PPCISelLowering.cpp revision 9f5d5783ecdb02ebf2000fcf50ee67628bc2e07d
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
19#include "llvm/ADT/VectorExtras.h"
20#include "llvm/Analysis/ScalarEvolutionExpressions.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Constants.h"
28#include "llvm/Function.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Support/CommandLine.h"
33using namespace llvm;
34
35static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc");
36
37PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
38  : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
39
40  setPow2DivIsCheap();
41
42  // Use _setjmp/_longjmp instead of setjmp/longjmp.
43  setUseUnderscoreSetJmp(true);
44  setUseUnderscoreLongJmp(true);
45
46  // Set up the register classes.
47  addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
48  addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
49  addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
50
51  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
52  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
53  setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
54
55  // PowerPC does not have truncstore for i1.
56  setStoreXAction(MVT::i1, Promote);
57
58  // PowerPC has pre-inc load and store's.
59  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
60  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
61  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
62  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
63  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
64  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
65  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
66  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
67  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
68  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
69
70  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
71  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
72
73  // PowerPC has no intrinsics for these particular operations
74  setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
75  setOperationAction(ISD::MEMSET, MVT::Other, Expand);
76  setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
77
78  // PowerPC has no SREM/UREM instructions
79  setOperationAction(ISD::SREM, MVT::i32, Expand);
80  setOperationAction(ISD::UREM, MVT::i32, Expand);
81  setOperationAction(ISD::SREM, MVT::i64, Expand);
82  setOperationAction(ISD::UREM, MVT::i64, Expand);
83
84  // We don't support sin/cos/sqrt/fmod
85  setOperationAction(ISD::FSIN , MVT::f64, Expand);
86  setOperationAction(ISD::FCOS , MVT::f64, Expand);
87  setOperationAction(ISD::FREM , MVT::f64, Expand);
88  setOperationAction(ISD::FSIN , MVT::f32, Expand);
89  setOperationAction(ISD::FCOS , MVT::f32, Expand);
90  setOperationAction(ISD::FREM , MVT::f32, Expand);
91
92  // If we're enabling GP optimizations, use hardware square root
93  if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
94    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
95    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
96  }
97
98  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
99  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
100
101  // PowerPC does not have BSWAP, CTPOP or CTTZ
102  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
103  setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
104  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
105  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
106  setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
107  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
108
109  // PowerPC does not have ROTR
110  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
111
112  // PowerPC does not have Select
113  setOperationAction(ISD::SELECT, MVT::i32, Expand);
114  setOperationAction(ISD::SELECT, MVT::i64, Expand);
115  setOperationAction(ISD::SELECT, MVT::f32, Expand);
116  setOperationAction(ISD::SELECT, MVT::f64, Expand);
117
118  // PowerPC wants to turn select_cc of FP into fsel when possible.
119  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
120  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
121
122  // PowerPC wants to optimize integer setcc a bit
123  setOperationAction(ISD::SETCC, MVT::i32, Custom);
124
125  // PowerPC does not have BRCOND which requires SetCC
126  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
127
128  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
129
130  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
131  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
132
133  // PowerPC does not have [U|S]INT_TO_FP
134  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
135  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
136
137  setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
138  setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
139  setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
140  setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
141
142  // We cannot sextinreg(i1).  Expand to shifts.
143  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
144
145  // Support label based line numbers.
146  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
147  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
148  if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
149    setOperationAction(ISD::LABEL, MVT::Other, Expand);
150  } else {
151    setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
152    setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
153    setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
154    setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
155  }
156
157  // We want to legalize GlobalAddress and ConstantPool nodes into the
158  // appropriate instructions to materialize the address.
159  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
160  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
161  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
162  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
163  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
164  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
165
166  // RET must be custom lowered, to meet ABI requirements
167  setOperationAction(ISD::RET               , MVT::Other, Custom);
168
169  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
170  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
171
172  // VAARG is custom lowered with ELF 32 ABI
173  if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
174    setOperationAction(ISD::VAARG, MVT::Other, Custom);
175  else
176    setOperationAction(ISD::VAARG, MVT::Other, Expand);
177
178  // Use the default implementation.
179  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
180  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
181  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
182  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
183  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
184  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
185
186  // We want to custom lower some of our intrinsics.
187  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
188
189  if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
190    // They also have instructions for converting between i64 and fp.
191    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
192    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
193    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
194    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
195    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
196
197    // FIXME: disable this lowered code.  This generates 64-bit register values,
198    // and we don't model the fact that the top part is clobbered by calls.  We
199    // need to flag these together so that the value isn't live across a call.
200    //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
201
202    // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
203    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
204  } else {
205    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
206    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
207  }
208
209  if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
210    // 64 bit PowerPC implementations can support i64 types directly
211    addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
212    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
213    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
214  } else {
215    // 32 bit PowerPC wants to expand i64 shifts itself.
216    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
217    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
218    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
219  }
220
221  if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
222    // First set operation action for all vector types to expand. Then we
223    // will selectively turn on ones that can be effectively codegen'd.
224    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
225         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
226      // add/sub are legal for all supported vector VT's.
227      setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
228      setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
229
230      // We promote all shuffles to v16i8.
231      setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
232      AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
233
234      // We promote all non-typed operations to v4i32.
235      setOperationAction(ISD::AND   , (MVT::ValueType)VT, Promote);
236      AddPromotedToType (ISD::AND   , (MVT::ValueType)VT, MVT::v4i32);
237      setOperationAction(ISD::OR    , (MVT::ValueType)VT, Promote);
238      AddPromotedToType (ISD::OR    , (MVT::ValueType)VT, MVT::v4i32);
239      setOperationAction(ISD::XOR   , (MVT::ValueType)VT, Promote);
240      AddPromotedToType (ISD::XOR   , (MVT::ValueType)VT, MVT::v4i32);
241      setOperationAction(ISD::LOAD  , (MVT::ValueType)VT, Promote);
242      AddPromotedToType (ISD::LOAD  , (MVT::ValueType)VT, MVT::v4i32);
243      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
244      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
245      setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
246      AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
247
248      // No other operations are legal.
249      setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
250      setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
251      setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
252      setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
253      setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
254      setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
255      setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
256      setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
257      setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
258
259      setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
260    }
261
262    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
263    // with merges, splats, etc.
264    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
265
266    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
267    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
268    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
269    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
270    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
271    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
272
273    addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
274    addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
275    addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
276    addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
277
278    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
279    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
280    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
281    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
282
283    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
284    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
285
286    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
287    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
288    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
289    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
290  }
291
292  setSetCCResultType(MVT::i32);
293  setShiftAmountType(MVT::i32);
294  setSetCCResultContents(ZeroOrOneSetCCResult);
295
296  if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
297    setStackPointerRegisterToSaveRestore(PPC::X1);
298    setExceptionPointerRegister(PPC::X3);
299    setExceptionSelectorRegister(PPC::X4);
300  } else {
301    setStackPointerRegisterToSaveRestore(PPC::R1);
302    setExceptionPointerRegister(PPC::R3);
303    setExceptionSelectorRegister(PPC::R4);
304  }
305
306  // We have target-specific dag combine patterns for the following nodes:
307  setTargetDAGCombine(ISD::SINT_TO_FP);
308  setTargetDAGCombine(ISD::STORE);
309  setTargetDAGCombine(ISD::BR_CC);
310  setTargetDAGCombine(ISD::BSWAP);
311
312  computeRegisterProperties();
313}
314
315const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
316  switch (Opcode) {
317  default: return 0;
318  case PPCISD::FSEL:          return "PPCISD::FSEL";
319  case PPCISD::FCFID:         return "PPCISD::FCFID";
320  case PPCISD::FCTIDZ:        return "PPCISD::FCTIDZ";
321  case PPCISD::FCTIWZ:        return "PPCISD::FCTIWZ";
322  case PPCISD::STFIWX:        return "PPCISD::STFIWX";
323  case PPCISD::VMADDFP:       return "PPCISD::VMADDFP";
324  case PPCISD::VNMSUBFP:      return "PPCISD::VNMSUBFP";
325  case PPCISD::VPERM:         return "PPCISD::VPERM";
326  case PPCISD::Hi:            return "PPCISD::Hi";
327  case PPCISD::Lo:            return "PPCISD::Lo";
328  case PPCISD::DYNALLOC:      return "PPCISD::DYNALLOC";
329  case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
330  case PPCISD::SRL:           return "PPCISD::SRL";
331  case PPCISD::SRA:           return "PPCISD::SRA";
332  case PPCISD::SHL:           return "PPCISD::SHL";
333  case PPCISD::EXTSW_32:      return "PPCISD::EXTSW_32";
334  case PPCISD::STD_32:        return "PPCISD::STD_32";
335  case PPCISD::CALL_ELF:      return "PPCISD::CALL_ELF";
336  case PPCISD::CALL_Macho:    return "PPCISD::CALL_Macho";
337  case PPCISD::MTCTR:         return "PPCISD::MTCTR";
338  case PPCISD::BCTRL_Macho:   return "PPCISD::BCTRL_Macho";
339  case PPCISD::BCTRL_ELF:     return "PPCISD::BCTRL_ELF";
340  case PPCISD::RET_FLAG:      return "PPCISD::RET_FLAG";
341  case PPCISD::MFCR:          return "PPCISD::MFCR";
342  case PPCISD::VCMP:          return "PPCISD::VCMP";
343  case PPCISD::VCMPo:         return "PPCISD::VCMPo";
344  case PPCISD::LBRX:          return "PPCISD::LBRX";
345  case PPCISD::STBRX:         return "PPCISD::STBRX";
346  case PPCISD::COND_BRANCH:   return "PPCISD::COND_BRANCH";
347  }
348}
349
350//===----------------------------------------------------------------------===//
351// Node matching predicates, for use by the tblgen matching code.
352//===----------------------------------------------------------------------===//
353
354/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
355static bool isFloatingPointZero(SDOperand Op) {
356  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
357    return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
358  else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
359    // Maybe this has already been legalized into the constant pool?
360    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
361      if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
362        return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
363  }
364  return false;
365}
366
367/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
368/// true if Op is undef or if it matches the specified value.
369static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
370  return Op.getOpcode() == ISD::UNDEF ||
371         cast<ConstantSDNode>(Op)->getValue() == Val;
372}
373
374/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
375/// VPKUHUM instruction.
376bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
377  if (!isUnary) {
378    for (unsigned i = 0; i != 16; ++i)
379      if (!isConstantOrUndef(N->getOperand(i),  i*2+1))
380        return false;
381  } else {
382    for (unsigned i = 0; i != 8; ++i)
383      if (!isConstantOrUndef(N->getOperand(i),  i*2+1) ||
384          !isConstantOrUndef(N->getOperand(i+8),  i*2+1))
385        return false;
386  }
387  return true;
388}
389
390/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
391/// VPKUWUM instruction.
392bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
393  if (!isUnary) {
394    for (unsigned i = 0; i != 16; i += 2)
395      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
396          !isConstantOrUndef(N->getOperand(i+1),  i*2+3))
397        return false;
398  } else {
399    for (unsigned i = 0; i != 8; i += 2)
400      if (!isConstantOrUndef(N->getOperand(i  ),  i*2+2) ||
401          !isConstantOrUndef(N->getOperand(i+1),  i*2+3) ||
402          !isConstantOrUndef(N->getOperand(i+8),  i*2+2) ||
403          !isConstantOrUndef(N->getOperand(i+9),  i*2+3))
404        return false;
405  }
406  return true;
407}
408
409/// isVMerge - Common function, used to match vmrg* shuffles.
410///
411static bool isVMerge(SDNode *N, unsigned UnitSize,
412                     unsigned LHSStart, unsigned RHSStart) {
413  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
414         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
415  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
416         "Unsupported merge size!");
417
418  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
419    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
420      if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
421                             LHSStart+j+i*UnitSize) ||
422          !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
423                             RHSStart+j+i*UnitSize))
424        return false;
425    }
426      return true;
427}
428
429/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
430/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
431bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
432  if (!isUnary)
433    return isVMerge(N, UnitSize, 8, 24);
434  return isVMerge(N, UnitSize, 8, 8);
435}
436
437/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
438/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
439bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
440  if (!isUnary)
441    return isVMerge(N, UnitSize, 0, 16);
442  return isVMerge(N, UnitSize, 0, 0);
443}
444
445
446/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
447/// amount, otherwise return -1.
448int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
449  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
450         N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
451  // Find the first non-undef value in the shuffle mask.
452  unsigned i;
453  for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
454    /*search*/;
455
456  if (i == 16) return -1;  // all undef.
