PPCISelLowering.cpp revision 9b35a09e7e5b1aa26588e3852fe00a42b4f383ba
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/VectorExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Constants.h"
30#include "llvm/Function.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Target/TargetOptions.h"
34#include "llvm/Target/TargetLoweringObjectFile.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/DerivedTypes.h"
39using namespace llvm;
40
41static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
42                                     CCValAssign::LocInfo &LocInfo,
43                                     ISD::ArgFlagsTy &ArgFlags,
44                                     CCState &State);
45static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
46                                            EVT &LocVT,
47                                            CCValAssign::LocInfo &LocInfo,
48                                            ISD::ArgFlagsTy &ArgFlags,
49                                            CCState &State);
50static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
51                                              EVT &LocVT,
52                                              CCValAssign::LocInfo &LocInfo,
53                                              ISD::ArgFlagsTy &ArgFlags,
54                                              CCState &State);
55
56static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
57cl::desc("enable preincrement load/store generation on PPC (experimental)"),
58                                     cl::Hidden);
59
60static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
61  if (TM.getSubtargetImpl()->isDarwin())
62    return new TargetLoweringObjectFileMachO();
63  return new TargetLoweringObjectFileELF();
64}
65
66
67PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
68  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
69
70  setPow2DivIsCheap();
71
72  // Use _setjmp/_longjmp instead of setjmp/longjmp.
73  setUseUnderscoreSetJmp(true);
74  setUseUnderscoreLongJmp(true);
75
76  // Set up the register classes.
77  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
78  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
79  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
80
81  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
82  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
83  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
84
85  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
86
87  // PowerPC has pre-inc load and store's.
88  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
89  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
91  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
93  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
94  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
96  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
98
99  // This is used in the ppcf128->int sequence.  Note it has different semantics
100  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
101  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
102
103  // PowerPC has no SREM/UREM instructions
104  setOperationAction(ISD::SREM, MVT::i32, Expand);
105  setOperationAction(ISD::UREM, MVT::i32, Expand);
106  setOperationAction(ISD::SREM, MVT::i64, Expand);
107  setOperationAction(ISD::UREM, MVT::i64, Expand);
108
109  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
110  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
111  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
112  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
113  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
114  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
115  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
116  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
117  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
118
119  // We don't support sin/cos/sqrt/fmod/pow
120  setOperationAction(ISD::FSIN , MVT::f64, Expand);
121  setOperationAction(ISD::FCOS , MVT::f64, Expand);
122  setOperationAction(ISD::FREM , MVT::f64, Expand);
123  setOperationAction(ISD::FPOW , MVT::f64, Expand);
124  setOperationAction(ISD::FSIN , MVT::f32, Expand);
125  setOperationAction(ISD::FCOS , MVT::f32, Expand);
126  setOperationAction(ISD::FREM , MVT::f32, Expand);
127  setOperationAction(ISD::FPOW , MVT::f32, Expand);
128
129  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
130
131  // If we're enabling GP optimizations, use hardware square root
132  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
133    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
134    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
135  }
136
137  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
138  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
139
140  // PowerPC does not have BSWAP, CTPOP or CTTZ
141  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
142  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
143  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
144  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
145  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
146  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
147
148  // PowerPC does not have ROTR
149  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
150  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
151
152  // PowerPC does not have Select
153  setOperationAction(ISD::SELECT, MVT::i32, Expand);
154  setOperationAction(ISD::SELECT, MVT::i64, Expand);
155  setOperationAction(ISD::SELECT, MVT::f32, Expand);
156  setOperationAction(ISD::SELECT, MVT::f64, Expand);
157
158  // PowerPC wants to turn select_cc of FP into fsel when possible.
159  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
160  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
161
162  // PowerPC wants to optimize integer setcc a bit
163  setOperationAction(ISD::SETCC, MVT::i32, Custom);
164
165  // PowerPC does not have BRCOND which requires SetCC
166  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
167
168  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
169
170  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
171  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
172
173  // PowerPC does not have [U|S]INT_TO_FP
174  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
175  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
176
177  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
178  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
179  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
180  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
181
182  // We cannot sextinreg(i1).  Expand to shifts.
183  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
184
185  // Support label based line numbers.
186  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
187  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
188
189  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
190  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
191  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
192  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
193
194
195  // We want to legalize GlobalAddress and ConstantPool nodes into the
196  // appropriate instructions to materialize the address.
197  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
198  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
199  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
200  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
201  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
202  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
203  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
204  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
205
206  // TRAP is legal.
207  setOperationAction(ISD::TRAP, MVT::Other, Legal);
208
209  // TRAMPOLINE is custom lowered.
210  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
211
212  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
213  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
214
215  // VAARG is custom lowered with the 32-bit SVR4 ABI.
216  if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
217      && !TM.getSubtarget<PPCSubtarget>().isPPC64())
218    setOperationAction(ISD::VAARG, MVT::Other, Custom);
219  else
220    setOperationAction(ISD::VAARG, MVT::Other, Expand);
221
222  // Use the default implementation.
223  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
224  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
225  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
226  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
227  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
228  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
229
230  // We want to custom lower some of our intrinsics.
231  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
232
233  // Comparisons that require checking two conditions.
234  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
235  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
236  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
243  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
244  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
246
247  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
248    // They also have instructions for converting between i64 and fp.
249    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
250    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
251    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
252    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
253    // This is just the low 32 bits of a (signed) fp->i64 conversion.
254    // We cannot do this with Promote because i64 is not a legal type.
255    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
256
257    // FIXME: disable this lowered code.  This generates 64-bit register values,
258    // and we don't model the fact that the top part is clobbered by calls.  We
259    // need to flag these together so that the value isn't live across a call.
260    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
261  } else {
262    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
263    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
264  }
265
266  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
267    // 64-bit PowerPC implementations can support i64 types directly
268    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
269    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
270    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
271    // 64-bit PowerPC wants to expand i128 shifts itself.
272    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
273    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
274    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
275  } else {
276    // 32-bit PowerPC wants to expand i64 shifts itself.
277    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
278    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
279    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
280  }
281
282  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
283    // First set operation action for all vector types to expand. Then we
284    // will selectively turn on ones that can be effectively codegen'd.
285    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
286         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
287      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
288
289      // add/sub are legal for all supported vector VT's.
290      setOperationAction(ISD::ADD , VT, Legal);
291      setOperationAction(ISD::SUB , VT, Legal);
292
293      // We promote all shuffles to v16i8.
294      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
295      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
296
297      // We promote all non-typed operations to v4i32.
298      setOperationAction(ISD::AND   , VT, Promote);
299      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
300      setOperationAction(ISD::OR    , VT, Promote);
301      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
302      setOperationAction(ISD::XOR   , VT, Promote);
303      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
304      setOperationAction(ISD::LOAD  , VT, Promote);
305      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
306      setOperationAction(ISD::SELECT, VT, Promote);
307      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
308      setOperationAction(ISD::STORE, VT, Promote);
309      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
310
311      // No other operations are legal.
312      setOperationAction(ISD::MUL , VT, Expand);
313      setOperationAction(ISD::SDIV, VT, Expand);
314      setOperationAction(ISD::SREM, VT, Expand);
315      setOperationAction(ISD::UDIV, VT, Expand);
316      setOperationAction(ISD::UREM, VT, Expand);
317      setOperationAction(ISD::FDIV, VT, Expand);
318      setOperationAction(ISD::FNEG, VT, Expand);
319      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
320      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
321      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
322      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
323      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
324      setOperationAction(ISD::UDIVREM, VT, Expand);
325      setOperationAction(ISD::SDIVREM, VT, Expand);
326      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
327      setOperationAction(ISD::FPOW, VT, Expand);
328      setOperationAction(ISD::CTPOP, VT, Expand);
329      setOperationAction(ISD::CTLZ, VT, Expand);
330      setOperationAction(ISD::CTTZ, VT, Expand);
331    }
332
333    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
334    // with merges, splats, etc.
335    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
336
337    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
338    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
339    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
340    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
341    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
342    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
343
344    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
345    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
346    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
347    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
348
349    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
350    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
351    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
352    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
353
354    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
355    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
356
357    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
358    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
359    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
360    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
361  }
362
363  setShiftAmountType(MVT::i32);
364  setBooleanContents(ZeroOrOneBooleanContent);
365
366  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
367    setStackPointerRegisterToSaveRestore(PPC::X1);
368    setExceptionPointerRegister(PPC::X3);
369    setExceptionSelectorRegister(PPC::X4);
370  } else {
371    setStackPointerRegisterToSaveRestore(PPC::R1);
372    setExceptionPointerRegister(PPC::R3);
373    setExceptionSelectorRegister(PPC::R4);
374  }
375
376  // We have target-specific dag combine patterns for the following nodes:
377  setTargetDAGCombine(ISD::SINT_TO_FP);
378  setTargetDAGCombine(ISD::STORE);
379  setTargetDAGCombine(ISD::BR_CC);
380  setTargetDAGCombine(ISD::BSWAP);
381
382  // Darwin long double math library functions have $LDBL128 appended.
383  if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
384    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
385    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
386    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
387    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
388    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
389    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
390    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
391    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
392    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
393    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
394  }
395
396  computeRegisterProperties();
397}
398
399/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
400/// function arguments in the caller parameter area.
401unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
402  TargetMachine &TM = getTargetMachine();
403  // Darwin passes everything on 4 byte boundary.
404  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
405    return 4;
406  // FIXME SVR4 TBD
407  return 4;
408}
409
410const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
411  switch (Opcode) {
412  default: return 0;
413  case PPCISD::FSEL:            return "PPCISD::FSEL";
414  case PPCISD::FCFID:           return "PPCISD::FCFID";
415  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
416  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
417  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
418  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
419  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
420  case PPCISD::VPERM:           return "PPCISD::VPERM";
421  case PPCISD::Hi:              return "PPCISD::Hi";
422  case PPCISD::Lo:              return "PPCISD::Lo";
423  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
424  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
425  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
426  case PPCISD::SRL:             return "PPCISD::SRL";
427  case PPCISD::SRA:             return "PPCISD::SRA";
428  case PPCISD::SHL:             return "PPCISD::SHL";
429  case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
430  case PPCISD::STD_32:          return "PPCISD::STD_32";
431  case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
432  case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
433  case PPCISD::NOP:             return "PPCISD::NOP";
434  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
435  case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
436  case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
437  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
438  case PPCISD::MFCR:            return "PPCISD::MFCR";
439  case PPCISD::VCMP:            return "PPCISD::VCMP";
440  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
441  case PPCISD::LBRX:            return "PPCISD::LBRX";
442  case PPCISD::STBRX:           return "PPCISD::STBRX";
443  case PPCISD::LARX:            return "PPCISD::LARX";
444  case PPCISD::STCX:            return "PPCISD::STCX";
445  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
446  case PPCISD::MFFS:            return "PPCISD::MFFS";
447  case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
448  case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
449  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
450  case PPCISD::MTFSF:           return "PPCISD::MTFSF";
451  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
452  }
453}
454
455MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
456  return MVT::i32;
457}
458
459/// getFunctionAlignment - Return the Log2 alignment of this function.
460unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
461  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
462    return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
463  else
464    return 2;
465}
466
467/// getPreferredLSDADataFormat - Return the preferred exception handling data
468/// format for the LSDA.
469unsigned PPCTargetLowering::getPreferredLSDADataFormat() const {
470  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
471    return dwarf::DW_EH_PE_pcrel;
472
473  if (PPCSubTarget.isPPC64() ||
474      getTargetMachine().getRelocationModel() == Reloc::PIC_) {
475    unsigned DataTy =
476      (PPCSubTarget.isPPC64() ?
477       dwarf::DW_EH_PE_udata8 : dwarf::DW_EH_PE_udata4);
478    return dwarf::DW_EH_PE_pcrel | DataTy;
479  }
480
481  return dwarf::DW_EH_PE_absptr;
482}
483
484/// getPreferredFDEDataFormat - Return the preferred exception handling data
485/// format for the FDE.
486unsigned PPCTargetLowering::getPreferredFDEDataFormat() const {
487  if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
488    return dwarf::DW_EH_PE_pcrel;
489
490  if (PPCSubTarget.isPPC64() ||
491      getTargetMachine().getRelocationModel() == Reloc::PIC_) {
492    unsigned DataTy =
493      (PPCSubTarget.isPPC64() ?
494       dwarf::DW_EH_PE_udata8 : dwarf::DW_EH_PE_udata4);
495    return dwarf::DW_EH_PE_pcrel | DataTy;
496  }
497
498  return dwarf::DW_EH_PE_absptr;
499}
500
501//===----------------------------------------------------------------------===//
502// Node matching predicates, for use by the tblgen matching code.
503//===----------------------------------------------------------------------===//
504
505/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
506static bool isFloatingPointZero(SDValue Op) {
507  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
508    return CFP->getValueAPF().isZero();
509  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
510    // Maybe this has already been legalized into the constant pool?
511    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
512      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
513        return CFP->getValueAPF().isZero();
514  }
515  return false;
516}
517
518/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
519/// true if Op is undef or if it matches the specified value.
520static bool isConstantOrUndef(int Op, int Val) {
521  return Op < 0 || Op == Val;
522}
523
524/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
525/// VPKUHUM instruction.
526bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
527  if (!isUnary) {
528    for (unsigned i = 0; i != 16; ++i)
529      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
530        return false;
531  } else {
532    for (unsigned i = 0; i != 8; ++i)
533      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
534          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
535        return false;
536  }
537  return true;
538}
539
540/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
541/// VPKUWUM instruction.
542bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
543  if (!isUnary) {
544    for (unsigned i = 0; i != 16; i += 2)
545      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
546          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
547        return false;
548  } else {
549    for (unsigned i = 0; i != 8; i += 2)
550      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
551          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
552          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
553          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
554        return false;
555  }
556  return true;
557}
558
559/// isVMerge - Common function, used to match vmrg* shuffles.
560///
561static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
562                     unsigned LHSStart, unsigned RHSStart) {
563  assert(N->getValueType(0) == MVT::v16i8 &&
564         "PPC only supports shuffles by bytes!");
565  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
566         "Unsupported merge size!");
567
568  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
569    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
570      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
571                             LHSStart+j+i*UnitSize) ||
572          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
573                             RHSStart+j+i*UnitSize))
574        return false;
575    }
576  return true;
577}
578
579/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
580/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
581bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
582                             bool isUnary) {
583  if (!isUnary)
584    return isVMerge(N, UnitSize, 8, 24);
585  return isVMerge(N, UnitSize, 8, 8);
586}
587
588/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
589/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
590bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
591                             bool isUnary) {
592  if (!isUnary)
593    return isVMerge(N, UnitSize, 0, 16);
594  return isVMerge(N, UnitSize, 0, 0);
595}
596
597
598/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
599/// amount, otherwise return -1.
600int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
601  assert(N->getValueType(0) == MVT::v16i8 &&
602         "PPC only supports shuffles by bytes!");
603
604  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
605
606  // Find the first non-undef value in the shuffle mask.
607  unsigned i;
608  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
609    /*search*/;
610
611  if (i == 16) return -1;  // all undef.
612
613  // Otherwise, check to see if the rest of the elements are consecutively
614  // numbered from this value.
615  unsigned ShiftAmt = SVOp->getMaskElt(i);
616  if (ShiftAmt < i) return -1;
617  ShiftAmt -= i;
618
619  if (!isUnary) {
620    // Check the rest of the elements to see if they are consecutive.
621    for (++i; i != 16; ++i)
622      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
623        return -1;
624  } else {
625    // Check the rest of the elements to see if they are consecutive.
626    for (++i; i != 16; ++i)
627      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
628        return -1;
629  }
630  return ShiftAmt;
631}
632
633/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
634/// specifies a splat of a single element that is suitable for input to
635/// VSPLTB/VSPLTH/VSPLTW.
636bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
637  assert(N->getValueType(0) == MVT::v16i8 &&
638         (EltSize == 1 || EltSize == 2 || EltSize == 4));
639
640  // This is a splat operation if each element of the permute is the same, and
641  // if the value doesn't reference the second vector.
642  unsigned ElementBase = N->getMaskElt(0);
643
644  // FIXME: Handle UNDEF elements too!
645  if (ElementBase >= 16)
646    return false;
647
648  // Check that the indices are consecutive, in the case of a multi-byte element
649  // splatted with a v16i8 mask.
650  for (unsigned i = 1; i != EltSize; ++i)
651    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
652      return false;
653
654  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
655    if (N->getMaskElt(i) < 0) continue;
656    for (unsigned j = 0; j != EltSize; ++j)
657      if (N->getMaskElt(i+j) != N->getMaskElt(j))
658        return false;
659  }
660  return true;
661}
662
663/// isAllNegativeZeroVector - Returns true if all elements of build_vector
664/// are -0.0.
665bool PPC::isAllNegativeZeroVector(SDNode *N) {
666  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
667
668  APInt APVal, APUndef;
669  unsigned BitSize;
670  bool HasAnyUndefs;
671
672  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32))
673    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
674      return CFP->getValueAPF().isNegZero();
675
676  return false;
677}
678
679/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
680/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
681unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
682  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
683  assert(isSplatShuffleMask(SVOp, EltSize));
684  return SVOp->getMaskElt(0) / EltSize;
685}
686
687/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
688/// by using a vspltis[bhw] instruction of the specified element size, return
689/// the constant being splatted.  The ByteSize field indicates the number of
690/// bytes of each element [124] -> [bhw].
691SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
692  SDValue OpVal(0, 0);
693
694  // If ByteSize of the splat is bigger than the element size of the
695  // build_vector, then we have a case where we are checking for a splat where
696  // multiple elements of the buildvector are folded together into a single
697  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
698  unsigned EltSize = 16/N->getNumOperands();
699  if (EltSize < ByteSize) {
700    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
701    SDValue UniquedVals[4];
702    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
703
704    // See if all of the elements in the buildvector agree across.
705    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
706      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
707      // If the element isn't a constant, bail fully out.
708      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
709
710
711      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
712        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
713      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
714        return SDValue();  // no match.
715    }
716
717    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
718    // either constant or undef values that are identical for each chunk.  See
719    // if these chunks can form into a larger vspltis*.
720
721    // Check to see if all of the leading entries are either 0 or -1.  If
722    // neither, then this won't fit into the immediate field.
723    bool LeadingZero = true;
724    bool LeadingOnes = true;
725    for (unsigned i = 0; i != Multiple-1; ++i) {
726      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
727
728      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
729      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
730    }
731    // Finally, check the least significant entry.
732    if (LeadingZero) {
733      if (UniquedVals[Multiple-1].getNode() == 0)
734        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
735      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
736      if (Val < 16)
737        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
738    }
739    if (LeadingOnes) {
740      if (UniquedVals[Multiple-1].getNode() == 0)
741        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
742      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
743      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
744        return DAG.getTargetConstant(Val, MVT::i32);
745    }
746
747    return SDValue();
748  }
749
750  // Check to see if this buildvec has a single non-undef value in its elements.
751  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
752    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
753    if (OpVal.getNode() == 0)
754      OpVal = N->getOperand(i);
755    else if (OpVal != N->getOperand(i))
756      return SDValue();
757  }
758
759  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
760
761  unsigned ValSizeInBytes = EltSize;
762  uint64_t Value = 0;
763  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
764    Value = CN->getZExtValue();
765  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
766    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
767    Value = FloatToBits(CN->getValueAPF().convertToFloat());
768  }
769
770  // If the splat value is larger than the element value, then we can never do
771  // this splat.  The only case that we could fit the replicated bits into our
772  // immediate field for would be zero, and we prefer to use vxor for it.
773  if (ValSizeInBytes < ByteSize) return SDValue();
774
775  // If the element value is larger than the splat value, cut it in half and
776  // check to see if the two halves are equal.  Continue doing this until we
777  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
778  while (ValSizeInBytes > ByteSize) {
779    ValSizeInBytes >>= 1;
780
781    // If the top half equals the bottom half, we're still ok.
782    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
783         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
784      return SDValue();
785  }
786
787  // Properly sign extend the value.
