_32[] = {           // 32-bit registers.
2268    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2269    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2270  };
2271  static const uint16_t GPR_64[] = {           // 64-bit registers.
2272    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2273    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2274  };
2275
2276  static const uint16_t *FPR = GetFPR();
2277
2278  static const uint16_t VR[] = {
2279    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2280    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2281  };
2282
2283  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2284  const unsigned Num_FPR_Regs = 13;
2285  const unsigned Num_VR_Regs  = array_lengthof( VR);
2286
2287  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2288
2289  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2290
2291  // In 32-bit non-varargs functions, the stack space for vectors is after the
2292  // stack space for non-vectors.  We do not use this space unless we have
2293  // too many vectors to fit in registers, something that only occurs in
2294  // constructed examples:), but we have to walk the arglist to figure
2295  // that out...for the pathological case, compute VecArgOffset as the
2296  // start of the vector parameter area.  Computing VecArgOffset is the
2297  // entire point of the following loop.
2298  unsigned VecArgOffset = ArgOffset;
2299  if (!isVarArg && !isPPC64) {
2300    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2301         ++ArgNo) {
2302      EVT ObjectVT = Ins[ArgNo].VT;
2303      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2304
2305      if (Flags.isByVal()) {
2306        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2307        unsigned ObjSize = Flags.getByValSize();
2308        unsigned ArgSize =
2309                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2310        VecArgOffset += ArgSize;
2311        continue;
2312      }
2313
2314      switch(ObjectVT.getSimpleVT().SimpleTy) {
2315      default: llvm_unreachable("Unhandled argument type!");
2316      case MVT::i32:
2317      case MVT::f32:
2318        VecArgOffset += 4;
2319        break;
2320      case MVT::i64:  // PPC64
2321      case MVT::f64:
2322        // FIXME: We are guaranteed to be !isPPC64 at this point.
2323        // Does MVT::i64 apply?
2324        VecArgOffset += 8;
2325        break;
2326      case MVT::v4f32:
2327      case MVT::v4i32:
2328      case MVT::v8i16:
2329      case MVT::v16i8:
2330        // Nothing to do, we're only looking at Nonvector args here.
2331        break;
2332      }
2333    }
2334  }
2335  // We've found where the vector parameter area in memory is.  Skip the
2336  // first 12 parameters; these don't use that memory.
2337  VecArgOffset = ((VecArgOffset+15)/16)*16;
2338  VecArgOffset += 12*16;
2339
2340  // Add DAG nodes to load the arguments or copy them out of registers.  On
2341  // entry to a function on PPC, the arguments start after the linkage area,
2342  // although the first ones are often in registers.
2343
2344  SmallVector<SDValue, 8> MemOps;
2345  unsigned nAltivecParamsAtEnd = 0;
2346  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2347  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
2348    SDValue ArgVal;
2349    bool needsLoad = false;
2350    EVT ObjectVT = Ins[ArgNo].VT;
2351    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2352    unsigned ArgSize = ObjSize;
2353    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2354
2355    unsigned CurArgOffset = ArgOffset;
2356
2357    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2358    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2359        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2360      if (isVarArg || isPPC64) {
2361        MinReservedArea = ((MinReservedArea+15)/16)*16;
2362        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2363                                                  Flags,
2364                                                  PtrByteSize);
2365      } else  nAltivecParamsAtEnd++;
2366    } else
2367      // Calculate min reserved area.
2368      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2369                                                Flags,
2370                                                PtrByteSize);
2371
2372    // FIXME the codegen can be much improved in some cases.
2373    // We do not have to keep everything in memory.
2374    if (Flags.isByVal()) {
2375      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2376      ObjSize = Flags.getByValSize();
2377      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2378      // Objects of size 1 and 2 are right justified, everything else is
2379      // left justified.  This means the memory address is adjusted forwards.
2380      if (ObjSize==1 || ObjSize==2) {
2381        CurArgOffset = CurArgOffset + (4 - ObjSize);
2382      }
2383      // The value of the object is its address.
2384      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2385      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2386      InVals.push_back(FIN);
2387      if (ObjSize==1 || ObjSize==2) {
2388        if (GPR_idx != Num_GPR_Regs) {
2389          unsigned VReg;
2390          if (isPPC64)
2391            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2392          else
2393            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2394          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2395          EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2396                         (ObjSize == 2 ? MVT::i16 : MVT::i32));
2397          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2398                                            MachinePointerInfo(FuncArg,
2399                                              CurArgOffset),
2400                                            ObjType, false, false, 0);
2401          MemOps.push_back(Store);
2402          ++GPR_idx;
2403        }
2404
2405        ArgOffset += PtrByteSize;
2406
2407        continue;
2408      }
2409      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2410        // Store whatever pieces of the object are in registers
2411        // to memory.  ArgOffset will be the address of the beginning
2412        // of the object.
2413        if (GPR_idx != Num_GPR_Regs) {
2414          unsigned VReg;
2415          if (isPPC64)
2416            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2417          else
2418            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2419          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2420          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2421          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2422          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2423                                       MachinePointerInfo(FuncArg, ArgOffset),
2424                                       false, false, 0);
2425          MemOps.push_back(Store);
2426          ++GPR_idx;
2427          ArgOffset += PtrByteSize;
2428        } else {
2429          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2430          break;
2431        }
2432      }
2433      continue;
2434    }
2435
2436    switch (ObjectVT.getSimpleVT().SimpleTy) {
2437    default: llvm_unreachable("Unhandled argument type!");
2438    case MVT::i32:
2439      if (!isPPC64) {
2440        if (GPR_idx != Num_GPR_Regs) {
2441          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2442          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2443          ++GPR_idx;
2444        } else {
2445          needsLoad = true;
2446          ArgSize = PtrByteSize;
2447        }
2448        // All int arguments reserve stack space in the Darwin ABI.
2449        ArgOffset += PtrByteSize;
2450        break;
2451      }
2452      // FALLTHROUGH
2453    case MVT::i64:  // PPC64
2454      if (GPR_idx != Num_GPR_Regs) {
2455        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2456        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2457
2458        if (ObjectVT == MVT::i32) {
2459          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2460          // value to MVT::i64 and then truncate to the correct register size.
2461          if (Flags.isSExt())
2462            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2463                                 DAG.getValueType(ObjectVT));
2464          else if (Flags.isZExt())
2465            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2466                                 DAG.getValueType(ObjectVT));
2467
2468          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2469        }
2470
2471        ++GPR_idx;
2472      } else {
2473        needsLoad = true;
2474        ArgSize = PtrByteSize;
2475      }
2476      // All int arguments reserve stack space in the Darwin ABI.
2477      ArgOffset += 8;
2478      break;
2479
2480    case MVT::f32:
2481    case MVT::f64:
2482      // Every 4 bytes of argument space consumes one of the GPRs available for
2483      // argument passing.
2484      if (GPR_idx != Num_GPR_Regs) {
2485        ++GPR_idx;
2486        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2487          ++GPR_idx;
2488      }
2489      if (FPR_idx != Num_FPR_Regs) {
2490        unsigned VReg;
2491
2492        if (ObjectVT == MVT::f32)
2493          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2494        else
2495          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2496
2497        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2498        ++FPR_idx;
2499      } else {
2500        needsLoad = true;
2501      }
2502
2503      // All FP arguments reserve stack space in the Darwin ABI.
2504      ArgOffset += isPPC64 ? 8 : ObjSize;
2505      break;
2506    case MVT::v4f32:
2507    case MVT::v4i32:
2508    case MVT::v8i16:
2509    case MVT::v16i8:
2510      // Note that vector arguments in registers don't reserve stack space,
2511      // except in varargs functions.
2512      if (VR_idx != Num_VR_Regs) {
2513        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2514        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2515        if (isVarArg) {
2516          while ((ArgOffset % 16) != 0) {
2517            ArgOffset += PtrByteSize;
2518            if (GPR_idx != Num_GPR_Regs)
2519              GPR_idx++;
2520          }
2521          ArgOffset += 16;
2522          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2523        }
2524        ++VR_idx;
2525      } else {
2526        if (!isVarArg && !isPPC64) {
2527          // Vectors go after all the nonvectors.
2528          CurArgOffset = VecArgOffset;
2529          VecArgOffset += 16;
2530        } else {
2531          // Vectors are aligned.
2532          ArgOffset = ((ArgOffset+15)/16)*16;
2533          CurArgOffset = ArgOffset;
2534          ArgOffset += 16;
2535        }
2536        needsLoad = true;
2537      }
2538      break;
2539    }
2540
2541    // We need to load the argument to a virtual register if we determined above
2542    // that we ran out of physical registers of the appropriate type.
2543    if (needsLoad) {
2544      int FI = MFI->CreateFixedObject(ObjSize,
2545                                      CurArgOffset + (ArgSize - ObjSize),
2546                                      isImmutable);
2547      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2548      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2549                           false, false, false, 0);
2550    }
2551
2552    InVals.push_back(ArgVal);
2553  }
2554
2555  // Set the size that is at least reserved in caller of this function.  Tail
2556  // call optimized function's reserved stack space needs to be aligned so that
2557  // taking the difference between two stack areas will result in an aligned
2558  // stack.
2559  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2560  // Add the Altivec parameters at the end, if needed.
2561  if (nAltivecParamsAtEnd) {
2562    MinReservedArea = ((MinReservedArea+15)/16)*16;
2563    MinReservedArea += 16*nAltivecParamsAtEnd;
2564  }
2565  MinReservedArea =
2566    std::max(MinReservedArea,
2567             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2568  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2569    getStackAlignment();
2570  unsigned AlignMask = TargetAlign-1;
2571  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2572  FI->setMinReservedArea(MinReservedArea);
2573
2574  // If the function takes variable number of arguments, make a frame index for
2575  // the start of the first vararg value... for expansion of llvm.va_start.
2576  if (isVarArg) {
2577    int Depth = ArgOffset;
2578
2579    FuncInfo->setVarArgsFrameIndex(
2580      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2581                             Depth, true));
2582    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2583
2584    // If this function is vararg, store any remaining integer argument regs
2585    // to their spots on the stack so that they may be loaded by deferencing the
2586    // result of va_next.
2587    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2588      unsigned VReg;
2589
2590      if (isPPC64)
2591        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2592      else
2593        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2594
2595      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2596      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2597                                   MachinePointerInfo(), false, false, 0);
2598      MemOps.push_back(Store);
2599      // Increment the address by four for the next argument to store
2600      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2601      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2602    }
2603  }
2604
2605  if (!MemOps.empty())
2606    Chain = DAG.getNode(ISD::TokenFactor, dl,
2607                        MVT::Other, &MemOps[0], MemOps.size());
2608
2609  return Chain;
2610}
2611
2612/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2613/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2614static unsigned
2615CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2616                                     bool isPPC64,
2617                                     bool isVarArg,
2618                                     unsigned CC,
2619                                     const SmallVectorImpl<ISD::OutputArg>
2620                                       &Outs,
2621                                     const SmallVectorImpl<SDValue> &OutVals,
2622                                     unsigned &nAltivecParamsAtEnd) {
2623  // Count how many bytes are to be pushed on the stack, including the linkage
2624  // area, and parameter passing area.  We start with 24/48 bytes, which is
2625  // prereserved space for [SP][CR][LR][3 x unused].
2626  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2627  unsigned NumOps = Outs.size();
2628  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2629
2630  // Add up all the space actually used.
2631  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2632  // they all go in registers, but we must reserve stack space for them for
2633  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2634  // assigned stack space in order, with padding so Altivec parameters are
2635  // 16-byte aligned.
2636  nAltivecParamsAtEnd = 0;
2637  for (unsigned i = 0; i != NumOps; ++i) {
2638    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2639    EVT ArgVT = Outs[i].VT;
2640    // Varargs Altivec parameters are padded to a 16 byte boundary.
2641    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2642        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2643      if (!isVarArg && !isPPC64) {
2644        // Non-varargs Altivec parameters go after all the non-Altivec
2645        // parameters; handle those later so we know how much padding we need.
2646        nAltivecParamsAtEnd++;
2647        continue;
2648      }
2649      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2650      NumBytes = ((NumBytes+15)/16)*16;
2651    }
2652    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2653  }
2654
2655   // Allow for Altivec parameters at the end, if needed.
2656  if (nAltivecParamsAtEnd) {
2657    NumBytes = ((NumBytes+15)/16)*16;
2658    NumBytes += 16*nAltivecParamsAtEnd;
2659  }
2660
2661  // The prolog code of the callee may store up to 8 GPR argument registers to
2662  // the stack, allowing va_start to index over them in memory if its varargs.
2663  // Because we cannot tell if this is needed on the caller side, we have to
2664  // conservatively assume that it is needed.  As such, make sure we have at
2665  // least enough stack space for the caller to store the 8 GPRs.
2666  NumBytes = std::max(NumBytes,
2667                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2668
2669  // Tail call needs the stack to be aligned.
2670  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2671    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2672      getFrameLowering()->getStackAlignment();
2673    unsigned AlignMask = TargetAlign-1;
2674    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2675  }
2676
2677  return NumBytes;
2678}
2679
2680/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2681/// adjusted to accommodate the arguments for the tailcall.
2682static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2683                                   unsigned ParamSize) {
2684
2685  if (!isTailCall) return 0;
2686
2687  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2688  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2689  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2690  // Remember only if the new adjustement is bigger.
2691  if (SPDiff < FI->getTailCallSPDelta())
2692    FI->setTailCallSPDelta(SPDiff);
2693
2694  return SPDiff;
2695}
2696
2697/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2698/// for tail call optimization. Targets which want to do tail call
2699/// optimization should implement this function.
2700bool
2701PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2702                                                     CallingConv::ID CalleeCC,
2703                                                     bool isVarArg,
2704                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2705                                                     SelectionDAG& DAG) const {
2706  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2707    return false;
2708
2709  // Variable argument functions are not supported.
2710  if (isVarArg)
2711    return false;
2712
2713  MachineFunction &MF = DAG.getMachineFunction();
2714  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2715  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2716    // Functions containing by val parameters are not supported.
2717    for (unsigned i = 0; i != Ins.size(); i++) {
2718       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2719       if (Flags.isByVal()) return false;
2720    }
2721
2722    // Non PIC/GOT  tail calls are supported.
2723    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2724      return true;
2725
2726    // At the moment we can only do local tail calls (in same module, hidden
2727    // or protected) if we are generating PIC.
2728    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2729      return G->getGlobal()->hasHiddenVisibility()
2730          || G->getGlobal()->hasProtectedVisibility();
2731  }
2732
2733  return false;
2734}
2735
2736/// isCallCompatibleAddress - Return the immediate to use if the specified
2737/// 32-bit value is representable in the immediate field of a BxA instruction.
2738static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2739  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2740  if (!C) return 0;
2741
2742  int Addr = C->getZExtValue();
2743  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2744      SignExtend32<26>(Addr) != Addr)
2745    return 0;  // Top 6 bits have to be sext of immediate.
2746
2747  return DAG.getConstant((int)C->getZExtValue() >> 2,
2748                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2749}
2750
2751namespace {
2752
2753struct TailCallArgumentInfo {
2754  SDValue Arg;
2755  SDValue FrameIdxOp;
2756  int       FrameIdx;
2757
2758  TailCallArgumentInfo() : FrameIdx(0) {}
2759};
2760
2761}
2762
2763/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2764static void
2765StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2766                                           SDValue Chain,
2767                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2768                   SmallVector<SDValue, 8> &MemOpChains,
2769                   DebugLoc dl) {
2770  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2771    SDValue Arg = TailCallArgs[i].Arg;
2772    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2773    int FI = TailCallArgs[i].FrameIdx;
2774    // Store relative to framepointer.