457
458  // Otherwise, check to see if the rest of the elements are consequtively
459  // numbered from this value.
460  unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
461  if (ShiftAmt < i) return -1;
462  ShiftAmt -= i;
463
464  if (!isUnary) {
465    // Check the rest of the elements to see if they are consequtive.
466    for (++i; i != 16; ++i)
467      if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
468        return -1;
469  } else {
470    // Check the rest of the elements to see if they are consequtive.
471    for (++i; i != 16; ++i)
472      if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
473        return -1;
474  }
475
476  return ShiftAmt;
477}
478
479/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
480/// specifies a splat of a single element that is suitable for input to
481/// VSPLTB/VSPLTH/VSPLTW.
482bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
483  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
484         N->getNumOperands() == 16 &&
485         (EltSize == 1 || EltSize == 2 || EltSize == 4));
486
487  // This is a splat operation if each element of the permute is the same, and
488  // if the value doesn't reference the second vector.
489  unsigned ElementBase = 0;
490  SDOperand Elt = N->getOperand(0);
491  if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
492    ElementBase = EltV->getValue();
493  else
494    return false;   // FIXME: Handle UNDEF elements too!
495
496  if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
497    return false;
498
499  // Check that they are consequtive.
500  for (unsigned i = 1; i != EltSize; ++i) {
501    if (!isa<ConstantSDNode>(N->getOperand(i)) ||
502        cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
503      return false;
504  }
505
506  assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
507  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
508    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
509    assert(isa<ConstantSDNode>(N->getOperand(i)) &&
510           "Invalid VECTOR_SHUFFLE mask!");
511    for (unsigned j = 0; j != EltSize; ++j)
512      if (N->getOperand(i+j) != N->getOperand(j))
513        return false;
514  }
515
516  return true;
517}
518
519/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
520/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
521unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
522  assert(isSplatShuffleMask(N, EltSize));
523  return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
524}
525
526/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
527/// by using a vspltis[bhw] instruction of the specified element size, return
528/// the constant being splatted.  The ByteSize field indicates the number of
529/// bytes of each element [124] -> [bhw].
530SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
531  SDOperand OpVal(0, 0);
532
533  // If ByteSize of the splat is bigger than the element size of the
534  // build_vector, then we have a case where we are checking for a splat where
535  // multiple elements of the buildvector are folded together into a single
536  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
537  unsigned EltSize = 16/N->getNumOperands();
538  if (EltSize < ByteSize) {
539    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
540    SDOperand UniquedVals[4];
541    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
542
543    // See if all of the elements in the buildvector agree across.
544    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
545      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
546      // If the element isn't a constant, bail fully out.
547      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
548
549
550      if (UniquedVals[i&(Multiple-1)].Val == 0)
551        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
552      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
553        return SDOperand();  // no match.
554    }
555
556    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
557    // either constant or undef values that are identical for each chunk.  See
558    // if these chunks can form into a larger vspltis*.
559
560    // Check to see if all of the leading entries are either 0 or -1.  If
561    // neither, then this won't fit into the immediate field.
562    bool LeadingZero = true;
563    bool LeadingOnes = true;
564    for (unsigned i = 0; i != Multiple-1; ++i) {
565      if (UniquedVals[i].Val == 0) continue;  // Must have been undefs.
566
567      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
568      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
569    }
570    // Finally, check the least significant entry.
571    if (LeadingZero) {
572      if (UniquedVals[Multiple-1].Val == 0)
573        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
574      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
575      if (Val < 16)
576        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
577    }
578    if (LeadingOnes) {
579      if (UniquedVals[Multiple-1].Val == 0)
580        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
581      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
582      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
583        return DAG.getTargetConstant(Val, MVT::i32);
584    }
585
586    return SDOperand();
587  }
588
589  // Check to see if this buildvec has a single non-undef value in its elements.
590  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
591    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
592    if (OpVal.Val == 0)
593      OpVal = N->getOperand(i);
594    else if (OpVal != N->getOperand(i))
595      return SDOperand();
596  }
597
598  if (OpVal.Val == 0) return SDOperand();  // All UNDEF: use implicit def.
599
600  unsigned ValSizeInBytes = 0;
601  uint64_t Value = 0;
602  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
603    Value = CN->getValue();
604    ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
605  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
606    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
607    Value = FloatToBits(CN->getValue());
608    ValSizeInBytes = 4;
609  }
610
611  // If the splat value is larger than the element value, then we can never do
612  // this splat.  The only case that we could fit the replicated bits into our
613  // immediate field for would be zero, and we prefer to use vxor for it.
614  if (ValSizeInBytes < ByteSize) return SDOperand();
615
616  // If the element value is larger than the splat value, cut it in half and
617  // check to see if the two halves are equal.  Continue doing this until we
618  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
619  while (ValSizeInBytes > ByteSize) {
620    ValSizeInBytes >>= 1;
621
622    // If the top half equals the bottom half, we're still ok.
623    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
624         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
625      return SDOperand();
626  }
627
628  // Properly sign extend the value.
629  int ShAmt = (4-ByteSize)*8;
630  int MaskVal = ((int)Value << ShAmt) >> ShAmt;
631
632  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
633  if (MaskVal == 0) return SDOperand();
634
635  // Finally, if this value fits in a 5 bit sext field, return it
636  if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
637    return DAG.getTargetConstant(MaskVal, MVT::i32);
638  return SDOperand();
639}
640
641//===----------------------------------------------------------------------===//
642//  Addressing Mode Selection
643//===----------------------------------------------------------------------===//
644
645/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
646/// or 64-bit immediate, and if the value can be accurately represented as a
647/// sign extension from a 16-bit value.  If so, this returns true and the
648/// immediate.
649static bool isIntS16Immediate(SDNode *N, short &Imm) {
650  if (N->getOpcode() != ISD::Constant)
651    return false;
652
653  Imm = (short)cast<ConstantSDNode>(N)->getValue();
654  if (N->getValueType(0) == MVT::i32)
655    return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
656  else
657    return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
658}
659static bool isIntS16Immediate(SDOperand Op, short &Imm) {
660  return isIntS16Immediate(Op.Val, Imm);
661}
662
663
664/// SelectAddressRegReg - Given the specified addressed, check to see if it
665/// can be represented as an indexed [r+r] operation.  Returns false if it
666/// can be more efficiently represented with [r+imm].
667bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
668                                            SDOperand &Index,
669                                            SelectionDAG &DAG) {
670  short imm = 0;
671  if (N.getOpcode() == ISD::ADD) {
672    if (isIntS16Immediate(N.getOperand(1), imm))
673      return false;    // r+i
674    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
675      return false;    // r+i
676
677    Base = N.getOperand(0);
678    Index = N.getOperand(1);
679    return true;
680  } else if (N.getOpcode() == ISD::OR) {
681    if (isIntS16Immediate(N.getOperand(1), imm))
682      return false;    // r+i can fold it if we can.
683
684    // If this is an or of disjoint bitfields, we can codegen this as an add
685    // (for better address arithmetic) if the LHS and RHS of the OR are provably
686    // disjoint.
687    uint64_t LHSKnownZero, LHSKnownOne;
688    uint64_t RHSKnownZero, RHSKnownOne;
689    ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
690
691    if (LHSKnownZero) {
692      ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
693      // If all of the bits are known zero on the LHS or RHS, the add won't
694      // carry.
695      if ((LHSKnownZero | RHSKnownZero) == ~0U) {
696        Base = N.getOperand(0);
697        Index = N.getOperand(1);
698        return true;
699      }
700    }
701  }
702
703  return false;
704}
705
706/// Returns true if the address N can be represented by a base register plus
707/// a signed 16-bit displacement [r+imm], and if it is not better
708/// represented as reg+reg.
709bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
710                                            SDOperand &Base, SelectionDAG &DAG){
711  // If this can be more profitably realized as r+r, fail.
712  if (SelectAddressRegReg(N, Disp, Base, DAG))
713    return false;
714
715  if (N.getOpcode() == ISD::ADD) {
716    short imm = 0;
717    if (isIntS16Immediate(N.getOperand(1), imm)) {
718      Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
719      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
720        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
721      } else {
722        Base = N.getOperand(0);
723      }
724      return true; // [r+i]
725    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
726      // Match LOAD (ADD (X, Lo(G))).
727      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
728             && "Cannot handle constant offsets yet!");
729      Disp = N.getOperand(1).getOperand(0);  // The global address.
730      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
731             Disp.getOpcode() == ISD::TargetConstantPool ||
732             Disp.getOpcode() == ISD::TargetJumpTable);
733      Base = N.getOperand(0);
734      return true;  // [&g+r]
735    }
736  } else if (N.getOpcode() == ISD::OR) {
737    short imm = 0;
738    if (isIntS16Immediate(N.getOperand(1), imm)) {
739      // If this is an or of disjoint bitfields, we can codegen this as an add
740      // (for better address arithmetic) if the LHS and RHS of the OR are
741      // provably disjoint.
742      uint64_t LHSKnownZero, LHSKnownOne;
743      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
744      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
745        // If all of the bits are known zero on the LHS or RHS, the add won't
746        // carry.
747        Base = N.getOperand(0);
748        Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
749        return true;
750      }
751    }
752  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
753    // Loading from a constant address.
754
755    // If this address fits entirely in a 16-bit sext immediate field, codegen
756    // this as "d, 0"
757    short Imm;
758    if (isIntS16Immediate(CN, Imm)) {
759      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
760      Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
761      return true;
762    }
763
764    // Handle 32-bit sext immediates with LIS + addr mode.
765    if (CN->getValueType(0) == MVT::i32 ||
766        (int64_t)CN->getValue() == (int)CN->getValue()) {
767      int Addr = (int)CN->getValue();
768
769      // Otherwise, break this down into an LIS + disp.
770      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
771
772      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
773      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
774      Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
775      return true;
776    }
777  }
778
779  Disp = DAG.getTargetConstant(0, getPointerTy());
780  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
781    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
782  else
783    Base = N;
784  return true;      // [r+0]
785}
786
787/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
788/// represented as an indexed [r+r] operation.
789bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
790                                                SDOperand &Index,
791                                                SelectionDAG &DAG) {
792  // Check to see if we can easily represent this as an [r+r] address.  This
793  // will fail if it thinks that the address is more profitably represented as
794  // reg+imm, e.g. where imm = 0.
795  if (SelectAddressRegReg(N, Base, Index, DAG))
796    return true;
797
798  // If the operand is an addition, always emit this as [r+r], since this is
799  // better (for code size, and execution, as the memop does the add for free)
800  // than emitting an explicit add.
801  if (N.getOpcode() == ISD::ADD) {
802    Base = N.getOperand(0);
803    Index = N.getOperand(1);
804    return true;
805  }
806
807  // Otherwise, do it the hard way, using R0 as the base register.
808  Base = DAG.getRegister(PPC::R0, N.getValueType());
809  Index = N;
810  return true;
811}
812
813/// SelectAddressRegImmShift - Returns true if the address N can be
814/// represented by a base register plus a signed 14-bit displacement
815/// [r+imm*4].  Suitable for use by STD and friends.
816bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
817                                                 SDOperand &Base,
818                                                 SelectionDAG &DAG) {
819  // If this can be more profitably realized as r+r, fail.
820  if (SelectAddressRegReg(N, Disp, Base, DAG))
821    return false;
822
823  if (N.getOpcode() == ISD::ADD) {
824    short imm = 0;
825    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
826      Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
827      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
828        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
829      } else {
830        Base = N.getOperand(0);
831      }
832      return true; // [r+i]
833    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
834      // Match LOAD (ADD (X, Lo(G))).
835      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
836             && "Cannot handle constant offsets yet!");
837      Disp = N.getOperand(1).getOperand(0);  // The global address.
838      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
839             Disp.getOpcode() == ISD::TargetConstantPool ||
840             Disp.getOpcode() == ISD::TargetJumpTable);
841      Base = N.getOperand(0);
842      return true;  // [&g+r]
843    }
844  } else if (N.getOpcode() == ISD::OR) {
845    short imm = 0;
846    if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
847      // If this is an or of disjoint bitfields, we can codegen this as an add
848      // (for better address arithmetic) if the LHS and RHS of the OR are
849      // provably disjoint.
850      uint64_t LHSKnownZero, LHSKnownOne;
851      ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
852      if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
853        // If all of the bits are known zero on the LHS or RHS, the add won't
854        // carry.
855        Base = N.getOperand(0);
856        Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
857        return true;
858      }
859    }
860  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
861    // Loading from a constant address.  Verify low two bits are clear.