788  int ShAmt = (4-ByteSize)*8;
789  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
790
791  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
792  if (MaskVal == 0) return SDValue();
793
794  // Finally, if this value fits in a 5 bit sext field, return it
795  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
796    return DAG.getTargetConstant(MaskVal, MVT::i32);
797  return SDValue();
798}
799
800//===----------------------------------------------------------------------===//
801//  Addressing Mode Selection
802//===----------------------------------------------------------------------===//
803
804/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
805/// or 64-bit immediate, and if the value can be accurately represented as a
806/// sign extension from a 16-bit value.  If so, this returns true and the
807/// immediate.
808static bool isIntS16Immediate(SDNode *N, short &Imm) {
809  if (N->getOpcode() != ISD::Constant)
810    return false;
811
812  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
813  if (N->getValueType(0) == MVT::i32)
814    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
815  else
816    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
817}
818static bool isIntS16Immediate(SDValue Op, short &Imm) {
819  return isIntS16Immediate(Op.getNode(), Imm);
820}
821
822
823/// SelectAddressRegReg - Given the specified addressed, check to see if it
824/// can be represented as an indexed [r+r] operation.  Returns false if it
825/// can be more efficiently represented with [r+imm].
826bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
827                                            SDValue &Index,
828                                            SelectionDAG &DAG) const {
829  short imm = 0;
830  if (N.getOpcode() == ISD::ADD) {
831    if (isIntS16Immediate(N.getOperand(1), imm))
832      return false;    // r+i
833    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
834      return false;    // r+i
835
836    Base = N.getOperand(0);
837    Index = N.getOperand(1);
838    return true;
839  } else if (N.getOpcode() == ISD::OR) {
840    if (isIntS16Immediate(N.getOperand(1), imm))
841      return false;    // r+i can fold it if we can.
842
843    // If this is an or of disjoint bitfields, we can codegen this as an add
844    // (for better address arithmetic) if the LHS and RHS of the OR are provably
845    // disjoint.
846    APInt LHSKnownZero, LHSKnownOne;
847    APInt RHSKnownZero, RHSKnownOne;
848    DAG.ComputeMaskedBits(N.getOperand(0),
849                          APInt::getAllOnesValue(N.getOperand(0)
850                            .getValueSizeInBits()),
851                          LHSKnownZero, LHSKnownOne);
852
853    if (LHSKnownZero.getBoolValue()) {
854      DAG.ComputeMaskedBits(N.getOperand(1),
855                            APInt::getAllOnesValue(N.getOperand(1)
856                              .getValueSizeInBits()),
857                            RHSKnownZero, RHSKnownOne);
858      // If all of the bits are known zero on the LHS or RHS, the add won't
859      // carry.
860      if (~(LHSKnownZero | RHSKnownZero) == 0) {
861        Base = N.getOperand(0);
862        Index = N.getOperand(1);
863        return true;
864      }
865    }
866  }
867
868  return false;
869}
870
871/// Returns true if the address N can be represented by a base register plus
872/// a signed 16-bit displacement [r+imm], and if it is not better
873/// represented as reg+reg.
874bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
875                                            SDValue &Base,
876                                            SelectionDAG &DAG) const {
877  // FIXME dl should come from parent load or store, not from address
878  DebugLoc dl = N.getDebugLoc();
879  // If this can be more profitably realized as r+r, fail.
880  if (SelectAddressRegReg(N, Disp, Base, DAG))
881    return false;
882
883  if (N.getOpcode() == ISD::ADD) {
884    short imm = 0;
885    if (isIntS16Immediate(N.getOperand(1), imm)) {
886      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
887      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
888        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
889      } else {
890        Base = N.getOperand(0);
891      }
892      return true; // [r+i]
893    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
894      // Match LOAD (ADD (X, Lo(G))).
895     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
896             && "Cannot handle constant offsets yet!");
897      Disp = N.getOperand(1).getOperand(0);  // The global address.
898      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
899             Disp.getOpcode() == ISD::TargetConstantPool ||
900             Disp.getOpcode() == ISD::TargetJumpTable);
901      Base = N.getOperand(0);
902      return true;  // [&g+r]
903    }
904  } else if (N.getOpcode() == ISD::OR) {
905    short imm = 0;
906    if (isIntS16Immediate(N.getOperand(1), imm)) {
907      // If this is an or of disjoint bitfields, we can codegen this as an add
908      // (for better address arithmetic) if the LHS and RHS of the OR are
909      // provably disjoint.
910      APInt LHSKnownZero, LHSKnownOne;
911      DAG.ComputeMaskedBits(N.getOperand(0),
912                            APInt::getAllOnesValue(N.getOperand(0)
913                                                   .getValueSizeInBits()),
914                            LHSKnownZero, LHSKnownOne);
915
916      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
917        // If all of the bits are known zero on the LHS or RHS, the add won't
918        // carry.
919        Base = N.getOperand(0);
920        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
921        return true;
922      }
923    }
924  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
925    // Loading from a constant address.
926
927    // If this address fits entirely in a 16-bit sext immediate field, codegen
928    // this as "d, 0"
929    short Imm;
930    if (isIntS16Immediate(CN, Imm)) {
931      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
932      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
933      return true;
934    }
935
936    // Handle 32-bit sext immediates with LIS + addr mode.
937    if (CN->getValueType(0) == MVT::i32 ||
938        (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
939      int Addr = (int)CN->getZExtValue();
940
941      // Otherwise, break this down into an LIS + disp.
942      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
943
944      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
945      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
946      Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base), 0);
947      return true;
948    }
949  }
950
951  Disp = DAG.getTargetConstant(0, getPointerTy());
952  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
953    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
954  else
955    Base = N;
956  return true;      // [r+0]
957}
958
959/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
960/// represented as an indexed [r+r] operation.
961bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
962                                                SDValue &Index,
963                                                SelectionDAG &DAG) const {
964  // Check to see if we can easily represent this as an [r+r] address.  This
965  // will fail if it thinks that the address is more profitably represented as
966  // reg+imm, e.g. where imm = 0.
967  if (SelectAddressRegReg(N, Base, Index, DAG))
968    return true;
969
970  // If the operand is an addition, always emit this as [r+r], since this is
971  // better (for code size, and execution, as the memop does the add for free)
972  // than emitting an explicit add.
973  if (N.getOpcode() == ISD::ADD) {
974    Base = N.getOperand(0);
975    Index = N.getOperand(1);
976    return true;
977  }
978
979  // Otherwise, do it the hard way, using R0 as the base register.
980  Base = DAG.getRegister(PPC::R0, N.getValueType());
981  Index = N;
982  return true;
983}
984
985/// SelectAddressRegImmShift - Returns true if the address N can be
986/// represented by a base register plus a signed 14-bit displacement
987/// [r+imm*4].  Suitable for use by STD and friends.
988bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
989                                                 SDValue &Base,
990                                                 SelectionDAG &DAG) const {
991  // FIXME dl should come from the parent load or store, not the address
992  DebugLoc dl = N.getDebugLoc();
993  // If this can be more profitably realized as r+r, fail.
994  if (SelectAddressRegReg(N, Disp, Base, DAG))
995    return false;
996
997  if (N.getOpcode() == ISD::ADD) {
998    short imm = 0;
999    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1000      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1001      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1002        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1003      } else {
1004        Base = N.getOperand(0);
1005      }
1006      return true; // [r+i]
1007    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1008      // Match LOAD (ADD (X, Lo(G))).
1009     assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1010             && "Cannot handle constant offsets yet!");
1011      Disp = N.getOperand(1).getOperand(0);  // The global address.
1012      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1013             Disp.getOpcode() == ISD::TargetConstantPool ||
1014             Disp.getOpcode() == ISD::TargetJumpTable);
1015      Base = N.getOperand(0);
1016      return true;  // [&g+r]
1017    }
1018  } else if (N.getOpcode() == ISD::OR) {
1019    short imm = 0;
1020    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1021      // If this is an or of disjoint bitfields, we can codegen this as an add
1022      // (for better address arithmetic) if the LHS and RHS of the OR are
1023      // provably disjoint.
1024      APInt LHSKnownZero, LHSKnownOne;
1025      DAG.ComputeMaskedBits(N.getOperand(0),
1026                            APInt::getAllOnesValue(N.getOperand(0)
1027                                                   .getValueSizeInBits()),
1028                            LHSKnownZero, LHSKnownOne);
1029      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1030        // If all of the bits are known zero on the LHS or RHS, the add won't
1031        // carry.
1032        Base = N.getOperand(0);
1033        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1034        return true;
1035      }
1036    }
1037  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1038    // Loading from a constant address.  Verify low two bits are clear.
1039    if ((CN->getZExtValue() & 3) == 0) {
1040      // If this address fits entirely in a 14-bit sext immediate field, codegen
1041      // this as "d, 0"
1042      short Imm;
1043      if (isIntS16Immediate(CN, Imm)) {
1044        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1045        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
1046        return true;
1047      }
1048
1049      // Fold the low-part of 32-bit absolute addresses into addr mode.
1050      if (CN->getValueType(0) == MVT::i32 ||
1051          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1052        int Addr = (int)CN->getZExtValue();
1053
1054        // Otherwise, break this down into an LIS + disp.
1055        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1056        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1057        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1058        Base = SDValue(DAG.getTargetNode(Opc, dl, CN->getValueType(0), Base),0);
1059        return true;
1060      }
1061    }
1062  }
1063
1064  Disp = DAG.getTargetConstant(0, getPointerTy());
1065  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1066    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1067  else
1068    Base = N;
1069  return true;      // [r+0]
1070}
1071
1072
1073/// getPreIndexedAddressParts - returns true by value, base pointer and
1074/// offset pointer and addressing mode by reference if the node's address
1075/// can be legally represented as pre-indexed load / store address.
1076bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1077                                                  SDValue &Offset,
1078                                                  ISD::MemIndexedMode &AM,
1079                                                  SelectionDAG &DAG) const {
1080  // Disabled by default for now.
1081  if (!EnablePPCPreinc) return false;
1082
1083  SDValue Ptr;
1084  EVT VT;
1085  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1086    Ptr = LD->getBasePtr();
1087    VT = LD->getMemoryVT();
1088
1089  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1090    ST = ST;
1091    Ptr = ST->getBasePtr();
1092    VT  = ST->getMemoryVT();
1093  } else
1094    return false;
1095
1096  // PowerPC doesn't have preinc load/store instructions for vectors.
1097  if (VT.isVector())
1098    return false;
1099
1100  // TODO: Check reg+reg first.
1101
1102  // LDU/STU use reg+imm*4, others use reg+imm.
1103  if (VT != MVT::i64) {
1104    // reg + imm
1105    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1106      return false;
1107  } else {
1108    // reg + imm * 4.
1109    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1110      return false;
1111  }
1112
1113  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1114    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1115    // sext i32 to i64 when addr mode is r+i.
1116    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1117        LD->getExtensionType() == ISD::SEXTLOAD &&
1118        isa<ConstantSDNode>(Offset))
1119      return false;
1120  }
1121
1122  AM = ISD::PRE_INC;
1123  return true;
1124}
1125
1126//===----------------------------------------------------------------------===//
1127//  LowerOperation implementation
1128//===----------------------------------------------------------------------===//
1129
1130SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1131                                             SelectionDAG &DAG) {
1132  EVT PtrVT = Op.getValueType();
1133  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1134  Constant *C = CP->getConstVal();
1135  SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1136  SDValue Zero = DAG.getConstant(0, PtrVT);
1137  // FIXME there isn't really any debug info here
1138  DebugLoc dl = Op.getDebugLoc();
1139
1140  const TargetMachine &TM = DAG.getTarget();
1141
1142  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
1143  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
1144
1145  // If this is a non-darwin platform, we don't support non-static relo models
1146  // yet.
1147  if (TM.getRelocationModel() == Reloc::Static ||
1148      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1149    // Generate non-pic code that has direct accesses to the constant pool.
1150    // The address of the global is just (hi(&g)+lo(&g)).
1151    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1152  }
1153
1154  if (TM.getRelocationModel() == Reloc::PIC_) {
1155    // With PIC, the first instruction is actually "GR+hi(&G)".
1156    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1157                     DAG.getNode(PPCISD::GlobalBaseReg,
1158                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1159  }
1160
1161  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1162  return Lo;
1163}
1164
1165SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
1166  EVT PtrVT = Op.getValueType();
1167  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1168  SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1169  SDValue Zero = DAG.getConstant(0, PtrVT);
1170  // FIXME there isn't really any debug loc here
1171  DebugLoc dl = Op.getDebugLoc();
1172
1173  const TargetMachine &TM = DAG.getTarget();
1174
1175  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
1176  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
1177
1178  // If this is a non-darwin platform, we don't support non-static relo models
1179  // yet.
1180  if (TM.getRelocationModel() == Reloc::Static ||
1181      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1182    // Generate non-pic code that has direct accesses to the constant pool.
1183    // The address of the global is just (hi(&g)+lo(&g)).
1184    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1185  }
1186
1187  if (TM.getRelocationModel() == Reloc::PIC_) {
1188    // With PIC, the first instruction is actually "GR+hi(&G)".
1189    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1190                     DAG.getNode(PPCISD::GlobalBaseReg,
1191                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1192  }
1193
1194  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1195  return Lo;
1196}
1197
1198SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1199                                                   SelectionDAG &DAG) {
1200  llvm_unreachable("TLS not implemented for PPC.");
1201  return SDValue(); // Not reached
1202}
1203
1204SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1205                                              SelectionDAG &DAG) {
1206  EVT PtrVT = Op.getValueType();
1207  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1208  GlobalValue *GV = GSDN->getGlobal();
1209  SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1210  SDValue Zero = DAG.getConstant(0, PtrVT);
1211  // FIXME there isn't really any debug info here
1212  DebugLoc dl = GSDN->getDebugLoc();
1213
1214  const TargetMachine &TM = DAG.getTarget();
1215
1216  // 64-bit SVR4 ABI code is always position-independent.
1217  // The actual address of the GlobalValue is stored in the TOC.
1218  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1219    return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
1220                       DAG.getRegister(PPC::X2, MVT::i64));
1221  }
1222
1223  SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
1224  SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
1225
1226  // If this is a non-darwin platform, we don't support non-static relo models
1227  // yet.
1228  if (TM.getRelocationModel() == Reloc::Static ||
1229      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1230    // Generate non-pic code that has direct accesses to globals.
1231    // The address of the global is just (hi(&g)+lo(&g)).
1232    return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1233  }
1234
1235  if (TM.getRelocationModel() == Reloc::PIC_) {
1236    // With PIC, the first instruction is actually "GR+hi(&G)".
1237    Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
1238                     DAG.getNode(PPCISD::GlobalBaseReg,
1239                                 DebugLoc::getUnknownLoc(), PtrVT), Hi);
1240  }
1241
1242  Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
1243
1244  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
1245    return Lo;
1246
1247  // If the global is weak or external, we have to go through the lazy
1248  // resolution stub.
1249  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0);
1250}
1251
1252SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
1253  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1254  DebugLoc dl = Op.getDebugLoc();
1255
1256  // If we're comparing for equality to zero, expose the fact that this is
1257  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1258  // fold the new nodes.
1259  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1260    if (C->isNullValue() && CC == ISD::SETEQ) {
1261      EVT VT = Op.getOperand(0).getValueType();
1262      SDValue Zext = Op.getOperand(0);
1263      if (VT.bitsLT(MVT::i32)) {
1264        VT = MVT::i32;
1265        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1266      }
1267      unsigned Log2b = Log2_32(VT.getSizeInBits());
1268      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1269      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1270                                DAG.getConstant(Log2b, MVT::i32));
1271      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1272    }
1273    // Leave comparisons against 0 and -1 alone for now, since they're usually
1274    // optimized.  FIXME: revisit this when we can custom lower all setcc
1275    // optimizations.
1276    if (C->isAllOnesValue() || C->isNullValue())
1277      return SDValue();
1278  }
1279
1280  // If we have an integer seteq/setne, turn it into a compare against zero
1281  // by xor'ing the rhs with the lhs, which is faster than setting a
1282  // condition register, reading it back out, and masking the correct bit.  The
1283  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1284  // the result to other bit-twiddling opportunities.
1285  EVT LHSVT = Op.getOperand(0).getValueType();
1286  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1287    EVT VT = Op.getValueType();
1288    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1289                                Op.getOperand(1));
1290    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1291  }
1292  return SDValue();
1293}
1294
1295SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1296                              int VarArgsFrameIndex,
1297                              int VarArgsStackOffset,
1298                              unsigned VarArgsNumGPR,
1299                              unsigned VarArgsNumFPR,
1300                              const PPCSubtarget &Subtarget) {
1301
1302  llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
1303  return SDValue(); // Not reached
1304}
1305
1306SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
1307  SDValue Chain = Op.getOperand(0);
1308  SDValue Trmp = Op.getOperand(1); // trampoline
1309  SDValue FPtr = Op.getOperand(2); // nested function
1310  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1311  DebugLoc dl = Op.getDebugLoc();
1312
1313  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1314  bool isPPC64 = (PtrVT == MVT::i64);
1315  const Type *IntPtrTy =
1316    DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1317                                                             *DAG.getContext());
1318
1319  TargetLowering::ArgListTy Args;
1320  TargetLowering::ArgListEntry Entry;
1321
1322  Entry.Ty = IntPtrTy;
1323  Entry.Node = Trmp; Args.push_back(Entry);
1324
1325  // TrampSize == (isPPC64 ? 48 : 40);
1326  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1327                               isPPC64 ? MVT::i64 : MVT::i32);
1328  Args.push_back(Entry);
1329
1330  Entry.Node = FPtr; Args.push_back(Entry);
1331  Entry.Node = Nest; Args.push_back(Entry);
1332
1333  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1334  std::pair<SDValue, SDValue> CallResult =
1335    LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
1336                false, false, false, false, 0, CallingConv::C, false,
1337                /*isReturnValueUsed=*/true,
1338                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1339                Args, DAG, dl);
1340
1341  SDValue Ops[] =
1342    { CallResult.first, CallResult.second };
1343
1344  return DAG.getMergeValues(Ops, 2, dl);
1345}
1346
1347SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1348                                        int VarArgsFrameIndex,
1349                                        int VarArgsStackOffset,
1350                                        unsigned VarArgsNumGPR,
1351                                        unsigned VarArgsNumFPR,
1352                                        const PPCSubtarget &Subtarget) {
1353  DebugLoc dl = Op.getDebugLoc();
1354
1355  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1356    // vastart just stores the address of the VarArgsFrameIndex slot into the
1357    // memory location argument.
1358    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1359    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1360    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1361    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0);
1362  }
1363
1364  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1365  // We suppose the given va_list is already allocated.
1366  //
1367  // typedef struct {
1368  //  char gpr;     /* index into the array of 8 GPRs
1369  //                 * stored in the register save area
1370  //                 * gpr=0 corresponds to r3,
1371  //                 * gpr=1 to r4, etc.
1372  //                 */
1373  //  char fpr;     /* index into the array of 8 FPRs
1374  //                 * stored in the register save area
1375  //                 * fpr=0 corresponds to f1,
1376  //                 * fpr=1 to f2, etc.
1377  //                 */
1378  //  char *overflow_arg_area;
1379  //                /* location on stack that holds
1380  //                 * the next overflow argument
1381  //                 */
1382  //  char *reg_save_area;
1383  //               /* where r3:r10 and f1:f8 (if saved)
1384  //                * are stored
1385  //                */
1386  // } va_list[1];
1387
1388
1389  SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32);
1390  SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
1391
1392
1393  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1394
1395  SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1396  SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1397
1398  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1399  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1400
1401  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1402  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1403
1404  uint64_t FPROffset = 1;
1405  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1406
1407  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1408
1409  // Store first byte : number of int regs
1410  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1411                                         Op.getOperand(1), SV, 0, MVT::i8);
1412  uint64_t nextOffset = FPROffset;
1413  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1414                                  ConstFPROffset);
1415
1416  // Store second byte : number of float regs
1417  SDValue secondStore =
1418    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8);
1419  nextOffset += StackOffset;
1420  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1421
1422  // Store second word : arguments given on stack
1423  SDValue thirdStore =
1424    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset);
1425  nextOffset += FrameOffset;
1426  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1427
1428  // Store third word : arguments given in registers
1429  return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset);
1430
1431}
1432
1433#include "PPCGenCallingConv.inc"
1434
1435static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
1436                                     CCValAssign::LocInfo &LocInfo,
1437                                     ISD::ArgFlagsTy &ArgFlags,
1438                                     CCState &State) {
1439  return true;
1440}
1441
1442static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
1443                                            EVT &LocVT,
1444                                            CCValAssign::LocInfo &LocInfo,
1445                                            ISD::ArgFlagsTy &ArgFlags,
1446                                            CCState &State) {
1447  static const unsigned ArgRegs[] = {
1448    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1449    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1450  };
1451  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1452
1453  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1454
1455  // Skip one register if the first unallocated register has an even register
1456  // number and there are still argument registers available which have not been
1457  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1458  // need to skip a register if RegNum is odd.