2775    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2776                                       MachinePointerInfo::getFixedStack(FI),
2777                                       false, false, 0));
2778  }
2779}
2780
2781/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2782/// the appropriate stack slot for the tail call optimized function call.
2783static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2784                                               MachineFunction &MF,
2785                                               SDValue Chain,
2786                                               SDValue OldRetAddr,
2787                                               SDValue OldFP,
2788                                               int SPDiff,
2789                                               bool isPPC64,
2790                                               bool isDarwinABI,
2791                                               DebugLoc dl) {
2792  if (SPDiff) {
2793    // Calculate the new stack slot for the return address.
2794    int SlotSize = isPPC64 ? 8 : 4;
2795    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2796                                                                   isDarwinABI);
2797    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2798                                                          NewRetAddrLoc, true);
2799    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2800    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2801    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2802                         MachinePointerInfo::getFixedStack(NewRetAddr),
2803                         false, false, 0);
2804
2805    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2806    // slot as the FP is never overwritten.
2807    if (isDarwinABI) {
2808      int NewFPLoc =
2809        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2810      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2811                                                          true);
2812      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2813      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2814                           MachinePointerInfo::getFixedStack(NewFPIdx),
2815                           false, false, 0);
2816    }
2817  }
2818  return Chain;
2819}
2820
2821/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2822/// the position of the argument.
2823static void
2824CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2825                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2826                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2827  int Offset = ArgOffset + SPDiff;
2828  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2829  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2830  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2831  SDValue FIN = DAG.getFrameIndex(FI, VT);
2832  TailCallArgumentInfo Info;
2833  Info.Arg = Arg;
2834  Info.FrameIdxOp = FIN;
2835  Info.FrameIdx = FI;
2836  TailCallArguments.push_back(Info);
2837}
2838
2839/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2840/// stack slot. Returns the chain as result and the loaded frame pointers in
2841/// LROpOut/FPOpout. Used when tail calling.
2842SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2843                                                        int SPDiff,
2844                                                        SDValue Chain,
2845                                                        SDValue &LROpOut,
2846                                                        SDValue &FPOpOut,
2847                                                        bool isDarwinABI,
2848                                                        DebugLoc dl) const {
2849  if (SPDiff) {
2850    // Load the LR and FP stack slot for later adjusting.
2851    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2852    LROpOut = getReturnAddrFrameIndex(DAG);
2853    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2854                          false, false, false, 0);
2855    Chain = SDValue(LROpOut.getNode(), 1);
2856
2857    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2858    // slot as the FP is never overwritten.
2859    if (isDarwinABI) {
2860      FPOpOut = getFramePointerFrameIndex(DAG);
2861      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2862                            false, false, false, 0);
2863      Chain = SDValue(FPOpOut.getNode(), 1);
2864    }
2865  }
2866  return Chain;
2867}
2868
2869/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2870/// by "Src" to address "Dst" of size "Size".  Alignment information is
2871/// specified by the specific parameter attribute. The copy will be passed as
2872/// a byval function parameter.
2873/// Sometimes what we are copying is the end of a larger object, the part that
2874/// does not fit in registers.
2875static SDValue
2876CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2877                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2878                          DebugLoc dl) {
2879  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2880  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2881                       false, false, MachinePointerInfo(0),
2882                       MachinePointerInfo(0));
2883}
2884
2885/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2886/// tail calls.
2887static void
2888LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2889                 SDValue Arg, SDValue PtrOff, int SPDiff,
2890                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2891                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2892                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2893                 DebugLoc dl) {
2894  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2895  if (!isTailCall) {
2896    if (isVector) {
2897      SDValue StackPtr;
2898      if (isPPC64)
2899        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2900      else
2901        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2902      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2903                           DAG.getConstant(ArgOffset, PtrVT));
2904    }
2905    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2906                                       MachinePointerInfo(), false, false, 0));
2907  // Calculate and remember argument location.
2908  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2909                                  TailCallArguments);
2910}
2911
2912static
2913void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2914                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2915                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2916                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2917  MachineFunction &MF = DAG.getMachineFunction();
2918
2919  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2920  // might overwrite each other in case of tail call optimization.
2921  SmallVector<SDValue, 8> MemOpChains2;
2922  // Do not flag preceding copytoreg stuff together with the following stuff.
2923  InFlag = SDValue();
2924  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2925                                    MemOpChains2, dl);
2926  if (!MemOpChains2.empty())
2927    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2928                        &MemOpChains2[0], MemOpChains2.size());
2929
2930  // Store the return address to the appropriate stack slot.
2931  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2932                                        isPPC64, isDarwinABI, dl);
2933
2934  // Emit callseq_end just before tailcall node.
2935  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2936                             DAG.getIntPtrConstant(0, true), InFlag);
2937  InFlag = Chain.getValue(1);
2938}
2939
2940static
2941unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2942                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2943                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2944                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2945                     const PPCSubtarget &PPCSubTarget) {
2946
2947  bool isPPC64 = PPCSubTarget.isPPC64();
2948  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2949
2950  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2951  NodeTys.push_back(MVT::Other);   // Returns a chain
2952  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2953
2954  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2955
2956  bool needIndirectCall = true;
2957  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2958    // If this is an absolute destination address, use the munged value.
2959    Callee = SDValue(Dest, 0);
2960    needIndirectCall = false;
2961  }
2962
2963  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2964    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2965    // Use indirect calls for ALL functions calls in JIT mode, since the
2966    // far-call stubs may be outside relocation limits for a BL instruction.
2967    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2968      unsigned OpFlags = 0;
2969      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2970          (PPCSubTarget.getTargetTriple().isMacOSX() &&
2971           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
2972          (G->getGlobal()->isDeclaration() ||
2973           G->getGlobal()->isWeakForLinker())) {
2974        // PC-relative references to external symbols should go through $stub,
2975        // unless we're building with the leopard linker or later, which
2976        // automatically synthesizes these stubs.
2977        OpFlags = PPCII::MO_DARWIN_STUB;
2978      }
2979
2980      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2981      // every direct call is) turn it into a TargetGlobalAddress /
2982      // TargetExternalSymbol node so that legalize doesn't hack it.
2983      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2984                                          Callee.getValueType(),
2985                                          0, OpFlags);
2986      needIndirectCall = false;
2987    }
2988  }
2989
2990  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2991    unsigned char OpFlags = 0;
2992
2993    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2994        (PPCSubTarget.getTargetTriple().isMacOSX() &&
2995         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
2996      // PC-relative references to external symbols should go through $stub,
2997      // unless we're building with the leopard linker or later, which
2998      // automatically synthesizes these stubs.
2999      OpFlags = PPCII::MO_DARWIN_STUB;
3000    }
3001
3002    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3003                                         OpFlags);
3004    needIndirectCall = false;
3005  }
3006
3007  if (needIndirectCall) {
3008    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3009    // to do the call, we can't use PPCISD::CALL.
3010    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3011
3012    if (isSVR4ABI && isPPC64) {
3013      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3014      // entry point, but to the function descriptor (the function entry point
3015      // address is part of the function descriptor though).
3016      // The function descriptor is a three doubleword structure with the
3017      // following fields: function entry point, TOC base address and
3018      // environment pointer.
3019      // Thus for a call through a function pointer, the following actions need
3020      // to be performed:
3021      //   1. Save the TOC of the caller in the TOC save area of its stack
3022      //      frame (this is done in LowerCall_Darwin_Or_64SVR4()).
3023      //   2. Load the address of the function entry point from the function
3024      //      descriptor.
3025      //   3. Load the TOC of the callee from the function descriptor into r2.
3026      //   4. Load the environment pointer from the function descriptor into
3027      //      r11.
3028      //   5. Branch to the function entry point address.
3029      //   6. On return of the callee, the TOC of the caller needs to be
3030      //      restored (this is done in FinishCall()).
3031      //
3032      // All those operations are flagged together to ensure that no other
3033      // operations can be scheduled in between. E.g. without flagging the
3034      // operations together, a TOC access in the caller could be scheduled
3035      // between the load of the callee TOC and the branch to the callee, which
3036      // results in the TOC access going through the TOC of the callee instead
3037      // of going through the TOC of the caller, which leads to incorrect code.
3038
3039      // Load the address of the function entry point from the function
3040      // descriptor.
3041      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3042      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3043                                        InFlag.getNode() ? 3 : 2);
3044      Chain = LoadFuncPtr.getValue(1);
3045      InFlag = LoadFuncPtr.getValue(2);
3046
3047      // Load environment pointer into r11.
3048      // Offset of the environment pointer within the function descriptor.
3049      SDValue PtrOff = DAG.getIntPtrConstant(16);
3050
3051      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3052      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3053                                       InFlag);
3054      Chain = LoadEnvPtr.getValue(1);
3055      InFlag = LoadEnvPtr.getValue(2);
3056
3057      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3058                                        InFlag);
3059      Chain = EnvVal.getValue(0);
3060      InFlag = EnvVal.getValue(1);
3061
3062      // Load TOC of the callee into r2. We are using a target-specific load
3063      // with r2 hard coded, because the result of a target-independent load
3064      // would never go directly into r2, since r2 is a reserved register (which
3065      // prevents the register allocator from allocating it), resulting in an
3066      // additional register being allocated and an unnecessary move instruction
3067      // being generated.
3068      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3069      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3070                                       Callee, InFlag);
3071      Chain = LoadTOCPtr.getValue(0);
3072      InFlag = LoadTOCPtr.getValue(1);
3073
3074      MTCTROps[0] = Chain;
3075      MTCTROps[1] = LoadFuncPtr;
3076      MTCTROps[2] = InFlag;
3077    }
3078
3079    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3080                        2 + (InFlag.getNode() != 0));
3081    InFlag = Chain.getValue(1);
3082
3083    NodeTys.clear();
3084    NodeTys.push_back(MVT::Other);
3085    NodeTys.push_back(MVT::Glue);
3086    Ops.push_back(Chain);
3087    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
3088    Callee.setNode(0);
3089    // Add CTR register as callee so a bctr can be emitted later.
3090    if (isTailCall)
3091      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3092  }
3093
3094  // If this is a direct call, pass the chain and the callee.
3095  if (Callee.getNode()) {
3096    Ops.push_back(Chain);
3097    Ops.push_back(Callee);
3098  }
3099  // If this is a tail call add stack pointer delta.
3100  if (isTailCall)
3101    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3102
3103  // Add argument registers to the end of the list so that they are known live
3104  // into the call.
3105  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3106    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3107                                  RegsToPass[i].second.getValueType()));
3108
3109  return CallOpc;
3110}
3111
3112static
3113bool isLocalCall(const SDValue &Callee)
3114{
3115  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3116    return !G->getGlobal()->isDeclaration() &&
3117           !G->getGlobal()->isWeakForLinker();
3118  return false;
3119}
3120
3121SDValue
3122PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3123                                   CallingConv::ID CallConv, bool isVarArg,
3124                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3125                                   DebugLoc dl, SelectionDAG &DAG,
3126                                   SmallVectorImpl<SDValue> &InVals) const {
3127
3128  SmallVector<CCValAssign, 16> RVLocs;
3129  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3130                    getTargetMachine(), RVLocs, *DAG.getContext());
3131  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3132
3133  // Copy all of the result registers out of their specified physreg.
3134  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3135    CCValAssign &VA = RVLocs[i];
3136    EVT VT = VA.getValVT();
3137    assert(VA.isRegLoc() && "Can only return in registers!");
3138    Chain = DAG.getCopyFromReg(Chain, dl,
3139                               VA.getLocReg(), VT, InFlag).getValue(1);
3140    InVals.push_back(Chain.getValue(0));
3141    InFlag = Chain.getValue(2);
3142  }
3143
3144  return Chain;
3145}
3146
3147SDValue
3148PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
3149                              bool isTailCall, bool isVarArg,
3150                              SelectionDAG &DAG,
3151                              SmallVector<std::pair<unsigned, SDValue>, 8>
3152                                &RegsToPass,
3153                              SDValue InFlag, SDValue Chain,
3154                              SDValue &Callee,
3155                              int SPDiff, unsigned NumBytes,
3156                              const SmallVectorImpl<ISD::InputArg> &Ins,
3157                              SmallVectorImpl<SDValue> &InVals) const {
3158  std::vector<EVT> NodeTys;
3159  SmallVector<SDValue, 8> Ops;
3160  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3161                                 isTailCall, RegsToPass, Ops, NodeTys,
3162                                 PPCSubTarget);
3163
3164  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3165  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3166    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3167
3168  // When performing tail call optimization the callee pops its arguments off
3169  // the stack. Account for this here so these bytes can be pushed back on in
3170  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
3171  int BytesCalleePops =
3172    (CallConv == CallingConv::Fast &&
3173     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3174
3175  // Add a register mask operand representing the call-preserved registers.
3176  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3177  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3178  assert(Mask && "Missing call preserved mask for calling convention");
3179  Ops.push_back(DAG.getRegisterMask(Mask));
3180
3181  if (InFlag.getNode())
3182    Ops.push_back(InFlag);
3183
3184  // Emit tail call.
3185  if (isTailCall) {
3186    // If this is the first return lowered for this function, add the regs
3187    // to the liveout set for the function.
3188    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3189      SmallVector<CCValAssign, 16> RVLocs;
3190      CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3191                     getTargetMachine(), RVLocs, *DAG.getContext());
3192      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3193      for (unsigned i = 0; i != RVLocs.size(); ++i)
3194        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3195    }
3196
3197    assert(((Callee.getOpcode() == ISD::Register &&
3198             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3199            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3200            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3201            isa<ConstantSDNode>(Callee)) &&
3202    "Expecting an global address, external symbol, absolute value or register");
3203
3204    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3205  }
3206
3207  // Add a NOP immediately after the branch instruction when using the 64-bit
3208  // SVR4 ABI. At link time, if caller and callee are in a different module and
3209  // thus have a different TOC, the call will be replaced with a call to a stub
3210  // function which saves the current TOC, loads the TOC of the callee and
3211  // branches to the callee. The NOP will be replaced with a load instruction
3212  // which restores the TOC of the caller from the TOC save slot of the current
3213  // stack frame. If caller and callee belong to the same module (and have the
3214  // same TOC), the NOP will remain unchanged.
3215
3216  bool needsTOCRestore = false;
3217  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3218    if (CallOpc == PPCISD::BCTRL_SVR4) {
3219      // This is a call through a function pointer.
3220      // Restore the caller TOC from the save area into R2.
3221      // See PrepareCall() for more information about calls through function
3222      // pointers in the 64-bit SVR4 ABI.
3223      // We are using a target-specific load with r2 hard coded, because the
3224      // result of a target-independent load would never go directly into r2,
3225      // since r2 is a reserved register (which prevents the register allocator
3226      // from allocating it), resulting in an additional register being
3227      // allocated and an unnecessary move instruction being generated.
3228      needsTOCRestore = true;
3229    } else if ((CallOpc == PPCISD::CALL_SVR4) && !isLocalCall(Callee)) {
3230      // Otherwise insert NOP for non-local calls.