862    if ((CN->getValue() & 3) == 0) {
863      // If this address fits entirely in a 14-bit sext immediate field, codegen
864      // this as "d, 0"
865      short Imm;
866      if (isIntS16Immediate(CN, Imm)) {
867        Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
868        Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
869        return true;
870      }
871
872      // Fold the low-part of 32-bit absolute addresses into addr mode.
873      if (CN->getValueType(0) == MVT::i32 ||
874          (int64_t)CN->getValue() == (int)CN->getValue()) {
875        int Addr = (int)CN->getValue();
876
877        // Otherwise, break this down into an LIS + disp.
878        Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
879
880        Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
881        unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
882        Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
883        return true;
884      }
885    }
886  }
887
888  Disp = DAG.getTargetConstant(0, getPointerTy());
889  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
890    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
891  else
892    Base = N;
893  return true;      // [r+0]
894}
895
896
897/// getPreIndexedAddressParts - returns true by value, base pointer and
898/// offset pointer and addressing mode by reference if the node's address
899/// can be legally represented as pre-indexed load / store address.
900bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
901                                                  SDOperand &Offset,
902                                                  ISD::MemIndexedMode &AM,
903                                                  SelectionDAG &DAG) {
904  // Disabled by default for now.
905  if (!EnablePPCPreinc) return false;
906
907  SDOperand Ptr;
908  MVT::ValueType VT;
909  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
910    Ptr = LD->getBasePtr();
911    VT = LD->getLoadedVT();
912
913  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
914    ST = ST;
915    Ptr = ST->getBasePtr();
916    VT  = ST->getStoredVT();
917  } else
918    return false;
919
920  // PowerPC doesn't have preinc load/store instructions for vectors.
921  if (MVT::isVector(VT))
922    return false;
923
924  // TODO: Check reg+reg first.
925
926  // LDU/STU use reg+imm*4, others use reg+imm.
927  if (VT != MVT::i64) {
928    // reg + imm
929    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
930      return false;
931  } else {
932    // reg + imm * 4.
933    if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
934      return false;
935  }
936
937  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
938    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
939    // sext i32 to i64 when addr mode is r+i.
940    if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
941        LD->getExtensionType() == ISD::SEXTLOAD &&
942        isa<ConstantSDNode>(Offset))
943      return false;
944  }
945
946  AM = ISD::PRE_INC;
947  return true;
948}
949
950//===----------------------------------------------------------------------===//
951//  LowerOperation implementation
952//===----------------------------------------------------------------------===//
953
954static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
955  MVT::ValueType PtrVT = Op.getValueType();
956  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
957  Constant *C = CP->getConstVal();
958  SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
959  SDOperand Zero = DAG.getConstant(0, PtrVT);
960
961  const TargetMachine &TM = DAG.getTarget();
962
963  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
964  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
965
966  // If this is a non-darwin platform, we don't support non-static relo models
967  // yet.
968  if (TM.getRelocationModel() == Reloc::Static ||
969      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
970    // Generate non-pic code that has direct accesses to the constant pool.
971    // The address of the global is just (hi(&g)+lo(&g)).
972    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
973  }
974
975  if (TM.getRelocationModel() == Reloc::PIC_) {
976    // With PIC, the first instruction is actually "GR+hi(&G)".
977    Hi = DAG.getNode(ISD::ADD, PtrVT,
978                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
979  }
980
981  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
982  return Lo;
983}
984
985static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
986  MVT::ValueType PtrVT = Op.getValueType();
987  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
988  SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
989  SDOperand Zero = DAG.getConstant(0, PtrVT);
990
991  const TargetMachine &TM = DAG.getTarget();
992
993  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
994  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
995
996  // If this is a non-darwin platform, we don't support non-static relo models
997  // yet.
998  if (TM.getRelocationModel() == Reloc::Static ||
999      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1000    // Generate non-pic code that has direct accesses to the constant pool.
1001    // The address of the global is just (hi(&g)+lo(&g)).
1002    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1003  }
1004
1005  if (TM.getRelocationModel() == Reloc::PIC_) {
1006    // With PIC, the first instruction is actually "GR+hi(&G)".
1007    Hi = DAG.getNode(ISD::ADD, PtrVT,
1008                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1009  }
1010
1011  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1012  return Lo;
1013}
1014
1015static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1016  MVT::ValueType PtrVT = Op.getValueType();
1017  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1018  GlobalValue *GV = GSDN->getGlobal();
1019  SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1020  SDOperand Zero = DAG.getConstant(0, PtrVT);
1021
1022  const TargetMachine &TM = DAG.getTarget();
1023
1024  SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1025  SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1026
1027  // If this is a non-darwin platform, we don't support non-static relo models
1028  // yet.
1029  if (TM.getRelocationModel() == Reloc::Static ||
1030      !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1031    // Generate non-pic code that has direct accesses to globals.
1032    // The address of the global is just (hi(&g)+lo(&g)).
1033    return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1034  }
1035
1036  if (TM.getRelocationModel() == Reloc::PIC_) {
1037    // With PIC, the first instruction is actually "GR+hi(&G)".
1038    Hi = DAG.getNode(ISD::ADD, PtrVT,
1039                     DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1040  }
1041
1042  Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1043
1044  if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1045    return Lo;
1046
1047  // If the global is weak or external, we have to go through the lazy
1048  // resolution stub.
1049  return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1050}
1051
1052static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1053  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1054
1055  // If we're comparing for equality to zero, expose the fact that this is
1056  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1057  // fold the new nodes.
1058  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1059    if (C->isNullValue() && CC == ISD::SETEQ) {
1060      MVT::ValueType VT = Op.getOperand(0).getValueType();
1061      SDOperand Zext = Op.getOperand(0);
1062      if (VT < MVT::i32) {
1063        VT = MVT::i32;
1064        Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1065      }
1066      unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1067      SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1068      SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1069                                  DAG.getConstant(Log2b, MVT::i32));
1070      return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1071    }
1072    // Leave comparisons against 0 and -1 alone for now, since they're usually
1073    // optimized.  FIXME: revisit this when we can custom lower all setcc
1074    // optimizations.
1075    if (C->isAllOnesValue() || C->isNullValue())
1076      return SDOperand();
1077  }
1078
1079  // If we have an integer seteq/setne, turn it into a compare against zero
1080  // by xor'ing the rhs with the lhs, which is faster than setting a
1081  // condition register, reading it back out, and masking the correct bit.  The
1082  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1083  // the result to other bit-twiddling opportunities.
1084  MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1085  if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1086    MVT::ValueType VT = Op.getValueType();
1087    SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1088                                Op.getOperand(1));
1089    return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1090  }
1091  return SDOperand();
1092}
1093
1094static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1095                              int VarArgsFrameIndex,
1096                              int VarArgsStackOffset,
1097                              unsigned VarArgsNumGPR,
1098                              unsigned VarArgsNumFPR,
1099                              const PPCSubtarget &Subtarget) {
1100
1101  assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1102}
1103
1104static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1105                              int VarArgsFrameIndex,
1106                              int VarArgsStackOffset,
1107                              unsigned VarArgsNumGPR,
1108                              unsigned VarArgsNumFPR,
1109                              const PPCSubtarget &Subtarget) {
1110
1111  if (Subtarget.isMachoABI()) {
1112    // vastart just stores the address of the VarArgsFrameIndex slot into the
1113    // memory location argument.
1114    MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1115    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1116    SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1117    return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1118                        SV->getOffset());
1119  }
1120
1121  // For ELF 32 ABI we follow the layout of the va_list struct.
1122  // We suppose the given va_list is already allocated.
1123  //
1124  // typedef struct {
1125  //  char gpr;     /* index into the array of 8 GPRs
1126  //                 * stored in the register save area
1127  //                 * gpr=0 corresponds to r3,
1128  //                 * gpr=1 to r4, etc.
1129  //                 */
1130  //  char fpr;     /* index into the array of 8 FPRs
1131  //                 * stored in the register save area
1132  //                 * fpr=0 corresponds to f1,
1133  //                 * fpr=1 to f2, etc.
1134  //                 */
1135  //  char *overflow_arg_area;
1136  //                /* location on stack that holds
1137  //                 * the next overflow argument
1138  //                 */
1139  //  char *reg_save_area;
1140  //               /* where r3:r10 and f1:f8 (if saved)
1141  //                * are stored
1142  //                */
1143  // } va_list[1];
1144
1145
1146  SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1147  SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1148
1149
1150  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1151
1152  SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1153  SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1154
1155  SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1156                                               PtrVT);
1157  SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1158                                               PtrVT);
1159  SDOperand ConstFPROffset   = DAG.getConstant(1, PtrVT);
1160
1161  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1162
1163  // Store first byte : number of int regs
1164  SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1165                                      Op.getOperand(1), SV->getValue(),
1166                                      SV->getOffset());
1167  SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1168                                  ConstFPROffset);
1169
1170  // Store second byte : number of float regs
1171  SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1172                                       SV->getValue(), SV->getOffset());
1173  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1174
1175  // Store second word : arguments given on stack
1176  SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1177                                      SV->getValue(), SV->getOffset());
1178  nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1179
1180  // Store third word : arguments given in registers
1181  return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1182                      SV->getOffset());
1183
1184}
1185
1186#include "PPCGenCallingConv.inc"
1187
1188/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1189/// depending on which subtarget is selected.
1190static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1191  if (Subtarget.isMachoABI()) {
1192    static const unsigned FPR[] = {
1193      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1194      PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1195    };
1196    return FPR;
1197  }
1198
1199
1200  static const unsigned FPR[] = {
1201    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1202    PPC::F8
1203  };
1204  return FPR;
1205}
1206
1207static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1208                                       int &VarArgsFrameIndex,
1209                                       int &VarArgsStackOffset,
1210                                       unsigned &VarArgsNumGPR,
1211                                       unsigned &VarArgsNumFPR,
1212                                       const PPCSubtarget &Subtarget) {
1213  // TODO: add description of PPC stack frame format, or at least some docs.
1214  //
1215  MachineFunction &MF = DAG.getMachineFunction();
1216  MachineFrameInfo *MFI = MF.getFrameInfo();
1217  SSARegMap *RegMap = MF.getSSARegMap();
1218  SmallVector<SDOperand, 8> ArgValues;
1219  SDOperand Root = Op.getOperand(0);
1220
1221  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1222  bool isPPC64 = PtrVT == MVT::i64;
1223  bool isMachoABI = Subtarget.isMachoABI();
1224  bool isELF32_ABI = Subtarget.isELF32_ABI();
1225  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1226
1227  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1228
1229  static const unsigned GPR_32[] = {           // 32-bit registers.
1230    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1231    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1232  };
1233  static const unsigned GPR_64[] = {           // 64-bit registers.
1234    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1235    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1236  };
1237
1238  static const unsigned *FPR = GetFPR(Subtarget);
1239
1240  static const unsigned VR[] = {
1241    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1242    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1243  };
1244
1245  const unsigned Num_GPR_Regs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1246  const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1247  const unsigned Num_VR_Regs  = sizeof( VR)/sizeof( VR[0]);
1248
1249  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1250
1251  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1252
1253  // Add DAG nodes to load the arguments or copy them out of registers.  On
1254  // entry to a function on PPC, the arguments start after the linkage area,
1255  // although the first ones are often in registers.
1256  //
1257  // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1258  // represented with two words (long long or double) must be copied to an
1259  // even GPR_idx value or to an even ArgOffset value.
1260
1261  for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1262    SDOperand ArgVal;
1263    bool needsLoad = false;
1264    MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1265    unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1266    unsigned ArgSize = ObjSize;
1267    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1268    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1269    // See if next argument requires stack alignment in ELF
1270    bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1271      (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1272      (!(Flags & AlignFlag)));
1273
1274    unsigned CurArgOffset = ArgOffset;
1275    switch (ObjectVT) {
1276    default: assert(0 && "Unhandled argument type!");
1277    case MVT::i32:
1278      // Double word align in ELF
1279      if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1280      if (GPR_idx != Num_GPR_Regs) {
1281        unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1282        MF.addLiveIn(GPR[GPR_idx], VReg);
1283        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1284        ++GPR_idx;
1285      } else {
1286        needsLoad = true;
1287        ArgSize = PtrByteSize;
1288      }
1289      // Stack align in ELF
1290      if (needsLoad && Expand && isELF32_ABI)
1291        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1292      // All int arguments reserve stack space in Macho ABI.
1293      if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1294      break;
1295
1296    case MVT::i64:  // PPC64
1297      if (GPR_idx != Num_GPR_Regs) {
1298        unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1299        MF.addLiveIn(GPR[GPR_idx], VReg);
1300        ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1301        ++GPR_idx;
1302      } else {
1303        needsLoad = true;
1304      }
1305      // All int arguments reserve stack space in Macho ABI.