1459  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1460    State.AllocateReg(ArgRegs[RegNum]);
1461  }
1462
1463  // Always return false here, as this function only makes sure that the first
1464  // unallocated register has an odd register number and does not actually
1465  // allocate a register for the current argument.
1466  return false;
1467}
1468
1469static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
1470                                              EVT &LocVT,
1471                                              CCValAssign::LocInfo &LocInfo,
1472                                              ISD::ArgFlagsTy &ArgFlags,
1473                                              CCState &State) {
1474  static const unsigned ArgRegs[] = {
1475    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1476    PPC::F8
1477  };
1478
1479  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1480
1481  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1482
1483  // If there is only one Floating-point register left we need to put both f64
1484  // values of a split ppc_fp128 value on the stack.
1485  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1486    State.AllocateReg(ArgRegs[RegNum]);
1487  }
1488
1489  // Always return false here, as this function only makes sure that the two f64
1490  // values a ppc_fp128 value is split into are both passed in registers or both
1491  // passed on the stack and does not actually allocate a register for the
1492  // current argument.
1493  return false;
1494}
1495
1496/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1497/// on Darwin.
1498static const unsigned *GetFPR() {
1499  static const unsigned FPR[] = {
1500    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1501    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1502  };
1503
1504  return FPR;
1505}
1506
1507/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1508/// the stack.
1509static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1510                                       unsigned PtrByteSize) {
1511  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1512  if (Flags.isByVal())
1513    ArgSize = Flags.getByValSize();
1514  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1515
1516  return ArgSize;
1517}
1518
1519SDValue
1520PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1521                                        unsigned CallConv, bool isVarArg,
1522                                        const SmallVectorImpl<ISD::InputArg>
1523                                          &Ins,
1524                                        DebugLoc dl, SelectionDAG &DAG,
1525                                        SmallVectorImpl<SDValue> &InVals) {
1526  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1527    return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1528                                     dl, DAG, InVals);
1529  } else {
1530    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1531                                       dl, DAG, InVals);
1532  }
1533}
1534
1535SDValue
1536PPCTargetLowering::LowerFormalArguments_SVR4(
1537                                      SDValue Chain,
1538                                      unsigned CallConv, bool isVarArg,
1539                                      const SmallVectorImpl<ISD::InputArg>
1540                                        &Ins,
1541                                      DebugLoc dl, SelectionDAG &DAG,
1542                                      SmallVectorImpl<SDValue> &InVals) {
1543
1544  // 32-bit SVR4 ABI Stack Frame Layout:
1545  //              +-----------------------------------+
1546  //        +-->  |            Back chain             |
1547  //        |     +-----------------------------------+
1548  //        |     | Floating-point register save area |
1549  //        |     +-----------------------------------+
1550  //        |     |    General register save area     |
1551  //        |     +-----------------------------------+
1552  //        |     |          CR save word             |
1553  //        |     +-----------------------------------+
1554  //        |     |         VRSAVE save word          |
1555  //        |     +-----------------------------------+
1556  //        |     |         Alignment padding         |
1557  //        |     +-----------------------------------+
1558  //        |     |     Vector register save area     |
1559  //        |     +-----------------------------------+
1560  //        |     |       Local variable space        |
1561  //        |     +-----------------------------------+
1562  //        |     |        Parameter list area        |
1563  //        |     +-----------------------------------+
1564  //        |     |           LR save word            |
1565  //        |     +-----------------------------------+
1566  // SP-->  +---  |            Back chain             |
1567  //              +-----------------------------------+
1568  //
1569  // Specifications:
1570  //   System V Application Binary Interface PowerPC Processor Supplement
1571  //   AltiVec Technology Programming Interface Manual
1572
1573  MachineFunction &MF = DAG.getMachineFunction();
1574  MachineFrameInfo *MFI = MF.getFrameInfo();
1575
1576  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1577  // Potential tail calls could cause overwriting of argument stack slots.
1578  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1579  unsigned PtrByteSize = 4;
1580
1581  // Assign locations to all of the incoming arguments.
1582  SmallVector<CCValAssign, 16> ArgLocs;
1583  CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
1584                 *DAG.getContext());
1585
1586  // Reserve space for the linkage area on the stack.
1587  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
1588
1589  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1590
1591  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1592    CCValAssign &VA = ArgLocs[i];
1593
1594    // Arguments stored in registers.
1595    if (VA.isRegLoc()) {
1596      TargetRegisterClass *RC;
1597      EVT ValVT = VA.getValVT();
1598
1599      switch (ValVT.getSimpleVT().SimpleTy) {
1600        default:
1601          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1602        case MVT::i32:
1603          RC = PPC::GPRCRegisterClass;
1604          break;
1605        case MVT::f32:
1606          RC = PPC::F4RCRegisterClass;
1607          break;
1608        case MVT::f64:
1609          RC = PPC::F8RCRegisterClass;
1610          break;
1611        case MVT::v16i8:
1612        case MVT::v8i16:
1613        case MVT::v4i32:
1614        case MVT::v4f32:
1615          RC = PPC::VRRCRegisterClass;
1616          break;
1617      }
1618
1619      // Transform the arguments stored in physical registers into virtual ones.
1620      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1621      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1622
1623      InVals.push_back(ArgValue);
1624    } else {
1625      // Argument stored in memory.
1626      assert(VA.isMemLoc());
1627
1628      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1629      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1630                                      isImmutable);
1631
1632      // Create load nodes to retrieve arguments from the stack.
1633      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1634      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0));
1635    }
1636  }
1637
1638  // Assign locations to all of the incoming aggregate by value arguments.
1639  // Aggregates passed by value are stored in the local variable space of the
1640  // caller's stack frame, right above the parameter list area.
1641  SmallVector<CCValAssign, 16> ByValArgLocs;
1642  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
1643                      ByValArgLocs, *DAG.getContext());
1644
1645  // Reserve stack space for the allocations in CCInfo.
1646  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1647
1648  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1649
1650  // Area that is at least reserved in the caller of this function.
1651  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1652
1653  // Set the size that is at least reserved in caller of this function.  Tail
1654  // call optimized function's reserved stack space needs to be aligned so that
1655  // taking the difference between two stack areas will result in an aligned
1656  // stack.
1657  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1658
1659  MinReservedArea =
1660    std::max(MinReservedArea,
1661             PPCFrameInfo::getMinCallFrameSize(false, false));
1662
1663  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
1664    getStackAlignment();
1665  unsigned AlignMask = TargetAlign-1;
1666  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1667
1668  FI->setMinReservedArea(MinReservedArea);
1669
1670  SmallVector<SDValue, 8> MemOps;
1671
1672  // If the function takes variable number of arguments, make a frame index for
1673  // the start of the first vararg value... for expansion of llvm.va_start.
1674  if (isVarArg) {
1675    static const unsigned GPArgRegs[] = {
1676      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1677      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1678    };
1679    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1680
1681    static const unsigned FPArgRegs[] = {
1682      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1683      PPC::F8
1684    };
1685    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1686
1687    VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs);
1688    VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs);
1689
1690    // Make room for NumGPArgRegs and NumFPArgRegs.
1691    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1692                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1693
1694    VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1695                                                CCInfo.getNextStackOffset());
1696
1697    VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8);
1698    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1699
1700    // The fixed integer arguments of a variadic function are
1701    // stored to the VarArgsFrameIndex on the stack.
1702    unsigned GPRIndex = 0;
1703    for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
1704      SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
1705      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1706      MemOps.push_back(Store);
1707      // Increment the address by four for the next argument to store
1708      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1709      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1710    }
1711
1712    // If this function is vararg, store any remaining integer argument regs
1713    // to their spots on the stack so that they may be loaded by deferencing the
1714    // result of va_next.
1715    for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1716      unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1717
1718      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1719      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1720      MemOps.push_back(Store);
1721      // Increment the address by four for the next argument to store
1722      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1723      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1724    }
1725
1726    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1727    // is set.
1728
1729    // The double arguments are stored to the VarArgsFrameIndex
1730    // on the stack.
1731    unsigned FPRIndex = 0;
1732    for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
1733      SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
1734      SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0);
1735      MemOps.push_back(Store);
1736      // Increment the address by eight for the next argument to store
1737      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1738                                         PtrVT);
1739      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1740    }
1741
1742    for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1743      unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1744
1745      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1746      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1747      MemOps.push_back(Store);
1748      // Increment the address by eight for the next argument to store
1749      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1750                                         PtrVT);
1751      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1752    }
1753  }
1754
1755  if (!MemOps.empty())
1756    Chain = DAG.getNode(ISD::TokenFactor, dl,
1757                        MVT::Other, &MemOps[0], MemOps.size());
1758
1759  return Chain;
1760}
1761
1762SDValue
1763PPCTargetLowering::LowerFormalArguments_Darwin(
1764                                      SDValue Chain,
1765                                      unsigned CallConv, bool isVarArg,
1766                                      const SmallVectorImpl<ISD::InputArg>
1767                                        &Ins,
1768                                      DebugLoc dl, SelectionDAG &DAG,
1769                                      SmallVectorImpl<SDValue> &InVals) {
1770  // TODO: add description of PPC stack frame format, or at least some docs.
1771  //
1772  MachineFunction &MF = DAG.getMachineFunction();
1773  MachineFrameInfo *MFI = MF.getFrameInfo();
1774
1775  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1776  bool isPPC64 = PtrVT == MVT::i64;
1777  // Potential tail calls could cause overwriting of argument stack slots.
1778  bool isImmutable = !(PerformTailCallOpt && (CallConv==CallingConv::Fast));
1779  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1780
1781  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
1782  // Area that is at least reserved in caller of this function.
1783  unsigned MinReservedArea = ArgOffset;
1784
1785  static const unsigned GPR_32[] = {           // 32-bit registers.
1786    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1787    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1788  };
1789  static const unsigned GPR_64[] = {           // 64-bit registers.
1790    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1791    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1792  };
1793
1794  static const unsigned *FPR = GetFPR();
1795
1796  static const unsigned VR[] = {
1797    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1798    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1799  };
1800
1801  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1802  const unsigned Num_FPR_Regs = 13;
1803  const unsigned Num_VR_Regs  = array_lengthof( VR);
1804
1805  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1806
1807  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1808
1809  // In 32-bit non-varargs functions, the stack space for vectors is after the
1810  // stack space for non-vectors.  We do not use this space unless we have
1811  // too many vectors to fit in registers, something that only occurs in
1812  // constructed examples:), but we have to walk the arglist to figure
1813  // that out...for the pathological case, compute VecArgOffset as the
1814  // start of the vector parameter area.  Computing VecArgOffset is the
1815  // entire point of the following loop.
1816  unsigned VecArgOffset = ArgOffset;
1817  if (!isVarArg && !isPPC64) {
1818    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1819         ++ArgNo) {
1820      EVT ObjectVT = Ins[ArgNo].VT;
1821      unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1822      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1823
1824      if (Flags.isByVal()) {
1825        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1826        ObjSize = Flags.getByValSize();
1827        unsigned ArgSize =
1828                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1829        VecArgOffset += ArgSize;
1830        continue;
1831      }
1832
1833      switch(ObjectVT.getSimpleVT().SimpleTy) {
1834      default: llvm_unreachable("Unhandled argument type!");
1835      case MVT::i32:
1836      case MVT::f32:
1837        VecArgOffset += isPPC64 ? 8 : 4;
1838        break;
1839      case MVT::i64:  // PPC64
1840      case MVT::f64:
1841        VecArgOffset += 8;
1842        break;
1843      case MVT::v4f32:
1844      case MVT::v4i32:
1845      case MVT::v8i16:
1846      case MVT::v16i8:
1847        // Nothing to do, we're only looking at Nonvector args here.
1848        break;
1849      }
1850    }
1851  }
1852  // We've found where the vector parameter area in memory is.  Skip the
1853  // first 12 parameters; these don't use that memory.
1854  VecArgOffset = ((VecArgOffset+15)/16)*16;
1855  VecArgOffset += 12*16;
1856
1857  // Add DAG nodes to load the arguments or copy them out of registers.  On
1858  // entry to a function on PPC, the arguments start after the linkage area,
1859  // although the first ones are often in registers.
1860
1861  SmallVector<SDValue, 8> MemOps;
1862  unsigned nAltivecParamsAtEnd = 0;
1863  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1864    SDValue ArgVal;
1865    bool needsLoad = false;
1866    EVT ObjectVT = Ins[ArgNo].VT;
1867    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1868    unsigned ArgSize = ObjSize;
1869    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1870
1871    unsigned CurArgOffset = ArgOffset;
1872
1873    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1874    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1875        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1876      if (isVarArg || isPPC64) {
1877        MinReservedArea = ((MinReservedArea+15)/16)*16;
1878        MinReservedArea += CalculateStackSlotSize(ObjectVT,
1879                                                  Flags,
1880                                                  PtrByteSize);
1881      } else  nAltivecParamsAtEnd++;
1882    } else
1883      // Calculate min reserved area.
1884      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1885                                                Flags,
1886                                                PtrByteSize);
1887
1888    // FIXME the codegen can be much improved in some cases.
1889    // We do not have to keep everything in memory.
1890    if (Flags.isByVal()) {
1891      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
1892      ObjSize = Flags.getByValSize();
1893      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1894      // Objects of size 1 and 2 are right justified, everything else is
1895      // left justified.  This means the memory address is adjusted forwards.
1896      if (ObjSize==1 || ObjSize==2) {
1897        CurArgOffset = CurArgOffset + (4 - ObjSize);
1898      }
1899      // The value of the object is its address.
1900      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
1901      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1902      InVals.push_back(FIN);
1903      if (ObjSize==1 || ObjSize==2) {
1904        if (GPR_idx != Num_GPR_Regs) {
1905          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1906          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1907          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
1908                               NULL, 0, ObjSize==1 ? MVT::i8 : MVT::i16 );
1909          MemOps.push_back(Store);
1910          ++GPR_idx;
1911        }
1912
1913        ArgOffset += PtrByteSize;
1914
1915        continue;
1916      }
1917      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
1918        // Store whatever pieces of the object are in registers
1919        // to memory.  ArgVal will be address of the beginning of
1920        // the object.
1921        if (GPR_idx != Num_GPR_Regs) {
1922          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1923          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset);
1924          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1925          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1926          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
1927          MemOps.push_back(Store);
1928          ++GPR_idx;
1929          ArgOffset += PtrByteSize;
1930        } else {
1931          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
1932          break;
1933        }
1934      }
1935      continue;
1936    }
1937
1938    switch (ObjectVT.getSimpleVT().SimpleTy) {
1939    default: llvm_unreachable("Unhandled argument type!");
1940    case MVT::i32:
1941      if (!isPPC64) {
1942        if (GPR_idx != Num_GPR_Regs) {
1943          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
1944          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1945          ++GPR_idx;
1946        } else {
1947          needsLoad = true;
1948          ArgSize = PtrByteSize;
1949        }
1950        // All int arguments reserve stack space in the Darwin ABI.
1951        ArgOffset += PtrByteSize;
1952        break;
1953      }
1954      // FALLTHROUGH
1955    case MVT::i64:  // PPC64
1956      if (GPR_idx != Num_GPR_Regs) {
1957        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
1958        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1959
1960        if (ObjectVT == MVT::i32) {
1961          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
1962          // value to MVT::i64 and then truncate to the correct register size.
1963          if (Flags.isSExt())
1964            ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
1965                                 DAG.getValueType(ObjectVT));
1966          else if (Flags.isZExt())
1967            ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
1968                                 DAG.getValueType(ObjectVT));
1969
1970          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
1971        }
1972
1973        ++GPR_idx;
1974      } else {
1975        needsLoad = true;
1976        ArgSize = PtrByteSize;
1977      }
1978      // All int arguments reserve stack space in the Darwin ABI.
1979      ArgOffset += 8;
1980      break;
1981
1982    case MVT::f32:
1983    case MVT::f64:
1984      // Every 4 bytes of argument space consumes one of the GPRs available for
1985      // argument passing.
1986      if (GPR_idx != Num_GPR_Regs) {
1987        ++GPR_idx;
1988        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1989          ++GPR_idx;
1990      }
1991      if (FPR_idx != Num_FPR_Regs) {
1992        unsigned VReg;
1993
1994        if (ObjectVT == MVT::f32)
1995          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
1996        else
1997          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
1998
1999        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2000        ++FPR_idx;
2001      } else {
2002        needsLoad = true;
2003      }
2004
2005      // All FP arguments reserve stack space in the Darwin ABI.
2006      ArgOffset += isPPC64 ? 8 : ObjSize;
2007      break;
2008    case MVT::v4f32:
2009    case MVT::v4i32:
2010    case MVT::v8i16:
2011    case MVT::v16i8:
2012      // Note that vector arguments in registers don't reserve stack space,
2013      // except in varargs functions.
2014      if (VR_idx != Num_VR_Regs) {
2015        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2016        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2017        if (isVarArg) {
2018          while ((ArgOffset % 16) != 0) {
2019            ArgOffset += PtrByteSize;
2020            if (GPR_idx != Num_GPR_Regs)
2021              GPR_idx++;
2022          }
2023          ArgOffset += 16;
2024          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2025        }
2026        ++VR_idx;
2027      } else {
2028        if (!isVarArg && !isPPC64) {
2029          // Vectors go after all the nonvectors.
2030          CurArgOffset = VecArgOffset;
2031          VecArgOffset += 16;
2032        } else {
2033          // Vectors are aligned.
2034          ArgOffset = ((ArgOffset+15)/16)*16;
2035          CurArgOffset = ArgOffset;
2036          ArgOffset += 16;
2037        }
2038        needsLoad = true;
2039      }
2040      break;
2041    }
2042
2043    // We need to load the argument to a virtual register if we determined above
2044    // that we ran out of physical registers of the appropriate type.
2045    if (needsLoad) {
2046      int FI = MFI->CreateFixedObject(ObjSize,
2047                                      CurArgOffset + (ArgSize - ObjSize),
2048                                      isImmutable);
2049      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2050      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0);
2051    }
2052
2053    InVals.push_back(ArgVal);
2054  }
2055
2056  // Set the size that is at least reserved in caller of this function.  Tail
2057  // call optimized function's reserved stack space needs to be aligned so that
2058  // taking the difference between two stack areas will result in an aligned
2059  // stack.
2060  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2061  // Add the Altivec parameters at the end, if needed.
2062  if (nAltivecParamsAtEnd) {
2063    MinReservedArea = ((MinReservedArea+15)/16)*16;
2064    MinReservedArea += 16*nAltivecParamsAtEnd;
2065  }
2066  MinReservedArea =
2067    std::max(MinReservedArea,
2068             PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2069  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2070    getStackAlignment();
2071  unsigned AlignMask = TargetAlign-1;
2072  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2073  FI->setMinReservedArea(MinReservedArea);
2074
2075  // If the function takes variable number of arguments, make a frame index for
2076  // the start of the first vararg value... for expansion of llvm.va_start.
2077  if (isVarArg) {
2078    int Depth = ArgOffset;
2079
2080    VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2081                                               Depth);
2082    SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
2083
2084    // If this function is vararg, store any remaining integer argument regs
2085    // to their spots on the stack so that they may be loaded by deferencing the
2086    // result of va_next.