3231      CallOpc = PPCISD::CALL_NOP_SVR4;
3232    }
3233  }
3234
3235  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3236  InFlag = Chain.getValue(1);
3237
3238  if (needsTOCRestore) {
3239    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3240    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3241    InFlag = Chain.getValue(1);
3242  }
3243
3244  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3245                             DAG.getIntPtrConstant(BytesCalleePops, true),
3246                             InFlag);
3247  if (!Ins.empty())
3248    InFlag = Chain.getValue(1);
3249
3250  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3251                         Ins, dl, DAG, InVals);
3252}
3253
3254SDValue
3255PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3256                             SmallVectorImpl<SDValue> &InVals) const {
3257  SelectionDAG &DAG                     = CLI.DAG;
3258  DebugLoc &dl                          = CLI.DL;
3259  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3260  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3261  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3262  SDValue Chain                         = CLI.Chain;
3263  SDValue Callee                        = CLI.Callee;
3264  bool &isTailCall                      = CLI.IsTailCall;
3265  CallingConv::ID CallConv              = CLI.CallConv;
3266  bool isVarArg                         = CLI.IsVarArg;
3267
3268  if (isTailCall)
3269    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3270                                                   Ins, DAG);
3271
3272  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3273    return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3274                            isTailCall, Outs, OutVals, Ins,
3275                            dl, DAG, InVals);
3276
3277  return LowerCall_Darwin_Or_64SVR4(Chain, Callee, CallConv, isVarArg,
3278                                    isTailCall, Outs, OutVals, Ins,
3279                                    dl, DAG, InVals);
3280}
3281
3282SDValue
3283PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3284                                    CallingConv::ID CallConv, bool isVarArg,
3285                                    bool isTailCall,
3286                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3287                                    const SmallVectorImpl<SDValue> &OutVals,
3288                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3289                                    DebugLoc dl, SelectionDAG &DAG,
3290                                    SmallVectorImpl<SDValue> &InVals) const {
3291  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3292  // of the 32-bit SVR4 ABI stack frame layout.
3293
3294  assert((CallConv == CallingConv::C ||
3295          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3296
3297  unsigned PtrByteSize = 4;
3298
3299  MachineFunction &MF = DAG.getMachineFunction();
3300
3301  // Mark this function as potentially containing a function that contains a
3302  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3303  // and restoring the callers stack pointer in this functions epilog. This is
3304  // done because by tail calling the called function might overwrite the value
3305  // in this function's (MF) stack pointer stack slot 0(SP).
3306  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3307      CallConv == CallingConv::Fast)
3308    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3309
3310  // Count how many bytes are to be pushed on the stack, including the linkage
3311  // area, parameter list area and the part of the local variable space which
3312  // contains copies of aggregates which are passed by value.
3313
3314  // Assign locations to all of the outgoing arguments.
3315  SmallVector<CCValAssign, 16> ArgLocs;
3316  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3317                 getTargetMachine(), ArgLocs, *DAG.getContext());
3318
3319  // Reserve space for the linkage area on the stack.
3320  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3321
3322  if (isVarArg) {
3323    // Handle fixed and variable vector arguments differently.
3324    // Fixed vector arguments go into registers as long as registers are
3325    // available. Variable vector arguments always go into memory.
3326    unsigned NumArgs = Outs.size();
3327
3328    for (unsigned i = 0; i != NumArgs; ++i) {
3329      MVT ArgVT = Outs[i].VT;
3330      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3331      bool Result;
3332
3333      if (Outs[i].IsFixed) {
3334        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3335                             CCInfo);
3336      } else {
3337        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3338                                    ArgFlags, CCInfo);
3339      }
3340
3341      if (Result) {
3342#ifndef NDEBUG
3343        errs() << "Call operand #" << i << " has unhandled type "
3344             << EVT(ArgVT).getEVTString() << "\n";
3345#endif
3346        llvm_unreachable(0);
3347      }
3348    }
3349  } else {
3350    // All arguments are treated the same.
3351    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
3352  }
3353
3354  // Assign locations to all of the outgoing aggregate by value arguments.
3355  SmallVector<CCValAssign, 16> ByValArgLocs;
3356  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3357                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3358
3359  // Reserve stack space for the allocations in CCInfo.
3360  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3361
3362  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
3363
3364  // Size of the linkage area, parameter list area and the part of the local
3365  // space variable where copies of aggregates which are passed by value are
3366  // stored.
3367  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3368
3369  // Calculate by how many bytes the stack has to be adjusted in case of tail
3370  // call optimization.
3371  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3372
3373  // Adjust the stack pointer for the new arguments...
3374  // These operations are automatically eliminated by the prolog/epilog pass
3375  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3376  SDValue CallSeqStart = Chain;
3377
3378  // Load the return address and frame pointer so it can be moved somewhere else
3379  // later.
3380  SDValue LROp, FPOp;
3381  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3382                                       dl);
3383
3384  // Set up a copy of the stack pointer for use loading and storing any
3385  // arguments that may not fit in the registers available for argument
3386  // passing.
3387  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3388
3389  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3390  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3391  SmallVector<SDValue, 8> MemOpChains;
3392
3393  bool seenFloatArg = false;
3394  // Walk the register/memloc assignments, inserting copies/loads.
3395  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3396       i != e;
3397       ++i) {
3398    CCValAssign &VA = ArgLocs[i];
3399    SDValue Arg = OutVals[i];
3400    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3401
3402    if (Flags.isByVal()) {
3403      // Argument is an aggregate which is passed by value, thus we need to
3404      // create a copy of it in the local variable space of the current stack
3405      // frame (which is the stack frame of the caller) and pass the address of
3406      // this copy to the callee.
3407      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3408      CCValAssign &ByValVA = ByValArgLocs[j++];
3409      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3410
3411      // Memory reserved in the local variable space of the callers stack frame.
3412      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3413
3414      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3415      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3416
3417      // Create a copy of the argument in the local area of the current
3418      // stack frame.
3419      SDValue MemcpyCall =
3420        CreateCopyOfByValArgument(Arg, PtrOff,
3421                                  CallSeqStart.getNode()->getOperand(0),
3422                                  Flags, DAG, dl);
3423
3424      // This must go outside the CALLSEQ_START..END.
3425      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3426                           CallSeqStart.getNode()->getOperand(1));
3427      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3428                             NewCallSeqStart.getNode());
3429      Chain = CallSeqStart = NewCallSeqStart;
3430
3431      // Pass the address of the aggregate copy on the stack either in a
3432      // physical register or in the parameter list area of the current stack
3433      // frame to the callee.
3434      Arg = PtrOff;
3435    }
3436
3437    if (VA.isRegLoc()) {
3438      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3439      // Put argument in a physical register.
3440      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3441    } else {
3442      // Put argument in the parameter list area of the current stack frame.
3443      assert(VA.isMemLoc());
3444      unsigned LocMemOffset = VA.getLocMemOffset();
3445
3446      if (!isTailCall) {
3447        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3448        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3449
3450        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3451                                           MachinePointerInfo(),
3452                                           false, false, 0));
3453      } else {
3454        // Calculate and remember argument location.
3455        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3456                                 TailCallArguments);
3457      }
3458    }
3459  }
3460
3461  if (!MemOpChains.empty())
3462    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3463                        &MemOpChains[0], MemOpChains.size());
3464
3465  // Build a sequence of copy-to-reg nodes chained together with token chain
3466  // and flag operands which copy the outgoing args into the appropriate regs.
3467  SDValue InFlag;
3468  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3469    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3470                             RegsToPass[i].second, InFlag);
3471    InFlag = Chain.getValue(1);
3472  }
3473
3474  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3475  // registers.
3476  if (isVarArg) {
3477    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3478    SDValue Ops[] = { Chain, InFlag };
3479
3480    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3481                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3482
3483    InFlag = Chain.getValue(1);
3484  }
3485
3486  if (isTailCall)
3487    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3488                    false, TailCallArguments);
3489
3490  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3491                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3492                    Ins, InVals);
3493}
3494
3495SDValue
3496PPCTargetLowering::LowerCall_Darwin_Or_64SVR4(SDValue Chain, SDValue Callee,
3497                                    CallingConv::ID CallConv, bool isVarArg,
3498                                    bool isTailCall,
3499                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3500                                    const SmallVectorImpl<SDValue> &OutVals,
3501                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3502                                    DebugLoc dl, SelectionDAG &DAG,
3503                                    SmallVectorImpl<SDValue> &InVals) const {
3504
3505  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3506
3507  unsigned NumOps  = Outs.size();
3508
3509  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3510  bool isPPC64 = PtrVT == MVT::i64;
3511  unsigned PtrByteSize = isPPC64 ? 8 : 4;
3512
3513  MachineFunction &MF = DAG.getMachineFunction();
3514
3515  // Mark this function as potentially containing a function that contains a
3516  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3517  // and restoring the callers stack pointer in this functions epilog. This is
3518  // done because by tail calling the called function might overwrite the value
3519  // in this function's (MF) stack pointer stack slot 0(SP).
3520  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3521      CallConv == CallingConv::Fast)
3522    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3523
3524  unsigned nAltivecParamsAtEnd = 0;
3525
3526  // Count how many bytes are to be pushed on the stack, including the linkage
3527  // area, and parameter passing area.  We start with 24/48 bytes, which is
3528  // prereserved space for [SP][CR][LR][3 x unused].
3529  unsigned NumBytes =
3530    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
3531                                         Outs, OutVals,
3532                                         nAltivecParamsAtEnd);
3533
3534  // Calculate by how many bytes the stack has to be adjusted in case of tail
3535  // call optimization.
3536  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3537
3538  // To protect arguments on the stack from being clobbered in a tail call,
3539  // force all the loads to happen before doing any other lowering.
3540  if (isTailCall)
3541    Chain = DAG.getStackArgumentTokenFactor(Chain);
3542
3543  // Adjust the stack pointer for the new arguments...
3544  // These operations are automatically eliminated by the prolog/epilog pass
3545  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3546  SDValue CallSeqStart = Chain;
3547
3548  // Load the return address and frame pointer so it can be move somewhere else
3549  // later.
3550  SDValue LROp, FPOp;
3551  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3552                                       dl);
3553
3554  // Set up a copy of the stack pointer for use loading and storing any
3555  // arguments that may not fit in the registers available for argument
3556  // passing.
3557  SDValue StackPtr;
3558  if (isPPC64)
3559    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3560  else
3561    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3562
3563  // Figure out which arguments are going to go in registers, and which in
3564  // memory.  Also, if this is a vararg function, floating point operations
3565  // must be stored to our stack, and loaded into integer regs as well, if
3566  // any integer regs are available for argument passing.
3567  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
3568  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3569
3570  static const uint16_t GPR_32[] = {           // 32-bit registers.
3571    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3572    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3573  };
3574  static const uint16_t GPR_64[] = {           // 64-bit registers.
3575    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3576    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3577  };
3578  static const uint16_t *FPR = GetFPR();
3579
3580  static const uint16_t VR[] = {
3581    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3582    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3583  };
3584  const unsigned NumGPRs = array_lengthof(GPR_32);
3585  const unsigned NumFPRs = 13;
3586  const unsigned NumVRs  = array_lengthof(VR);
3587
3588  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
3589
3590  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3591  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3592
3593  SmallVector<SDValue, 8> MemOpChains;
3594  for (unsigned i = 0; i != NumOps; ++i) {
3595    SDValue Arg = OutVals[i];
3596    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3597
3598    // PtrOff will be used to store the current argument to the stack if a
3599    // register cannot be found for it.
3600    SDValue PtrOff;
3601
3602    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3603
3604    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3605
3606    // On PPC64, promote integers to 64-bit values.
3607    if (isPPC64 && Arg.getValueType() == MVT::i32) {
3608      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3609      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3610      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3611    }
3612
3613    // FIXME memcpy is used way more than necessary.  Correctness first.
3614    // Note: "by value" is code for passing a structure by value, not
3615    // basic types.
3616    if (Flags.isByVal()) {
3617      // Note: Size includes alignment padding, so
3618      //   struct x { short a; char b; }
3619      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3620      // These are the proper values we need for right-justifying the
3621      // aggregate in a parameter register for 64-bit SVR4.
3622      unsigned Size = Flags.getByValSize();
3623      // FOR DARWIN ONLY:  Very small objects are passed right-justified.
3624      // Everything else is passed left-justified.
3625      // FOR 64-BIT SVR4:  All aggregates smaller than 8 bytes must
3626      // be passed right-justified.
3627      if (Size==1 || Size==2 ||
3628          (Size==4 && isSVR4ABI)) {
3629        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3630        if (GPR_idx != NumGPRs) {
3631          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3632                                        MachinePointerInfo(), VT,
3633                                        false, false, 0);
3634          MemOpChains.push_back(Load.getValue(1));
3635          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3636
3637          ArgOffset += PtrByteSize;
3638        } else {
3639          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3640          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3641          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3642                                CallSeqStart.getNode()->getOperand(0),
3643                                Flags, DAG, dl);
3644          // This must go outside the CALLSEQ_START..END.
3645          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3646                               CallSeqStart.getNode()->getOperand(1));
3647          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3648                                 NewCallSeqStart.getNode());
3649          Chain = CallSeqStart = NewCallSeqStart;
3650          ArgOffset += PtrByteSize;
3651        }
3652        continue;
3653      }
3654      // Copy entire object into memory.  There are cases where gcc-generated
3655      // code assumes it is there, even if it could be put entirely into
3656      // registers.  (This is not what the doc says.)
3657
3658      // FIXME: The above statement is likely due to a misunderstanding of the
3659      // documents.  At least for 64-bit SVR4, all arguments must be copied
3660      // into the parameter area BY THE CALLEE in the event that the callee
3661      // takes the address of any formal argument.  That has not yet been
3662      // implemented.  However, it is reasonable to use the stack area as a
3663      // staging area for the register load.
3664
3665      // Skip this for small aggregates under 64-bit SVR4, as we will use
3666      // the same slot for a right-justified copy, below.
3667      if (Size >= 8 || !isSVR4ABI) {
3668        SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3669                              CallSeqStart.getNode()->getOperand(0),
3670                              Flags, DAG, dl);
3671        // This must go outside the CALLSEQ_START..END.
3672        SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3673                                   CallSeqStart.getNode()->getOperand(1));
3674        DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3675                               NewCallSeqStart.getNode());
3676        Chain = CallSeqStart = NewCallSeqStart;
3677      }
3678
3679      // FOR 64-BIT SVR4:  When a register is available, pass the
3680      // aggregate right-justified.
3681      if (isSVR4ABI && Size < 8 && GPR_idx != NumGPRs) {
3682        // The easiest way to get this right-justified in a register
3683        // is to copy the structure into the rightmost portion of a
3684        // local variable slot, then load the whole slot into the
3685        // register.
3686        // FIXME: The memcpy seems to produce pretty awful code for
3687        // small aggregates, particularly for packed ones.
3688        // FIXME: It would be preferable to use the slot in the
3689        // parameter save area instead of a new local variable.
3690        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3691        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3692        SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3693                              CallSeqStart.getNode()->getOperand(0),
3694                              Flags, DAG, dl);
3695
3696        // Place the memcpy outside the CALLSEQ_START..END.
3697        SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3698                                   CallSeqStart.getNode()->getOperand(1));
3699        DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3700                               NewCallSeqStart.getNode());
3701        Chain = CallSeqStart = NewCallSeqStart;
3702
3703        // Load the slot into the register.
3704        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3705                                   MachinePointerInfo(),
3706                                   false, false, false, 0);
3707        MemOpChains.push_back(Load.getValue(1));
3708        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3709
3710        // Done with this argument.
3711        ArgOffset += PtrByteSize;
3712        continue;
3713      }
3714
3715      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
3716      // copy the pieces of the object that fit into registers from the
3717      // parameter save area.
3718      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3719        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3720        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3721        if (GPR_idx != NumGPRs) {
3722          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3723                                     MachinePointerInfo(),
3724                                     false, false, false, 0);
3725          MemOpChains.push_back(Load.getValue(1));
3726          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3727          ArgOffset += PtrByteSize;
3728        } else {
3729          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3730          break;
3731        }
3732      }
3733      continue;
3734    }
3735
3736    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3737    default: llvm_unreachable("Unexpected ValueType for argument!");
3738    case MVT::i32:
3739    case MVT::i64:
3740      if (GPR_idx != NumGPRs) {
3741        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3742      } else {
3743        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3744                         isPPC64, isTailCall, false, MemOpChains,
3745                         TailCallArguments, dl);
3746      }
3747      ArgOffset += PtrByteSize;
3748      break;
3749    case MVT::f32:
3750    case MVT::f64:
3751      if (FPR_idx != NumFPRs) {
3752        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3753
3754        if (isVarArg) {
3755          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3756                                       MachinePointerInfo(), false, false, 0);
3757          MemOpChains.push_back(Store);
3758
3759          // Float varargs are always shadowed in available integer registers
3760          if (GPR_idx != NumGPRs) {
3761            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3762                                       MachinePointerInfo(), false, false,
3763                                       false, 0);
3764            MemOpChains.push_back(Load.getValue(1));
3765            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3766          }
3767          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3768            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3769            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3770            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3771                                       MachinePointerInfo(),
3772                                       false, false, false, 0);
3773            MemOpChains.push_back(Load.getValue(1));
3774            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3775          }
3776        } else {
3777          // If we have any FPRs remaining, we may also have GPRs remaining.