1306      if (isMachoABI || needsLoad) ArgOffset += 8;
1307      break;
1308
1309    case MVT::f32:
1310    case MVT::f64:
1311      // Every 4 bytes of argument space consumes one of the GPRs available for
1312      // argument passing.
1313      if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1314        ++GPR_idx;
1315        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1316          ++GPR_idx;
1317      }
1318      if (FPR_idx != Num_FPR_Regs) {
1319        unsigned VReg;
1320        if (ObjectVT == MVT::f32)
1321          VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1322        else
1323          VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1324        MF.addLiveIn(FPR[FPR_idx], VReg);
1325        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1326        ++FPR_idx;
1327      } else {
1328        needsLoad = true;
1329      }
1330
1331      // Stack align in ELF
1332      if (needsLoad && Expand && isELF32_ABI)
1333        ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1334      // All FP arguments reserve stack space in Macho ABI.
1335      if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1336      break;
1337    case MVT::v4f32:
1338    case MVT::v4i32:
1339    case MVT::v8i16:
1340    case MVT::v16i8:
1341      // Note that vector arguments in registers don't reserve stack space.
1342      if (VR_idx != Num_VR_Regs) {
1343        unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1344        MF.addLiveIn(VR[VR_idx], VReg);
1345        ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1346        ++VR_idx;
1347      } else {
1348        // This should be simple, but requires getting 16-byte aligned stack
1349        // values.
1350        assert(0 && "Loading VR argument not implemented yet!");
1351        needsLoad = true;
1352      }
1353      break;
1354    }
1355
1356    // We need to load the argument to a virtual register if we determined above
1357    // that we ran out of physical registers of the appropriate type
1358    if (needsLoad) {
1359      // If the argument is actually used, emit a load from the right stack
1360      // slot.
1361      if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1362        int FI = MFI->CreateFixedObject(ObjSize,
1363                                        CurArgOffset + (ArgSize - ObjSize));
1364        SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1365        ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1366      } else {
1367        // Don't emit a dead load.
1368        ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1369      }
1370    }
1371
1372    ArgValues.push_back(ArgVal);
1373  }
1374
1375  // If the function takes variable number of arguments, make a frame index for
1376  // the start of the first vararg value... for expansion of llvm.va_start.
1377  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1378  if (isVarArg) {
1379
1380    int depth;
1381    if (isELF32_ABI) {
1382      VarArgsNumGPR = GPR_idx;
1383      VarArgsNumFPR = FPR_idx;
1384
1385      // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1386      // pointer.
1387      depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1388                Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1389                MVT::getSizeInBits(PtrVT)/8);
1390
1391      VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1392                                                  ArgOffset);
1393
1394    }
1395    else
1396      depth = ArgOffset;
1397
1398    VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1399                                               depth);
1400    SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1401
1402    SmallVector<SDOperand, 8> MemOps;
1403
1404    // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1405    // stored to the VarArgsFrameIndex on the stack.
1406    if (isELF32_ABI) {
1407      for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1408        SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1409        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1410        MemOps.push_back(Store);
1411        // Increment the address by four for the next argument to store
1412        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1413        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1414      }
1415    }
1416
1417    // If this function is vararg, store any remaining integer argument regs
1418    // to their spots on the stack so that they may be loaded by deferencing the
1419    // result of va_next.
1420    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1421      unsigned VReg;
1422      if (isPPC64)
1423        VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1424      else
1425        VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1426
1427      MF.addLiveIn(GPR[GPR_idx], VReg);
1428      SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1429      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1430      MemOps.push_back(Store);
1431      // Increment the address by four for the next argument to store
1432      SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1433      FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1434    }
1435
1436    // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1437    // on the stack.
1438    if (isELF32_ABI) {
1439      for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1440        SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1441        SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1442        MemOps.push_back(Store);
1443        // Increment the address by eight for the next argument to store
1444        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1445                                           PtrVT);
1446        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1447      }
1448
1449      for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1450        unsigned VReg;
1451        VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1452
1453        MF.addLiveIn(FPR[FPR_idx], VReg);
1454        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1455        SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1456        MemOps.push_back(Store);
1457        // Increment the address by eight for the next argument to store
1458        SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1459                                           PtrVT);
1460        FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1461      }
1462    }
1463
1464    if (!MemOps.empty())
1465      Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1466  }
1467
1468  ArgValues.push_back(Root);
1469
1470  // Return the new list of results.
1471  std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1472                                    Op.Val->value_end());
1473  return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1474}
1475
1476/// isCallCompatibleAddress - Return the immediate to use if the specified
1477/// 32-bit value is representable in the immediate field of a BxA instruction.
1478static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1479  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1480  if (!C) return 0;
1481
1482  int Addr = C->getValue();
1483  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
1484      (Addr << 6 >> 6) != Addr)
1485    return 0;  // Top 6 bits have to be sext of immediate.
1486
1487  return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
1488}
1489
1490
1491static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1492                           const PPCSubtarget &Subtarget) {
1493  SDOperand Chain  = Op.getOperand(0);
1494  bool isVarArg    = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1495  SDOperand Callee = Op.getOperand(4);
1496  unsigned NumOps  = (Op.getNumOperands() - 5) / 2;
1497
1498  bool isMachoABI = Subtarget.isMachoABI();
1499  bool isELF32_ABI  = Subtarget.isELF32_ABI();
1500
1501  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1502  bool isPPC64 = PtrVT == MVT::i64;
1503  unsigned PtrByteSize = isPPC64 ? 8 : 4;
1504
1505  // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1506  // SelectExpr to use to put the arguments in the appropriate registers.
1507  std::vector<SDOperand> args_to_use;
1508
1509  // Count how many bytes are to be pushed on the stack, including the linkage
1510  // area, and parameter passing area.  We start with 24/48 bytes, which is
1511  // prereserved space for [SP][CR][LR][3 x unused].
1512  unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1513
1514  // Add up all the space actually used.
1515  for (unsigned i = 0; i != NumOps; ++i) {
1516    unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1517    ArgSize = std::max(ArgSize, PtrByteSize);
1518    NumBytes += ArgSize;
1519  }
1520
1521  // The prolog code of the callee may store up to 8 GPR argument registers to
1522  // the stack, allowing va_start to index over them in memory if its varargs.
1523  // Because we cannot tell if this is needed on the caller side, we have to
1524  // conservatively assume that it is needed.  As such, make sure we have at
1525  // least enough stack space for the caller to store the 8 GPRs.
1526  NumBytes = std::max(NumBytes,
1527                      PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1528
1529  // Adjust the stack pointer for the new arguments...
1530  // These operations are automatically eliminated by the prolog/epilog pass
1531  Chain = DAG.getCALLSEQ_START(Chain,
1532                               DAG.getConstant(NumBytes, PtrVT));
1533
1534  // Set up a copy of the stack pointer for use loading and storing any
1535  // arguments that may not fit in the registers available for argument
1536  // passing.
1537  SDOperand StackPtr;
1538  if (isPPC64)
1539    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1540  else
1541    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1542
1543  // Figure out which arguments are going to go in registers, and which in
1544  // memory.  Also, if this is a vararg function, floating point operations
1545  // must be stored to our stack, and loaded into integer regs as well, if
1546  // any integer regs are available for argument passing.
1547  unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1548  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1549
1550  static const unsigned GPR_32[] = {           // 32-bit registers.
1551    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1552    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1553  };
1554  static const unsigned GPR_64[] = {           // 64-bit registers.
1555    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1556    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1557  };
1558  static const unsigned *FPR = GetFPR(Subtarget);
1559
1560  static const unsigned VR[] = {
1561    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1562    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1563  };
1564  const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
1565  const unsigned NumFPRs = isMachoABI ? 13 : 8;
1566  const unsigned NumVRs  = sizeof( VR)/sizeof( VR[0]);
1567
1568  const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1569
1570  std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1571  SmallVector<SDOperand, 8> MemOpChains;
1572  for (unsigned i = 0; i != NumOps; ++i) {
1573    bool inMem = false;
1574    SDOperand Arg = Op.getOperand(5+2*i);
1575    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1576    unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1577    // See if next argument requires stack alignment in ELF
1578    unsigned next = 5+2*(i+1)+1;
1579    bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1580      (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1581      (!(Flags & AlignFlag)));
1582
1583    // PtrOff will be used to store the current argument to the stack if a
1584    // register cannot be found for it.
1585    SDOperand PtrOff;
1586
1587    // Stack align in ELF 32
1588    if (isELF32_ABI && Expand)
1589      PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1590                               StackPtr.getValueType());
1591    else
1592      PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1593
1594    PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1595
1596    // On PPC64, promote integers to 64-bit values.
1597    if (isPPC64 && Arg.getValueType() == MVT::i32) {
1598      unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1599
1600      Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1601    }
1602
1603    switch (Arg.getValueType()) {
1604    default: assert(0 && "Unexpected ValueType for argument!");
1605    case MVT::i32:
1606    case MVT::i64:
1607      // Double word align in ELF
1608      if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1609      if (GPR_idx != NumGPRs) {
1610        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1611      } else {
1612        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1613        inMem = true;
1614      }
1615      if (inMem || isMachoABI) {
1616        // Stack align in ELF
1617        if (isELF32_ABI && Expand)
1618          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1619
1620        ArgOffset += PtrByteSize;
1621      }
1622      break;
1623    case MVT::f32:
1624    case MVT::f64:
1625      if (isVarArg) {
1626        // Float varargs need to be promoted to double.
1627        if (Arg.getValueType() == MVT::f32)
1628          Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1629      }
1630
1631      if (FPR_idx != NumFPRs) {
1632        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1633
1634        if (isVarArg) {
1635          SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1636          MemOpChains.push_back(Store);
1637
1638          // Float varargs are always shadowed in available integer registers
1639          if (GPR_idx != NumGPRs) {
1640            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1641            MemOpChains.push_back(Load.getValue(1));
1642            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1643                                                                Load));
1644          }
1645          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1646            SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1647            PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1648            SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1649            MemOpChains.push_back(Load.getValue(1));
1650            if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1651                                                                Load));
1652          }
1653        } else {
1654          // If we have any FPRs remaining, we may also have GPRs remaining.
1655          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1656          // GPRs.
1657          if (isMachoABI) {
1658            if (GPR_idx != NumGPRs)
1659              ++GPR_idx;
1660            if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1661                !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
1662              ++GPR_idx;
1663          }
1664        }
1665      } else {
1666        MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1667        inMem = true;
1668      }
1669      if (inMem || isMachoABI) {
1670        // Stack align in ELF
1671        if (isELF32_ABI && Expand)
1672          ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1673        if (isPPC64)
1674          ArgOffset += 8;
1675        else
1676          ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1677      }
1678      break;
1679    case MVT::v4f32:
1680    case MVT::v4i32:
1681    case MVT::v8i16:
1682    case MVT::v16i8:
1683      assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1684      assert(VR_idx != NumVRs &&
1685             "Don't support passing more than 12 vector args yet!");
1686      RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1687      break;
1688    }
1689  }
1690  if (!MemOpChains.empty())
1691    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1692                        &MemOpChains[0], MemOpChains.size());
1693
1694  // Build a sequence of copy-to-reg nodes chained together with token chain
1695  // and flag operands which copy the outgoing args into the appropriate regs.
1696  SDOperand InFlag;
1697  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1698    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1699                             InFlag);
1700    InFlag = Chain.getValue(1);
1701  }
1702
1703  // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1704  if (isVarArg && isELF32_ABI) {
1705    SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1706    Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1707    InFlag = Chain.getValue(1);
1708  }
1709
1710  std::vector<MVT::ValueType> NodeTys;
1711  NodeTys.push_back(MVT::Other);   // Returns a chain
1712  NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
1713
1714  SmallVector<SDOperand, 8> Ops;
1715  unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1716
1717  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1718  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1719  // node so that legalize doesn't hack it.
1720  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1721    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1722  else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1723    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1724  else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1725    // If this is an absolute destination address, use the munged value.
1726    Callee = SDOperand(Dest, 0);
1727  else {
1728    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
1729    // to do the call, we can't use PPCISD::CALL.
1730    SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1731    Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1732    InFlag = Chain.getValue(1);
1733
1734    // Copy the callee address into R12 on darwin.
1735    if (isMachoABI) {
1736      Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1737      InFlag = Chain.getValue(1);
1738    }
1739
1740    NodeTys.clear();
1741    NodeTys.push_back(MVT::Other);
1742    NodeTys.push_back(MVT::Flag);
1743    Ops.push_back(Chain);
1744    CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1745    Callee.Val = 0;
1746  }
1747
1748  // If this is a direct call, pass the chain and the callee.