2087    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2088      unsigned VReg;
2089
2090      if (isPPC64)
2091        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2092      else
2093        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2094
2095      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2096      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0);
2097      MemOps.push_back(Store);
2098      // Increment the address by four for the next argument to store
2099      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2100      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2101    }
2102  }
2103
2104  if (!MemOps.empty())
2105    Chain = DAG.getNode(ISD::TokenFactor, dl,
2106                        MVT::Other, &MemOps[0], MemOps.size());
2107
2108  return Chain;
2109}
2110
2111/// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2112/// linkage area for the Darwin ABI.
2113static unsigned
2114CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2115                                     bool isPPC64,
2116                                     bool isVarArg,
2117                                     unsigned CC,
2118                                     const SmallVectorImpl<ISD::OutputArg>
2119                                       &Outs,
2120                                     unsigned &nAltivecParamsAtEnd) {
2121  // Count how many bytes are to be pushed on the stack, including the linkage
2122  // area, and parameter passing area.  We start with 24/48 bytes, which is
2123  // prereserved space for [SP][CR][LR][3 x unused].
2124  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
2125  unsigned NumOps = Outs.size();
2126  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2127
2128  // Add up all the space actually used.
2129  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2130  // they all go in registers, but we must reserve stack space for them for
2131  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2132  // assigned stack space in order, with padding so Altivec parameters are
2133  // 16-byte aligned.
2134  nAltivecParamsAtEnd = 0;
2135  for (unsigned i = 0; i != NumOps; ++i) {
2136    SDValue Arg = Outs[i].Val;
2137    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2138    EVT ArgVT = Arg.getValueType();
2139    // Varargs Altivec parameters are padded to a 16 byte boundary.
2140    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2141        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2142      if (!isVarArg && !isPPC64) {
2143        // Non-varargs Altivec parameters go after all the non-Altivec
2144        // parameters; handle those later so we know how much padding we need.
2145        nAltivecParamsAtEnd++;
2146        continue;
2147      }
2148      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2149      NumBytes = ((NumBytes+15)/16)*16;
2150    }
2151    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2152  }
2153
2154   // Allow for Altivec parameters at the end, if needed.
2155  if (nAltivecParamsAtEnd) {
2156    NumBytes = ((NumBytes+15)/16)*16;
2157    NumBytes += 16*nAltivecParamsAtEnd;
2158  }
2159
2160  // The prolog code of the callee may store up to 8 GPR argument registers to
2161  // the stack, allowing va_start to index over them in memory if its varargs.
2162  // Because we cannot tell if this is needed on the caller side, we have to
2163  // conservatively assume that it is needed.  As such, make sure we have at
2164  // least enough stack space for the caller to store the 8 GPRs.
2165  NumBytes = std::max(NumBytes,
2166                      PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
2167
2168  // Tail call needs the stack to be aligned.
2169  if (CC==CallingConv::Fast && PerformTailCallOpt) {
2170    unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
2171      getStackAlignment();
2172    unsigned AlignMask = TargetAlign-1;
2173    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2174  }
2175
2176  return NumBytes;
2177}
2178
2179/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2180/// adjusted to accomodate the arguments for the tailcall.
2181static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool IsTailCall,
2182                                   unsigned ParamSize) {
2183
2184  if (!IsTailCall) return 0;
2185
2186  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2187  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2188  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2189  // Remember only if the new adjustement is bigger.
2190  if (SPDiff < FI->getTailCallSPDelta())
2191    FI->setTailCallSPDelta(SPDiff);
2192
2193  return SPDiff;
2194}
2195
2196/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2197/// for tail call optimization. Targets which want to do tail call
2198/// optimization should implement this function.
2199bool
2200PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2201                                                     unsigned CalleeCC,
2202                                                     bool isVarArg,
2203                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2204                                                     SelectionDAG& DAG) const {
2205  // Variable argument functions are not supported.
2206  if (isVarArg)
2207    return false;
2208
2209  MachineFunction &MF = DAG.getMachineFunction();
2210  unsigned CallerCC = MF.getFunction()->getCallingConv();
2211  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2212    // Functions containing by val parameters are not supported.
2213    for (unsigned i = 0; i != Ins.size(); i++) {
2214       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2215       if (Flags.isByVal()) return false;
2216    }
2217
2218    // Non PIC/GOT  tail calls are supported.
2219    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2220      return true;
2221
2222    // At the moment we can only do local tail calls (in same module, hidden
2223    // or protected) if we are generating PIC.
2224    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2225      return G->getGlobal()->hasHiddenVisibility()
2226          || G->getGlobal()->hasProtectedVisibility();
2227  }
2228
2229  return false;
2230}
2231
2232/// isCallCompatibleAddress - Return the immediate to use if the specified
2233/// 32-bit value is representable in the immediate field of a BxA instruction.
2234static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2235  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2236  if (!C) return 0;
2237
2238  int Addr = C->getZExtValue();
2239  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2240      (Addr << 6 >> 6) != Addr)
2241    return 0;  // Top 6 bits have to be sext of immediate.
2242
2243  return DAG.getConstant((int)C->getZExtValue() >> 2,
2244                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2245}
2246
2247namespace {
2248
2249struct TailCallArgumentInfo {
2250  SDValue Arg;
2251  SDValue FrameIdxOp;
2252  int       FrameIdx;
2253
2254  TailCallArgumentInfo() : FrameIdx(0) {}
2255};
2256
2257}
2258
2259/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2260static void
2261StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2262                                           SDValue Chain,
2263                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2264                   SmallVector<SDValue, 8> &MemOpChains,
2265                   DebugLoc dl) {
2266  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2267    SDValue Arg = TailCallArgs[i].Arg;
2268    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2269    int FI = TailCallArgs[i].FrameIdx;
2270    // Store relative to framepointer.
2271    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2272                                       PseudoSourceValue::getFixedStack(FI),
2273                                       0));
2274  }
2275}
2276
2277/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2278/// the appropriate stack slot for the tail call optimized function call.
2279static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2280                                               MachineFunction &MF,
2281                                               SDValue Chain,
2282                                               SDValue OldRetAddr,
2283                                               SDValue OldFP,
2284                                               int SPDiff,
2285                                               bool isPPC64,
2286                                               bool isDarwinABI,
2287                                               DebugLoc dl) {
2288  if (SPDiff) {
2289    // Calculate the new stack slot for the return address.
2290    int SlotSize = isPPC64 ? 8 : 4;
2291    int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
2292                                                                   isDarwinABI);
2293    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2294                                                          NewRetAddrLoc);
2295    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2296    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2297    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2298                         PseudoSourceValue::getFixedStack(NewRetAddr), 0);
2299
2300    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2301    // slot as the FP is never overwritten.
2302    if (isDarwinABI) {
2303      int NewFPLoc =
2304        SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2305      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc);
2306      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2307      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2308                           PseudoSourceValue::getFixedStack(NewFPIdx), 0);
2309    }
2310  }
2311  return Chain;
2312}
2313
2314/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2315/// the position of the argument.
2316static void
2317CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2318                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2319                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2320  int Offset = ArgOffset + SPDiff;
2321  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2322  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
2323  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2324  SDValue FIN = DAG.getFrameIndex(FI, VT);
2325  TailCallArgumentInfo Info;
2326  Info.Arg = Arg;
2327  Info.FrameIdxOp = FIN;
2328  Info.FrameIdx = FI;
2329  TailCallArguments.push_back(Info);
2330}
2331
2332/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2333/// stack slot. Returns the chain as result and the loaded frame pointers in
2334/// LROpOut/FPOpout. Used when tail calling.
2335SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2336                                                        int SPDiff,
2337                                                        SDValue Chain,
2338                                                        SDValue &LROpOut,
2339                                                        SDValue &FPOpOut,
2340                                                        bool isDarwinABI,
2341                                                        DebugLoc dl) {
2342  if (SPDiff) {
2343    // Load the LR and FP stack slot for later adjusting.
2344    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2345    LROpOut = getReturnAddrFrameIndex(DAG);
2346    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0);
2347    Chain = SDValue(LROpOut.getNode(), 1);
2348
2349    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2350    // slot as the FP is never overwritten.
2351    if (isDarwinABI) {
2352      FPOpOut = getFramePointerFrameIndex(DAG);
2353      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0);
2354      Chain = SDValue(FPOpOut.getNode(), 1);
2355    }
2356  }
2357  return Chain;
2358}
2359
2360/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2361/// by "Src" to address "Dst" of size "Size".  Alignment information is
2362/// specified by the specific parameter attribute. The copy will be passed as
2363/// a byval function parameter.
2364/// Sometimes what we are copying is the end of a larger object, the part that
2365/// does not fit in registers.
2366static SDValue
2367CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2368                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2369                          DebugLoc dl) {
2370  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2371  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2372                       false, NULL, 0, NULL, 0);
2373}
2374
2375/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2376/// tail calls.
2377static void
2378LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2379                 SDValue Arg, SDValue PtrOff, int SPDiff,
2380                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
2381                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2382                 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
2383                 DebugLoc dl) {
2384  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2385  if (!isTailCall) {
2386    if (isVector) {
2387      SDValue StackPtr;
2388      if (isPPC64)
2389        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2390      else
2391        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2392      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2393                           DAG.getConstant(ArgOffset, PtrVT));
2394    }
2395    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0));
2396  // Calculate and remember argument location.
2397  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2398                                  TailCallArguments);
2399}
2400
2401static
2402void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2403                     DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2404                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
2405                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2406  MachineFunction &MF = DAG.getMachineFunction();
2407
2408  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2409  // might overwrite each other in case of tail call optimization.
2410  SmallVector<SDValue, 8> MemOpChains2;
2411  // Do not flag preceeding copytoreg stuff together with the following stuff.
2412  InFlag = SDValue();
2413  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2414                                    MemOpChains2, dl);
2415  if (!MemOpChains2.empty())
2416    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2417                        &MemOpChains2[0], MemOpChains2.size());
2418
2419  // Store the return address to the appropriate stack slot.
2420  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2421                                        isPPC64, isDarwinABI, dl);
2422
2423  // Emit callseq_end just before tailcall node.
2424  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2425                             DAG.getIntPtrConstant(0, true), InFlag);
2426  InFlag = Chain.getValue(1);
2427}
2428
2429static
2430unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2431                     SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2432                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2433                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2434                     bool isSVR4ABI) {
2435  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2436  NodeTys.push_back(MVT::Other);   // Returns a chain
2437  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
2438
2439  unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2440
2441  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2442  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2443  // node so that legalize doesn't hack it.
2444  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2445    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
2446  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
2447    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
2448  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
2449    // If this is an absolute destination address, use the munged value.
2450    Callee = SDValue(Dest, 0);
2451  else {
2452    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2453    // to do the call, we can't use PPCISD::CALL.
2454    SDValue MTCTROps[] = {Chain, Callee, InFlag};
2455    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2456                        2 + (InFlag.getNode() != 0));
2457    InFlag = Chain.getValue(1);
2458
2459    NodeTys.clear();
2460    NodeTys.push_back(MVT::Other);
2461    NodeTys.push_back(MVT::Flag);
2462    Ops.push_back(Chain);
2463    CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2464    Callee.setNode(0);
2465    // Add CTR register as callee so a bctr can be emitted later.
2466    if (isTailCall)
2467      Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
2468  }
2469
2470  // If this is a direct call, pass the chain and the callee.
2471  if (Callee.getNode()) {
2472    Ops.push_back(Chain);
2473    Ops.push_back(Callee);
2474  }
2475  // If this is a tail call add stack pointer delta.
2476  if (isTailCall)
2477    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2478
2479  // Add argument registers to the end of the list so that they are known live
2480  // into the call.
2481  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2482    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2483                                  RegsToPass[i].second.getValueType()));
2484
2485  return CallOpc;
2486}
2487
2488SDValue
2489PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2490                                   unsigned CallConv, bool isVarArg,
2491                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2492                                   DebugLoc dl, SelectionDAG &DAG,
2493                                   SmallVectorImpl<SDValue> &InVals) {
2494
2495  SmallVector<CCValAssign, 16> RVLocs;
2496  CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
2497                    RVLocs, *DAG.getContext());
2498  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2499
2500  // Copy all of the result registers out of their specified physreg.
2501  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2502    CCValAssign &VA = RVLocs[i];
2503    EVT VT = VA.getValVT();
2504    assert(VA.isRegLoc() && "Can only return in registers!");
2505    Chain = DAG.getCopyFromReg(Chain, dl,
2506                               VA.getLocReg(), VT, InFlag).getValue(1);
2507    InVals.push_back(Chain.getValue(0));
2508    InFlag = Chain.getValue(2);
2509  }
2510
2511  return Chain;
2512}
2513
2514SDValue
2515PPCTargetLowering::FinishCall(unsigned CallConv, DebugLoc dl, bool isTailCall,
2516                              bool isVarArg,
2517                              SelectionDAG &DAG,
2518                              SmallVector<std::pair<unsigned, SDValue>, 8>
2519                                &RegsToPass,
2520                              SDValue InFlag, SDValue Chain,
2521                              SDValue &Callee,
2522                              int SPDiff, unsigned NumBytes,
2523                              const SmallVectorImpl<ISD::InputArg> &Ins,
2524                              SmallVectorImpl<SDValue> &InVals) {
2525  std::vector<EVT> NodeTys;
2526  SmallVector<SDValue, 8> Ops;
2527  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2528                                 isTailCall, RegsToPass, Ops, NodeTys,
2529                                 PPCSubTarget.isSVR4ABI());
2530
2531  // When performing tail call optimization the callee pops its arguments off
2532  // the stack. Account for this here so these bytes can be pushed back on in
2533  // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2534  int BytesCalleePops =
2535    (CallConv==CallingConv::Fast && PerformTailCallOpt) ? NumBytes : 0;
2536
2537  if (InFlag.getNode())
2538    Ops.push_back(InFlag);
2539
2540  // Emit tail call.
2541  if (isTailCall) {
2542    // If this is the first return lowered for this function, add the regs
2543    // to the liveout set for the function.
2544    if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2545      SmallVector<CCValAssign, 16> RVLocs;
2546      CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
2547                     *DAG.getContext());
2548      CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2549      for (unsigned i = 0; i != RVLocs.size(); ++i)
2550        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2551    }
2552
2553    assert(((Callee.getOpcode() == ISD::Register &&
2554             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2555            Callee.getOpcode() == ISD::TargetExternalSymbol ||
2556            Callee.getOpcode() == ISD::TargetGlobalAddress ||
2557            isa<ConstantSDNode>(Callee)) &&
2558    "Expecting an global address, external symbol, absolute value or register");
2559
2560    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2561  }
2562
2563  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2564  InFlag = Chain.getValue(1);
2565
2566  // Add a NOP immediately after the branch instruction when using the 64-bit
2567  // SVR4 ABI. At link time, if caller and callee are in a different module and
2568  // thus have a different TOC, the call will be replaced with a call to a stub
2569  // function which saves the current TOC, loads the TOC of the callee and
2570  // branches to the callee. The NOP will be replaced with a load instruction
2571  // which restores the TOC of the caller from the TOC save slot of the current
2572  // stack frame. If caller and callee belong to the same module (and have the
2573  // same TOC), the NOP will remain unchanged.
2574  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2575    // Insert NOP.
2576    InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
2577  }
2578
2579  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2580                             DAG.getIntPtrConstant(BytesCalleePops, true),
2581                             InFlag);
2582  if (!Ins.empty())
2583    InFlag = Chain.getValue(1);
2584
2585  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2586                         Ins, dl, DAG, InVals);
2587}
2588
2589SDValue
2590PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2591                             unsigned CallConv, bool isVarArg,
2592                             bool isTailCall,
2593                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2594                             const SmallVectorImpl<ISD::InputArg> &Ins,
2595                             DebugLoc dl, SelectionDAG &DAG,
2596                             SmallVectorImpl<SDValue> &InVals) {
2597  if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
2598    return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2599                          isTailCall, Outs, Ins,
2600                          dl, DAG, InVals);
2601  } else {
2602    return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2603                            isTailCall, Outs, Ins,
2604                            dl, DAG, InVals);
2605  }
2606}
2607
2608SDValue
2609PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2610                                  unsigned CallConv, bool isVarArg,
2611                                  bool isTailCall,
2612                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
2613                                  const SmallVectorImpl<ISD::InputArg> &Ins,
2614                                  DebugLoc dl, SelectionDAG &DAG,
2615                                  SmallVectorImpl<SDValue> &InVals) {
2616  // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2617  // of the 32-bit SVR4 ABI stack frame layout.
2618
2619  assert((!isTailCall ||
2620          (CallConv == CallingConv::Fast && PerformTailCallOpt)) &&
2621         "IsEligibleForTailCallOptimization missed a case!");
2622
2623  assert((CallConv == CallingConv::C ||
2624          CallConv == CallingConv::Fast) && "Unknown calling convention!");
2625
2626  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2627  unsigned PtrByteSize = 4;
2628
2629  MachineFunction &MF = DAG.getMachineFunction();
2630
2631  // Mark this function as potentially containing a function that contains a
2632  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2633  // and restoring the callers stack pointer in this functions epilog. This is
2634  // done because by tail calling the called function might overwrite the value
2635  // in this function's (MF) stack pointer stack slot 0(SP).
2636  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2637    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2638
2639  // Count how many bytes are to be pushed on the stack, including the linkage
2640  // area, parameter list area and the part of the local variable space which
2641  // contains copies of aggregates which are passed by value.
2642
2643  // Assign locations to all of the outgoing arguments.
2644  SmallVector<CCValAssign, 16> ArgLocs;
2645  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
2646                 ArgLocs, *DAG.getContext());
2647
2648  // Reserve space for the linkage area on the stack.
2649  CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
2650
2651  if (isVarArg) {
2652    // Handle fixed and variable vector arguments differently.
2653    // Fixed vector arguments go into registers as long as registers are
2654    // available. Variable vector arguments always go into memory.
2655    unsigned NumArgs = Outs.size();
2656
2657    for (unsigned i = 0; i != NumArgs; ++i) {
2658      EVT ArgVT = Outs[i].Val.getValueType();
2659      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2660      bool Result;
2661
2662      if (Outs[i].IsFixed) {
2663        Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2664                             CCInfo);
2665      } else {
2666        Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2667                                    ArgFlags, CCInfo);
2668      }
2669
2670      if (Result) {
2671#ifndef NDEBUG
2672        errs() << "Call operand #" << i << " has unhandled type "
2673             << ArgVT.getEVTString() << "\n";
2674#endif
2675        llvm_unreachable(0);
2676      }
2677    }
2678  } else {
2679    // All arguments are treated the same.
2680    CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2681  }
2682
2683  // Assign locations to all of the outgoing aggregate by value arguments.
2684  SmallVector<CCValAssign, 16> ByValArgLocs;
2685  CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
2686                      *DAG.getContext());
2687
2688  // Reserve stack space for the allocations in CCInfo.
2689  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2690
2691  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2692
2693  // Size of the linkage area, parameter list area and the part of the local
2694  // space variable where copies of aggregates which are passed by value are
2695  // stored.
2696  unsigned NumBytes = CCByValInfo.getNextStackOffset();
2697
2698  // Calculate by how many bytes the stack has to be adjusted in case of tail
2699  // call optimization.
2700  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2701
2702  // Adjust the stack pointer for the new arguments...
2703  // These operations are automatically eliminated by the prolog/epilog pass
2704  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2705  SDValue CallSeqStart = Chain;
2706
2707  // Load the return address and frame pointer so it can be moved somewhere else
2708  // later.
2709  SDValue LROp, FPOp;
2710  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2711                                       dl);
2712
2713  // Set up a copy of the stack pointer for use loading and storing any
2714  // arguments that may not fit in the registers available for argument
2715  // passing.
2716  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2717
2718  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2719  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2720  SmallVector<SDValue, 8> MemOpChains;
2721
2722  // Walk the register/memloc assignments, inserting copies/loads.