3778          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3779          // GPRs.
3780          if (GPR_idx != NumGPRs)
3781            ++GPR_idx;
3782          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3783              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3784            ++GPR_idx;
3785        }
3786      } else {
3787        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3788                         isPPC64, isTailCall, false, MemOpChains,
3789                         TailCallArguments, dl);
3790      }
3791      if (isPPC64)
3792        ArgOffset += 8;
3793      else
3794        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3795      break;
3796    case MVT::v4f32:
3797    case MVT::v4i32:
3798    case MVT::v8i16:
3799    case MVT::v16i8:
3800      if (isVarArg) {
3801        // These go aligned on the stack, or in the corresponding R registers
3802        // when within range.  The Darwin PPC ABI doc claims they also go in
3803        // V registers; in fact gcc does this only for arguments that are
3804        // prototyped, not for those that match the ...  We do it for all
3805        // arguments, seems to work.
3806        while (ArgOffset % 16 !=0) {
3807          ArgOffset += PtrByteSize;
3808          if (GPR_idx != NumGPRs)
3809            GPR_idx++;
3810        }
3811        // We could elide this store in the case where the object fits
3812        // entirely in R registers.  Maybe later.
3813        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3814                            DAG.getConstant(ArgOffset, PtrVT));
3815        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3816                                     MachinePointerInfo(), false, false, 0);
3817        MemOpChains.push_back(Store);
3818        if (VR_idx != NumVRs) {
3819          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3820                                     MachinePointerInfo(),
3821                                     false, false, false, 0);
3822          MemOpChains.push_back(Load.getValue(1));
3823          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3824        }
3825        ArgOffset += 16;
3826        for (unsigned i=0; i<16; i+=PtrByteSize) {
3827          if (GPR_idx == NumGPRs)
3828            break;
3829          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3830                                  DAG.getConstant(i, PtrVT));
3831          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3832                                     false, false, false, 0);
3833          MemOpChains.push_back(Load.getValue(1));
3834          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3835        }
3836        break;
3837      }
3838
3839      // Non-varargs Altivec params generally go in registers, but have
3840      // stack space allocated at the end.
3841      if (VR_idx != NumVRs) {
3842        // Doesn't have GPR space allocated.
3843        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3844      } else if (nAltivecParamsAtEnd==0) {
3845        // We are emitting Altivec params in order.
3846        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3847                         isPPC64, isTailCall, true, MemOpChains,
3848                         TailCallArguments, dl);
3849        ArgOffset += 16;
3850      }
3851      break;
3852    }
3853  }
3854  // If all Altivec parameters fit in registers, as they usually do,
3855  // they get stack space following the non-Altivec parameters.  We
3856  // don't track this here because nobody below needs it.
3857  // If there are more Altivec parameters than fit in registers emit
3858  // the stores here.
3859  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3860    unsigned j = 0;
3861    // Offset is aligned; skip 1st 12 params which go in V registers.
3862    ArgOffset = ((ArgOffset+15)/16)*16;
3863    ArgOffset += 12*16;
3864    for (unsigned i = 0; i != NumOps; ++i) {
3865      SDValue Arg = OutVals[i];
3866      EVT ArgType = Outs[i].VT;
3867      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3868          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3869        if (++j > NumVRs) {
3870          SDValue PtrOff;
3871          // We are emitting Altivec params in order.
3872          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3873                           isPPC64, isTailCall, true, MemOpChains,
3874                           TailCallArguments, dl);
3875          ArgOffset += 16;
3876        }
3877      }
3878    }
3879  }
3880
3881  if (!MemOpChains.empty())
3882    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3883                        &MemOpChains[0], MemOpChains.size());
3884
3885  // Check if this is an indirect call (MTCTR/BCTRL).
3886  // See PrepareCall() for more information about calls through function
3887  // pointers in the 64-bit SVR4 ABI.
3888  if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3889      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3890      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3891      !isBLACompatibleAddress(Callee, DAG)) {
3892    // Load r2 into a virtual register and store it to the TOC save area.
3893    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3894    // TOC save area offset.
3895    SDValue PtrOff = DAG.getIntPtrConstant(40);
3896    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3897    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3898                         false, false, 0);
3899  }
3900
3901  // On Darwin, R12 must contain the address of an indirect callee.  This does
3902  // not mean the MTCTR instruction must use R12; it's easier to model this as
3903  // an extra parameter, so do that.
3904  if (!isTailCall &&
3905      !dyn_cast<GlobalAddressSDNode>(Callee) &&
3906      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3907      !isBLACompatibleAddress(Callee, DAG))
3908    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3909                                                   PPC::R12), Callee));
3910
3911  // Build a sequence of copy-to-reg nodes chained together with token chain
3912  // and flag operands which copy the outgoing args into the appropriate regs.
3913  SDValue InFlag;
3914  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3915    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3916                             RegsToPass[i].second, InFlag);
3917    InFlag = Chain.getValue(1);
3918  }
3919
3920  if (isTailCall)
3921    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3922                    FPOp, true, TailCallArguments);
3923
3924  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3925                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3926                    Ins, InVals);
3927}
3928
3929bool
3930PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3931                                  MachineFunction &MF, bool isVarArg,
3932                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
3933                                  LLVMContext &Context) const {
3934  SmallVector<CCValAssign, 16> RVLocs;
3935  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3936                 RVLocs, Context);
3937  return CCInfo.CheckReturn(Outs, RetCC_PPC);
3938}
3939
3940SDValue
3941PPCTargetLowering::LowerReturn(SDValue Chain,
3942                               CallingConv::ID CallConv, bool isVarArg,
3943                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3944                               const SmallVectorImpl<SDValue> &OutVals,
3945                               DebugLoc dl, SelectionDAG &DAG) const {
3946
3947  SmallVector<CCValAssign, 16> RVLocs;
3948  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3949                 getTargetMachine(), RVLocs, *DAG.getContext());
3950  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3951
3952  // If this is the first return lowered for this function, add the regs to the
3953  // liveout set for the function.
3954  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3955    for (unsigned i = 0; i != RVLocs.size(); ++i)
3956      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3957  }
3958
3959  SDValue Flag;
3960
3961  // Copy the result values into the output registers.
3962  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3963    CCValAssign &VA = RVLocs[i];
3964    assert(VA.isRegLoc() && "Can only return in registers!");
3965    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3966                             OutVals[i], Flag);
3967    Flag = Chain.getValue(1);
3968  }
3969
3970  if (Flag.getNode())
3971    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3972  else
3973    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3974}
3975
3976SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3977                                   const PPCSubtarget &Subtarget) const {
3978  // When we pop the dynamic allocation we need to restore the SP link.
3979  DebugLoc dl = Op.getDebugLoc();
3980
3981  // Get the corect type for pointers.
3982  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3983
3984  // Construct the stack pointer operand.
3985  bool isPPC64 = Subtarget.isPPC64();
3986  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3987  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3988
3989  // Get the operands for the STACKRESTORE.
3990  SDValue Chain = Op.getOperand(0);
3991  SDValue SaveSP = Op.getOperand(1);
3992
3993  // Load the old link SP.
3994  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3995                                   MachinePointerInfo(),
3996                                   false, false, false, 0);
3997
3998  // Restore the stack pointer.
3999  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4000
4001  // Store the old link SP.
4002  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4003                      false, false, 0);
4004}
4005
4006
4007
4008SDValue
4009PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4010  MachineFunction &MF = DAG.getMachineFunction();
4011  bool isPPC64 = PPCSubTarget.isPPC64();
4012  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4013  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4014
4015  // Get current frame pointer save index.  The users of this index will be
4016  // primarily DYNALLOC instructions.
4017  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4018  int RASI = FI->getReturnAddrSaveIndex();
4019
4020  // If the frame pointer save index hasn't been defined yet.
4021  if (!RASI) {
4022    // Find out what the fix offset of the frame pointer save area.
4023    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4024    // Allocate the frame index for frame pointer save area.
4025    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4026    // Save the result.
4027    FI->setReturnAddrSaveIndex(RASI);
4028  }
4029  return DAG.getFrameIndex(RASI, PtrVT);
4030}
4031
4032SDValue
4033PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4034  MachineFunction &MF = DAG.getMachineFunction();
4035  bool isPPC64 = PPCSubTarget.isPPC64();
4036  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4037  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4038
4039  // Get current frame pointer save index.  The users of this index will be
4040  // primarily DYNALLOC instructions.
4041  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4042  int FPSI = FI->getFramePointerSaveIndex();
4043
4044  // If the frame pointer save index hasn't been defined yet.
4045  if (!FPSI) {
4046    // Find out what the fix offset of the frame pointer save area.
4047    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4048                                                           isDarwinABI);
4049
4050    // Allocate the frame index for frame pointer save area.
4051    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4052    // Save the result.
4053    FI->setFramePointerSaveIndex(FPSI);
4054  }
4055  return DAG.getFrameIndex(FPSI, PtrVT);
4056}
4057
4058SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4059                                         SelectionDAG &DAG,
4060                                         const PPCSubtarget &Subtarget) const {
4061  // Get the inputs.
4062  SDValue Chain = Op.getOperand(0);
4063  SDValue Size  = Op.getOperand(1);
4064  DebugLoc dl = Op.getDebugLoc();
4065
4066  // Get the corect type for pointers.
4067  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4068  // Negate the size.
4069  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4070                                  DAG.getConstant(0, PtrVT), Size);
4071  // Construct a node for the frame pointer save index.
4072  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4073  // Build a DYNALLOC node.
4074  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4075  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4076  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4077}
4078
4079/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4080/// possible.
4081SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4082  // Not FP? Not a fsel.
4083  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4084      !Op.getOperand(2).getValueType().isFloatingPoint())
4085    return Op;
4086
4087  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4088
4089  // Cannot handle SETEQ/SETNE.
4090  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
4091
4092  EVT ResVT = Op.getValueType();
4093  EVT CmpVT = Op.getOperand(0).getValueType();
4094  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4095  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4096  DebugLoc dl = Op.getDebugLoc();
4097
4098  // If the RHS of the comparison is a 0.0, we don't need to do the
4099  // subtraction at all.
4100  if (isFloatingPointZero(RHS))
4101    switch (CC) {
4102    default: break;       // SETUO etc aren't handled by fsel.
4103    case ISD::SETULT:
4104    case ISD::SETLT:
4105      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4106    case ISD::SETOGE:
4107    case ISD::SETGE:
4108      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4109        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4110      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4111    case ISD::SETUGT:
4112    case ISD::SETGT:
4113      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4114    case ISD::SETOLE:
4115    case ISD::SETLE:
4116      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4117        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4118      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4119                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4120    }
4121
4122  SDValue Cmp;
4123  switch (CC) {
4124  default: break;       // SETUO etc aren't handled by fsel.
4125  case ISD::SETULT:
4126  case ISD::SETLT:
4127    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4128    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4129      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4130      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4131  case ISD::SETOGE:
4132  case ISD::SETGE:
4133    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4134    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4135      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4136      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4137  case ISD::SETUGT:
4138  case ISD::SETGT:
4139    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4140    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4141      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4142      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4143  case ISD::SETOLE:
4144  case ISD::SETLE:
4145    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4146    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4147      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4148      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4149  }
4150  return Op;
4151}
4152
4153// FIXME: Split this code up when LegalizeDAGTypes lands.
4154SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4155                                           DebugLoc dl) const {
4156  assert(Op.getOperand(0).getValueType().isFloatingPoint());
4157  SDValue Src = Op.getOperand(0);
4158  if (Src.getValueType() == MVT::f32)
4159    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4160
4161  SDValue Tmp;
4162  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4163  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4164  case MVT::i32:
4165    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4166                                                         PPCISD::FCTIDZ,
4167                      dl, MVT::f64, Src);
4168    break;
4169  case MVT::i64:
4170    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
4171    break;
4172  }
4173
4174  // Convert the FP value to an int value through memory.
4175  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
4176
4177  // Emit a store to the stack slot.
4178  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4179                               MachinePointerInfo(), false, false, 0);
4180
4181  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
4182  // add in a bias.
4183  if (Op.getValueType() == MVT::i32)
4184    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4185                        DAG.getConstant(4, FIPtr.getValueType()));
4186  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
4187                     false, false, false, 0);
4188}
4189
4190SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
4191                                           SelectionDAG &DAG) const {
4192  DebugLoc dl = Op.getDebugLoc();
4193  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4194  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4195    return SDValue();
4196
4197  if (Op.getOperand(0).getValueType() == MVT::i64) {
4198    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
4199    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
4200    if (Op.getValueType() == MVT::f32)
4201      FP = DAG.getNode(ISD::FP_ROUND, dl,
4202                       MVT::f32, FP, DAG.getIntPtrConstant(0));
4203    return FP;
4204  }
4205
4206  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4207         "Unhandled SINT_TO_FP type in custom expander!");
4208  // Since we only generate this in 64-bit mode, we can take advantage of
4209  // 64-bit registers.  In particular, sign extend the input value into the
4210  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4211  // then lfd it and fcfid it.
4212  MachineFunction &MF = DAG.getMachineFunction();
4213  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4214  int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4215  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4216  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4217
4218  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
4219                                Op.getOperand(0));
4220
4221  // STD the extended value into the stack slot.
4222  MachineMemOperand *MMO =
4223    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4224                            MachineMemOperand::MOStore, 8, 8);
4225  SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
4226  SDValue Store =
4227    DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
4228                            Ops, 4, MVT::i64, MMO);
4229  // Load the value as a double.
4230  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
4231                           false, false, false, 0);
4232
4233  // FCFID it and return it.
4234  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
4235  if (Op.getValueType() == MVT::f32)
4236    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4237  return FP;
4238}
4239
4240SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4241                                            SelectionDAG &DAG) const {
4242  DebugLoc dl = Op.getDebugLoc();
4243  /*
4244   The rounding mode is in bits 30:31 of FPSR, and has the following
4245   settings:
4246     00 Round to nearest
4247     01 Round to 0
4248     10 Round to +inf
4249     11 Round to -inf
4250
4251  FLT_ROUNDS, on the other hand, expects the following:
4252    -1 Undefined
4253     0 Round to 0
4254     1 Round to nearest
4255     2 Round to +inf
4256     3 Round to -inf
4257
4258  To perform the conversion, we do:
4259    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
4260  */
4261
4262  MachineFunction &MF = DAG.getMachineFunction();
4263  EVT VT = Op.getValueType();
4264  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4265  std::vector<EVT> NodeTys;
4266  SDValue MFFSreg, InFlag;
4267
4268  // Save FP Control Word to register
4269  NodeTys.push_back(MVT::f64);    // return register
4270  NodeTys.push_back(MVT::Glue);   // unused in this context
4271  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4272
4273  // Save FP register to stack slot
4274  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
4275  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
4276  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
4277                               StackSlot, MachinePointerInfo(), false, false,0);
4278
4279  // Load FP Control Word from low 32 bits of stack slot.