1749  if (Callee.Val) {
1750    Ops.push_back(Chain);
1751    Ops.push_back(Callee);
1752  }
1753
1754  // Add argument registers to the end of the list so that they are known live
1755  // into the call.
1756  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1757    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1758                                  RegsToPass[i].second.getValueType()));
1759
1760  if (InFlag.Val)
1761    Ops.push_back(InFlag);
1762  Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1763  InFlag = Chain.getValue(1);
1764
1765  SDOperand ResultVals[3];
1766  unsigned NumResults = 0;
1767  NodeTys.clear();
1768
1769  // If the call has results, copy the values out of the ret val registers.
1770  switch (Op.Val->getValueType(0)) {
1771  default: assert(0 && "Unexpected ret value!");
1772  case MVT::Other: break;
1773  case MVT::i32:
1774    if (Op.Val->getValueType(1) == MVT::i32) {
1775      Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1);
1776      ResultVals[0] = Chain.getValue(0);
1777      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32,
1778                                 Chain.getValue(2)).getValue(1);
1779      ResultVals[1] = Chain.getValue(0);
1780      NumResults = 2;
1781      NodeTys.push_back(MVT::i32);
1782    } else {
1783      Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1784      ResultVals[0] = Chain.getValue(0);
1785      NumResults = 1;
1786    }
1787    NodeTys.push_back(MVT::i32);
1788    break;
1789  case MVT::i64:
1790    Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1791    ResultVals[0] = Chain.getValue(0);
1792    NumResults = 1;
1793    NodeTys.push_back(MVT::i64);
1794    break;
1795  case MVT::f32:
1796  case MVT::f64:
1797    Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1798                               InFlag).getValue(1);
1799    ResultVals[0] = Chain.getValue(0);
1800    NumResults = 1;
1801    NodeTys.push_back(Op.Val->getValueType(0));
1802    break;
1803  case MVT::v4f32:
1804  case MVT::v4i32:
1805  case MVT::v8i16:
1806  case MVT::v16i8:
1807    Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1808                                   InFlag).getValue(1);
1809    ResultVals[0] = Chain.getValue(0);
1810    NumResults = 1;
1811    NodeTys.push_back(Op.Val->getValueType(0));
1812    break;
1813  }
1814
1815  Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1816                      DAG.getConstant(NumBytes, PtrVT));
1817  NodeTys.push_back(MVT::Other);
1818
1819  // If the function returns void, just return the chain.
1820  if (NumResults == 0)
1821    return Chain;
1822
1823  // Otherwise, merge everything together with a MERGE_VALUES node.
1824  ResultVals[NumResults++] = Chain;
1825  SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1826                              ResultVals, NumResults);
1827  return Res.getValue(Op.ResNo);
1828}
1829
1830static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1831  SmallVector<CCValAssign, 16> RVLocs;
1832  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1833  CCState CCInfo(CC, TM, RVLocs);
1834  CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1835
1836  // If this is the first return lowered for this function, add the regs to the
1837  // liveout set for the function.
1838  if (DAG.getMachineFunction().liveout_empty()) {
1839    for (unsigned i = 0; i != RVLocs.size(); ++i)
1840      DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
1841  }
1842
1843  SDOperand Chain = Op.getOperand(0);
1844  SDOperand Flag;
1845
1846  // Copy the result values into the output registers.
1847  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1848    CCValAssign &VA = RVLocs[i];
1849    assert(VA.isRegLoc() && "Can only return in registers!");
1850    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1851    Flag = Chain.getValue(1);
1852  }
1853
1854  if (Flag.Val)
1855    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1856  else
1857    return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1858}
1859
1860static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1861                                   const PPCSubtarget &Subtarget) {
1862  // When we pop the dynamic allocation we need to restore the SP link.
1863
1864  // Get the corect type for pointers.
1865  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1866
1867  // Construct the stack pointer operand.
1868  bool IsPPC64 = Subtarget.isPPC64();
1869  unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1870  SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1871
1872  // Get the operands for the STACKRESTORE.
1873  SDOperand Chain = Op.getOperand(0);
1874  SDOperand SaveSP = Op.getOperand(1);
1875
1876  // Load the old link SP.
1877  SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1878
1879  // Restore the stack pointer.
1880  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1881
1882  // Store the old link SP.
1883  return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1884}
1885
1886static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1887                                         const PPCSubtarget &Subtarget) {
1888  MachineFunction &MF = DAG.getMachineFunction();
1889  bool IsPPC64 = Subtarget.isPPC64();
1890  bool isMachoABI = Subtarget.isMachoABI();
1891
1892  // Get current frame pointer save index.  The users of this index will be
1893  // primarily DYNALLOC instructions.
1894  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1895  int FPSI = FI->getFramePointerSaveIndex();
1896
1897  // If the frame pointer save index hasn't been defined yet.
1898  if (!FPSI) {
1899    // Find out what the fix offset of the frame pointer save area.
1900    int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1901
1902    // Allocate the frame index for frame pointer save area.
1903    FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1904    // Save the result.
1905    FI->setFramePointerSaveIndex(FPSI);
1906  }
1907
1908  // Get the inputs.
1909  SDOperand Chain = Op.getOperand(0);
1910  SDOperand Size  = Op.getOperand(1);
1911
1912  // Get the corect type for pointers.
1913  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1914  // Negate the size.
1915  SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1916                                  DAG.getConstant(0, PtrVT), Size);
1917  // Construct a node for the frame pointer save index.
1918  SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1919  // Build a DYNALLOC node.
1920  SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1921  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1922  return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1923}
1924
1925
1926/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1927/// possible.
1928static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1929  // Not FP? Not a fsel.
1930  if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1931      !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1932    return SDOperand();
1933
1934  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1935
1936  // Cannot handle SETEQ/SETNE.
1937  if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1938
1939  MVT::ValueType ResVT = Op.getValueType();
1940  MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1941  SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1942  SDOperand TV  = Op.getOperand(2), FV  = Op.getOperand(3);
1943
1944  // If the RHS of the comparison is a 0.0, we don't need to do the
1945  // subtraction at all.
1946  if (isFloatingPointZero(RHS))
1947    switch (CC) {
1948    default: break;       // SETUO etc aren't handled by fsel.
1949    case ISD::SETULT:
1950    case ISD::SETOLT:
1951    case ISD::SETLT:
1952      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1953    case ISD::SETUGE:
1954    case ISD::SETOGE:
1955    case ISD::SETGE:
1956      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1957        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1958      return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1959    case ISD::SETUGT:
1960    case ISD::SETOGT:
1961    case ISD::SETGT:
1962      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
1963    case ISD::SETULE:
1964    case ISD::SETOLE:
1965    case ISD::SETLE:
1966      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
1967        LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1968      return DAG.getNode(PPCISD::FSEL, ResVT,
1969                         DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1970    }
1971
1972      SDOperand Cmp;
1973  switch (CC) {
1974  default: break;       // SETUO etc aren't handled by fsel.
1975  case ISD::SETULT:
1976  case ISD::SETOLT:
1977  case ISD::SETLT:
1978    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1979    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1980      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1981      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1982  case ISD::SETUGE:
1983  case ISD::SETOGE:
1984  case ISD::SETGE:
1985    Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1986    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1987      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1988      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1989  case ISD::SETUGT:
1990  case ISD::SETOGT:
1991  case ISD::SETGT:
1992    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1993    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
1994      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1995      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1996  case ISD::SETULE:
1997  case ISD::SETOLE:
1998  case ISD::SETLE:
1999    Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2000    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
2001      Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2002      return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2003  }
2004  return SDOperand();
2005}
2006
2007static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2008  assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2009  SDOperand Src = Op.getOperand(0);
2010  if (Src.getValueType() == MVT::f32)
2011    Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2012
2013  SDOperand Tmp;
2014  switch (Op.getValueType()) {
2015  default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2016  case MVT::i32:
2017    Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2018    break;
2019  case MVT::i64:
2020    Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2021    break;
2022  }
2023
2024  // Convert the FP value to an int value through memory.
2025  SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
2026  if (Op.getValueType() == MVT::i32)
2027    Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
2028  return Bits;
2029}
2030
2031static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2032  if (Op.getOperand(0).getValueType() == MVT::i64) {
2033    SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2034    SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2035    if (Op.getValueType() == MVT::f32)
2036      FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2037    return FP;
2038  }
2039
2040  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2041         "Unhandled SINT_TO_FP type in custom expander!");
2042  // Since we only generate this in 64-bit mode, we can take advantage of
2043  // 64-bit registers.  In particular, sign extend the input value into the
2044  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2045  // then lfd it and fcfid it.
2046  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2047  int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2048  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2049  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2050
2051  SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2052                                Op.getOperand(0));
2053
2054  // STD the extended value into the stack slot.
2055  SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2056                                DAG.getEntryNode(), Ext64, FIdx,
2057                                DAG.getSrcValue(NULL));
2058  // Load the value as a double.
2059  SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2060
2061  // FCFID it and return it.
2062  SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2063  if (Op.getValueType() == MVT::f32)
2064    FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2065  return FP;
2066}
2067
2068static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2069  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2070         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2071
2072  // Expand into a bunch of logical ops.  Note that these ops
2073  // depend on the PPC behavior for oversized shift amounts.
2074  SDOperand Lo = Op.getOperand(0);
2075  SDOperand Hi = Op.getOperand(1);
2076  SDOperand Amt = Op.getOperand(2);
2077
2078  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2079                               DAG.getConstant(32, MVT::i32), Amt);
2080  SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2081  SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2082  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2083  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2084                               DAG.getConstant(-32U, MVT::i32));
2085  SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2086  SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2087  SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2088  SDOperand OutOps[] = { OutLo, OutHi };
2089  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2090                     OutOps, 2);
2091}
2092
2093static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2094  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2095         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2096
2097  // Otherwise, expand into a bunch of logical ops.  Note that these ops
2098  // depend on the PPC behavior for oversized shift amounts.
2099  SDOperand Lo = Op.getOperand(0);
2100  SDOperand Hi = Op.getOperand(1);
2101  SDOperand Amt = Op.getOperand(2);
2102
2103  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2104                               DAG.getConstant(32, MVT::i32), Amt);
2105  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2106  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2107  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2108  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2109                               DAG.getConstant(-32U, MVT::i32));
2110  SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2111  SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2112  SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2113  SDOperand OutOps[] = { OutLo, OutHi };
2114  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2115                     OutOps, 2);
2116}
2117
2118static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2119  assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2120         Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2121
2122  // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2123  SDOperand Lo = Op.getOperand(0);
2124  SDOperand Hi = Op.getOperand(1);
2125  SDOperand Amt = Op.getOperand(2);
2126
2127  SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2128                               DAG.getConstant(32, MVT::i32), Amt);
2129  SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2130  SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2131  SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2132  SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2133                               DAG.getConstant(-32U, MVT::i32));
2134  SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2135  SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2136  SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2137                                    Tmp4, Tmp6, ISD::SETLE);
2138  SDOperand OutOps[] = { OutLo, OutHi };
2139  return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2140                     OutOps, 2);
2141}
2142
2143//===----------------------------------------------------------------------===//
2144// Vector related lowering.
2145//
2146
2147// If this is a vector of constants or undefs, get the bits.  A bit in
2148// UndefBits is set if the corresponding element of the vector is an
2149// ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2150// zero.   Return true if this is not an array of constants, false if it is.
2151//
2152static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2153                                       uint64_t UndefBits[2]) {
2154  // Start with zero'd results.
2155  VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2156
2157  unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2158  for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2159    SDOperand OpVal = BV->getOperand(i);
2160
2161    unsigned PartNo = i >= e/2;     // In the upper 128 bits?
2162    unsigned SlotNo = e/2 - (i & (e/2-1))-1;  // Which subpiece of the uint64_t.
2163
2164    uint64_t EltBits = 0;
2165    if (OpVal.getOpcode() == ISD::UNDEF) {
2166      uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2167      UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2168      continue;
2169    } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2170      EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2171    } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2172      assert(CN->getValueType(0) == MVT::f32 &&
2173             "Only one legal FP vector type!");
2174      EltBits = FloatToBits(CN->getValue());
2175    } else {
2176      // Nonconstant element.
2177      return true;
2178    }
2179
2180    VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2181  }
2182
2183  //printf("%llx %llx  %llx %llx\n",
2184  //       VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2185  return false;
2186}
2187
2188// If this is a splat (repetition) of a value across the whole vector, return
2189// the smallest size that splats it.  For example, "0x01010101010101..." is a
2190// splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2191// SplatSize = 1 byte.