2723  for (unsigned i = 0, j = 0, e = ArgLocs.size();
2724       i != e;
2725       ++i) {
2726    CCValAssign &VA = ArgLocs[i];
2727    SDValue Arg = Outs[i].Val;
2728    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2729
2730    if (Flags.isByVal()) {
2731      // Argument is an aggregate which is passed by value, thus we need to
2732      // create a copy of it in the local variable space of the current stack
2733      // frame (which is the stack frame of the caller) and pass the address of
2734      // this copy to the callee.
2735      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
2736      CCValAssign &ByValVA = ByValArgLocs[j++];
2737      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
2738
2739      // Memory reserved in the local variable space of the callers stack frame.
2740      unsigned LocMemOffset = ByValVA.getLocMemOffset();
2741
2742      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2743      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2744
2745      // Create a copy of the argument in the local area of the current
2746      // stack frame.
2747      SDValue MemcpyCall =
2748        CreateCopyOfByValArgument(Arg, PtrOff,
2749                                  CallSeqStart.getNode()->getOperand(0),
2750                                  Flags, DAG, dl);
2751
2752      // This must go outside the CALLSEQ_START..END.
2753      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2754                           CallSeqStart.getNode()->getOperand(1));
2755      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2756                             NewCallSeqStart.getNode());
2757      Chain = CallSeqStart = NewCallSeqStart;
2758
2759      // Pass the address of the aggregate copy on the stack either in a
2760      // physical register or in the parameter list area of the current stack
2761      // frame to the callee.
2762      Arg = PtrOff;
2763    }
2764
2765    if (VA.isRegLoc()) {
2766      // Put argument in a physical register.
2767      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2768    } else {
2769      // Put argument in the parameter list area of the current stack frame.
2770      assert(VA.isMemLoc());
2771      unsigned LocMemOffset = VA.getLocMemOffset();
2772
2773      if (!isTailCall) {
2774        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2775        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2776
2777        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2778                              PseudoSourceValue::getStack(), LocMemOffset));
2779      } else {
2780        // Calculate and remember argument location.
2781        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
2782                                 TailCallArguments);
2783      }
2784    }
2785  }
2786
2787  if (!MemOpChains.empty())
2788    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2789                        &MemOpChains[0], MemOpChains.size());
2790
2791  // Build a sequence of copy-to-reg nodes chained together with token chain
2792  // and flag operands which copy the outgoing args into the appropriate regs.
2793  SDValue InFlag;
2794  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2795    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2796                             RegsToPass[i].second, InFlag);
2797    InFlag = Chain.getValue(1);
2798  }
2799
2800  // Set CR6 to true if this is a vararg call.
2801  if (isVarArg) {
2802    SDValue SetCR(DAG.getTargetNode(PPC::CRSET, dl, MVT::i32), 0);
2803    Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
2804    InFlag = Chain.getValue(1);
2805  }
2806
2807  if (isTailCall) {
2808    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
2809                    false, TailCallArguments);
2810  }
2811
2812  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
2813                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
2814                    Ins, InVals);
2815}
2816
2817SDValue
2818PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
2819                                    unsigned CallConv, bool isVarArg,
2820                                    bool isTailCall,
2821                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2822                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2823                                    DebugLoc dl, SelectionDAG &DAG,
2824                                    SmallVectorImpl<SDValue> &InVals) {
2825
2826  unsigned NumOps  = Outs.size();
2827
2828  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2829  bool isPPC64 = PtrVT == MVT::i64;
2830  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2831
2832  MachineFunction &MF = DAG.getMachineFunction();
2833
2834  // Mark this function as potentially containing a function that contains a
2835  // tail call. As a consequence the frame pointer will be used for dynamicalloc
2836  // and restoring the callers stack pointer in this functions epilog. This is
2837  // done because by tail calling the called function might overwrite the value
2838  // in this function's (MF) stack pointer stack slot 0(SP).
2839  if (PerformTailCallOpt && CallConv==CallingConv::Fast)
2840    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2841
2842  unsigned nAltivecParamsAtEnd = 0;
2843
2844  // Count how many bytes are to be pushed on the stack, including the linkage
2845  // area, and parameter passing area.  We start with 24/48 bytes, which is
2846  // prereserved space for [SP][CR][LR][3 x unused].
2847  unsigned NumBytes =
2848    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
2849                                         Outs,
2850                                         nAltivecParamsAtEnd);
2851
2852  // Calculate by how many bytes the stack has to be adjusted in case of tail
2853  // call optimization.
2854  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2855
2856  // To protect arguments on the stack from being clobbered in a tail call,
2857  // force all the loads to happen before doing any other lowering.
2858  if (isTailCall)
2859    Chain = DAG.getStackArgumentTokenFactor(Chain);
2860
2861  // Adjust the stack pointer for the new arguments...
2862  // These operations are automatically eliminated by the prolog/epilog pass
2863  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2864  SDValue CallSeqStart = Chain;
2865
2866  // Load the return address and frame pointer so it can be move somewhere else
2867  // later.
2868  SDValue LROp, FPOp;
2869  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
2870                                       dl);
2871
2872  // Set up a copy of the stack pointer for use loading and storing any
2873  // arguments that may not fit in the registers available for argument
2874  // passing.
2875  SDValue StackPtr;
2876  if (isPPC64)
2877    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2878  else
2879    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2880
2881  // Figure out which arguments are going to go in registers, and which in
2882  // memory.  Also, if this is a vararg function, floating point operations
2883  // must be stored to our stack, and loaded into integer regs as well, if
2884  // any integer regs are available for argument passing.
2885  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
2886  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2887
2888  static const unsigned GPR_32[] = {           // 32-bit registers.
2889    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2890    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2891  };
2892  static const unsigned GPR_64[] = {           // 64-bit registers.
2893    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2894    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2895  };
2896  static const unsigned *FPR = GetFPR();
2897
2898  static const unsigned VR[] = {
2899    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2900    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2901  };
2902  const unsigned NumGPRs = array_lengthof(GPR_32);
2903  const unsigned NumFPRs = 13;
2904  const unsigned NumVRs  = array_lengthof(VR);
2905
2906  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
2907
2908  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2909  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2910
2911  SmallVector<SDValue, 8> MemOpChains;
2912  for (unsigned i = 0; i != NumOps; ++i) {
2913    bool inMem = false;
2914    SDValue Arg = Outs[i].Val;
2915    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2916
2917    // PtrOff will be used to store the current argument to the stack if a
2918    // register cannot be found for it.
2919    SDValue PtrOff;
2920
2921    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
2922
2923    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
2924
2925    // On PPC64, promote integers to 64-bit values.
2926    if (isPPC64 && Arg.getValueType() == MVT::i32) {
2927      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
2928      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2929      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
2930    }
2931
2932    // FIXME memcpy is used way more than necessary.  Correctness first.
2933    if (Flags.isByVal()) {
2934      unsigned Size = Flags.getByValSize();
2935      if (Size==1 || Size==2) {
2936        // Very small objects are passed right-justified.
2937        // Everything else is passed left-justified.
2938        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
2939        if (GPR_idx != NumGPRs) {
2940          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
2941                                          NULL, 0, VT);
2942          MemOpChains.push_back(Load.getValue(1));
2943          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2944
2945          ArgOffset += PtrByteSize;
2946        } else {
2947          SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
2948          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
2949          SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
2950                                CallSeqStart.getNode()->getOperand(0),
2951                                Flags, DAG, dl);
2952          // This must go outside the CALLSEQ_START..END.
2953          SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2954                               CallSeqStart.getNode()->getOperand(1));
2955          DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
2956                                 NewCallSeqStart.getNode());
2957          Chain = CallSeqStart = NewCallSeqStart;
2958          ArgOffset += PtrByteSize;
2959        }
2960        continue;
2961      }
2962      // Copy entire object into memory.  There are cases where gcc-generated
2963      // code assumes it is there, even if it could be put entirely into
2964      // registers.  (This is not what the doc says.)
2965      SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
2966                            CallSeqStart.getNode()->getOperand(0),
2967                            Flags, DAG, dl);
2968      // This must go outside the CALLSEQ_START..END.
2969      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
2970                           CallSeqStart.getNode()->getOperand(1));
2971      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
2972      Chain = CallSeqStart = NewCallSeqStart;
2973      // And copy the pieces of it that fit into registers.
2974      for (unsigned j=0; j<Size; j+=PtrByteSize) {
2975        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
2976        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2977        if (GPR_idx != NumGPRs) {
2978          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0);
2979          MemOpChains.push_back(Load.getValue(1));
2980          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
2981          ArgOffset += PtrByteSize;
2982        } else {
2983          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
2984          break;
2985        }
2986      }
2987      continue;
2988    }
2989
2990    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
2991    default: llvm_unreachable("Unexpected ValueType for argument!");
2992    case MVT::i32:
2993    case MVT::i64:
2994      if (GPR_idx != NumGPRs) {
2995        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
2996      } else {
2997        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
2998                         isPPC64, isTailCall, false, MemOpChains,
2999                         TailCallArguments, dl);
3000        inMem = true;
3001      }
3002      ArgOffset += PtrByteSize;
3003      break;
3004    case MVT::f32:
3005    case MVT::f64:
3006      if (FPR_idx != NumFPRs) {
3007        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3008
3009        if (isVarArg) {
3010          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
3011          MemOpChains.push_back(Store);
3012
3013          // Float varargs are always shadowed in available integer registers
3014          if (GPR_idx != NumGPRs) {
3015            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
3016            MemOpChains.push_back(Load.getValue(1));
3017            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3018          }
3019          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3020            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3021            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3022            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0);
3023            MemOpChains.push_back(Load.getValue(1));
3024            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3025          }
3026        } else {
3027          // If we have any FPRs remaining, we may also have GPRs remaining.
3028          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3029          // GPRs.
3030          if (GPR_idx != NumGPRs)
3031            ++GPR_idx;
3032          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3033              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3034            ++GPR_idx;
3035        }
3036      } else {
3037        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3038                         isPPC64, isTailCall, false, MemOpChains,
3039                         TailCallArguments, dl);
3040        inMem = true;
3041      }
3042      if (isPPC64)
3043        ArgOffset += 8;
3044      else
3045        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3046      break;
3047    case MVT::v4f32:
3048    case MVT::v4i32:
3049    case MVT::v8i16:
3050    case MVT::v16i8:
3051      if (isVarArg) {
3052        // These go aligned on the stack, or in the corresponding R registers
3053        // when within range.  The Darwin PPC ABI doc claims they also go in
3054        // V registers; in fact gcc does this only for arguments that are
3055        // prototyped, not for those that match the ...  We do it for all
3056        // arguments, seems to work.
3057        while (ArgOffset % 16 !=0) {
3058          ArgOffset += PtrByteSize;
3059          if (GPR_idx != NumGPRs)
3060            GPR_idx++;
3061        }
3062        // We could elide this store in the case where the object fits
3063        // entirely in R registers.  Maybe later.
3064        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3065                            DAG.getConstant(ArgOffset, PtrVT));
3066        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0);
3067        MemOpChains.push_back(Store);
3068        if (VR_idx != NumVRs) {
3069          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0);
3070          MemOpChains.push_back(Load.getValue(1));
3071          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3072        }
3073        ArgOffset += 16;
3074        for (unsigned i=0; i<16; i+=PtrByteSize) {
3075          if (GPR_idx == NumGPRs)
3076            break;
3077          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3078                                  DAG.getConstant(i, PtrVT));
3079          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0);
3080          MemOpChains.push_back(Load.getValue(1));
3081          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3082        }
3083        break;
3084      }
3085
3086      // Non-varargs Altivec params generally go in registers, but have
3087      // stack space allocated at the end.
3088      if (VR_idx != NumVRs) {
3089        // Doesn't have GPR space allocated.
3090        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3091      } else if (nAltivecParamsAtEnd==0) {
3092        // We are emitting Altivec params in order.
3093        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3094                         isPPC64, isTailCall, true, MemOpChains,
3095                         TailCallArguments, dl);
3096        ArgOffset += 16;
3097      }
3098      break;
3099    }
3100  }
3101  // If all Altivec parameters fit in registers, as they usually do,
3102  // they get stack space following the non-Altivec parameters.  We
3103  // don't track this here because nobody below needs it.
3104  // If there are more Altivec parameters than fit in registers emit
3105  // the stores here.
3106  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3107    unsigned j = 0;
3108    // Offset is aligned; skip 1st 12 params which go in V registers.
3109    ArgOffset = ((ArgOffset+15)/16)*16;
3110    ArgOffset += 12*16;
3111    for (unsigned i = 0; i != NumOps; ++i) {
3112      SDValue Arg = Outs[i].Val;
3113      EVT ArgType = Arg.getValueType();
3114      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3115          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3116        if (++j > NumVRs) {
3117          SDValue PtrOff;
3118          // We are emitting Altivec params in order.
3119          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3120                           isPPC64, isTailCall, true, MemOpChains,
3121                           TailCallArguments, dl);
3122          ArgOffset += 16;
3123        }
3124      }
3125    }
3126  }
3127
3128  if (!MemOpChains.empty())
3129    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3130                        &MemOpChains[0], MemOpChains.size());
3131
3132  // Build a sequence of copy-to-reg nodes chained together with token chain
3133  // and flag operands which copy the outgoing args into the appropriate regs.
3134  SDValue InFlag;
3135  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3136    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3137                             RegsToPass[i].second, InFlag);
3138    InFlag = Chain.getValue(1);
3139  }
3140
3141  if (isTailCall) {
3142    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3143                    FPOp, true, TailCallArguments);
3144  }
3145
3146  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3147                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3148                    Ins, InVals);
3149}
3150
3151SDValue
3152PPCTargetLowering::LowerReturn(SDValue Chain,
3153                               unsigned CallConv, bool isVarArg,
3154                               const SmallVectorImpl<ISD::OutputArg> &Outs,
3155                               DebugLoc dl, SelectionDAG &DAG) {
3156
3157  SmallVector<CCValAssign, 16> RVLocs;
3158  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
3159                 RVLocs, *DAG.getContext());
3160  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3161
3162  // If this is the first return lowered for this function, add the regs to the
3163  // liveout set for the function.
3164  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3165    for (unsigned i = 0; i != RVLocs.size(); ++i)
3166      DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3167  }
3168
3169  SDValue Flag;
3170
3171  // Copy the result values into the output registers.
3172  for (unsigned i = 0; i != RVLocs.size(); ++i) {
3173    CCValAssign &VA = RVLocs[i];
3174    assert(VA.isRegLoc() && "Can only return in registers!");
3175    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3176                             Outs[i].Val, Flag);
3177    Flag = Chain.getValue(1);
3178  }
3179
3180  if (Flag.getNode())
3181    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3182  else
3183    return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3184}
3185
3186SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3187                                   const PPCSubtarget &Subtarget) {
3188  // When we pop the dynamic allocation we need to restore the SP link.
3189  DebugLoc dl = Op.getDebugLoc();
3190
3191  // Get the corect type for pointers.
3192  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3193
3194  // Construct the stack pointer operand.
3195  bool IsPPC64 = Subtarget.isPPC64();
3196  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
3197  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3198
3199  // Get the operands for the STACKRESTORE.
3200  SDValue Chain = Op.getOperand(0);
3201  SDValue SaveSP = Op.getOperand(1);
3202
3203  // Load the old link SP.
3204  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0);
3205
3206  // Restore the stack pointer.
3207  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3208
3209  // Store the old link SP.
3210  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0);
3211}
3212
3213
3214
3215SDValue
3216PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3217  MachineFunction &MF = DAG.getMachineFunction();
3218  bool IsPPC64 = PPCSubTarget.isPPC64();
3219  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3220  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3221
3222  // Get current frame pointer save index.  The users of this index will be
3223  // primarily DYNALLOC instructions.
3224  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3225  int RASI = FI->getReturnAddrSaveIndex();
3226
3227  // If the frame pointer save index hasn't been defined yet.
3228  if (!RASI) {
3229    // Find out what the fix offset of the frame pointer save area.
3230    int LROffset = PPCFrameInfo::getReturnSaveOffset(IsPPC64, isDarwinABI);
3231    // Allocate the frame index for frame pointer save area.
3232    RASI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, LROffset);
3233    // Save the result.
3234    FI->setReturnAddrSaveIndex(RASI);
3235  }
3236  return DAG.getFrameIndex(RASI, PtrVT);
3237}
3238
3239SDValue
3240PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3241  MachineFunction &MF = DAG.getMachineFunction();
3242  bool IsPPC64 = PPCSubTarget.isPPC64();
3243  bool isDarwinABI = PPCSubTarget.isDarwinABI();
3244  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3245
3246  // Get current frame pointer save index.  The users of this index will be
3247  // primarily DYNALLOC instructions.
3248  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3249  int FPSI = FI->getFramePointerSaveIndex();
3250
3251  // If the frame pointer save index hasn't been defined yet.
3252  if (!FPSI) {
3253    // Find out what the fix offset of the frame pointer save area.
3254    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64,
3255                                                           isDarwinABI);
3256
3257    // Allocate the frame index for frame pointer save area.
3258    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
3259    // Save the result.
3260    FI->setFramePointerSaveIndex(FPSI);
3261  }
3262  return DAG.getFrameIndex(FPSI, PtrVT);
3263}
3264
3265SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3266                                         SelectionDAG &DAG,
3267                                         const PPCSubtarget &Subtarget) {
3268  // Get the inputs.
3269  SDValue Chain = Op.getOperand(0);
3270  SDValue Size  = Op.getOperand(1);
3271  DebugLoc dl = Op.getDebugLoc();
3272
3273  // Get the corect type for pointers.
3274  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3275  // Negate the size.
3276  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3277                                  DAG.getConstant(0, PtrVT), Size);
3278  // Construct a node for the frame pointer save index.
3279  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3280  // Build a DYNALLOC node.
3281  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3282  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3283  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3284}
3285
3286/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3287/// possible.
3288SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
3289  // Not FP? Not a fsel.
3290  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3291      !Op.getOperand(2).getValueType().isFloatingPoint())
3292    return Op;
3293
3294  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3295
3296  // Cannot handle SETEQ/SETNE.
3297  if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3298
3299  EVT ResVT = Op.getValueType();
3300  EVT CmpVT = Op.getOperand(0).getValueType();
3301  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3302  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3303  DebugLoc dl = Op.getDebugLoc();
3304
3305  // If the RHS of the comparison is a 0.0, we don't need to do the
3306  // subtraction at all.
3307  if (isFloatingPointZero(RHS))
3308    switch (CC) {
3309    default: break;       // SETUO etc aren't handled by fsel.
3310    case ISD::SETULT:
3311    case ISD::SETLT:
3312      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3313    case ISD::SETOGE:
3314    case ISD::SETGE:
3315      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3316        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3317      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3318    case ISD::SETUGT:
3319    case ISD::SETGT:
3320      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3321    case ISD::SETOLE:
3322    case ISD::SETLE:
3323      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3324        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3325      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3326                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3327    }
3328
3329  SDValue Cmp;
3330  switch (CC) {
3331  default: break;       // SETUO etc aren't handled by fsel.
3332  case ISD::SETULT:
3333  case ISD::SETLT:
3334    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3335    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3336      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3337      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3338  case ISD::SETOGE:
3339  case ISD::SETGE:
3340    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3341    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3342      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3343      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3344  case ISD::SETUGT:
3345  case ISD::SETGT:
3346    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3347    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3348      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3349      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3350  case ISD::SETOLE:
3351  case ISD::SETLE:
3352    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3353    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3354      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3355      return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3356  }
3357  return Op;
3358}
3359
3360// FIXME: Split this code up when LegalizeDAGTypes lands.
3361SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3362                                           DebugLoc dl) {
3363  assert(Op.getOperand(0).getValueType().isFloatingPoint());
3364  SDValue Src = Op.getOperand(0);
3365  if (Src.getValueType() == MVT::f32)
3366    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3367
3368  SDValue Tmp;
3369  switch (Op.getValueType().getSimpleVT().SimpleTy) {
3370  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3371  case MVT::i32:
3372    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3373                                                         PPCISD::FCTIDZ,
3374                      dl, MVT::f64, Src);
3375    break;
3376  case MVT::i64:
3377    Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3378    break;
3379  }
3380
3381  // Convert the FP value to an int value through memory.
3382  SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3383
3384  // Emit a store to the stack slot.