4280  SDValue Four = DAG.getConstant(4, PtrVT);
4281  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
4282  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
4283                            false, false, false, 0);
4284
4285  // Transform as necessary
4286  SDValue CWD1 =
4287    DAG.getNode(ISD::AND, dl, MVT::i32,
4288                CWD, DAG.getConstant(3, MVT::i32));
4289  SDValue CWD2 =
4290    DAG.getNode(ISD::SRL, dl, MVT::i32,
4291                DAG.getNode(ISD::AND, dl, MVT::i32,
4292                            DAG.getNode(ISD::XOR, dl, MVT::i32,
4293                                        CWD, DAG.getConstant(3, MVT::i32)),
4294                            DAG.getConstant(3, MVT::i32)),
4295                DAG.getConstant(1, MVT::i32));
4296
4297  SDValue RetVal =
4298    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
4299
4300  return DAG.getNode((VT.getSizeInBits() < 16 ?
4301                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
4302}
4303
4304SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4305  EVT VT = Op.getValueType();
4306  unsigned BitWidth = VT.getSizeInBits();
4307  DebugLoc dl = Op.getDebugLoc();
4308  assert(Op.getNumOperands() == 3 &&
4309         VT == Op.getOperand(1).getValueType() &&
4310         "Unexpected SHL!");
4311
4312  // Expand into a bunch of logical ops.  Note that these ops
4313  // depend on the PPC behavior for oversized shift amounts.
4314  SDValue Lo = Op.getOperand(0);
4315  SDValue Hi = Op.getOperand(1);
4316  SDValue Amt = Op.getOperand(2);
4317  EVT AmtVT = Amt.getValueType();
4318
4319  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4320                             DAG.getConstant(BitWidth, AmtVT), Amt);
4321  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
4322  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
4323  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
4324  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4325                             DAG.getConstant(-BitWidth, AmtVT));
4326  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
4327  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4328  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
4329  SDValue OutOps[] = { OutLo, OutHi };
4330  return DAG.getMergeValues(OutOps, 2, dl);
4331}
4332
4333SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4334  EVT VT = Op.getValueType();
4335  DebugLoc dl = Op.getDebugLoc();
4336  unsigned BitWidth = VT.getSizeInBits();
4337  assert(Op.getNumOperands() == 3 &&
4338         VT == Op.getOperand(1).getValueType() &&
4339         "Unexpected SRL!");
4340
4341  // Expand into a bunch of logical ops.  Note that these ops
4342  // depend on the PPC behavior for oversized shift amounts.
4343  SDValue Lo = Op.getOperand(0);
4344  SDValue Hi = Op.getOperand(1);
4345  SDValue Amt = Op.getOperand(2);
4346  EVT AmtVT = Amt.getValueType();
4347
4348  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4349                             DAG.getConstant(BitWidth, AmtVT), Amt);
4350  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4351  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4352  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4353  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4354                             DAG.getConstant(-BitWidth, AmtVT));
4355  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
4356  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4357  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
4358  SDValue OutOps[] = { OutLo, OutHi };
4359  return DAG.getMergeValues(OutOps, 2, dl);
4360}
4361
4362SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
4363  DebugLoc dl = Op.getDebugLoc();
4364  EVT VT = Op.getValueType();
4365  unsigned BitWidth = VT.getSizeInBits();
4366  assert(Op.getNumOperands() == 3 &&
4367         VT == Op.getOperand(1).getValueType() &&
4368         "Unexpected SRA!");
4369
4370  // Expand into a bunch of logical ops, followed by a select_cc.
4371  SDValue Lo = Op.getOperand(0);
4372  SDValue Hi = Op.getOperand(1);
4373  SDValue Amt = Op.getOperand(2);
4374  EVT AmtVT = Amt.getValueType();
4375
4376  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4377                             DAG.getConstant(BitWidth, AmtVT), Amt);
4378  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4379  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4380  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4381  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4382                             DAG.getConstant(-BitWidth, AmtVT));
4383  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
4384  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
4385  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
4386                                  Tmp4, Tmp6, ISD::SETLE);
4387  SDValue OutOps[] = { OutLo, OutHi };
4388  return DAG.getMergeValues(OutOps, 2, dl);
4389}
4390
4391//===----------------------------------------------------------------------===//
4392// Vector related lowering.
4393//
4394
4395/// BuildSplatI - Build a canonical splati of Val with an element size of
4396/// SplatSize.  Cast the result to VT.
4397static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
4398                             SelectionDAG &DAG, DebugLoc dl) {
4399  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
4400
4401  static const EVT VTys[] = { // canonical VT to use for each size.
4402    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
4403  };
4404
4405  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
4406
4407  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
4408  if (Val == -1)
4409    SplatSize = 1;
4410
4411  EVT CanonicalVT = VTys[SplatSize-1];
4412
4413  // Build a canonical splat for this value.
4414  SDValue Elt = DAG.getConstant(Val, MVT::i32);
4415  SmallVector<SDValue, 8> Ops;
4416  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
4417  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
4418                              &Ops[0], Ops.size());
4419  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
4420}
4421
4422/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
4423/// specified intrinsic ID.
4424static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
4425                                SelectionDAG &DAG, DebugLoc dl,
4426                                EVT DestVT = MVT::Other) {
4427  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
4428  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4429                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
4430}
4431
4432/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
4433/// specified intrinsic ID.
4434static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
4435                                SDValue Op2, SelectionDAG &DAG,
4436                                DebugLoc dl, EVT DestVT = MVT::Other) {
4437  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
4438  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4439                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
4440}
4441
4442
4443/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
4444/// amount.  The result has the specified value type.
4445static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
4446                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4447  // Force LHS/RHS to be the right type.
4448  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
4449  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
4450
4451  int Ops[16];
4452  for (unsigned i = 0; i != 16; ++i)
4453    Ops[i] = i + Amt;
4454  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
4455  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4456}
4457
4458// If this is a case we can't handle, return null and let the default
4459// expansion code take care of it.  If we CAN select this case, and if it
4460// selects to a single instruction, return Op.  Otherwise, if we can codegen
4461// this case more efficiently than a constant pool load, lower it to the
4462// sequence of ops that should be used.
4463SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
4464                                             SelectionDAG &DAG) const {
4465  DebugLoc dl = Op.getDebugLoc();
4466  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4467  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
4468
4469  // Check if this is a splat of a constant value.
4470  APInt APSplatBits, APSplatUndef;
4471  unsigned SplatBitSize;
4472  bool HasAnyUndefs;
4473  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
4474                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
4475    return SDValue();
4476
4477  unsigned SplatBits = APSplatBits.getZExtValue();
4478  unsigned SplatUndef = APSplatUndef.getZExtValue();
4479  unsigned SplatSize = SplatBitSize / 8;
4480
4481  // First, handle single instruction cases.
4482
4483  // All zeros?
4484  if (SplatBits == 0) {
4485    // Canonicalize all zero vectors to be v4i32.
4486    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
4487      SDValue Z = DAG.getConstant(0, MVT::i32);
4488      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
4489      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
4490    }
4491    return Op;
4492  }
4493
4494  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
4495  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
4496                    (32-SplatBitSize));
4497  if (SextVal >= -16 && SextVal <= 15)
4498    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
4499
4500
4501  // Two instruction sequences.
4502
4503  // If this value is in the range [-32,30] and is even, use:
4504  //    tmp = VSPLTI[bhw], result = add tmp, tmp
4505  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
4506    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
4507    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
4508    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4509  }
4510
4511  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
4512  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
4513  // for fneg/fabs.
4514  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
4515    // Make -1 and vspltisw -1:
4516    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
4517
4518    // Make the VSLW intrinsic, computing 0x8000_0000.
4519    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
4520                                   OnesV, DAG, dl);
4521
4522    // xor by OnesV to invert it.
4523    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
4524    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4525  }
4526
4527  // Check to see if this is a wide variety of vsplti*, binop self cases.
4528  static const signed char SplatCsts[] = {
4529    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
4530    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
4531  };
4532
4533  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
4534    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
4535    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
4536    int i = SplatCsts[idx];
4537
4538    // Figure out what shift amount will be used by altivec if shifted by i in
4539    // this splat size.
4540    unsigned TypeShiftAmt = i & (SplatBitSize-1);
4541
4542    // vsplti + shl self.
4543    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
4544      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4545      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4546        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
4547        Intrinsic::ppc_altivec_vslw
4548      };
4549      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4550      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4551    }
4552
4553    // vsplti + srl self.
4554    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4555      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4556      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4557        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
4558        Intrinsic::ppc_altivec_vsrw
4559      };
4560      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4561      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4562    }
4563
4564    // vsplti + sra self.
4565    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4566      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4567      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4568        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
4569        Intrinsic::ppc_altivec_vsraw
4570      };
4571      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4572      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4573    }
4574
4575    // vsplti + rol self.
4576    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
4577                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
4578      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4579      static const unsigned IIDs[] = { // Intrinsic to use for each size.
4580        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
4581        Intrinsic::ppc_altivec_vrlw
4582      };
4583      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4584      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4585    }
4586
4587    // t = vsplti c, result = vsldoi t, t, 1
4588    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
4589      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4590      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
4591    }
4592    // t = vsplti c, result = vsldoi t, t, 2
4593    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
4594      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4595      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
4596    }
4597    // t = vsplti c, result = vsldoi t, t, 3
4598    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
4599      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4600      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
4601    }
4602  }
4603
4604  // Three instruction sequences.
4605
4606  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
4607  if (SextVal >= 0 && SextVal <= 31) {
4608    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
4609    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4610    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
4611    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4612  }
4613  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
4614  if (SextVal >= -31 && SextVal <= 0) {
4615    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
4616    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4617    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
4618    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4619  }
4620
4621  return SDValue();
4622}
4623
4624/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4625/// the specified operations to build the shuffle.
4626static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4627                                      SDValue RHS, SelectionDAG &DAG,
4628                                      DebugLoc dl) {
4629  unsigned OpNum = (PFEntry >> 26) & 0x0F;
4630  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4631  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4632
4633  enum {
4634    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4635    OP_VMRGHW,
4636    OP_VMRGLW,
4637    OP_VSPLTISW0,
4638    OP_VSPLTISW1,
4639    OP_VSPLTISW2,
4640    OP_VSPLTISW3,
4641    OP_VSLDOI4,
4642    OP_VSLDOI8,
4643    OP_VSLDOI12
4644  };
4645
4646  if (OpNum == OP_COPY) {
4647    if (LHSID == (1*9+2)*9+3) return LHS;
4648    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4649    return RHS;
4650  }
4651
4652  SDValue OpLHS, OpRHS;
4653  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4654  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4655
4656  int ShufIdxs[16];
4657  switch (OpNum) {
4658  default: llvm_unreachable("Unknown i32 permute!");
4659  case OP_VMRGHW:
4660    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4661    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4662    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4663    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4664    break;
4665  case OP_VMRGLW:
4666    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4667    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4668    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4669    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4670    break;
4671  case OP_VSPLTISW0:
4672    for (unsigned i = 0; i != 16; ++i)
4673      ShufIdxs[i] = (i&3)+0;
4674    break;
4675  case OP_VSPLTISW1:
4676    for (unsigned i = 0; i != 16; ++i)
4677      ShufIdxs[i] = (i&3)+4;
4678    break;
4679  case OP_VSPLTISW2:
4680    for (unsigned i = 0; i != 16; ++i)
4681      ShufIdxs[i] = (i&3)+8;
4682    break;
4683  case OP_VSPLTISW3:
4684    for (unsigned i = 0; i != 16; ++i)
4685      ShufIdxs[i] = (i&3)+12;
4686    break;
4687  case OP_VSLDOI4:
4688    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4689  case OP_VSLDOI8:
4690    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4691  case OP_VSLDOI12:
4692    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4693  }
4694  EVT VT = OpLHS.getValueType();
4695  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4696  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4697  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4698  return DAG.getNode(ISD::BITCAST, dl, VT, T);
4699}
4700
4701/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4702/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4703/// return the code it can be lowered into.  Worst case, it can always be
4704/// lowered into a vperm.
4705SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4706                                               SelectionDAG &DAG) const {
4707  DebugLoc dl = Op.getDebugLoc();
4708  SDValue V1 = Op.getOperand(0);
4709  SDValue V2 = Op.getOperand(1);
4710  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4711  EVT VT = Op.getValueType();
4712
4713  // Cases that are handled by instructions that take permute immediates
4714  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4715  // selected by the instruction selector.
4716  if (V2.getOpcode() == ISD::UNDEF) {
4717    if (PPC::isSplatShuffleMask(SVOp, 1) ||
4718        PPC::isSplatShuffleMask(SVOp, 2) ||
4719        PPC::isSplatShuffleMask(SVOp, 4) ||
4720        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4721        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4722        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4723        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4724        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4725        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4726        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4727        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4728        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4729      return Op;
4730    }
4731  }
4732
4733  // Altivec has a variety of "shuffle immediates" that take two vector inputs
4734  // and produce a fixed permutation.  If any of these match, do not lower to
4735  // VPERM.
4736  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4737      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4738      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4739      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4740      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4741      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4742      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4743      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4744      PPC::isVMRGHShuffleMask(SVOp, 4, false))
4745    return Op;
4746
4747  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4748  // perfect shuffle table to emit an optimal matching sequence.
4749  ArrayRef<int> PermMask = SVOp->getMask();
4750
4751  unsigned PFIndexes[4];
4752  bool isFourElementShuffle = true;
4753  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4754    unsigned EltNo = 8;   // Start out undef.
4755    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4756      if (PermMask[i*4+j] < 0)
4757        continue;   // Undef, ignore it.
4758
4759      unsigned ByteSource = PermMask[i*4+j];
4760      if ((ByteSource & 3) != j) {
4761        isFourElementShuffle = false;
4762        break;
4763      }
4764
4765      if (EltNo == 8) {
4766        EltNo = ByteSource/4;
4767      } else if (EltNo != ByteSource/4) {
4768        isFourElementShuffle = false;
4769        break;
4770      }
4771    }
4772    PFIndexes[i] = EltNo;
4773  }
4774
4775  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4776  // perfect shuffle vector to determine if it is cost effective to do this as
4777  // discrete instructions, or whether we should use a vperm.
4778  if (isFourElementShuffle) {
4779    // Compute the index in the perfect shuffle table.
4780    unsigned PFTableIndex =
4781      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4782
4783    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4784    unsigned Cost  = (PFEntry >> 30);
4785
4786    // Determining when to avoid vperm is tricky.  Many things affect the cost
4787    // of vperm, particularly how many times the perm mask needs to be computed.
4788    // For example, if the perm mask can be hoisted out of a loop or is already
4789    // used (perhaps because there are multiple permutes with the same shuffle
4790    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4791    // the loop requires an extra register.
4792    //
4793    // As a compromise, we only emit discrete instructions if the shuffle can be
4794    // generated in 3 or fewer operations.  When we have loop information
4795    // available, if this block is within a loop, we should avoid using vperm
4796    // for 3-operation perms and use a constant pool load instead.
4797    if (Cost < 3)
4798      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4799  }
4800
4801  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4802  // vector that will get spilled to the constant pool.
4803  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4804
4805  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4806  // that it is in input element units, not in bytes.  Convert now.
4807  EVT EltVT = V1.getValueType().getVectorElementType();
4808  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4809
4810  SmallVector<SDValue, 16> ResultMask;
4811  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4812    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4813
4814    for (unsigned j = 0; j != BytesPerElement; ++j)
4815      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4816                                           MVT::i32));
4817  }
4818
4819  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4820                                    &ResultMask[0], ResultMask.size());
4821  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4822}
4823
4824/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4825/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4826/// information about the intrinsic.
4827static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4828                                  bool &isDot) {
4829  unsigned IntrinsicID =
4830    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4831  CompareOpc = -1;
4832  isDot = false;
4833  switch (IntrinsicID) {
4834  default: return false;
4835    // Comparison predicates.