2192static bool isConstantSplat(const uint64_t Bits128[2],
2193                            const uint64_t Undef128[2],
2194                            unsigned &SplatBits, unsigned &SplatUndef,
2195                            unsigned &SplatSize) {
2196
2197  // Don't let undefs prevent splats from matching.  See if the top 64-bits are
2198  // the same as the lower 64-bits, ignoring undefs.
2199  if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2200    return false;  // Can't be a splat if two pieces don't match.
2201
2202  uint64_t Bits64  = Bits128[0] | Bits128[1];
2203  uint64_t Undef64 = Undef128[0] & Undef128[1];
2204
2205  // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2206  // undefs.
2207  if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2208    return false;  // Can't be a splat if two pieces don't match.
2209
2210  uint32_t Bits32  = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2211  uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2212
2213  // If the top 16-bits are different than the lower 16-bits, ignoring
2214  // undefs, we have an i32 splat.
2215  if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2216    SplatBits = Bits32;
2217    SplatUndef = Undef32;
2218    SplatSize = 4;
2219    return true;
2220  }
2221
2222  uint16_t Bits16  = uint16_t(Bits32)  | uint16_t(Bits32 >> 16);
2223  uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2224
2225  // If the top 8-bits are different than the lower 8-bits, ignoring
2226  // undefs, we have an i16 splat.
2227  if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2228    SplatBits = Bits16;
2229    SplatUndef = Undef16;
2230    SplatSize = 2;
2231    return true;
2232  }
2233
2234  // Otherwise, we have an 8-bit splat.
2235  SplatBits  = uint8_t(Bits16)  | uint8_t(Bits16 >> 8);
2236  SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2237  SplatSize = 1;
2238  return true;
2239}
2240
2241/// BuildSplatI - Build a canonical splati of Val with an element size of
2242/// SplatSize.  Cast the result to VT.
2243static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2244                             SelectionDAG &DAG) {
2245  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2246
2247  static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2248    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2249  };
2250
2251  MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2252
2253  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2254  if (Val == -1)
2255    SplatSize = 1;
2256
2257  MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2258
2259  // Build a canonical splat for this value.
2260  SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
2261  SmallVector<SDOperand, 8> Ops;
2262  Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2263  SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2264                              &Ops[0], Ops.size());
2265  return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2266}
2267
2268/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2269/// specified intrinsic ID.
2270static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2271                                  SelectionDAG &DAG,
2272                                  MVT::ValueType DestVT = MVT::Other) {
2273  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2274  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2275                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
2276}
2277
2278/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2279/// specified intrinsic ID.
2280static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2281                                  SDOperand Op2, SelectionDAG &DAG,
2282                                  MVT::ValueType DestVT = MVT::Other) {
2283  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2284  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2285                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2286}
2287
2288
2289/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2290/// amount.  The result has the specified value type.
2291static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2292                             MVT::ValueType VT, SelectionDAG &DAG) {
2293  // Force LHS/RHS to be the right type.
2294  LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2295  RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2296
2297  SDOperand Ops[16];
2298  for (unsigned i = 0; i != 16; ++i)
2299    Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2300  SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2301                            DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2302  return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2303}
2304
2305// If this is a case we can't handle, return null and let the default
2306// expansion code take care of it.  If we CAN select this case, and if it
2307// selects to a single instruction, return Op.  Otherwise, if we can codegen
2308// this case more efficiently than a constant pool load, lower it to the
2309// sequence of ops that should be used.
2310static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2311  // If this is a vector of constants or undefs, get the bits.  A bit in
2312  // UndefBits is set if the corresponding element of the vector is an
2313  // ISD::UNDEF value.  For undefs, the corresponding VectorBits values are
2314  // zero.
2315  uint64_t VectorBits[2];
2316  uint64_t UndefBits[2];
2317  if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2318    return SDOperand();   // Not a constant vector.
2319
2320  // If this is a splat (repetition) of a value across the whole vector, return
2321  // the smallest size that splats it.  For example, "0x01010101010101..." is a
2322  // splat of 0x01, 0x0101, and 0x01010101.  We return SplatBits = 0x01 and
2323  // SplatSize = 1 byte.
2324  unsigned SplatBits, SplatUndef, SplatSize;
2325  if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2326    bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2327
2328    // First, handle single instruction cases.
2329
2330    // All zeros?
2331    if (SplatBits == 0) {
2332      // Canonicalize all zero vectors to be v4i32.
2333      if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2334        SDOperand Z = DAG.getConstant(0, MVT::i32);
2335        Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2336        Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2337      }
2338      return Op;
2339    }
2340
2341    // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2342    int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2343    if (SextVal >= -16 && SextVal <= 15)
2344      return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2345
2346
2347    // Two instruction sequences.
2348
2349    // If this value is in the range [-32,30] and is even, use:
2350    //    tmp = VSPLTI[bhw], result = add tmp, tmp
2351    if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2352      Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2353      return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2354    }
2355
2356    // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
2357    // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
2358    // for fneg/fabs.
2359    if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2360      // Make -1 and vspltisw -1:
2361      SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2362
2363      // Make the VSLW intrinsic, computing 0x8000_0000.
2364      SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2365                                       OnesV, DAG);
2366
2367      // xor by OnesV to invert it.
2368      Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2369      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2370    }
2371
2372    // Check to see if this is a wide variety of vsplti*, binop self cases.
2373    unsigned SplatBitSize = SplatSize*8;
2374    static const signed char SplatCsts[] = {
2375      -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2376      -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2377    };
2378
2379    for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
2380      // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2381      // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
2382      int i = SplatCsts[idx];
2383
2384      // Figure out what shift amount will be used by altivec if shifted by i in
2385      // this splat size.
2386      unsigned TypeShiftAmt = i & (SplatBitSize-1);
2387
2388      // vsplti + shl self.
2389      if (SextVal == (i << (int)TypeShiftAmt)) {
2390        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2391        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2392          Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2393          Intrinsic::ppc_altivec_vslw
2394        };
2395        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2396        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2397      }
2398
2399      // vsplti + srl self.
2400      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2401        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2402        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2403          Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2404          Intrinsic::ppc_altivec_vsrw
2405        };
2406        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2407        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2408      }
2409
2410      // vsplti + sra self.
2411      if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2412        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2413        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2414          Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2415          Intrinsic::ppc_altivec_vsraw
2416        };
2417        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2418        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2419      }
2420
2421      // vsplti + rol self.
2422      if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2423                           ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2424        SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2425        static const unsigned IIDs[] = { // Intrinsic to use for each size.
2426          Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2427          Intrinsic::ppc_altivec_vrlw
2428        };
2429        Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2430        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2431      }
2432
2433      // t = vsplti c, result = vsldoi t, t, 1
2434      if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2435        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2436        return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2437      }
2438      // t = vsplti c, result = vsldoi t, t, 2
2439      if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2440        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2441        return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2442      }
2443      // t = vsplti c, result = vsldoi t, t, 3
2444      if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2445        SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2446        return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2447      }
2448    }
2449
2450    // Three instruction sequences.
2451
2452    // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
2453    if (SextVal >= 0 && SextVal <= 31) {
2454      SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2455      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2456      LHS = DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
2457      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2458    }
2459    // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
2460    if (SextVal >= -31 && SextVal <= 0) {
2461      SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2462      SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2463      LHS = DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
2464      return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2465    }
2466  }
2467
2468  return SDOperand();
2469}
2470
2471/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2472/// the specified operations to build the shuffle.
2473static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2474                                        SDOperand RHS, SelectionDAG &DAG) {
2475  unsigned OpNum = (PFEntry >> 26) & 0x0F;
2476  unsigned LHSID  = (PFEntry >> 13) & ((1 << 13)-1);
2477  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
2478
2479  enum {
2480    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2481    OP_VMRGHW,
2482    OP_VMRGLW,
2483    OP_VSPLTISW0,
2484    OP_VSPLTISW1,
2485    OP_VSPLTISW2,
2486    OP_VSPLTISW3,
2487    OP_VSLDOI4,
2488    OP_VSLDOI8,
2489    OP_VSLDOI12
2490  };
2491
2492  if (OpNum == OP_COPY) {
2493    if (LHSID == (1*9+2)*9+3) return LHS;
2494    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2495    return RHS;
2496  }
2497
2498  SDOperand OpLHS, OpRHS;
2499  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2500  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2501
2502  unsigned ShufIdxs[16];
2503  switch (OpNum) {
2504  default: assert(0 && "Unknown i32 permute!");
2505  case OP_VMRGHW:
2506    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
2507    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2508    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
2509    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2510    break;
2511  case OP_VMRGLW:
2512    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2513    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2514    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2515    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2516    break;
2517  case OP_VSPLTISW0:
2518    for (unsigned i = 0; i != 16; ++i)
2519      ShufIdxs[i] = (i&3)+0;
2520    break;
2521  case OP_VSPLTISW1:
2522    for (unsigned i = 0; i != 16; ++i)
2523      ShufIdxs[i] = (i&3)+4;
2524    break;
2525  case OP_VSPLTISW2:
2526    for (unsigned i = 0; i != 16; ++i)
2527      ShufIdxs[i] = (i&3)+8;
2528    break;
2529  case OP_VSPLTISW3:
2530    for (unsigned i = 0; i != 16; ++i)
2531      ShufIdxs[i] = (i&3)+12;
2532    break;
2533  case OP_VSLDOI4:
2534    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2535  case OP_VSLDOI8:
2536    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2537  case OP_VSLDOI12:
2538    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2539  }
2540  SDOperand Ops[16];
2541  for (unsigned i = 0; i != 16; ++i)
2542    Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2543
2544  return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2545                     DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2546}
2547
2548/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
2549/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
2550/// return the code it can be lowered into.  Worst case, it can always be
2551/// lowered into a vperm.
2552static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2553  SDOperand V1 = Op.getOperand(0);
2554  SDOperand V2 = Op.getOperand(1);
2555  SDOperand PermMask = Op.getOperand(2);
2556
2557  // Cases that are handled by instructions that take permute immediates
2558  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2559  // selected by the instruction selector.
2560  if (V2.getOpcode() == ISD::UNDEF) {
2561    if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2562        PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2563        PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2564        PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2565        PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2566        PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2567        PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2568        PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2569        PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2570        PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2571        PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2572        PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2573      return Op;
2574    }
2575  }
2576
2577  // Altivec has a variety of "shuffle immediates" that take two vector inputs
2578  // and produce a fixed permutation.  If any of these match, do not lower to
2579  // VPERM.
2580  if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2581      PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2582      PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2583      PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2584      PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2585      PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2586      PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2587      PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2588      PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2589    return Op;
2590
2591  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
2592  // perfect shuffle table to emit an optimal matching sequence.
2593  unsigned PFIndexes[4];
2594  bool isFourElementShuffle = true;
2595  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2596    unsigned EltNo = 8;   // Start out undef.
2597    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
2598      if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2599        continue;   // Undef, ignore it.
2600
2601      unsigned ByteSource =
2602        cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2603      if ((ByteSource & 3) != j) {
2604        isFourElementShuffle = false;
2605        break;
2606      }
2607
2608      if (EltNo == 8) {
2609        EltNo = ByteSource/4;
2610      } else if (EltNo != ByteSource/4) {
2611        isFourElementShuffle = false;
2612        break;
2613      }
2614    }
2615    PFIndexes[i] = EltNo;
2616  }
2617
2618  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2619  // perfect shuffle vector to determine if it is cost effective to do this as
2620  // discrete instructions, or whether we should use a vperm.
2621  if (isFourElementShuffle) {
2622    // Compute the index in the perfect shuffle table.
2623    unsigned PFTableIndex =
2624      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2625
2626    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2627    unsigned Cost  = (PFEntry >> 30);
2628
2629    // Determining when to avoid vperm is tricky.  Many things affect the cost
2630    // of vperm, particularly how many times the perm mask needs to be computed.
2631    // For example, if the perm mask can be hoisted out of a loop or is already
2632    // used (perhaps because there are multiple permutes with the same shuffle
2633    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
2634    // the loop requires an extra register.
2635    //
2636    // As a compromise, we only emit discrete instructions if the shuffle can be
2637    // generated in 3 or fewer operations.  When we have loop information
2638    // available, if this block is within a loop, we should avoid using vperm
2639    // for 3-operation perms and use a constant pool load instead.
2640    if (Cost < 3)
2641      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2642  }
2643
2644  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2645  // vector that will get spilled to the constant pool.