3385  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0);
3386
3387  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3388  // add in a bias.
3389  if (Op.getValueType() == MVT::i32)
3390    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3391                        DAG.getConstant(4, FIPtr.getValueType()));
3392  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0);
3393}
3394
3395SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
3396  DebugLoc dl = Op.getDebugLoc();
3397  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3398  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3399    return SDValue();
3400
3401  if (Op.getOperand(0).getValueType() == MVT::i64) {
3402    SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
3403                               MVT::f64, Op.getOperand(0));
3404    SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3405    if (Op.getValueType() == MVT::f32)
3406      FP = DAG.getNode(ISD::FP_ROUND, dl,
3407                       MVT::f32, FP, DAG.getIntPtrConstant(0));
3408    return FP;
3409  }
3410
3411  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3412         "Unhandled SINT_TO_FP type in custom expander!");
3413  // Since we only generate this in 64-bit mode, we can take advantage of
3414  // 64-bit registers.  In particular, sign extend the input value into the
3415  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3416  // then lfd it and fcfid it.
3417  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
3418  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
3419  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3420  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3421
3422  SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3423                                Op.getOperand(0));
3424
3425  // STD the extended value into the stack slot.
3426  MachineMemOperand MO(PseudoSourceValue::getFixedStack(FrameIdx),
3427                       MachineMemOperand::MOStore, 0, 8, 8);
3428  SDValue Store = DAG.getNode(PPCISD::STD_32, dl, MVT::Other,
3429                                DAG.getEntryNode(), Ext64, FIdx,
3430                                DAG.getMemOperand(MO));
3431  // Load the value as a double.
3432  SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0);
3433
3434  // FCFID it and return it.
3435  SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3436  if (Op.getValueType() == MVT::f32)
3437    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3438  return FP;
3439}
3440
3441SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
3442  DebugLoc dl = Op.getDebugLoc();
3443  /*
3444   The rounding mode is in bits 30:31 of FPSR, and has the following
3445   settings:
3446     00 Round to nearest
3447     01 Round to 0
3448     10 Round to +inf
3449     11 Round to -inf
3450
3451  FLT_ROUNDS, on the other hand, expects the following:
3452    -1 Undefined
3453     0 Round to 0
3454     1 Round to nearest
3455     2 Round to +inf
3456     3 Round to -inf
3457
3458  To perform the conversion, we do:
3459    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3460  */
3461
3462  MachineFunction &MF = DAG.getMachineFunction();
3463  EVT VT = Op.getValueType();
3464  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3465  std::vector<EVT> NodeTys;
3466  SDValue MFFSreg, InFlag;
3467
3468  // Save FP Control Word to register
3469  NodeTys.push_back(MVT::f64);    // return register
3470  NodeTys.push_back(MVT::Flag);   // unused in this context
3471  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3472
3473  // Save FP register to stack slot
3474  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3475  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3476  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3477                                 StackSlot, NULL, 0);
3478
3479  // Load FP Control Word from low 32 bits of stack slot.
3480  SDValue Four = DAG.getConstant(4, PtrVT);
3481  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3482  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0);
3483
3484  // Transform as necessary
3485  SDValue CWD1 =
3486    DAG.getNode(ISD::AND, dl, MVT::i32,
3487                CWD, DAG.getConstant(3, MVT::i32));
3488  SDValue CWD2 =
3489    DAG.getNode(ISD::SRL, dl, MVT::i32,
3490                DAG.getNode(ISD::AND, dl, MVT::i32,
3491                            DAG.getNode(ISD::XOR, dl, MVT::i32,
3492                                        CWD, DAG.getConstant(3, MVT::i32)),
3493                            DAG.getConstant(3, MVT::i32)),
3494                DAG.getConstant(1, MVT::i32));
3495
3496  SDValue RetVal =
3497    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3498
3499  return DAG.getNode((VT.getSizeInBits() < 16 ?
3500                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3501}
3502
3503SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
3504  EVT VT = Op.getValueType();
3505  unsigned BitWidth = VT.getSizeInBits();
3506  DebugLoc dl = Op.getDebugLoc();
3507  assert(Op.getNumOperands() == 3 &&
3508         VT == Op.getOperand(1).getValueType() &&
3509         "Unexpected SHL!");
3510
3511  // Expand into a bunch of logical ops.  Note that these ops
3512  // depend on the PPC behavior for oversized shift amounts.
3513  SDValue Lo = Op.getOperand(0);
3514  SDValue Hi = Op.getOperand(1);
3515  SDValue Amt = Op.getOperand(2);
3516  EVT AmtVT = Amt.getValueType();
3517
3518  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3519                             DAG.getConstant(BitWidth, AmtVT), Amt);
3520  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3521  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3522  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3523  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3524                             DAG.getConstant(-BitWidth, AmtVT));
3525  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3526  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3527  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3528  SDValue OutOps[] = { OutLo, OutHi };
3529  return DAG.getMergeValues(OutOps, 2, dl);
3530}
3531
3532SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
3533  EVT VT = Op.getValueType();
3534  DebugLoc dl = Op.getDebugLoc();
3535  unsigned BitWidth = VT.getSizeInBits();
3536  assert(Op.getNumOperands() == 3 &&
3537         VT == Op.getOperand(1).getValueType() &&
3538         "Unexpected SRL!");
3539
3540  // Expand into a bunch of logical ops.  Note that these ops
3541  // depend on the PPC behavior for oversized shift amounts.
3542  SDValue Lo = Op.getOperand(0);
3543  SDValue Hi = Op.getOperand(1);
3544  SDValue Amt = Op.getOperand(2);
3545  EVT AmtVT = Amt.getValueType();
3546
3547  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3548                             DAG.getConstant(BitWidth, AmtVT), Amt);
3549  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3550  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3551  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3552  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3553                             DAG.getConstant(-BitWidth, AmtVT));
3554  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3555  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3556  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3557  SDValue OutOps[] = { OutLo, OutHi };
3558  return DAG.getMergeValues(OutOps, 2, dl);
3559}
3560
3561SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
3562  DebugLoc dl = Op.getDebugLoc();
3563  EVT VT = Op.getValueType();
3564  unsigned BitWidth = VT.getSizeInBits();
3565  assert(Op.getNumOperands() == 3 &&
3566         VT == Op.getOperand(1).getValueType() &&
3567         "Unexpected SRA!");
3568
3569  // Expand into a bunch of logical ops, followed by a select_cc.
3570  SDValue Lo = Op.getOperand(0);
3571  SDValue Hi = Op.getOperand(1);
3572  SDValue Amt = Op.getOperand(2);
3573  EVT AmtVT = Amt.getValueType();
3574
3575  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3576                             DAG.getConstant(BitWidth, AmtVT), Amt);
3577  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3578  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3579  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3580  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3581                             DAG.getConstant(-BitWidth, AmtVT));
3582  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3583  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3584  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3585                                  Tmp4, Tmp6, ISD::SETLE);
3586  SDValue OutOps[] = { OutLo, OutHi };
3587  return DAG.getMergeValues(OutOps, 2, dl);
3588}
3589
3590//===----------------------------------------------------------------------===//
3591// Vector related lowering.
3592//
3593
3594/// BuildSplatI - Build a canonical splati of Val with an element size of
3595/// SplatSize.  Cast the result to VT.
3596static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3597                             SelectionDAG &DAG, DebugLoc dl) {
3598  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3599
3600  static const EVT VTys[] = { // canonical VT to use for each size.
3601    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3602  };
3603
3604  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3605
3606  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3607  if (Val == -1)
3608    SplatSize = 1;
3609
3610  EVT CanonicalVT = VTys[SplatSize-1];
3611
3612  // Build a canonical splat for this value.
3613  SDValue Elt = DAG.getConstant(Val, MVT::i32);
3614  SmallVector<SDValue, 8> Ops;
3615  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3616  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3617                              &Ops[0], Ops.size());
3618  return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
3619}
3620
3621/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3622/// specified intrinsic ID.
3623static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3624                                SelectionDAG &DAG, DebugLoc dl,
3625                                EVT DestVT = MVT::Other) {
3626  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3627  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3628                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
3629}
3630
3631/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3632/// specified intrinsic ID.
3633static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3634                                SDValue Op2, SelectionDAG &DAG,
3635                                DebugLoc dl, EVT DestVT = MVT::Other) {
3636  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3637  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3638                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3639}
3640
3641
3642/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3643/// amount.  The result has the specified value type.
3644static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3645                             EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3646  // Force LHS/RHS to be the right type.
3647  LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
3648  RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
3649
3650  int Ops[16];
3651  for (unsigned i = 0; i != 16; ++i)
3652    Ops[i] = i + Amt;
3653  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3654  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3655}
3656
3657// If this is a case we can't handle, return null and let the default
3658// expansion code take care of it.  If we CAN select this case, and if it
3659// selects to a single instruction, return Op.  Otherwise, if we can codegen
3660// this case more efficiently than a constant pool load, lower it to the
3661// sequence of ops that should be used.
3662SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3663  DebugLoc dl = Op.getDebugLoc();
3664  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
3665  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
3666
3667  // Check if this is a splat of a constant value.
3668  APInt APSplatBits, APSplatUndef;
3669  unsigned SplatBitSize;
3670  bool HasAnyUndefs;
3671  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
3672                             HasAnyUndefs) || SplatBitSize > 32)
3673    return SDValue();
3674
3675  unsigned SplatBits = APSplatBits.getZExtValue();
3676  unsigned SplatUndef = APSplatUndef.getZExtValue();
3677  unsigned SplatSize = SplatBitSize / 8;
3678
3679  // First, handle single instruction cases.
3680
3681  // All zeros?
3682  if (SplatBits == 0) {
3683    // Canonicalize all zero vectors to be v4i32.
3684    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
3685      SDValue Z = DAG.getConstant(0, MVT::i32);
3686      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
3687      Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
3688    }
3689    return Op;
3690  }
3691
3692  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
3693  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
3694                    (32-SplatBitSize));
3695  if (SextVal >= -16 && SextVal <= 15)
3696    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
3697
3698
3699  // Two instruction sequences.
3700
3701  // If this value is in the range [-32,30] and is even, use:
3702  //    tmp = VSPLTI[bhw], result = add tmp, tmp
3703  if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
3704    SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
3705    Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
3706    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3707  }
3708
3709  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
3710  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
3711  // for fneg/fabs.
3712  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
3713    // Make -1 and vspltisw -1:
3714    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
3715
3716    // Make the VSLW intrinsic, computing 0x8000_0000.
3717    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
3718                                   OnesV, DAG, dl);
3719
3720    // xor by OnesV to invert it.
3721    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
3722    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3723  }
3724
3725  // Check to see if this is a wide variety of vsplti*, binop self cases.
3726  static const signed char SplatCsts[] = {
3727    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
3728    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
3729  };
3730
3731  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
3732    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
3733    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
3734    int i = SplatCsts[idx];
3735
3736    // Figure out what shift amount will be used by altivec if shifted by i in
3737    // this splat size.
3738    unsigned TypeShiftAmt = i & (SplatBitSize-1);
3739
3740    // vsplti + shl self.
3741    if (SextVal == (i << (int)TypeShiftAmt)) {
3742      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3743      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3744        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
3745        Intrinsic::ppc_altivec_vslw
3746      };
3747      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3748      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3749    }
3750
3751    // vsplti + srl self.
3752    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3753      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3754      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3755        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
3756        Intrinsic::ppc_altivec_vsrw
3757      };
3758      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3759      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3760    }
3761
3762    // vsplti + sra self.
3763    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
3764      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3765      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3766        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
3767        Intrinsic::ppc_altivec_vsraw
3768      };
3769      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3770      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3771    }
3772
3773    // vsplti + rol self.
3774    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
3775                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
3776      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
3777      static const unsigned IIDs[] = { // Intrinsic to use for each size.
3778        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
3779        Intrinsic::ppc_altivec_vrlw
3780      };
3781      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
3782      return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
3783    }
3784
3785    // t = vsplti c, result = vsldoi t, t, 1
3786    if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
3787      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3788      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
3789    }
3790    // t = vsplti c, result = vsldoi t, t, 2
3791    if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
3792      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3793      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
3794    }
3795    // t = vsplti c, result = vsldoi t, t, 3
3796    if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
3797      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
3798      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
3799    }
3800  }
3801
3802  // Three instruction sequences.
3803
3804  // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
3805  if (SextVal >= 0 && SextVal <= 31) {
3806    SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
3807    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3808    LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
3809    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3810  }
3811  // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
3812  if (SextVal >= -31 && SextVal <= 0) {
3813    SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
3814    SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
3815    LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
3816    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
3817  }
3818
3819  return SDValue();
3820}
3821
3822/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
3823/// the specified operations to build the shuffle.
3824static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
3825                                      SDValue RHS, SelectionDAG &DAG,
3826                                      DebugLoc dl) {
3827  unsigned OpNum = (PFEntry >> 26) & 0x0F;
3828  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
3829  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
3830
3831  enum {
3832    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
3833    OP_VMRGHW,
3834    OP_VMRGLW,
3835    OP_VSPLTISW0,
3836    OP_VSPLTISW1,
3837    OP_VSPLTISW2,
3838    OP_VSPLTISW3,
3839    OP_VSLDOI4,
3840    OP_VSLDOI8,
3841    OP_VSLDOI12
3842  };
3843
3844  if (OpNum == OP_COPY) {
3845    if (LHSID == (1*9+2)*9+3) return LHS;
3846    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
3847    return RHS;
3848  }
3849
3850  SDValue OpLHS, OpRHS;
3851  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
3852  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
3853
3854  int ShufIdxs[16];
3855  switch (OpNum) {
3856  default: llvm_unreachable("Unknown i32 permute!");
3857  case OP_VMRGHW:
3858    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
3859    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
3860    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
3861    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
3862    break;
3863  case OP_VMRGLW:
3864    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
3865    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
3866    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
3867    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
3868    break;
3869  case OP_VSPLTISW0:
3870    for (unsigned i = 0; i != 16; ++i)
3871      ShufIdxs[i] = (i&3)+0;
3872    break;
3873  case OP_VSPLTISW1:
3874    for (unsigned i = 0; i != 16; ++i)
3875      ShufIdxs[i] = (i&3)+4;
3876    break;
3877  case OP_VSPLTISW2:
3878    for (unsigned i = 0; i != 16; ++i)
3879      ShufIdxs[i] = (i&3)+8;
3880    break;
3881  case OP_VSPLTISW3:
3882    for (unsigned i = 0; i != 16; ++i)
3883      ShufIdxs[i] = (i&3)+12;
3884    break;
3885  case OP_VSLDOI4:
3886    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
3887  case OP_VSLDOI8:
3888    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
3889  case OP_VSLDOI12:
3890    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
3891  }
3892  EVT VT = OpLHS.getValueType();
3893  OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
3894  OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
3895  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
3896  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
3897}
3898
3899/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
3900/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
3901/// return the code it can be lowered into.  Worst case, it can always be
3902/// lowered into a vperm.
3903SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
3904                                               SelectionDAG &DAG) {
3905  DebugLoc dl = Op.getDebugLoc();
3906  SDValue V1 = Op.getOperand(0);
3907  SDValue V2 = Op.getOperand(1);
3908  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
3909  EVT VT = Op.getValueType();
3910
3911  // Cases that are handled by instructions that take permute immediates
3912  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
3913  // selected by the instruction selector.
3914  if (V2.getOpcode() == ISD::UNDEF) {
3915    if (PPC::isSplatShuffleMask(SVOp, 1) ||
3916        PPC::isSplatShuffleMask(SVOp, 2) ||
3917        PPC::isSplatShuffleMask(SVOp, 4) ||
3918        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
3919        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
3920        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
3921        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
3922        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
3923        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
3924        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
3925        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
3926        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
3927      return Op;
3928    }
3929  }
3930
3931  // Altivec has a variety of "shuffle immediates" that take two vector inputs
3932  // and produce a fixed permutation.  If any of these match, do not lower to
3933  // VPERM.
3934  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
3935      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
3936      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
3937      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
3938      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
3939      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
3940      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
3941      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
3942      PPC::isVMRGHShuffleMask(SVOp, 4, false))
3943    return Op;
3944
3945  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
3946  // perfect shuffle table to emit an optimal matching sequence.
3947  SmallVector<int, 16> PermMask;
3948  SVOp->getMask(PermMask);
3949
3950  unsigned PFIndexes[4];
3951  bool isFourElementShuffle = true;
3952  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
3953    unsigned EltNo = 8;   // Start out undef.
3954    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
3955      if (PermMask[i*4+j] < 0)
3956        continue;   // Undef, ignore it.
3957
3958      unsigned ByteSource = PermMask[i*4+j];
3959      if ((ByteSource & 3) != j) {
3960        isFourElementShuffle = false;
3961        break;
3962      }
3963
3964      if (EltNo == 8) {
3965        EltNo = ByteSource/4;
3966      } else if (EltNo != ByteSource/4) {
3967        isFourElementShuffle = false;
3968        break;
3969      }
3970    }
3971    PFIndexes[i] = EltNo;
3972  }
3973
3974  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
3975  // perfect shuffle vector to determine if it is cost effective to do this as
3976  // discrete instructions, or whether we should use a vperm.
3977  if (isFourElementShuffle) {
3978    // Compute the index in the perfect shuffle table.
3979    unsigned PFTableIndex =
3980      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
3981
3982    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
3983    unsigned Cost  = (PFEntry >> 30);
3984
3985    // Determining when to avoid vperm is tricky.  Many things affect the cost
3986    // of vperm, particularly how many times the perm mask needs to be computed.
3987    // For example, if the perm mask can be hoisted out of a loop or is already
3988    // used (perhaps because there are multiple permutes with the same shuffle
3989    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
3990    // the loop requires an extra register.
3991    //
3992    // As a compromise, we only emit discrete instructions if the shuffle can be
3993    // generated in 3 or fewer operations.  When we have loop information
3994    // available, if this block is within a loop, we should avoid using vperm
3995    // for 3-operation perms and use a constant pool load instead.
3996    if (Cost < 3)
3997      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
3998  }
3999
4000  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4001  // vector that will get spilled to the constant pool.
4002  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4003
4004  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4005  // that it is in input element units, not in bytes.  Convert now.
4006  EVT EltVT = V1.getValueType().getVectorElementType();
4007  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4008
4009  SmallVector<SDValue, 16> ResultMask;
4010  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4011    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4012
4013    for (unsigned j = 0; j != BytesPerElement; ++j)
4014      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4015                                           MVT::i32));
4016  }
4017
4018  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4019                                    &ResultMask[0], ResultMask.size());
4020  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4021}
4022
4023/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4024/// altivec comparison.  If it is, return true and fill in Opc/isDot with
4025/// information about the intrinsic.
4026static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4027                                  bool &isDot) {
4028  unsigned IntrinsicID =
4029    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4030  CompareOpc = -1;
4031  isDot = false;
4032  switch (IntrinsicID) {
4033  default: return false;
4034    // Comparison predicates.
4035  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4036  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4037  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4038  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4039  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4040  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4041  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4042  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4043  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4044  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4045  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4046  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4047  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4048
4049    // Normal Comparisons.
4050  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4051  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4052  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4053  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4054  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4055  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4056  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4057  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4058  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4059  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4060  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4061  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4062  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4063  }
4064  return true;
4065}
4066
4067/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4068/// lower, do it, otherwise return null.
4069SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4070                                                     SelectionDAG &DAG) {
4071  // If this is a lowered altivec predicate compare, CompareOpc is set to the
4072  // opcode number of the comparison.
4073  DebugLoc dl = Op.getDebugLoc();
4074  int CompareOpc;
4075  bool isDot;
4076  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4077    return SDValue();    // Don't custom lower most intrinsics.
4078
4079  // If this is a non-dot comparison, make the VCMP node and we are done.
4080  if (!isDot) {
4081    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4082                                Op.getOperand(1), Op.getOperand(2),
4083                                DAG.getConstant(CompareOpc, MVT::i32));
4084    return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
4085  }
4086
4087  // Create the PPCISD altivec 'dot' comparison node.