4836  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4837  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4838  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4839  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4840  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4841  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4842  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4843  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4844  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4845  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4846  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4847  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4848  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4849
4850    // Normal Comparisons.
4851  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4852  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4853  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4854  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4855  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4856  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4857  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4858  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4859  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4860  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4861  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4862  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4863  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4864  }
4865  return true;
4866}
4867
4868/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4869/// lower, do it, otherwise return null.
4870SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4871                                                   SelectionDAG &DAG) const {
4872  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4873  // opcode number of the comparison.
4874  DebugLoc dl = Op.getDebugLoc();
4875  int CompareOpc;
4876  bool isDot;
4877  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4878    return SDValue();    // Don't custom lower most intrinsics.
4879
4880  // If this is a non-dot comparison, make the VCMP node and we are done.
4881  if (!isDot) {
4882    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4883                              Op.getOperand(1), Op.getOperand(2),
4884                              DAG.getConstant(CompareOpc, MVT::i32));
4885    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4886  }
4887
4888  // Create the PPCISD altivec 'dot' comparison node.
4889  SDValue Ops[] = {
4890    Op.getOperand(2),  // LHS
4891    Op.getOperand(3),  // RHS
4892    DAG.getConstant(CompareOpc, MVT::i32)
4893  };
4894  std::vector<EVT> VTs;
4895  VTs.push_back(Op.getOperand(2).getValueType());
4896  VTs.push_back(MVT::Glue);
4897  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4898
4899  // Now that we have the comparison, emit a copy from the CR to a GPR.
4900  // This is flagged to the above dot comparison.
4901  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4902                                DAG.getRegister(PPC::CR6, MVT::i32),
4903                                CompNode.getValue(1));
4904
4905  // Unpack the result based on how the target uses it.
4906  unsigned BitNo;   // Bit # of CR6.
4907  bool InvertBit;   // Invert result?
4908  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4909  default:  // Can't happen, don't crash on invalid number though.
4910  case 0:   // Return the value of the EQ bit of CR6.
4911    BitNo = 0; InvertBit = false;
4912    break;
4913  case 1:   // Return the inverted value of the EQ bit of CR6.
4914    BitNo = 0; InvertBit = true;
4915    break;
4916  case 2:   // Return the value of the LT bit of CR6.
4917    BitNo = 2; InvertBit = false;
4918    break;
4919  case 3:   // Return the inverted value of the LT bit of CR6.
4920    BitNo = 2; InvertBit = true;
4921    break;
4922  }
4923
4924  // Shift the bit into the low position.
4925  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4926                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4927  // Isolate the bit.
4928  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4929                      DAG.getConstant(1, MVT::i32));
4930
4931  // If we are supposed to, toggle the bit.
4932  if (InvertBit)
4933    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4934                        DAG.getConstant(1, MVT::i32));
4935  return Flags;
4936}
4937
4938SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4939                                                   SelectionDAG &DAG) const {
4940  DebugLoc dl = Op.getDebugLoc();
4941  // Create a stack slot that is 16-byte aligned.
4942  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4943  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4944  EVT PtrVT = getPointerTy();
4945  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4946
4947  // Store the input value into Value#0 of the stack slot.
4948  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4949                               Op.getOperand(0), FIdx, MachinePointerInfo(),
4950                               false, false, 0);
4951  // Load it out.
4952  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4953                     false, false, false, 0);
4954}
4955
4956SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4957  DebugLoc dl = Op.getDebugLoc();
4958  if (Op.getValueType() == MVT::v4i32) {
4959    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4960
4961    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4962    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4963
4964    SDValue RHSSwap =   // = vrlw RHS, 16
4965      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4966
4967    // Shrinkify inputs to v8i16.
4968    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4969    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4970    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4971
4972    // Low parts multiplied together, generating 32-bit results (we ignore the
4973    // top parts).
4974    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4975                                        LHS, RHS, DAG, dl, MVT::v4i32);
4976
4977    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4978                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4979    // Shift the high parts up 16 bits.
4980    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4981                              Neg16, DAG, dl);
4982    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4983  } else if (Op.getValueType() == MVT::v8i16) {
4984    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4985
4986    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4987
4988    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4989                            LHS, RHS, Zero, DAG, dl);
4990  } else if (Op.getValueType() == MVT::v16i8) {
4991    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4992
4993    // Multiply the even 8-bit parts, producing 16-bit sums.
4994    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4995                                           LHS, RHS, DAG, dl, MVT::v8i16);
4996    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4997
4998    // Multiply the odd 8-bit parts, producing 16-bit sums.
4999    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5000                                          LHS, RHS, DAG, dl, MVT::v8i16);
5001    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5002
5003    // Merge the results together.
5004    int Ops[16];
5005    for (unsigned i = 0; i != 8; ++i) {
5006      Ops[i*2  ] = 2*i+1;
5007      Ops[i*2+1] = 2*i+1+16;
5008    }
5009    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5010  } else {
5011    llvm_unreachable("Unknown mul to lower!");
5012  }
5013}
5014
5015/// LowerOperation - Provide custom lowering hooks for some operations.
5016///
5017SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5018  switch (Op.getOpcode()) {
5019  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5020  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5021  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
5022  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5023  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5024  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5025  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5026  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
5027  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
5028  case ISD::VASTART:
5029    return LowerVASTART(Op, DAG, PPCSubTarget);
5030
5031  case ISD::VAARG:
5032    return LowerVAARG(Op, DAG, PPCSubTarget);
5033
5034  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5035  case ISD::DYNAMIC_STACKALLOC:
5036    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5037
5038  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
5039  case ISD::FP_TO_UINT:
5040  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
5041                                                       Op.getDebugLoc());
5042  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5043  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5044
5045  // Lower 64-bit shifts.
5046  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
5047  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
5048  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
5049
5050  // Vector-related lowering.
5051  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5052  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5053  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5054  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5055  case ISD::MUL:                return LowerMUL(Op, DAG);
5056
5057  // Frame & Return address.
5058  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5059  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5060  }
5061}
5062
5063void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5064                                           SmallVectorImpl<SDValue>&Results,
5065                                           SelectionDAG &DAG) const {
5066  const TargetMachine &TM = getTargetMachine();
5067  DebugLoc dl = N->getDebugLoc();
5068  switch (N->getOpcode()) {
5069  default:
5070    llvm_unreachable("Do not know how to custom type legalize this operation!");
5071  case ISD::VAARG: {
5072    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5073        || TM.getSubtarget<PPCSubtarget>().isPPC64())
5074      return;
5075
5076    EVT VT = N->getValueType(0);
5077
5078    if (VT == MVT::i64) {
5079      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5080
5081      Results.push_back(NewNode);
5082      Results.push_back(NewNode.getValue(1));
5083    }
5084    return;
5085  }
5086  case ISD::FP_ROUND_INREG: {
5087    assert(N->getValueType(0) == MVT::ppcf128);
5088    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5089    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5090                             MVT::f64, N->getOperand(0),
5091                             DAG.getIntPtrConstant(0));
5092    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5093                             MVT::f64, N->getOperand(0),
5094                             DAG.getIntPtrConstant(1));
5095
5096    // This sequence changes FPSCR to do round-to-zero, adds the two halves
5097    // of the long double, and puts FPSCR back the way it was.  We do not
5098    // actually model FPSCR.
5099    std::vector<EVT> NodeTys;
5100    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
5101
5102    NodeTys.push_back(MVT::f64);   // Return register
5103    NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
5104    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
5105    MFFSreg = Result.getValue(0);
5106    InFlag = Result.getValue(1);
5107
5108    NodeTys.clear();
5109    NodeTys.push_back(MVT::Glue);   // Returns a flag
5110    Ops[0] = DAG.getConstant(31, MVT::i32);
5111    Ops[1] = InFlag;
5112    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
5113    InFlag = Result.getValue(0);
5114
5115    NodeTys.clear();
5116    NodeTys.push_back(MVT::Glue);   // Returns a flag
5117    Ops[0] = DAG.getConstant(30, MVT::i32);
5118    Ops[1] = InFlag;
5119    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
5120    InFlag = Result.getValue(0);
5121
5122    NodeTys.clear();
5123    NodeTys.push_back(MVT::f64);    // result of add
5124    NodeTys.push_back(MVT::Glue);   // Returns a flag
5125    Ops[0] = Lo;
5126    Ops[1] = Hi;
5127    Ops[2] = InFlag;
5128    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
5129    FPreg = Result.getValue(0);
5130    InFlag = Result.getValue(1);
5131
5132    NodeTys.clear();
5133    NodeTys.push_back(MVT::f64);
5134    Ops[0] = DAG.getConstant(1, MVT::i32);
5135    Ops[1] = MFFSreg;
5136    Ops[2] = FPreg;
5137    Ops[3] = InFlag;
5138    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
5139    FPreg = Result.getValue(0);
5140
5141    // We know the low half is about to be thrown away, so just use something
5142    // convenient.
5143    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5144                                FPreg, FPreg));
5145    return;
5146  }
5147  case ISD::FP_TO_SINT:
5148    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5149    return;
5150  }
5151}
5152
5153
5154//===----------------------------------------------------------------------===//
5155//  Other Lowering Code
5156//===----------------------------------------------------------------------===//
5157
5158MachineBasicBlock *
5159PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5160                                    bool is64bit, unsigned BinOpcode) const {
5161  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5162  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5163
5164  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5165  MachineFunction *F = BB->getParent();
5166  MachineFunction::iterator It = BB;
5167  ++It;
5168
5169  unsigned dest = MI->getOperand(0).getReg();
5170  unsigned ptrA = MI->getOperand(1).getReg();
5171  unsigned ptrB = MI->getOperand(2).getReg();
5172  unsigned incr = MI->getOperand(3).getReg();
5173  DebugLoc dl = MI->getDebugLoc();
5174
5175  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5176  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5177  F->insert(It, loopMBB);
5178  F->insert(It, exitMBB);
5179  exitMBB->splice(exitMBB->begin(), BB,
5180                  llvm::next(MachineBasicBlock::iterator(MI)),
5181                  BB->end());
5182  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5183
5184  MachineRegisterInfo &RegInfo = F->getRegInfo();
5185  unsigned TmpReg = (!BinOpcode) ? incr :
5186    RegInfo.createVirtualRegister(
5187       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5188                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5189
5190  //  thisMBB:
5191  //   ...
5192  //   fallthrough --> loopMBB
5193  BB->addSuccessor(loopMBB);
5194
5195  //  loopMBB:
5196  //   l[wd]arx dest, ptr
5197  //   add r0, dest, incr
5198  //   st[wd]cx. r0, ptr
5199  //   bne- loopMBB
5200  //   fallthrough --> exitMBB
5201  BB = loopMBB;
5202  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5203    .addReg(ptrA).addReg(ptrB);
5204  if (BinOpcode)
5205    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5206  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5207    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5208  BuildMI(BB, dl, TII->get(PPC::BCC))
5209    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5210  BB->addSuccessor(loopMBB);
5211  BB->addSuccessor(exitMBB);
5212
5213  //  exitMBB:
5214  //   ...
5215  BB = exitMBB;
5216  return BB;
5217}
5218
5219MachineBasicBlock *
5220PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5221                                            MachineBasicBlock *BB,
5222                                            bool is8bit,    // operation
5223                                            unsigned BinOpcode) const {
5224  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5225  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5226  // In 64 bit mode we have to use 64 bits for addresses, even though the
5227  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
5228  // registers without caring whether they're 32 or 64, but here we're
5229  // doing actual arithmetic on the addresses.
5230  bool is64bit = PPCSubTarget.isPPC64();
5231  unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5232
5233  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5234  MachineFunction *F = BB->getParent();
5235  MachineFunction::iterator It = BB;
5236  ++It;
5237
5238  unsigned dest = MI->getOperand(0).getReg();
5239  unsigned ptrA = MI->getOperand(1).getReg();
5240  unsigned ptrB = MI->getOperand(2).getReg();
5241  unsigned incr = MI->getOperand(3).getReg();
5242  DebugLoc dl = MI->getDebugLoc();
5243
5244  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5245  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5246  F->insert(It, loopMBB);
5247  F->insert(It, exitMBB);
5248  exitMBB->splice(exitMBB->begin(), BB,
5249                  llvm::next(MachineBasicBlock::iterator(MI)),
5250                  BB->end());
5251  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5252
5253  MachineRegisterInfo &RegInfo = F->getRegInfo();
5254  const TargetRegisterClass *RC =
5255    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5256              (const TargetRegisterClass *) &PPC::GPRCRegClass;
5257  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5258  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5259  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5260  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5261  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5262  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5263  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5264  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5265  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
5266  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5267  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5268  unsigned Ptr1Reg;
5269  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
5270
5271  //  thisMBB:
5272  //   ...
5273  //   fallthrough --> loopMBB
5274  BB->addSuccessor(loopMBB);
5275
5276  // The 4-byte load must be aligned, while a char or short may be
5277  // anywhere in the word.  Hence all this nasty bookkeeping code.
5278  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5279  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5280  //   xori shift, shift1, 24 [16]
5281  //   rlwinm ptr, ptr1, 0, 0, 29
5282  //   slw incr2, incr, shift
5283  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5284  //   slw mask, mask2, shift
5285  //  loopMBB:
5286  //   lwarx tmpDest, ptr
5287  //   add tmp, tmpDest, incr2
5288  //   andc tmp2, tmpDest, mask
5289  //   and tmp3, tmp, mask
5290  //   or tmp4, tmp3, tmp2
5291  //   stwcx. tmp4, ptr
5292  //   bne- loopMBB
5293  //   fallthrough --> exitMBB
5294  //   srw dest, tmpDest, shift
5295  if (ptrA != ZeroReg) {
5296    Ptr1Reg = RegInfo.createVirtualRegister(RC);
5297    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5298      .addReg(ptrA).addReg(ptrB);
5299  } else {
5300    Ptr1Reg = ptrB;
5301  }
5302  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5303      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5304  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5305      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5306  if (is64bit)
5307    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5308      .addReg(Ptr1Reg).addImm(0).addImm(61);
5309  else
5310    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5311      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5312  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5313      .addReg(incr).addReg(ShiftReg);
5314  if (is8bit)
5315    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5316  else {
5317    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5318    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5319  }
5320  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5321      .addReg(Mask2Reg).addReg(ShiftReg);
5322
5323  BB = loopMBB;
5324  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5325    .addReg(ZeroReg).addReg(PtrReg);
5326  if (BinOpcode)
5327    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
5328      .addReg(Incr2Reg).addReg(TmpDestReg);
5329  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
5330    .addReg(TmpDestReg).addReg(MaskReg);
5331  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
5332    .addReg(TmpReg).addReg(MaskReg);
5333  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
5334    .addReg(Tmp3Reg).addReg(Tmp2Reg);
5335  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5336    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
5337  BuildMI(BB, dl, TII->get(PPC::BCC))
5338    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5339  BB->addSuccessor(loopMBB);
5340  BB->addSuccessor(exitMBB);
5341
5342  //  exitMBB:
5343  //   ...
5344  BB = exitMBB;
5345  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
5346    .addReg(ShiftReg);
5347  return BB;
5348}
5349
5350MachineBasicBlock *
5351PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
5352                                               MachineBasicBlock *BB) const {
5353  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5354
5355  // To "insert" these instructions we actually have to insert their
5356  // control-flow patterns.
5357  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5358  MachineFunction::iterator It = BB;
5359  ++It;
5360
5361  MachineFunction *F = BB->getParent();
5362
5363  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
5364                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
5365    unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ?