2646  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2647
2648  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2649  // that it is in input element units, not in bytes.  Convert now.
2650  MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
2651  unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2652
2653  SmallVector<SDOperand, 16> ResultMask;
2654  for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2655    unsigned SrcElt;
2656    if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2657      SrcElt = 0;
2658    else
2659      SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2660
2661    for (unsigned j = 0; j != BytesPerElement; ++j)
2662      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2663                                           MVT::i8));
2664  }
2665
2666  SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2667                                    &ResultMask[0], ResultMask.size());
2668  return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2669}
2670
2671/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2672/// altivec comparison.  If it is, return true and fill in Opc/isDot with
2673/// information about the intrinsic.
2674static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2675                                  bool &isDot) {
2676  unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2677  CompareOpc = -1;
2678  isDot = false;
2679  switch (IntrinsicID) {
2680  default: return false;
2681    // Comparison predicates.
2682  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
2683  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2684  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
2685  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
2686  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2687  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2688  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2689  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2690  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2691  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2692  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2693  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2694  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2695
2696    // Normal Comparisons.
2697  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
2698  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
2699  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
2700  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
2701  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
2702  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
2703  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
2704  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
2705  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
2706  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
2707  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
2708  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
2709  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
2710  }
2711  return true;
2712}
2713
2714/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2715/// lower, do it, otherwise return null.
2716static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2717  // If this is a lowered altivec predicate compare, CompareOpc is set to the
2718  // opcode number of the comparison.
2719  int CompareOpc;
2720  bool isDot;
2721  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2722    return SDOperand();    // Don't custom lower most intrinsics.
2723
2724  // If this is a non-dot comparison, make the VCMP node and we are done.
2725  if (!isDot) {
2726    SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2727                                Op.getOperand(1), Op.getOperand(2),
2728                                DAG.getConstant(CompareOpc, MVT::i32));
2729    return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2730  }
2731
2732  // Create the PPCISD altivec 'dot' comparison node.
2733  SDOperand Ops[] = {
2734    Op.getOperand(2),  // LHS
2735    Op.getOperand(3),  // RHS
2736    DAG.getConstant(CompareOpc, MVT::i32)
2737  };
2738  std::vector<MVT::ValueType> VTs;
2739  VTs.push_back(Op.getOperand(2).getValueType());
2740  VTs.push_back(MVT::Flag);
2741  SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2742
2743  // Now that we have the comparison, emit a copy from the CR to a GPR.
2744  // This is flagged to the above dot comparison.
2745  SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2746                                DAG.getRegister(PPC::CR6, MVT::i32),
2747                                CompNode.getValue(1));
2748
2749  // Unpack the result based on how the target uses it.
2750  unsigned BitNo;   // Bit # of CR6.
2751  bool InvertBit;   // Invert result?
2752  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2753  default:  // Can't happen, don't crash on invalid number though.
2754  case 0:   // Return the value of the EQ bit of CR6.
2755    BitNo = 0; InvertBit = false;
2756    break;
2757  case 1:   // Return the inverted value of the EQ bit of CR6.
2758    BitNo = 0; InvertBit = true;
2759    break;
2760  case 2:   // Return the value of the LT bit of CR6.
2761    BitNo = 2; InvertBit = false;
2762    break;
2763  case 3:   // Return the inverted value of the LT bit of CR6.
2764    BitNo = 2; InvertBit = true;
2765    break;
2766  }
2767
2768  // Shift the bit into the low position.
2769  Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2770                      DAG.getConstant(8-(3-BitNo), MVT::i32));
2771  // Isolate the bit.
2772  Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2773                      DAG.getConstant(1, MVT::i32));
2774
2775  // If we are supposed to, toggle the bit.
2776  if (InvertBit)
2777    Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2778                        DAG.getConstant(1, MVT::i32));
2779  return Flags;
2780}
2781
2782static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2783  // Create a stack slot that is 16-byte aligned.
2784  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2785  int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2786  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2787  SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2788
2789  // Store the input value into Value#0 of the stack slot.
2790  SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2791                                 Op.getOperand(0), FIdx, NULL, 0);
2792  // Load it out.
2793  return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2794}
2795
2796static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2797  if (Op.getValueType() == MVT::v4i32) {
2798    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2799
2800    SDOperand Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG);
2801    SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2802
2803    SDOperand RHSSwap =   // = vrlw RHS, 16
2804      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2805
2806    // Shrinkify inputs to v8i16.
2807    LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2808    RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2809    RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2810
2811    // Low parts multiplied together, generating 32-bit results (we ignore the
2812    // top parts).
2813    SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2814                                        LHS, RHS, DAG, MVT::v4i32);
2815
2816    SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2817                                        LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2818    // Shift the high parts up 16 bits.
2819    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2820    return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2821  } else if (Op.getValueType() == MVT::v8i16) {
2822    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2823
2824    SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2825
2826    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2827                            LHS, RHS, Zero, DAG);
2828  } else if (Op.getValueType() == MVT::v16i8) {
2829    SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2830
2831    // Multiply the even 8-bit parts, producing 16-bit sums.
2832    SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2833                                           LHS, RHS, DAG, MVT::v8i16);
2834    EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2835
2836    // Multiply the odd 8-bit parts, producing 16-bit sums.
2837    SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2838                                          LHS, RHS, DAG, MVT::v8i16);
2839    OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2840
2841    // Merge the results together.
2842    SDOperand Ops[16];
2843    for (unsigned i = 0; i != 8; ++i) {
2844      Ops[i*2  ] = DAG.getConstant(2*i+1, MVT::i8);
2845      Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2846    }
2847    return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2848                       DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2849  } else {
2850    assert(0 && "Unknown mul to lower!");
2851    abort();
2852  }
2853}
2854
2855/// LowerOperation - Provide custom lowering hooks for some operations.
2856///
2857SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2858  switch (Op.getOpcode()) {
2859  default: assert(0 && "Wasn't expecting to be able to lower this!");
2860  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
2861  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
2862  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
2863  case ISD::SETCC:              return LowerSETCC(Op, DAG);
2864  case ISD::VASTART:
2865    return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2866                        VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2867
2868  case ISD::VAARG:
2869    return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2870                      VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
2871
2872  case ISD::FORMAL_ARGUMENTS:
2873    return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
2874                                 VarArgsStackOffset, VarArgsNumGPR,
2875                                 VarArgsNumFPR, PPCSubTarget);
2876
2877  case ISD::CALL:               return LowerCALL(Op, DAG, PPCSubTarget);
2878  case ISD::RET:                return LowerRET(Op, DAG, getTargetMachine());
2879  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
2880  case ISD::DYNAMIC_STACKALLOC:
2881    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
2882
2883  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
2884  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
2885  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
2886
2887  // Lower 64-bit shifts.
2888  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
2889  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
2890  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
2891
2892  // Vector-related lowering.
2893  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
2894  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
2895  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2896  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
2897  case ISD::MUL:                return LowerMUL(Op, DAG);
2898
2899  // Frame & Return address.  Currently unimplemented
2900  case ISD::RETURNADDR:         break;
2901  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
2902  }
2903  return SDOperand();
2904}
2905
2906//===----------------------------------------------------------------------===//
2907//  Other Lowering Code
2908//===----------------------------------------------------------------------===//
2909
2910MachineBasicBlock *
2911PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2912                                           MachineBasicBlock *BB) {
2913  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
2914  assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2915          MI->getOpcode() == PPC::SELECT_CC_I8 ||
2916          MI->getOpcode() == PPC::SELECT_CC_F4 ||
2917          MI->getOpcode() == PPC::SELECT_CC_F8 ||
2918          MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2919         "Unexpected instr type to insert");
2920
2921  // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2922  // control-flow pattern.  The incoming instruction knows the destination vreg
2923  // to set, the condition code register to branch on, the true/false values to
2924  // select between, and a branch opcode to use.
2925  const BasicBlock *LLVM_BB = BB->getBasicBlock();
2926  ilist<MachineBasicBlock>::iterator It = BB;
2927  ++It;
2928
2929  //  thisMBB:
2930  //  ...
2931  //   TrueVal = ...
2932  //   cmpTY ccX, r1, r2
2933  //   bCC copy1MBB
2934  //   fallthrough --> copy0MBB
2935  MachineBasicBlock *thisMBB = BB;
2936  MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2937  MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2938  unsigned SelectPred = MI->getOperand(4).getImm();
2939  BuildMI(BB, TII->get(PPC::BCC))
2940    .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2941  MachineFunction *F = BB->getParent();
2942  F->getBasicBlockList().insert(It, copy0MBB);
2943  F->getBasicBlockList().insert(It, sinkMBB);
2944  // Update machine-CFG edges by first adding all successors of the current
2945  // block to the new block which will contain the Phi node for the select.
2946  for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2947      e = BB->succ_end(); i != e; ++i)
2948    sinkMBB->addSuccessor(*i);
2949  // Next, remove all successors of the current block, and add the true
2950  // and fallthrough blocks as its successors.
2951  while(!BB->succ_empty())
2952    BB->removeSuccessor(BB->succ_begin());
2953  BB->addSuccessor(copy0MBB);
2954  BB->addSuccessor(sinkMBB);
2955
2956  //  copy0MBB:
2957  //   %FalseValue = ...
2958  //   # fallthrough to sinkMBB
2959  BB = copy0MBB;
2960
2961  // Update machine-CFG edges
2962  BB->addSuccessor(sinkMBB);
2963
2964  //  sinkMBB:
2965  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2966  //  ...
2967  BB = sinkMBB;
2968  BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
2969    .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2970    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2971
2972  delete MI;   // The pseudo instruction is gone now.
2973  return BB;
2974}
2975
2976//===----------------------------------------------------------------------===//
2977// Target Optimization Hooks
2978//===----------------------------------------------------------------------===//
2979
2980SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2981                                               DAGCombinerInfo &DCI) const {
2982  TargetMachine &TM = getTargetMachine();
2983  SelectionDAG &DAG = DCI.DAG;
2984  switch (N->getOpcode()) {
2985  default: break;
2986  case PPCISD::SHL:
2987    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2988      if (C->getValue() == 0)   // 0 << V -> 0.
2989        return N->getOperand(0);
2990    }
2991    break;
2992  case PPCISD::SRL:
2993    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
2994      if (C->getValue() == 0)   // 0 >>u V -> 0.
2995        return N->getOperand(0);
2996    }
2997    break;
2998  case PPCISD::SRA:
2999    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3000      if (C->getValue() == 0 ||   //  0 >>s V -> 0.
3001          C->isAllOnesValue())    // -1 >>s V -> -1.
3002        return N->getOperand(0);
3003    }
3004    break;
3005
3006  case ISD::SINT_TO_FP:
3007    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3008      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3009        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3010        // We allow the src/dst to be either f32/f64, but the intermediate
3011        // type must be i64.
3012        if (N->getOperand(0).getValueType() == MVT::i64) {
3013          SDOperand Val = N->getOperand(0).getOperand(0);
3014          if (Val.getValueType() == MVT::f32) {
3015            Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3016            DCI.AddToWorklist(Val.Val);
3017          }
3018
3019          Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3020          DCI.AddToWorklist(Val.Val);
3021          Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3022          DCI.AddToWorklist(Val.Val);
3023          if (N->getValueType(0) == MVT::f32) {
3024            Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
3025            DCI.AddToWorklist(Val.Val);
3026          }
3027          return Val;
3028        } else if (N->getOperand(0).getValueType() == MVT::i32) {
3029          // If the intermediate type is i32, we can avoid the load/store here
3030          // too.
3031        }
3032      }
3033    }
3034    break;
3035  case ISD::STORE:
3036    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3037    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3038        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3039        N->getOperand(1).getValueType() == MVT::i32) {
3040      SDOperand Val = N->getOperand(1).getOperand(0);
3041      if (Val.getValueType() == MVT::f32) {
3042        Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3043        DCI.AddToWorklist(Val.Val);
3044      }
3045      Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3046      DCI.AddToWorklist(Val.Val);
3047
3048      Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3049                        N->getOperand(2), N->getOperand(3));
3050      DCI.AddToWorklist(Val.Val);
3051      return Val;
3052    }
3053
3054    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3055    if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3056        N->getOperand(1).Val->hasOneUse() &&
3057        (N->getOperand(1).getValueType() == MVT::i32 ||
3058         N->getOperand(1).getValueType() == MVT::i16)) {
3059      SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3060      // Do an any-extend to 32-bits if this is a half-word input.