4088  SDValue Ops[] = {
4089    Op.getOperand(2),  // LHS
4090    Op.getOperand(3),  // RHS
4091    DAG.getConstant(CompareOpc, MVT::i32)
4092  };
4093  std::vector<EVT> VTs;
4094  VTs.push_back(Op.getOperand(2).getValueType());
4095  VTs.push_back(MVT::Flag);
4096  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4097
4098  // Now that we have the comparison, emit a copy from the CR to a GPR.
4099  // This is flagged to the above dot comparison.
4100  SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4101                                DAG.getRegister(PPC::CR6, MVT::i32),
4102                                CompNode.getValue(1));
4103
4104  // Unpack the result based on how the target uses it.
4105  unsigned BitNo;   // Bit # of CR6.
4106  bool InvertBit;   // Invert result?
4107  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4108  default:  // Can't happen, don't crash on invalid number though.
4109  case 0:   // Return the value of the EQ bit of CR6.
4110    BitNo = 0; InvertBit = false;
4111    break;
4112  case 1:   // Return the inverted value of the EQ bit of CR6.
4113    BitNo = 0; InvertBit = true;
4114    break;
4115  case 2:   // Return the value of the LT bit of CR6.
4116    BitNo = 2; InvertBit = false;
4117    break;
4118  case 3:   // Return the inverted value of the LT bit of CR6.
4119    BitNo = 2; InvertBit = true;
4120    break;
4121  }
4122
4123  // Shift the bit into the low position.
4124  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4125                      DAG.getConstant(8-(3-BitNo), MVT::i32));
4126  // Isolate the bit.
4127  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4128                      DAG.getConstant(1, MVT::i32));
4129
4130  // If we are supposed to, toggle the bit.
4131  if (InvertBit)
4132    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4133                        DAG.getConstant(1, MVT::i32));
4134  return Flags;
4135}
4136
4137SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4138                                                   SelectionDAG &DAG) {
4139  DebugLoc dl = Op.getDebugLoc();
4140  // Create a stack slot that is 16-byte aligned.
4141  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4142  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
4143  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4144  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4145
4146  // Store the input value into Value#0 of the stack slot.
4147  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4148                                 Op.getOperand(0), FIdx, NULL, 0);
4149  // Load it out.
4150  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0);
4151}
4152
4153SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
4154  DebugLoc dl = Op.getDebugLoc();
4155  if (Op.getValueType() == MVT::v4i32) {
4156    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4157
4158    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4159    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4160
4161    SDValue RHSSwap =   // = vrlw RHS, 16
4162      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4163
4164    // Shrinkify inputs to v8i16.
4165    LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
4166    RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
4167    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
4168
4169    // Low parts multiplied together, generating 32-bit results (we ignore the
4170    // top parts).
4171    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4172                                        LHS, RHS, DAG, dl, MVT::v4i32);
4173
4174    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4175                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4176    // Shift the high parts up 16 bits.
4177    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4178                              Neg16, DAG, dl);
4179    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4180  } else if (Op.getValueType() == MVT::v8i16) {
4181    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4182
4183    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4184
4185    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4186                            LHS, RHS, Zero, DAG, dl);
4187  } else if (Op.getValueType() == MVT::v16i8) {
4188    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4189
4190    // Multiply the even 8-bit parts, producing 16-bit sums.
4191    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4192                                           LHS, RHS, DAG, dl, MVT::v8i16);
4193    EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
4194
4195    // Multiply the odd 8-bit parts, producing 16-bit sums.
4196    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4197                                          LHS, RHS, DAG, dl, MVT::v8i16);
4198    OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
4199
4200    // Merge the results together.
4201    int Ops[16];
4202    for (unsigned i = 0; i != 8; ++i) {
4203      Ops[i*2  ] = 2*i+1;
4204      Ops[i*2+1] = 2*i+1+16;
4205    }
4206    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4207  } else {
4208    llvm_unreachable("Unknown mul to lower!");
4209  }
4210}
4211
4212/// LowerOperation - Provide custom lowering hooks for some operations.
4213///
4214SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
4215  switch (Op.getOpcode()) {
4216  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4217  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4218  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4219  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4220  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4221  case ISD::SETCC:              return LowerSETCC(Op, DAG);
4222  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
4223  case ISD::VASTART:
4224    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4225                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4226
4227  case ISD::VAARG:
4228    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
4229                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
4230
4231  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4232  case ISD::DYNAMIC_STACKALLOC:
4233    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4234
4235  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4236  case ISD::FP_TO_UINT:
4237  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4238                                                       Op.getDebugLoc());
4239  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4240  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4241
4242  // Lower 64-bit shifts.
4243  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4244  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4245  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4246
4247  // Vector-related lowering.
4248  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4249  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4250  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4251  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4252  case ISD::MUL:                return LowerMUL(Op, DAG);
4253
4254  // Frame & Return address.
4255  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4256  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4257  }
4258  return SDValue();
4259}
4260
4261void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4262                                           SmallVectorImpl<SDValue>&Results,
4263                                           SelectionDAG &DAG) {
4264  DebugLoc dl = N->getDebugLoc();
4265  switch (N->getOpcode()) {
4266  default:
4267    assert(false && "Do not know how to custom type legalize this operation!");
4268    return;
4269  case ISD::FP_ROUND_INREG: {
4270    assert(N->getValueType(0) == MVT::ppcf128);
4271    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4272    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4273                             MVT::f64, N->getOperand(0),
4274                             DAG.getIntPtrConstant(0));
4275    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4276                             MVT::f64, N->getOperand(0),
4277                             DAG.getIntPtrConstant(1));
4278
4279    // This sequence changes FPSCR to do round-to-zero, adds the two halves
4280    // of the long double, and puts FPSCR back the way it was.  We do not
4281    // actually model FPSCR.
4282    std::vector<EVT> NodeTys;
4283    SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4284
4285    NodeTys.push_back(MVT::f64);   // Return register
4286    NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
4287    Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4288    MFFSreg = Result.getValue(0);
4289    InFlag = Result.getValue(1);
4290
4291    NodeTys.clear();
4292    NodeTys.push_back(MVT::Flag);   // Returns a flag
4293    Ops[0] = DAG.getConstant(31, MVT::i32);
4294    Ops[1] = InFlag;
4295    Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4296    InFlag = Result.getValue(0);
4297
4298    NodeTys.clear();
4299    NodeTys.push_back(MVT::Flag);   // Returns a flag
4300    Ops[0] = DAG.getConstant(30, MVT::i32);
4301    Ops[1] = InFlag;
4302    Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4303    InFlag = Result.getValue(0);
4304
4305    NodeTys.clear();
4306    NodeTys.push_back(MVT::f64);    // result of add
4307    NodeTys.push_back(MVT::Flag);   // Returns a flag
4308    Ops[0] = Lo;
4309    Ops[1] = Hi;
4310    Ops[2] = InFlag;
4311    Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4312    FPreg = Result.getValue(0);
4313    InFlag = Result.getValue(1);
4314
4315    NodeTys.clear();
4316    NodeTys.push_back(MVT::f64);
4317    Ops[0] = DAG.getConstant(1, MVT::i32);
4318    Ops[1] = MFFSreg;
4319    Ops[2] = FPreg;
4320    Ops[3] = InFlag;
4321    Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4322    FPreg = Result.getValue(0);
4323
4324    // We know the low half is about to be thrown away, so just use something
4325    // convenient.
4326    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4327                                FPreg, FPreg));
4328    return;
4329  }
4330  case ISD::FP_TO_SINT:
4331    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4332    return;
4333  }
4334}
4335
4336
4337//===----------------------------------------------------------------------===//
4338//  Other Lowering Code
4339//===----------------------------------------------------------------------===//
4340
4341MachineBasicBlock *
4342PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4343                                    bool is64bit, unsigned BinOpcode) const {
4344  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4345  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4346
4347  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4348  MachineFunction *F = BB->getParent();
4349  MachineFunction::iterator It = BB;
4350  ++It;
4351
4352  unsigned dest = MI->getOperand(0).getReg();
4353  unsigned ptrA = MI->getOperand(1).getReg();
4354  unsigned ptrB = MI->getOperand(2).getReg();
4355  unsigned incr = MI->getOperand(3).getReg();
4356  DebugLoc dl = MI->getDebugLoc();
4357
4358  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4359  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4360  F->insert(It, loopMBB);
4361  F->insert(It, exitMBB);
4362  exitMBB->transferSuccessors(BB);
4363
4364  MachineRegisterInfo &RegInfo = F->getRegInfo();
4365  unsigned TmpReg = (!BinOpcode) ? incr :
4366    RegInfo.createVirtualRegister(
4367       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4368                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
4369
4370  //  thisMBB:
4371  //   ...
4372  //   fallthrough --> loopMBB
4373  BB->addSuccessor(loopMBB);
4374
4375  //  loopMBB:
4376  //   l[wd]arx dest, ptr
4377  //   add r0, dest, incr
4378  //   st[wd]cx. r0, ptr
4379  //   bne- loopMBB
4380  //   fallthrough --> exitMBB
4381  BB = loopMBB;
4382  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4383    .addReg(ptrA).addReg(ptrB);
4384  if (BinOpcode)
4385    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4386  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4387    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4388  BuildMI(BB, dl, TII->get(PPC::BCC))
4389    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4390  BB->addSuccessor(loopMBB);
4391  BB->addSuccessor(exitMBB);
4392
4393  //  exitMBB:
4394  //   ...
4395  BB = exitMBB;
4396  return BB;
4397}
4398
4399MachineBasicBlock *
4400PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4401                                            MachineBasicBlock *BB,
4402                                            bool is8bit,    // operation
4403                                            unsigned BinOpcode) const {
4404  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4405  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4406  // In 64 bit mode we have to use 64 bits for addresses, even though the
4407  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4408  // registers without caring whether they're 32 or 64, but here we're
4409  // doing actual arithmetic on the addresses.
4410  bool is64bit = PPCSubTarget.isPPC64();
4411
4412  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4413  MachineFunction *F = BB->getParent();
4414  MachineFunction::iterator It = BB;
4415  ++It;
4416
4417  unsigned dest = MI->getOperand(0).getReg();
4418  unsigned ptrA = MI->getOperand(1).getReg();
4419  unsigned ptrB = MI->getOperand(2).getReg();
4420  unsigned incr = MI->getOperand(3).getReg();
4421  DebugLoc dl = MI->getDebugLoc();
4422
4423  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4424  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4425  F->insert(It, loopMBB);
4426  F->insert(It, exitMBB);
4427  exitMBB->transferSuccessors(BB);
4428
4429  MachineRegisterInfo &RegInfo = F->getRegInfo();
4430  const TargetRegisterClass *RC =
4431    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4432              (const TargetRegisterClass *) &PPC::GPRCRegClass;
4433  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4434  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4435  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4436  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4437  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4438  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4439  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4440  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4441  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4442  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4443  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4444  unsigned Ptr1Reg;
4445  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4446
4447  //  thisMBB:
4448  //   ...
4449  //   fallthrough --> loopMBB
4450  BB->addSuccessor(loopMBB);
4451
4452  // The 4-byte load must be aligned, while a char or short may be
4453  // anywhere in the word.  Hence all this nasty bookkeeping code.
4454  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4455  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4456  //   xori shift, shift1, 24 [16]
4457  //   rlwinm ptr, ptr1, 0, 0, 29
4458  //   slw incr2, incr, shift
4459  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4460  //   slw mask, mask2, shift
4461  //  loopMBB:
4462  //   lwarx tmpDest, ptr
4463  //   add tmp, tmpDest, incr2
4464  //   andc tmp2, tmpDest, mask
4465  //   and tmp3, tmp, mask
4466  //   or tmp4, tmp3, tmp2
4467  //   stwcx. tmp4, ptr
4468  //   bne- loopMBB
4469  //   fallthrough --> exitMBB
4470  //   srw dest, tmpDest, shift
4471
4472  if (ptrA!=PPC::R0) {
4473    Ptr1Reg = RegInfo.createVirtualRegister(RC);
4474    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4475      .addReg(ptrA).addReg(ptrB);
4476  } else {
4477    Ptr1Reg = ptrB;
4478  }
4479  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4480      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4481  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4482      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4483  if (is64bit)
4484    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4485      .addReg(Ptr1Reg).addImm(0).addImm(61);
4486  else
4487    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4488      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4489  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4490      .addReg(incr).addReg(ShiftReg);
4491  if (is8bit)
4492    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4493  else {
4494    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4495    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4496  }
4497  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4498      .addReg(Mask2Reg).addReg(ShiftReg);
4499
4500  BB = loopMBB;
4501  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4502    .addReg(PPC::R0).addReg(PtrReg);
4503  if (BinOpcode)
4504    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4505      .addReg(Incr2Reg).addReg(TmpDestReg);
4506  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4507    .addReg(TmpDestReg).addReg(MaskReg);
4508  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4509    .addReg(TmpReg).addReg(MaskReg);
4510  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4511    .addReg(Tmp3Reg).addReg(Tmp2Reg);
4512  BuildMI(BB, dl, TII->get(PPC::STWCX))
4513    .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
4514  BuildMI(BB, dl, TII->get(PPC::BCC))
4515    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4516  BB->addSuccessor(loopMBB);
4517  BB->addSuccessor(exitMBB);
4518
4519  //  exitMBB:
4520  //   ...
4521  BB = exitMBB;
4522  BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
4523  return BB;
4524}
4525
4526MachineBasicBlock *
4527PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4528                                               MachineBasicBlock *BB) const {
4529  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4530
4531  // To "insert" these instructions we actually have to insert their
4532  // control-flow patterns.
4533  const BasicBlock *LLVM_BB = BB->getBasicBlock();
4534  MachineFunction::iterator It = BB;
4535  ++It;
4536
4537  MachineFunction *F = BB->getParent();
4538
4539  if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4540      MI->getOpcode() == PPC::SELECT_CC_I8 ||
4541      MI->getOpcode() == PPC::SELECT_CC_F4 ||
4542      MI->getOpcode() == PPC::SELECT_CC_F8 ||
4543      MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4544
4545    // The incoming instruction knows the destination vreg to set, the
4546    // condition code register to branch on, the true/false values to
4547    // select between, and a branch opcode to use.
4548
4549    //  thisMBB:
4550    //  ...
4551    //   TrueVal = ...
4552    //   cmpTY ccX, r1, r2
4553    //   bCC copy1MBB
4554    //   fallthrough --> copy0MBB
4555    MachineBasicBlock *thisMBB = BB;
4556    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4557    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4558    unsigned SelectPred = MI->getOperand(4).getImm();
4559    DebugLoc dl = MI->getDebugLoc();
4560    BuildMI(BB, dl, TII->get(PPC::BCC))
4561      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4562    F->insert(It, copy0MBB);
4563    F->insert(It, sinkMBB);
4564    // Update machine-CFG edges by transferring all successors of the current
4565    // block to the new block which will contain the Phi node for the select.
4566    sinkMBB->transferSuccessors(BB);
4567    // Next, add the true and fallthrough blocks as its successors.
4568    BB->addSuccessor(copy0MBB);
4569    BB->addSuccessor(sinkMBB);
4570
4571    //  copy0MBB:
4572    //   %FalseValue = ...
4573    //   # fallthrough to sinkMBB
4574    BB = copy0MBB;
4575
4576    // Update machine-CFG edges
4577    BB->addSuccessor(sinkMBB);
4578
4579    //  sinkMBB:
4580    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4581    //  ...
4582    BB = sinkMBB;
4583    BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
4584      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4585      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4586  }
4587  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4588    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4589  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4590    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4591  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4592    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4593  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4594    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4595
4596  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4597    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4598  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4599    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4600  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4601    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4602  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4603    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4604
4605  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4606    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4607  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4608    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4609  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4610    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4611  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4612    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4613
4614  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4615    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4616  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4617    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4618  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4619    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4620  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4621    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4622
4623  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4624    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4625  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4626    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4627  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4628    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4629  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4630    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
4631
4632  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
4633    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
4634  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
4635    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
4636  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
4637    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
4638  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
4639    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
4640
4641  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
4642    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
4643  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
4644    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
4645  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
4646    BB = EmitAtomicBinary(MI, BB, false, 0);
4647  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
4648    BB = EmitAtomicBinary(MI, BB, true, 0);
4649
4650  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
4651           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
4652    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
4653
4654    unsigned dest   = MI->getOperand(0).getReg();
4655    unsigned ptrA   = MI->getOperand(1).getReg();
4656    unsigned ptrB   = MI->getOperand(2).getReg();
4657    unsigned oldval = MI->getOperand(3).getReg();
4658    unsigned newval = MI->getOperand(4).getReg();
4659    DebugLoc dl     = MI->getDebugLoc();
4660
4661    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4662    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4663    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4664    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4665    F->insert(It, loop1MBB);
4666    F->insert(It, loop2MBB);
4667    F->insert(It, midMBB);
4668    F->insert(It, exitMBB);
4669    exitMBB->transferSuccessors(BB);
4670
4671    //  thisMBB:
4672    //   ...
4673    //   fallthrough --> loopMBB
4674    BB->addSuccessor(loop1MBB);
4675
4676    // loop1MBB:
4677    //   l[wd]arx dest, ptr
4678    //   cmp[wd] dest, oldval
4679    //   bne- midMBB
4680    // loop2MBB:
4681    //   st[wd]cx. newval, ptr
4682    //   bne- loopMBB
4683    //   b exitBB
4684    // midMBB:
4685    //   st[wd]cx. dest, ptr
4686    // exitBB:
4687    BB = loop1MBB;
4688    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4689      .addReg(ptrA).addReg(ptrB);
4690    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
4691      .addReg(oldval).addReg(dest);
4692    BuildMI(BB, dl, TII->get(PPC::BCC))
4693      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4694    BB->addSuccessor(loop2MBB);
4695    BB->addSuccessor(midMBB);
4696
4697    BB = loop2MBB;
4698    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4699      .addReg(newval).addReg(ptrA).addReg(ptrB);
4700    BuildMI(BB, dl, TII->get(PPC::BCC))
4701      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4702    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4703    BB->addSuccessor(loop1MBB);
4704    BB->addSuccessor(exitMBB);
4705
4706    BB = midMBB;
4707    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4708      .addReg(dest).addReg(ptrA).addReg(ptrB);
4709    BB->addSuccessor(exitMBB);
4710
4711    //  exitMBB:
4712    //   ...
4713    BB = exitMBB;
4714  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
4715             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
4716    // We must use 64-bit registers for addresses when targeting 64-bit,
4717    // since we're actually doing arithmetic on them.  Other registers
4718    // can be 32-bit.
4719    bool is64bit = PPCSubTarget.isPPC64();
4720    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
4721
4722    unsigned dest   = MI->getOperand(0).getReg();
4723    unsigned ptrA   = MI->getOperand(1).getReg();
4724    unsigned ptrB   = MI->getOperand(2).getReg();
4725    unsigned oldval = MI->getOperand(3).getReg();
4726    unsigned newval = MI->getOperand(4).getReg();
4727    DebugLoc dl     = MI->getDebugLoc();
4728
4729    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
4730    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
4731    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
4732    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4733    F->insert(It, loop1MBB);
4734    F->insert(It, loop2MBB);
4735    F->insert(It, midMBB);
4736    F->insert(It, exitMBB);
4737    exitMBB->transferSuccessors(BB);
4738
4739    MachineRegisterInfo &RegInfo = F->getRegInfo();
4740    const TargetRegisterClass *RC =
4741      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4742                (const TargetRegisterClass *) &PPC::GPRCRegClass;
4743    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4744    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4745    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4746    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
4747    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
4748    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
4749    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
4750    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4751    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4752    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4753    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4754    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4755    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4756    unsigned Ptr1Reg;
4757    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
4758    //  thisMBB:
4759    //   ...
4760    //   fallthrough --> loopMBB
4761    BB->addSuccessor(loop1MBB);
4762
4763    // The 4-byte load must be aligned, while a char or short may be
4764    // anywhere in the word.  Hence all this nasty bookkeeping code.