5366                                         PPC::ISEL8 : PPC::ISEL;
5367    unsigned SelectPred = MI->getOperand(4).getImm();
5368    DebugLoc dl = MI->getDebugLoc();
5369
5370    // The SelectPred is ((BI << 5) | BO) for a BCC
5371    unsigned BO = SelectPred & 0xF;
5372    assert((BO == 12 || BO == 4) && "invalid predicate BO field for isel");
5373
5374    unsigned TrueOpNo, FalseOpNo;
5375    if (BO == 12) {
5376      TrueOpNo = 2;
5377      FalseOpNo = 3;
5378    } else {
5379      TrueOpNo = 3;
5380      FalseOpNo = 2;
5381      SelectPred = PPC::InvertPredicate((PPC::Predicate)SelectPred);
5382    }
5383
5384    BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg())
5385      .addReg(MI->getOperand(TrueOpNo).getReg())
5386      .addReg(MI->getOperand(FalseOpNo).getReg())
5387      .addImm(SelectPred).addReg(MI->getOperand(1).getReg());
5388  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
5389             MI->getOpcode() == PPC::SELECT_CC_I8 ||
5390             MI->getOpcode() == PPC::SELECT_CC_F4 ||
5391             MI->getOpcode() == PPC::SELECT_CC_F8 ||
5392             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
5393
5394
5395    // The incoming instruction knows the destination vreg to set, the
5396    // condition code register to branch on, the true/false values to
5397    // select between, and a branch opcode to use.
5398
5399    //  thisMBB:
5400    //  ...
5401    //   TrueVal = ...
5402    //   cmpTY ccX, r1, r2
5403    //   bCC copy1MBB
5404    //   fallthrough --> copy0MBB
5405    MachineBasicBlock *thisMBB = BB;
5406    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
5407    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
5408    unsigned SelectPred = MI->getOperand(4).getImm();
5409    DebugLoc dl = MI->getDebugLoc();
5410    F->insert(It, copy0MBB);
5411    F->insert(It, sinkMBB);
5412
5413    // Transfer the remainder of BB and its successor edges to sinkMBB.
5414    sinkMBB->splice(sinkMBB->begin(), BB,
5415                    llvm::next(MachineBasicBlock::iterator(MI)),
5416                    BB->end());
5417    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
5418
5419    // Next, add the true and fallthrough blocks as its successors.
5420    BB->addSuccessor(copy0MBB);
5421    BB->addSuccessor(sinkMBB);
5422
5423    BuildMI(BB, dl, TII->get(PPC::BCC))
5424      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
5425
5426    //  copy0MBB:
5427    //   %FalseValue = ...
5428    //   # fallthrough to sinkMBB
5429    BB = copy0MBB;
5430
5431    // Update machine-CFG edges
5432    BB->addSuccessor(sinkMBB);
5433
5434    //  sinkMBB:
5435    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5436    //  ...
5437    BB = sinkMBB;
5438    BuildMI(*BB, BB->begin(), dl,
5439            TII->get(PPC::PHI), MI->getOperand(0).getReg())
5440      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
5441      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5442  }
5443  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
5444    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
5445  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
5446    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
5447  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
5448    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
5449  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
5450    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
5451
5452  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
5453    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
5454  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
5455    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
5456  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
5457    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
5458  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
5459    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
5460
5461  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
5462    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
5463  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
5464    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
5465  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
5466    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
5467  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
5468    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
5469
5470  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
5471    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
5472  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
5473    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
5474  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
5475    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
5476  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
5477    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
5478
5479  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
5480    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
5481  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
5482    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
5483  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
5484    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
5485  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
5486    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
5487
5488  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
5489    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
5490  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
5491    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
5492  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
5493    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
5494  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
5495    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
5496
5497  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
5498    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
5499  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
5500    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
5501  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
5502    BB = EmitAtomicBinary(MI, BB, false, 0);
5503  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
5504    BB = EmitAtomicBinary(MI, BB, true, 0);
5505
5506  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
5507           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
5508    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
5509
5510    unsigned dest   = MI->getOperand(0).getReg();
5511    unsigned ptrA   = MI->getOperand(1).getReg();
5512    unsigned ptrB   = MI->getOperand(2).getReg();
5513    unsigned oldval = MI->getOperand(3).getReg();
5514    unsigned newval = MI->getOperand(4).getReg();
5515    DebugLoc dl     = MI->getDebugLoc();
5516
5517    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5518    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5519    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5520    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5521    F->insert(It, loop1MBB);
5522    F->insert(It, loop2MBB);
5523    F->insert(It, midMBB);
5524    F->insert(It, exitMBB);
5525    exitMBB->splice(exitMBB->begin(), BB,
5526                    llvm::next(MachineBasicBlock::iterator(MI)),
5527                    BB->end());
5528    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5529
5530    //  thisMBB:
5531    //   ...
5532    //   fallthrough --> loopMBB
5533    BB->addSuccessor(loop1MBB);
5534
5535    // loop1MBB:
5536    //   l[wd]arx dest, ptr
5537    //   cmp[wd] dest, oldval
5538    //   bne- midMBB
5539    // loop2MBB:
5540    //   st[wd]cx. newval, ptr
5541    //   bne- loopMBB
5542    //   b exitBB
5543    // midMBB:
5544    //   st[wd]cx. dest, ptr
5545    // exitBB:
5546    BB = loop1MBB;
5547    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5548      .addReg(ptrA).addReg(ptrB);
5549    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
5550      .addReg(oldval).addReg(dest);
5551    BuildMI(BB, dl, TII->get(PPC::BCC))
5552      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5553    BB->addSuccessor(loop2MBB);
5554    BB->addSuccessor(midMBB);
5555
5556    BB = loop2MBB;
5557    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5558      .addReg(newval).addReg(ptrA).addReg(ptrB);
5559    BuildMI(BB, dl, TII->get(PPC::BCC))
5560      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5561    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5562    BB->addSuccessor(loop1MBB);
5563    BB->addSuccessor(exitMBB);
5564
5565    BB = midMBB;
5566    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5567      .addReg(dest).addReg(ptrA).addReg(ptrB);
5568    BB->addSuccessor(exitMBB);
5569
5570    //  exitMBB:
5571    //   ...
5572    BB = exitMBB;
5573  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
5574             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
5575    // We must use 64-bit registers for addresses when targeting 64-bit,
5576    // since we're actually doing arithmetic on them.  Other registers
5577    // can be 32-bit.
5578    bool is64bit = PPCSubTarget.isPPC64();
5579    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
5580
5581    unsigned dest   = MI->getOperand(0).getReg();
5582    unsigned ptrA   = MI->getOperand(1).getReg();
5583    unsigned ptrB   = MI->getOperand(2).getReg();
5584    unsigned oldval = MI->getOperand(3).getReg();
5585    unsigned newval = MI->getOperand(4).getReg();
5586    DebugLoc dl     = MI->getDebugLoc();
5587
5588    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5589    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5590    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5591    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5592    F->insert(It, loop1MBB);
5593    F->insert(It, loop2MBB);
5594    F->insert(It, midMBB);
5595    F->insert(It, exitMBB);
5596    exitMBB->splice(exitMBB->begin(), BB,
5597                    llvm::next(MachineBasicBlock::iterator(MI)),
5598                    BB->end());
5599    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5600
5601    MachineRegisterInfo &RegInfo = F->getRegInfo();
5602    const TargetRegisterClass *RC =
5603      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5604                (const TargetRegisterClass *) &PPC::GPRCRegClass;
5605    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5606    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5607    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5608    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
5609    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
5610    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
5611    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
5612    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5613    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5614    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5615    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5616    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5617    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5618    unsigned Ptr1Reg;
5619    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
5620    unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5621    //  thisMBB:
5622    //   ...
5623    //   fallthrough --> loopMBB
5624    BB->addSuccessor(loop1MBB);
5625
5626    // The 4-byte load must be aligned, while a char or short may be
5627    // anywhere in the word.  Hence all this nasty bookkeeping code.
5628    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5629    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5630    //   xori shift, shift1, 24 [16]
5631    //   rlwinm ptr, ptr1, 0, 0, 29
5632    //   slw newval2, newval, shift
5633    //   slw oldval2, oldval,shift
5634    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5635    //   slw mask, mask2, shift
5636    //   and newval3, newval2, mask
5637    //   and oldval3, oldval2, mask
5638    // loop1MBB:
5639    //   lwarx tmpDest, ptr
5640    //   and tmp, tmpDest, mask
5641    //   cmpw tmp, oldval3
5642    //   bne- midMBB
5643    // loop2MBB:
5644    //   andc tmp2, tmpDest, mask
5645    //   or tmp4, tmp2, newval3
5646    //   stwcx. tmp4, ptr
5647    //   bne- loop1MBB
5648    //   b exitBB
5649    // midMBB:
5650    //   stwcx. tmpDest, ptr
5651    // exitBB:
5652    //   srw dest, tmpDest, shift
5653    if (ptrA != ZeroReg) {
5654      Ptr1Reg = RegInfo.createVirtualRegister(RC);
5655      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5656        .addReg(ptrA).addReg(ptrB);
5657    } else {
5658      Ptr1Reg = ptrB;
5659    }
5660    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5661        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5662    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5663        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5664    if (is64bit)
5665      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5666        .addReg(Ptr1Reg).addImm(0).addImm(61);
5667    else
5668      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5669        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5670    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
5671        .addReg(newval).addReg(ShiftReg);
5672    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
5673        .addReg(oldval).addReg(ShiftReg);
5674    if (is8bit)
5675      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5676    else {
5677      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5678      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
5679        .addReg(Mask3Reg).addImm(65535);
5680    }
5681    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5682        .addReg(Mask2Reg).addReg(ShiftReg);
5683    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5684        .addReg(NewVal2Reg).addReg(MaskReg);
5685    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5686        .addReg(OldVal2Reg).addReg(MaskReg);
5687
5688    BB = loop1MBB;
5689    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5690        .addReg(ZeroReg).addReg(PtrReg);
5691    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5692        .addReg(TmpDestReg).addReg(MaskReg);
5693    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5694        .addReg(TmpReg).addReg(OldVal3Reg);
5695    BuildMI(BB, dl, TII->get(PPC::BCC))
5696        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5697    BB->addSuccessor(loop2MBB);
5698    BB->addSuccessor(midMBB);
5699
5700    BB = loop2MBB;
5701    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5702        .addReg(TmpDestReg).addReg(MaskReg);
5703    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5704        .addReg(Tmp2Reg).addReg(NewVal3Reg);
5705    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5706        .addReg(ZeroReg).addReg(PtrReg);
5707    BuildMI(BB, dl, TII->get(PPC::BCC))
5708      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5709    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5710    BB->addSuccessor(loop1MBB);
5711    BB->addSuccessor(exitMBB);
5712
5713    BB = midMBB;
5714    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5715      .addReg(ZeroReg).addReg(PtrReg);
5716    BB->addSuccessor(exitMBB);
5717
5718    //  exitMBB:
5719    //   ...
5720    BB = exitMBB;
5721    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
5722      .addReg(ShiftReg);
5723  } else {
5724    llvm_unreachable("Unexpected instr type to insert");
5725  }
5726
5727  MI->eraseFromParent();   // The pseudo instruction is gone now.
5728  return BB;
5729}
5730
5731//===----------------------------------------------------------------------===//
5732// Target Optimization Hooks
5733//===----------------------------------------------------------------------===//
5734
5735SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5736                                             DAGCombinerInfo &DCI) const {
5737  const TargetMachine &TM = getTargetMachine();
5738  SelectionDAG &DAG = DCI.DAG;
5739  DebugLoc dl = N->getDebugLoc();
5740  switch (N->getOpcode()) {
5741  default: break;
5742  case PPCISD::SHL:
5743    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5744      if (C->isNullValue())   // 0 << V -> 0.
5745        return N->getOperand(0);
5746    }
5747    break;
5748  case PPCISD::SRL:
5749    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5750      if (C->isNullValue())   // 0 >>u V -> 0.
5751        return N->getOperand(0);
5752    }
5753    break;
5754  case PPCISD::SRA:
5755    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5756      if (C->isNullValue() ||   //  0 >>s V -> 0.
5757          C->isAllOnesValue())    // -1 >>s V -> -1.
5758        return N->getOperand(0);
5759    }
5760    break;
5761
5762  case ISD::SINT_TO_FP:
5763    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5764      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5765        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5766        // We allow the src/dst to be either f32/f64, but the intermediate
5767        // type must be i64.
5768        if (N->getOperand(0).getValueType() == MVT::i64 &&
5769            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5770          SDValue Val = N->getOperand(0).getOperand(0);
5771          if (Val.getValueType() == MVT::f32) {
5772            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5773            DCI.AddToWorklist(Val.getNode());
5774          }
5775
5776          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5777          DCI.AddToWorklist(Val.getNode());
5778          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5779          DCI.AddToWorklist(Val.getNode());
5780          if (N->getValueType(0) == MVT::f32) {
5781            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5782                              DAG.getIntPtrConstant(0));
5783            DCI.AddToWorklist(Val.getNode());
5784          }
5785          return Val;
5786        } else if (N->getOperand(0).getValueType() == MVT::i32) {
5787          // If the intermediate type is i32, we can avoid the load/store here
5788          // too.
5789        }
5790      }
5791    }
5792    break;
5793  case ISD::STORE:
5794    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5795    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5796        !cast<StoreSDNode>(N)->isTruncatingStore() &&
5797        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5798        N->getOperand(1).getValueType() == MVT::i32 &&
5799        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5800      SDValue Val = N->getOperand(1).getOperand(0);
5801      if (Val.getValueType() == MVT::f32) {
5802        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5803        DCI.AddToWorklist(Val.getNode());
5804      }
5805      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5806      DCI.AddToWorklist(Val.getNode());
5807
5808      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5809                        N->getOperand(2), N->getOperand(3));
5810      DCI.AddToWorklist(Val.getNode());
5811      return Val;
5812    }
5813
5814    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5815    if (cast<StoreSDNode>(N)->isUnindexed() &&
5816        N->getOperand(1).getOpcode() == ISD::BSWAP &&
5817        N->getOperand(1).getNode()->hasOneUse() &&
5818        (N->getOperand(1).getValueType() == MVT::i32 ||
5819         N->getOperand(1).getValueType() == MVT::i16)) {
5820      SDValue BSwapOp = N->getOperand(1).getOperand(0);
5821      // Do an any-extend to 32-bits if this is a half-word input.
5822      if (BSwapOp.getValueType() == MVT::i16)
5823        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5824
5825      SDValue Ops[] = {
5826        N->getOperand(0), BSwapOp, N->getOperand(2),
5827        DAG.getValueType(N->getOperand(1).getValueType())
5828      };
5829      return
5830        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5831                                Ops, array_lengthof(Ops),
5832                                cast<StoreSDNode>(N)->getMemoryVT(),
5833                                cast<StoreSDNode>(N)->getMemOperand());
5834    }
5835    break;
5836  case ISD::BSWAP:
5837    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5838    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5839        N->getOperand(0).hasOneUse() &&
5840        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5841      SDValue Load = N->getOperand(0);
5842      LoadSDNode *LD = cast<LoadSDNode>(Load);
5843      // Create the byte-swapping load.
5844      SDValue Ops[] = {
5845        LD->getChain(),    // Chain
5846        LD->getBasePtr(),  // Ptr
5847        DAG.getValueType(N->getValueType(0)) // VT
5848      };
5849      SDValue BSLoad =
5850        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5851                                DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5852                                LD->getMemoryVT(), LD->getMemOperand());
5853
5854      // If this is an i16 load, insert the truncate.
5855      SDValue ResVal = BSLoad;
5856      if (N->getValueType(0) == MVT::i16)
5857        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5858
5859      // First, combine the bswap away.  This makes the value produced by the
5860      // load dead.
5861      DCI.CombineTo(N, ResVal);
5862
5863      // Next, combine the load away, we give it a bogus result value but a real
5864      // chain result.  The result value is dead because the bswap is dead.