3061      if (BSwapOp.getValueType() == MVT::i16)
3062        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3063
3064      return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3065                         N->getOperand(2), N->getOperand(3),
3066                         DAG.getValueType(N->getOperand(1).getValueType()));
3067    }
3068    break;
3069  case ISD::BSWAP:
3070    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3071    if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3072        N->getOperand(0).hasOneUse() &&
3073        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3074      SDOperand Load = N->getOperand(0);
3075      LoadSDNode *LD = cast<LoadSDNode>(Load);
3076      // Create the byte-swapping load.
3077      std::vector<MVT::ValueType> VTs;
3078      VTs.push_back(MVT::i32);
3079      VTs.push_back(MVT::Other);
3080      SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3081      SDOperand Ops[] = {
3082        LD->getChain(),    // Chain
3083        LD->getBasePtr(),  // Ptr
3084        SV,                // SrcValue
3085        DAG.getValueType(N->getValueType(0)) // VT
3086      };
3087      SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3088
3089      // If this is an i16 load, insert the truncate.
3090      SDOperand ResVal = BSLoad;
3091      if (N->getValueType(0) == MVT::i16)
3092        ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3093
3094      // First, combine the bswap away.  This makes the value produced by the
3095      // load dead.
3096      DCI.CombineTo(N, ResVal);
3097
3098      // Next, combine the load away, we give it a bogus result value but a real
3099      // chain result.  The result value is dead because the bswap is dead.
3100      DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3101
3102      // Return N so it doesn't get rechecked!
3103      return SDOperand(N, 0);
3104    }
3105
3106    break;
3107  case PPCISD::VCMP: {
3108    // If a VCMPo node already exists with exactly the same operands as this
3109    // node, use its result instead of this node (VCMPo computes both a CR6 and
3110    // a normal output).
3111    //
3112    if (!N->getOperand(0).hasOneUse() &&
3113        !N->getOperand(1).hasOneUse() &&
3114        !N->getOperand(2).hasOneUse()) {
3115
3116      // Scan all of the users of the LHS, looking for VCMPo's that match.
3117      SDNode *VCMPoNode = 0;
3118
3119      SDNode *LHSN = N->getOperand(0).Val;
3120      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3121           UI != E; ++UI)
3122        if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3123            (*UI)->getOperand(1) == N->getOperand(1) &&
3124            (*UI)->getOperand(2) == N->getOperand(2) &&
3125            (*UI)->getOperand(0) == N->getOperand(0)) {
3126          VCMPoNode = *UI;
3127          break;
3128        }
3129
3130      // If there is no VCMPo node, or if the flag value has a single use, don't
3131      // transform this.
3132      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3133        break;
3134
3135      // Look at the (necessarily single) use of the flag value.  If it has a
3136      // chain, this transformation is more complex.  Note that multiple things
3137      // could use the value result, which we should ignore.
3138      SDNode *FlagUser = 0;
3139      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3140           FlagUser == 0; ++UI) {
3141        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3142        SDNode *User = *UI;
3143        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3144          if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3145            FlagUser = User;
3146            break;
3147          }
3148        }
3149      }
3150
3151      // If the user is a MFCR instruction, we know this is safe.  Otherwise we
3152      // give up for right now.
3153      if (FlagUser->getOpcode() == PPCISD::MFCR)
3154        return SDOperand(VCMPoNode, 0);
3155    }
3156    break;
3157  }
3158  case ISD::BR_CC: {
3159    // If this is a branch on an altivec predicate comparison, lower this so
3160    // that we don't have to do a MFCR: instead, branch directly on CR6.  This
3161    // lowering is done pre-legalize, because the legalizer lowers the predicate
3162    // compare down to code that is difficult to reassemble.
3163    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3164    SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3165    int CompareOpc;
3166    bool isDot;
3167
3168    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3169        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3170        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3171      assert(isDot && "Can't compare against a vector result!");
3172
3173      // If this is a comparison against something other than 0/1, then we know
3174      // that the condition is never/always true.
3175      unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3176      if (Val != 0 && Val != 1) {
3177        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
3178          return N->getOperand(0);
3179        // Always !=, turn it into an unconditional branch.
3180        return DAG.getNode(ISD::BR, MVT::Other,
3181                           N->getOperand(0), N->getOperand(4));
3182      }
3183
3184      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3185
3186      // Create the PPCISD altivec 'dot' comparison node.
3187      std::vector<MVT::ValueType> VTs;
3188      SDOperand Ops[] = {
3189        LHS.getOperand(2),  // LHS of compare
3190        LHS.getOperand(3),  // RHS of compare
3191        DAG.getConstant(CompareOpc, MVT::i32)
3192      };
3193      VTs.push_back(LHS.getOperand(2).getValueType());
3194      VTs.push_back(MVT::Flag);
3195      SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3196
3197      // Unpack the result based on how the target uses it.
3198      PPC::Predicate CompOpc;
3199      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3200      default:  // Can't happen, don't crash on invalid number though.
3201      case 0:   // Branch on the value of the EQ bit of CR6.
3202        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3203        break;
3204      case 1:   // Branch on the inverted value of the EQ bit of CR6.
3205        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3206        break;
3207      case 2:   // Branch on the value of the LT bit of CR6.
3208        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3209        break;
3210      case 3:   // Branch on the inverted value of the LT bit of CR6.
3211        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3212        break;
3213      }
3214
3215      return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3216                         DAG.getConstant(CompOpc, MVT::i32),
3217                         DAG.getRegister(PPC::CR6, MVT::i32),
3218                         N->getOperand(4), CompNode.getValue(1));
3219    }
3220    break;
3221  }
3222  }
3223
3224  return SDOperand();
3225}
3226
3227//===----------------------------------------------------------------------===//
3228// Inline Assembly Support
3229//===----------------------------------------------------------------------===//
3230
3231void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3232                                                       uint64_t Mask,
3233                                                       uint64_t &KnownZero,
3234                                                       uint64_t &KnownOne,
3235                                                       unsigned Depth) const {
3236  KnownZero = 0;
3237  KnownOne = 0;
3238  switch (Op.getOpcode()) {
3239  default: break;
3240  case PPCISD::LBRX: {
3241    // lhbrx is known to have the top bits cleared out.
3242    if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3243      KnownZero = 0xFFFF0000;
3244    break;
3245  }
3246  case ISD::INTRINSIC_WO_CHAIN: {
3247    switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3248    default: break;
3249    case Intrinsic::ppc_altivec_vcmpbfp_p:
3250    case Intrinsic::ppc_altivec_vcmpeqfp_p:
3251    case Intrinsic::ppc_altivec_vcmpequb_p:
3252    case Intrinsic::ppc_altivec_vcmpequh_p:
3253    case Intrinsic::ppc_altivec_vcmpequw_p:
3254    case Intrinsic::ppc_altivec_vcmpgefp_p:
3255    case Intrinsic::ppc_altivec_vcmpgtfp_p:
3256    case Intrinsic::ppc_altivec_vcmpgtsb_p:
3257    case Intrinsic::ppc_altivec_vcmpgtsh_p:
3258    case Intrinsic::ppc_altivec_vcmpgtsw_p:
3259    case Intrinsic::ppc_altivec_vcmpgtub_p:
3260    case Intrinsic::ppc_altivec_vcmpgtuh_p:
3261    case Intrinsic::ppc_altivec_vcmpgtuw_p:
3262      KnownZero = ~1U;  // All bits but the low one are known to be zero.
3263      break;
3264    }
3265  }
3266  }
3267}
3268
3269
3270/// getConstraintType - Given a constraint, return the type of
3271/// constraint it is for this target.
3272PPCTargetLowering::ConstraintType
3273PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3274  if (Constraint.size() == 1) {
3275    switch (Constraint[0]) {
3276    default: break;
3277    case 'b':
3278    case 'r':
3279    case 'f':
3280    case 'v':
3281    case 'y':
3282      return C_RegisterClass;
3283    }
3284  }
3285  return TargetLowering::getConstraintType(Constraint);
3286}
3287
3288std::pair<unsigned, const TargetRegisterClass*>
3289PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3290                                                MVT::ValueType VT) const {
3291  if (Constraint.size() == 1) {
3292    // GCC RS6000 Constraint Letters
3293    switch (Constraint[0]) {
3294    case 'b':   // R1-R31
3295    case 'r':   // R0-R31
3296      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3297        return std::make_pair(0U, PPC::G8RCRegisterClass);
3298      return std::make_pair(0U, PPC::GPRCRegisterClass);
3299    case 'f':
3300      if (VT == MVT::f32)
3301        return std::make_pair(0U, PPC::F4RCRegisterClass);
3302      else if (VT == MVT::f64)
3303        return std::make_pair(0U, PPC::F8RCRegisterClass);
3304      break;
3305    case 'v':
3306      return std::make_pair(0U, PPC::VRRCRegisterClass);
3307    case 'y':   // crrc
3308      return std::make_pair(0U, PPC::CRRCRegisterClass);
3309    }
3310  }
3311
3312  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3313}
3314
3315
3316// isOperandValidForConstraint
3317SDOperand PPCTargetLowering::
3318isOperandValidForConstraint(SDOperand Op, char Letter, SelectionDAG &DAG) {
3319  switch (Letter) {
3320  default: break;
3321  case 'I':
3322  case 'J':
3323  case 'K':
3324  case 'L':
3325  case 'M':
3326  case 'N':
3327  case 'O':
3328  case 'P': {
3329    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3330    if (!CST) return SDOperand(0, 0); // Must be an immediate to match.
3331    unsigned Value = CST->getValue();
3332    switch (Letter) {
3333    default: assert(0 && "Unknown constraint letter!");
3334    case 'I':  // "I" is a signed 16-bit constant.
3335      if ((short)Value == (int)Value)
3336        return DAG.getTargetConstant(Value, Op.getValueType());
3337      break;
3338    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
3339    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
3340      if ((short)Value == 0)
3341        return DAG.getTargetConstant(Value, Op.getValueType());
3342      break;
3343    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
3344      if ((Value >> 16) == 0)
3345        return DAG.getTargetConstant(Value, Op.getValueType());
3346      break;
3347    case 'M':  // "M" is a constant that is greater than 31.
3348      if (Value > 31)
3349        return DAG.getTargetConstant(Value, Op.getValueType());
3350      break;
3351    case 'N':  // "N" is a positive constant that is an exact power of two.
3352      if ((int)Value > 0 && isPowerOf2_32(Value))
3353        return DAG.getTargetConstant(Value, Op.getValueType());
3354      break;
3355    case 'O':  // "O" is the constant zero.
3356      if (Value == 0)
3357        return DAG.getTargetConstant(Value, Op.getValueType());
3358      break;
3359    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
3360      if ((short)-Value == (int)-Value)
3361        return DAG.getTargetConstant(Value, Op.getValueType());
3362      break;
3363    }
3364    break;
3365  }
3366  }
3367
3368  // Handle standard constraint letters.
3369  return TargetLowering::isOperandValidForConstraint(Op, Letter, DAG);
3370}
3371
3372// isLegalAddressingMode - Return true if the addressing mode represented
3373// by AM is legal for this target, for a load/store of the specified type.
3374bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3375                                              const Type *Ty) const {
3376  // FIXME: PPC does not allow r+i addressing modes for vectors!
3377
3378  // PPC allows a sign-extended 16-bit immediate field.
3379  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3380    return false;
3381
3382  // No global is ever allowed as a base.
3383  if (AM.BaseGV)
3384    return false;
3385
3386  // PPC only support r+r,
3387  switch (AM.Scale) {
3388  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3389    break;
3390  case 1:
3391    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3392      return false;
3393    // Otherwise we have r+r or r+i.
3394    break;
3395  case 2:
3396    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3397      return false;
3398    // Allow 2*r as r+r.
3399    break;
3400  default:
3401    // No other scales are supported.
3402    return false;
3403  }
3404
3405  return true;
3406}
3407
3408/// isLegalAddressImmediate - Return true if the integer value can be used
3409/// as the offset of the target addressing mode for load / store of the
3410/// given type.
3411bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3412  // PPC allows a sign-extended 16-bit immediate field.
3413  return (V > -(1 << 16) && V < (1 << 16)-1);
3414}
3415
3416bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3417  return false;
3418}
3419
3420SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG)
3421{
3422  // Depths > 0 not supported yet!
3423  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3424    return SDOperand();
3425
3426  MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3427  bool isPPC64 = PtrVT == MVT::i64;
3428
3429  MachineFunction &MF = DAG.getMachineFunction();
3430  MachineFrameInfo *MFI = MF.getFrameInfo();
3431  bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3432                  && MFI->getStackSize();
3433
3434  if (isPPC64)
3435    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
3436      MVT::i32);
3437  else
3438    return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3439      MVT::i32);
3440}
3441