4765    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4766    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4767    //   xori shift, shift1, 24 [16]
4768    //   rlwinm ptr, ptr1, 0, 0, 29
4769    //   slw newval2, newval, shift
4770    //   slw oldval2, oldval,shift
4771    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4772    //   slw mask, mask2, shift
4773    //   and newval3, newval2, mask
4774    //   and oldval3, oldval2, mask
4775    // loop1MBB:
4776    //   lwarx tmpDest, ptr
4777    //   and tmp, tmpDest, mask
4778    //   cmpw tmp, oldval3
4779    //   bne- midMBB
4780    // loop2MBB:
4781    //   andc tmp2, tmpDest, mask
4782    //   or tmp4, tmp2, newval3
4783    //   stwcx. tmp4, ptr
4784    //   bne- loop1MBB
4785    //   b exitBB
4786    // midMBB:
4787    //   stwcx. tmpDest, ptr
4788    // exitBB:
4789    //   srw dest, tmpDest, shift
4790    if (ptrA!=PPC::R0) {
4791      Ptr1Reg = RegInfo.createVirtualRegister(RC);
4792      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4793        .addReg(ptrA).addReg(ptrB);
4794    } else {
4795      Ptr1Reg = ptrB;
4796    }
4797    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4798        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4799    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4800        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4801    if (is64bit)
4802      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4803        .addReg(Ptr1Reg).addImm(0).addImm(61);
4804    else
4805      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4806        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4807    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
4808        .addReg(newval).addReg(ShiftReg);
4809    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
4810        .addReg(oldval).addReg(ShiftReg);
4811    if (is8bit)
4812      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4813    else {
4814      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4815      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
4816        .addReg(Mask3Reg).addImm(65535);
4817    }
4818    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4819        .addReg(Mask2Reg).addReg(ShiftReg);
4820    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
4821        .addReg(NewVal2Reg).addReg(MaskReg);
4822    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
4823        .addReg(OldVal2Reg).addReg(MaskReg);
4824
4825    BB = loop1MBB;
4826    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4827        .addReg(PPC::R0).addReg(PtrReg);
4828    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
4829        .addReg(TmpDestReg).addReg(MaskReg);
4830    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
4831        .addReg(TmpReg).addReg(OldVal3Reg);
4832    BuildMI(BB, dl, TII->get(PPC::BCC))
4833        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
4834    BB->addSuccessor(loop2MBB);
4835    BB->addSuccessor(midMBB);
4836
4837    BB = loop2MBB;
4838    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
4839        .addReg(TmpDestReg).addReg(MaskReg);
4840    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
4841        .addReg(Tmp2Reg).addReg(NewVal3Reg);
4842    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
4843        .addReg(PPC::R0).addReg(PtrReg);
4844    BuildMI(BB, dl, TII->get(PPC::BCC))
4845      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
4846    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
4847    BB->addSuccessor(loop1MBB);
4848    BB->addSuccessor(exitMBB);
4849
4850    BB = midMBB;
4851    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
4852      .addReg(PPC::R0).addReg(PtrReg);
4853    BB->addSuccessor(exitMBB);
4854
4855    //  exitMBB:
4856    //   ...
4857    BB = exitMBB;
4858    BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
4859  } else {
4860    llvm_unreachable("Unexpected instr type to insert");
4861  }
4862
4863  F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
4864  return BB;
4865}
4866
4867//===----------------------------------------------------------------------===//
4868// Target Optimization Hooks
4869//===----------------------------------------------------------------------===//
4870
4871SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
4872                                             DAGCombinerInfo &DCI) const {
4873  TargetMachine &TM = getTargetMachine();
4874  SelectionDAG &DAG = DCI.DAG;
4875  DebugLoc dl = N->getDebugLoc();
4876  switch (N->getOpcode()) {
4877  default: break;
4878  case PPCISD::SHL:
4879    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4880      if (C->getZExtValue() == 0)   // 0 << V -> 0.
4881        return N->getOperand(0);
4882    }
4883    break;
4884  case PPCISD::SRL:
4885    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4886      if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
4887        return N->getOperand(0);
4888    }
4889    break;
4890  case PPCISD::SRA:
4891    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
4892      if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
4893          C->isAllOnesValue())    // -1 >>s V -> -1.
4894        return N->getOperand(0);
4895    }
4896    break;
4897
4898  case ISD::SINT_TO_FP:
4899    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
4900      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
4901        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
4902        // We allow the src/dst to be either f32/f64, but the intermediate
4903        // type must be i64.
4904        if (N->getOperand(0).getValueType() == MVT::i64 &&
4905            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
4906          SDValue Val = N->getOperand(0).getOperand(0);
4907          if (Val.getValueType() == MVT::f32) {
4908            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4909            DCI.AddToWorklist(Val.getNode());
4910          }
4911
4912          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
4913          DCI.AddToWorklist(Val.getNode());
4914          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
4915          DCI.AddToWorklist(Val.getNode());
4916          if (N->getValueType(0) == MVT::f32) {
4917            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
4918                              DAG.getIntPtrConstant(0));
4919            DCI.AddToWorklist(Val.getNode());
4920          }
4921          return Val;
4922        } else if (N->getOperand(0).getValueType() == MVT::i32) {
4923          // If the intermediate type is i32, we can avoid the load/store here
4924          // too.
4925        }
4926      }
4927    }
4928    break;
4929  case ISD::STORE:
4930    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
4931    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
4932        !cast<StoreSDNode>(N)->isTruncatingStore() &&
4933        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
4934        N->getOperand(1).getValueType() == MVT::i32 &&
4935        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
4936      SDValue Val = N->getOperand(1).getOperand(0);
4937      if (Val.getValueType() == MVT::f32) {
4938        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
4939        DCI.AddToWorklist(Val.getNode());
4940      }
4941      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
4942      DCI.AddToWorklist(Val.getNode());
4943
4944      Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
4945                        N->getOperand(2), N->getOperand(3));
4946      DCI.AddToWorklist(Val.getNode());
4947      return Val;
4948    }
4949
4950    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
4951    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
4952        N->getOperand(1).getNode()->hasOneUse() &&
4953        (N->getOperand(1).getValueType() == MVT::i32 ||
4954         N->getOperand(1).getValueType() == MVT::i16)) {
4955      SDValue BSwapOp = N->getOperand(1).getOperand(0);
4956      // Do an any-extend to 32-bits if this is a half-word input.
4957      if (BSwapOp.getValueType() == MVT::i16)
4958        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
4959
4960      return DAG.getNode(PPCISD::STBRX, dl, MVT::Other, N->getOperand(0),
4961                         BSwapOp, N->getOperand(2), N->getOperand(3),
4962                         DAG.getValueType(N->getOperand(1).getValueType()));
4963    }
4964    break;
4965  case ISD::BSWAP:
4966    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
4967    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
4968        N->getOperand(0).hasOneUse() &&
4969        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
4970      SDValue Load = N->getOperand(0);
4971      LoadSDNode *LD = cast<LoadSDNode>(Load);
4972      // Create the byte-swapping load.
4973      std::vector<EVT> VTs;
4974      VTs.push_back(MVT::i32);
4975      VTs.push_back(MVT::Other);
4976      SDValue MO = DAG.getMemOperand(LD->getMemOperand());
4977      SDValue Ops[] = {
4978        LD->getChain(),    // Chain
4979        LD->getBasePtr(),  // Ptr
4980        MO,                // MemOperand
4981        DAG.getValueType(N->getValueType(0)) // VT
4982      };
4983      SDValue BSLoad = DAG.getNode(PPCISD::LBRX, dl, VTs, Ops, 4);
4984
4985      // If this is an i16 load, insert the truncate.
4986      SDValue ResVal = BSLoad;
4987      if (N->getValueType(0) == MVT::i16)
4988        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
4989
4990      // First, combine the bswap away.  This makes the value produced by the
4991      // load dead.
4992      DCI.CombineTo(N, ResVal);
4993
4994      // Next, combine the load away, we give it a bogus result value but a real
4995      // chain result.  The result value is dead because the bswap is dead.
4996      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
4997
4998      // Return N so it doesn't get rechecked!
4999      return SDValue(N, 0);
5000    }
5001
5002    break;
5003  case PPCISD::VCMP: {
5004    // If a VCMPo node already exists with exactly the same operands as this
5005    // node, use its result instead of this node (VCMPo computes both a CR6 and
5006    // a normal output).
5007    //
5008    if (!N->getOperand(0).hasOneUse() &&
5009        !N->getOperand(1).hasOneUse() &&
5010        !N->getOperand(2).hasOneUse()) {
5011
5012      // Scan all of the users of the LHS, looking for VCMPo's that match.
5013      SDNode *VCMPoNode = 0;
5014
5015      SDNode *LHSN = N->getOperand(0).getNode();
5016      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5017           UI != E; ++UI)
5018        if (UI->getOpcode() == PPCISD::VCMPo &&
5019            UI->getOperand(1) == N->getOperand(1) &&
5020            UI->getOperand(2) == N->getOperand(2) &&
5021            UI->getOperand(0) == N->getOperand(0)) {
5022          VCMPoNode = *UI;
5023          break;
5024        }
5025
5026      // If there is no VCMPo node, or if the flag value has a single use, don't
5027      // transform this.
5028      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5029        break;
5030
5031      // Look at the (necessarily single) use of the flag value.  If it has a
5032      // chain, this transformation is more complex.  Note that multiple things
5033      // could use the value result, which we should ignore.
5034      SDNode *FlagUser = 0;
5035      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5036           FlagUser == 0; ++UI) {
5037        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5038        SDNode *User = *UI;
5039        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5040          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5041            FlagUser = User;
5042            break;
5043          }
5044        }
5045      }
5046
5047      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5048      // give up for right now.
5049      if (FlagUser->getOpcode() == PPCISD::MFCR)
5050        return SDValue(VCMPoNode, 0);
5051    }
5052    break;
5053  }
5054  case ISD::BR_CC: {
5055    // If this is a branch on an altivec predicate comparison, lower this so
5056    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5057    // lowering is done pre-legalize, because the legalizer lowers the predicate
5058    // compare down to code that is difficult to reassemble.
5059    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5060    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5061    int CompareOpc;
5062    bool isDot;
5063
5064    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5065        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5066        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5067      assert(isDot && "Can't compare against a vector result!");
5068
5069      // If this is a comparison against something other than 0/1, then we know
5070      // that the condition is never/always true.
5071      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5072      if (Val != 0 && Val != 1) {
5073        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5074          return N->getOperand(0);
5075        // Always !=, turn it into an unconditional branch.
5076        return DAG.getNode(ISD::BR, dl, MVT::Other,
5077                           N->getOperand(0), N->getOperand(4));
5078      }
5079
5080      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5081
5082      // Create the PPCISD altivec 'dot' comparison node.
5083      std::vector<EVT> VTs;
5084      SDValue Ops[] = {
5085        LHS.getOperand(2),  // LHS of compare
5086        LHS.getOperand(3),  // RHS of compare
5087        DAG.getConstant(CompareOpc, MVT::i32)
5088      };
5089      VTs.push_back(LHS.getOperand(2).getValueType());
5090      VTs.push_back(MVT::Flag);
5091      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5092
5093      // Unpack the result based on how the target uses it.
5094      PPC::Predicate CompOpc;
5095      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5096      default:  // Can't happen, don't crash on invalid number though.
5097      case 0:   // Branch on the value of the EQ bit of CR6.
5098        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5099        break;
5100      case 1:   // Branch on the inverted value of the EQ bit of CR6.
5101        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5102        break;
5103      case 2:   // Branch on the value of the LT bit of CR6.
5104        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5105        break;
5106      case 3:   // Branch on the inverted value of the LT bit of CR6.
5107        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5108        break;
5109      }
5110
5111      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5112                         DAG.getConstant(CompOpc, MVT::i32),
5113                         DAG.getRegister(PPC::CR6, MVT::i32),
5114                         N->getOperand(4), CompNode.getValue(1));
5115    }
5116    break;
5117  }
5118  }
5119
5120  return SDValue();
5121}
5122
5123//===----------------------------------------------------------------------===//
5124// Inline Assembly Support
5125//===----------------------------------------------------------------------===//
5126
5127void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5128                                                       const APInt &Mask,
5129                                                       APInt &KnownZero,
5130                                                       APInt &KnownOne,
5131                                                       const SelectionDAG &DAG,
5132                                                       unsigned Depth) const {
5133  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
5134  switch (Op.getOpcode()) {
5135  default: break;
5136  case PPCISD::LBRX: {
5137    // lhbrx is known to have the top bits cleared out.
5138    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
5139      KnownZero = 0xFFFF0000;
5140    break;
5141  }
5142  case ISD::INTRINSIC_WO_CHAIN: {
5143    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5144    default: break;
5145    case Intrinsic::ppc_altivec_vcmpbfp_p:
5146    case Intrinsic::ppc_altivec_vcmpeqfp_p:
5147    case Intrinsic::ppc_altivec_vcmpequb_p:
5148    case Intrinsic::ppc_altivec_vcmpequh_p:
5149    case Intrinsic::ppc_altivec_vcmpequw_p:
5150    case Intrinsic::ppc_altivec_vcmpgefp_p:
5151    case Intrinsic::ppc_altivec_vcmpgtfp_p:
5152    case Intrinsic::ppc_altivec_vcmpgtsb_p:
5153    case Intrinsic::ppc_altivec_vcmpgtsh_p:
5154    case Intrinsic::ppc_altivec_vcmpgtsw_p:
5155    case Intrinsic::ppc_altivec_vcmpgtub_p:
5156    case Intrinsic::ppc_altivec_vcmpgtuh_p:
5157    case Intrinsic::ppc_altivec_vcmpgtuw_p:
5158      KnownZero = ~1U;  // All bits but the low one are known to be zero.
5159      break;
5160    }
5161  }
5162  }
5163}
5164
5165
5166/// getConstraintType - Given a constraint, return the type of
5167/// constraint it is for this target.
5168PPCTargetLowering::ConstraintType
5169PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5170  if (Constraint.size() == 1) {
5171    switch (Constraint[0]) {
5172    default: break;
5173    case 'b':
5174    case 'r':
5175    case 'f':
5176    case 'v':
5177    case 'y':
5178      return C_RegisterClass;
5179    }
5180  }
5181  return TargetLowering::getConstraintType(Constraint);
5182}
5183
5184std::pair<unsigned, const TargetRegisterClass*>
5185PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5186                                                EVT VT) const {
5187  if (Constraint.size() == 1) {
5188    // GCC RS6000 Constraint Letters
5189    switch (Constraint[0]) {
5190    case 'b':   // R1-R31
5191    case 'r':   // R0-R31
5192      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5193        return std::make_pair(0U, PPC::G8RCRegisterClass);
5194      return std::make_pair(0U, PPC::GPRCRegisterClass);
5195    case 'f':
5196      if (VT == MVT::f32)
5197        return std::make_pair(0U, PPC::F4RCRegisterClass);
5198      else if (VT == MVT::f64)
5199        return std::make_pair(0U, PPC::F8RCRegisterClass);
5200      break;
5201    case 'v':
5202      return std::make_pair(0U, PPC::VRRCRegisterClass);
5203    case 'y':   // crrc
5204      return std::make_pair(0U, PPC::CRRCRegisterClass);
5205    }
5206  }
5207
5208  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5209}
5210
5211
5212/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5213/// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
5214/// it means one of the asm constraint of the inline asm instruction being
5215/// processed is 'm'.
5216void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
5217                                                     bool hasMemory,
5218                                                     std::vector<SDValue>&Ops,
5219                                                     SelectionDAG &DAG) const {
5220  SDValue Result(0,0);
5221  switch (Letter) {
5222  default: break;
5223  case 'I':
5224  case 'J':
5225  case 'K':
5226  case 'L':
5227  case 'M':
5228  case 'N':
5229  case 'O':
5230  case 'P': {
5231    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5232    if (!CST) return; // Must be an immediate to match.
5233    unsigned Value = CST->getZExtValue();
5234    switch (Letter) {
5235    default: llvm_unreachable("Unknown constraint letter!");
5236    case 'I':  // "I" is a signed 16-bit constant.
5237      if ((short)Value == (int)Value)
5238        Result = DAG.getTargetConstant(Value, Op.getValueType());
5239      break;
5240    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5241    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5242      if ((short)Value == 0)
5243        Result = DAG.getTargetConstant(Value, Op.getValueType());
5244      break;
5245    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5246      if ((Value >> 16) == 0)
5247        Result = DAG.getTargetConstant(Value, Op.getValueType());
5248      break;
5249    case 'M':  // "M" is a constant that is greater than 31.
5250      if (Value > 31)
5251        Result = DAG.getTargetConstant(Value, Op.getValueType());
5252      break;
5253    case 'N':  // "N" is a positive constant that is an exact power of two.
5254      if ((int)Value > 0 && isPowerOf2_32(Value))
5255        Result = DAG.getTargetConstant(Value, Op.getValueType());
5256      break;
5257    case 'O':  // "O" is the constant zero.
5258      if (Value == 0)
5259        Result = DAG.getTargetConstant(Value, Op.getValueType());
5260      break;
5261    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5262      if ((short)-Value == (int)-Value)
5263        Result = DAG.getTargetConstant(Value, Op.getValueType());
5264      break;
5265    }
5266    break;
5267  }
5268  }
5269
5270  if (Result.getNode()) {
5271    Ops.push_back(Result);
5272    return;
5273  }
5274
5275  // Handle standard constraint letters.
5276  TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
5277}
5278
5279// isLegalAddressingMode - Return true if the addressing mode represented
5280// by AM is legal for this target, for a load/store of the specified type.
5281bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5282                                              const Type *Ty) const {
5283  // FIXME: PPC does not allow r+i addressing modes for vectors!
5284
5285  // PPC allows a sign-extended 16-bit immediate field.
5286  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5287    return false;
5288
5289  // No global is ever allowed as a base.
5290  if (AM.BaseGV)
5291    return false;
5292
5293  // PPC only support r+r,
5294  switch (AM.Scale) {
5295  case 0:  // "r+i" or just "i", depending on HasBaseReg.
5296    break;
5297  case 1:
5298    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5299      return false;
5300    // Otherwise we have r+r or r+i.
5301    break;
5302  case 2:
5303    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5304      return false;
5305    // Allow 2*r as r+r.
5306    break;
5307  default:
5308    // No other scales are supported.
5309    return false;
5310  }
5311
5312  return true;
5313}
5314
5315/// isLegalAddressImmediate - Return true if the integer value can be used
5316/// as the offset of the target addressing mode for load / store of the
5317/// given type.
5318bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
5319  // PPC allows a sign-extended 16-bit immediate field.
5320  return (V > -(1 << 16) && V < (1 << 16)-1);
5321}
5322
5323bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
5324  return false;
5325}
5326
5327SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5328  DebugLoc dl = Op.getDebugLoc();
5329  // Depths > 0 not supported yet!
5330  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5331    return SDValue();
5332
5333  MachineFunction &MF = DAG.getMachineFunction();
5334  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5335
5336  // Just load the return address off the stack.
5337  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5338
5339  // Make sure the function really does not optimize away the store of the RA
5340  // to the stack.
5341  FuncInfo->setLRStoreRequired();
5342  return DAG.getLoad(getPointerTy(), dl,
5343                     DAG.getEntryNode(), RetAddrFI, NULL, 0);
5344}
5345
5346SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5347  DebugLoc dl = Op.getDebugLoc();
5348  // Depths > 0 not supported yet!
5349  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5350    return SDValue();
5351
5352  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5353  bool isPPC64 = PtrVT == MVT::i64;
5354
5355  MachineFunction &MF = DAG.getMachineFunction();
5356  MachineFrameInfo *MFI = MF.getFrameInfo();
5357  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
5358                  && MFI->getStackSize();
5359
5360  if (isPPC64)
5361    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
5362      MVT::i64);
5363  else
5364    return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
5365      MVT::i32);
5366}
5367
5368bool
5369PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5370  // The PowerPC target isn't yet aware of offsets.
5371  return false;
5372}
5373
5374EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
5375                                           bool isSrcConst, bool isSrcStr,
5376                                           SelectionDAG &DAG) const {
5377  if (this->PPCSubTarget.isPPC64()) {
5378    return MVT::i64;
5379  } else {
5380    return MVT::i32;
5381  }
5382}
5383