5865      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5866
5867      // Return N so it doesn't get rechecked!
5868      return SDValue(N, 0);
5869    }
5870
5871    break;
5872  case PPCISD::VCMP: {
5873    // If a VCMPo node already exists with exactly the same operands as this
5874    // node, use its result instead of this node (VCMPo computes both a CR6 and
5875    // a normal output).
5876    //
5877    if (!N->getOperand(0).hasOneUse() &&
5878        !N->getOperand(1).hasOneUse() &&
5879        !N->getOperand(2).hasOneUse()) {
5880
5881      // Scan all of the users of the LHS, looking for VCMPo's that match.
5882      SDNode *VCMPoNode = 0;
5883
5884      SDNode *LHSN = N->getOperand(0).getNode();
5885      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5886           UI != E; ++UI)
5887        if (UI->getOpcode() == PPCISD::VCMPo &&
5888            UI->getOperand(1) == N->getOperand(1) &&
5889            UI->getOperand(2) == N->getOperand(2) &&
5890            UI->getOperand(0) == N->getOperand(0)) {
5891          VCMPoNode = *UI;
5892          break;
5893        }
5894
5895      // If there is no VCMPo node, or if the flag value has a single use, don't
5896      // transform this.
5897      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5898        break;
5899
5900      // Look at the (necessarily single) use of the flag value.  If it has a
5901      // chain, this transformation is more complex.  Note that multiple things
5902      // could use the value result, which we should ignore.
5903      SDNode *FlagUser = 0;
5904      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5905           FlagUser == 0; ++UI) {
5906        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5907        SDNode *User = *UI;
5908        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5909          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5910            FlagUser = User;
5911            break;
5912          }
5913        }
5914      }
5915
5916      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5917      // give up for right now.
5918      if (FlagUser->getOpcode() == PPCISD::MFCR)
5919        return SDValue(VCMPoNode, 0);
5920    }
5921    break;
5922  }
5923  case ISD::BR_CC: {
5924    // If this is a branch on an altivec predicate comparison, lower this so
5925    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5926    // lowering is done pre-legalize, because the legalizer lowers the predicate
5927    // compare down to code that is difficult to reassemble.
5928    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5929    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5930    int CompareOpc;
5931    bool isDot;
5932
5933    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5934        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5935        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5936      assert(isDot && "Can't compare against a vector result!");
5937
5938      // If this is a comparison against something other than 0/1, then we know
5939      // that the condition is never/always true.
5940      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5941      if (Val != 0 && Val != 1) {
5942        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5943          return N->getOperand(0);
5944        // Always !=, turn it into an unconditional branch.
5945        return DAG.getNode(ISD::BR, dl, MVT::Other,
5946                           N->getOperand(0), N->getOperand(4));
5947      }
5948
5949      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5950
5951      // Create the PPCISD altivec 'dot' comparison node.
5952      std::vector<EVT> VTs;
5953      SDValue Ops[] = {
5954        LHS.getOperand(2),  // LHS of compare
5955        LHS.getOperand(3),  // RHS of compare
5956        DAG.getConstant(CompareOpc, MVT::i32)
5957      };
5958      VTs.push_back(LHS.getOperand(2).getValueType());
5959      VTs.push_back(MVT::Glue);
5960      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5961
5962      // Unpack the result based on how the target uses it.
5963      PPC::Predicate CompOpc;
5964      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5965      default:  // Can't happen, don't crash on invalid number though.
5966      case 0:   // Branch on the value of the EQ bit of CR6.
5967        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5968        break;
5969      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5970        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5971        break;
5972      case 2:   // Branch on the value of the LT bit of CR6.
5973        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5974        break;
5975      case 3:   // Branch on the inverted value of the LT bit of CR6.
5976        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5977        break;
5978      }
5979
5980      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5981                         DAG.getConstant(CompOpc, MVT::i32),
5982                         DAG.getRegister(PPC::CR6, MVT::i32),
5983                         N->getOperand(4), CompNode.getValue(1));
5984    }
5985    break;
5986  }
5987  }
5988
5989  return SDValue();
5990}
5991
5992//===----------------------------------------------------------------------===//
5993// Inline Assembly Support
5994//===----------------------------------------------------------------------===//
5995
5996void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5997                                                       APInt &KnownZero,
5998                                                       APInt &KnownOne,
5999                                                       const SelectionDAG &DAG,
6000                                                       unsigned Depth) const {
6001  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
6002  switch (Op.getOpcode()) {
6003  default: break;
6004  case PPCISD::LBRX: {
6005    // lhbrx is known to have the top bits cleared out.
6006    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
6007      KnownZero = 0xFFFF0000;
6008    break;
6009  }
6010  case ISD::INTRINSIC_WO_CHAIN: {
6011    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
6012    default: break;
6013    case Intrinsic::ppc_altivec_vcmpbfp_p:
6014    case Intrinsic::ppc_altivec_vcmpeqfp_p:
6015    case Intrinsic::ppc_altivec_vcmpequb_p:
6016    case Intrinsic::ppc_altivec_vcmpequh_p:
6017    case Intrinsic::ppc_altivec_vcmpequw_p:
6018    case Intrinsic::ppc_altivec_vcmpgefp_p:
6019    case Intrinsic::ppc_altivec_vcmpgtfp_p:
6020    case Intrinsic::ppc_altivec_vcmpgtsb_p:
6021    case Intrinsic::ppc_altivec_vcmpgtsh_p:
6022    case Intrinsic::ppc_altivec_vcmpgtsw_p:
6023    case Intrinsic::ppc_altivec_vcmpgtub_p:
6024    case Intrinsic::ppc_altivec_vcmpgtuh_p:
6025    case Intrinsic::ppc_altivec_vcmpgtuw_p:
6026      KnownZero = ~1U;  // All bits but the low one are known to be zero.
6027      break;
6028    }
6029  }
6030  }
6031}
6032
6033
6034/// getConstraintType - Given a constraint, return the type of
6035/// constraint it is for this target.
6036PPCTargetLowering::ConstraintType
6037PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
6038  if (Constraint.size() == 1) {
6039    switch (Constraint[0]) {
6040    default: break;
6041    case 'b':
6042    case 'r':
6043    case 'f':
6044    case 'v':
6045    case 'y':
6046      return C_RegisterClass;
6047    }
6048  }
6049  return TargetLowering::getConstraintType(Constraint);
6050}
6051
6052/// Examine constraint type and operand type and determine a weight value.
6053/// This object must already have been set up with the operand type
6054/// and the current alternative constraint selected.
6055TargetLowering::ConstraintWeight
6056PPCTargetLowering::getSingleConstraintMatchWeight(
6057    AsmOperandInfo &info, const char *constraint) const {
6058  ConstraintWeight weight = CW_Invalid;
6059  Value *CallOperandVal = info.CallOperandVal;
6060    // If we don't have a value, we can't do a match,
6061    // but allow it at the lowest weight.
6062  if (CallOperandVal == NULL)
6063    return CW_Default;
6064  Type *type = CallOperandVal->getType();
6065  // Look at the constraint type.
6066  switch (*constraint) {
6067  default:
6068    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
6069    break;
6070  case 'b':
6071    if (type->isIntegerTy())
6072      weight = CW_Register;
6073    break;
6074  case 'f':
6075    if (type->isFloatTy())
6076      weight = CW_Register;
6077    break;
6078  case 'd':
6079    if (type->isDoubleTy())
6080      weight = CW_Register;
6081    break;
6082  case 'v':
6083    if (type->isVectorTy())
6084      weight = CW_Register;
6085    break;
6086  case 'y':
6087    weight = CW_Register;
6088    break;
6089  }
6090  return weight;
6091}
6092
6093std::pair<unsigned, const TargetRegisterClass*>
6094PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6095                                                EVT VT) const {
6096  if (Constraint.size() == 1) {
6097    // GCC RS6000 Constraint Letters
6098    switch (Constraint[0]) {
6099    case 'b':   // R1-R31
6100    case 'r':   // R0-R31
6101      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
6102        return std::make_pair(0U, &PPC::G8RCRegClass);
6103      return std::make_pair(0U, &PPC::GPRCRegClass);
6104    case 'f':
6105      if (VT == MVT::f32)
6106        return std::make_pair(0U, &PPC::F4RCRegClass);
6107      if (VT == MVT::f64)
6108        return std::make_pair(0U, &PPC::F8RCRegClass);
6109      break;
6110    case 'v':
6111      return std::make_pair(0U, &PPC::VRRCRegClass);
6112    case 'y':   // crrc
6113      return std::make_pair(0U, &PPC::CRRCRegClass);
6114    }
6115  }
6116
6117  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6118}
6119
6120
6121/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6122/// vector.  If it is invalid, don't add anything to Ops.
6123void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
6124                                                     std::string &Constraint,
6125                                                     std::vector<SDValue>&Ops,
6126                                                     SelectionDAG &DAG) const {
6127  SDValue Result(0,0);
6128
6129  // Only support length 1 constraints.
6130  if (Constraint.length() > 1) return;
6131
6132  char Letter = Constraint[0];
6133  switch (Letter) {
6134  default: break;
6135  case 'I':
6136  case 'J':
6137  case 'K':
6138  case 'L':
6139  case 'M':
6140  case 'N':
6141  case 'O':
6142  case 'P': {
6143    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
6144    if (!CST) return; // Must be an immediate to match.
6145    unsigned Value = CST->getZExtValue();
6146    switch (Letter) {
6147    default: llvm_unreachable("Unknown constraint letter!");
6148    case 'I':  // "I" is a signed 16-bit constant.
6149      if ((short)Value == (int)Value)
6150        Result = DAG.getTargetConstant(Value, Op.getValueType());
6151      break;
6152    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
6153    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
6154      if ((short)Value == 0)
6155        Result = DAG.getTargetConstant(Value, Op.getValueType());
6156      break;
6157    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
6158      if ((Value >> 16) == 0)
6159        Result = DAG.getTargetConstant(Value, Op.getValueType());
6160      break;
6161    case 'M':  // "M" is a constant that is greater than 31.
6162      if (Value > 31)
6163        Result = DAG.getTargetConstant(Value, Op.getValueType());
6164      break;
6165    case 'N':  // "N" is a positive constant that is an exact power of two.
6166      if ((int)Value > 0 && isPowerOf2_32(Value))
6167        Result = DAG.getTargetConstant(Value, Op.getValueType());
6168      break;
6169    case 'O':  // "O" is the constant zero.
6170      if (Value == 0)
6171        Result = DAG.getTargetConstant(Value, Op.getValueType());
6172      break;
6173    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
6174      if ((short)-Value == (int)-Value)
6175        Result = DAG.getTargetConstant(Value, Op.getValueType());
6176      break;
6177    }
6178    break;
6179  }
6180  }
6181
6182  if (Result.getNode()) {
6183    Ops.push_back(Result);
6184    return;
6185  }
6186
6187  // Handle standard constraint letters.
6188  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6189}
6190
6191// isLegalAddressingMode - Return true if the addressing mode represented
6192// by AM is legal for this target, for a load/store of the specified type.
6193bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
6194                                              Type *Ty) const {
6195  // FIXME: PPC does not allow r+i addressing modes for vectors!
6196
6197  // PPC allows a sign-extended 16-bit immediate field.
6198  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
6199    return false;
6200
6201  // No global is ever allowed as a base.
6202  if (AM.BaseGV)
6203    return false;
6204
6205  // PPC only support r+r,
6206  switch (AM.Scale) {
6207  case 0:  // "r+i" or just "i", depending on HasBaseReg.
6208    break;
6209  case 1:
6210    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
6211      return false;
6212    // Otherwise we have r+r or r+i.
6213    break;
6214  case 2:
6215    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
6216      return false;
6217    // Allow 2*r as r+r.
6218    break;
6219  default:
6220    // No other scales are supported.
6221    return false;
6222  }
6223
6224  return true;
6225}
6226
6227/// isLegalAddressImmediate - Return true if the integer value can be used
6228/// as the offset of the target addressing mode for load / store of the
6229/// given type.
6230bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
6231  // PPC allows a sign-extended 16-bit immediate field.
6232  return (V > -(1 << 16) && V < (1 << 16)-1);
6233}
6234
6235bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
6236  return false;
6237}
6238
6239SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
6240                                           SelectionDAG &DAG) const {
6241  MachineFunction &MF = DAG.getMachineFunction();
6242  MachineFrameInfo *MFI = MF.getFrameInfo();
6243  MFI->setReturnAddressIsTaken(true);
6244
6245  DebugLoc dl = Op.getDebugLoc();
6246  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6247
6248  // Make sure the function does not optimize away the store of the RA to
6249  // the stack.
6250  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
6251  FuncInfo->setLRStoreRequired();
6252  bool isPPC64 = PPCSubTarget.isPPC64();
6253  bool isDarwinABI = PPCSubTarget.isDarwinABI();
6254
6255  if (Depth > 0) {
6256    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6257    SDValue Offset =
6258
6259      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
6260                      isPPC64? MVT::i64 : MVT::i32);
6261    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6262                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
6263                                   FrameAddr, Offset),
6264                       MachinePointerInfo(), false, false, false, 0);
6265  }
6266
6267  // Just load the return address off the stack.
6268  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
6269  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
6270                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
6271}
6272
6273SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
6274                                          SelectionDAG &DAG) const {
6275  DebugLoc dl = Op.getDebugLoc();
6276  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6277
6278  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
6279  bool isPPC64 = PtrVT == MVT::i64;
6280
6281  MachineFunction &MF = DAG.getMachineFunction();
6282  MachineFrameInfo *MFI = MF.getFrameInfo();
6283  MFI->setFrameAddressIsTaken(true);
6284  bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) ||
6285               MFI->hasVarSizedObjects()) &&
6286                  MFI->getStackSize() &&
6287                  !MF.getFunction()->getFnAttributes().hasNakedAttr();
6288  unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
6289                                (is31 ? PPC::R31 : PPC::R1);
6290  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
6291                                         PtrVT);
6292  while (Depth--)
6293    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
6294                            FrameAddr, MachinePointerInfo(), false, false,
6295                            false, 0);
6296  return FrameAddr;
6297}
6298
6299bool
6300PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
6301  // The PowerPC target isn't yet aware of offsets.
6302  return false;
6303}
6304
6305/// getOptimalMemOpType - Returns the target specific optimal type for load
6306/// and store operations as a result of memset, memcpy, and memmove
6307/// lowering. If DstAlign is zero that means it's safe to destination
6308/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
6309/// means there isn't a need to check it against alignment requirement,
6310/// probably because the source does not need to be loaded. If
6311/// 'IsZeroVal' is true, that means it's safe to return a
6312/// non-scalar-integer type, e.g. empty string source, constant, or loaded
6313/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
6314/// constant so it does not need to be loaded.
6315/// It returns EVT::Other if the type should be determined using generic
6316/// target-independent logic.
6317EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
6318                                           unsigned DstAlign, unsigned SrcAlign,
6319                                           bool IsZeroVal,
6320                                           bool MemcpyStrSrc,
6321                                           MachineFunction &MF) const {
6322  if (this->PPCSubTarget.isPPC64()) {
6323    return MVT::i64;
6324  } else {
6325    return MVT::i32;
6326  }
6327}
6328
6329/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
6330/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
6331/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
6332/// is expanded to mul + add.
6333bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
6334  if (!VT.isSimple())
6335    return false;
6336
6337  switch (VT.getSimpleVT().SimpleTy) {
6338  case MVT::f32:
6339  case MVT::f64:
6340  case MVT::v4f32:
6341    return true;
6342  default:
6343    break;
6344  }
6345
6346  return false;
6347}
6348
6349Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
6350  if (DisableILPPref)
6351    return TargetLowering::getSchedulingPreference(N);
6352
6353  return Sched::ILP;
6354}
6355
6356