PPCISelLowering.cpp revision ad3b34d1bc4eaa92a95c56fe32fd18a6f36f62f4
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPCMachineFunctionInfo.h"
17#include "PPCPerfectShuffle.h"
18#include "PPCTargetMachine.h"
19#include "PPCTargetObjectFile.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstrBuilder.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constants.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetOptions.h"
38using namespace llvm;
39
40static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
41cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
42
43static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
44cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
45
46static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
47cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
48
49static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
50  if (TM.getSubtargetImpl()->isDarwin())
51    return new TargetLoweringObjectFileMachO();
52
53  if (TM.getSubtargetImpl()->isSVR4ABI())
54    return new PPC64LinuxTargetObjectFile();
55
56  return new TargetLoweringObjectFileELF();
57}
58
59PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
60  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
61  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
62
63  setPow2DivIsCheap();
64
65  // Use _setjmp/_longjmp instead of setjmp/longjmp.
66  setUseUnderscoreSetJmp(true);
67  setUseUnderscoreLongJmp(true);
68
69  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
70  // arguments are at least 4/8 bytes aligned.
71  bool isPPC64 = Subtarget->isPPC64();
72  setMinStackArgumentAlignment(isPPC64 ? 8:4);
73
74  // Set up the register classes.
75  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
76  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
77  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
78
79  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
80  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
81  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
82
83  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
84
85  // PowerPC has pre-inc load and store's.
86  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
87  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
88  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
89  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
91  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
92  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
93  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
94  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
96
97  // This is used in the ppcf128->int sequence.  Note it has different semantics
98  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
99  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
100
101  // We do not currently implement these libm ops for PowerPC.
102  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
103  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
104  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
105  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
106  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
107  setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
108
109  // PowerPC has no SREM/UREM instructions
110  setOperationAction(ISD::SREM, MVT::i32, Expand);
111  setOperationAction(ISD::UREM, MVT::i32, Expand);
112  setOperationAction(ISD::SREM, MVT::i64, Expand);
113  setOperationAction(ISD::UREM, MVT::i64, Expand);
114
115  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
116  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
117  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
118  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
119  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
120  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
121  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
122  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
123  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
124
125  // We don't support sin/cos/sqrt/fmod/pow
126  setOperationAction(ISD::FSIN , MVT::f64, Expand);
127  setOperationAction(ISD::FCOS , MVT::f64, Expand);
128  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
129  setOperationAction(ISD::FREM , MVT::f64, Expand);
130  setOperationAction(ISD::FPOW , MVT::f64, Expand);
131  setOperationAction(ISD::FMA  , MVT::f64, Legal);
132  setOperationAction(ISD::FSIN , MVT::f32, Expand);
133  setOperationAction(ISD::FCOS , MVT::f32, Expand);
134  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
135  setOperationAction(ISD::FREM , MVT::f32, Expand);
136  setOperationAction(ISD::FPOW , MVT::f32, Expand);
137  setOperationAction(ISD::FMA  , MVT::f32, Legal);
138
139  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
140
141  // If we're enabling GP optimizations, use hardware square root
142  if (!Subtarget->hasFSQRT() &&
143      !(TM.Options.UnsafeFPMath &&
144        Subtarget->hasFRSQRTE() && Subtarget->hasFRE()))
145    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
146
147  if (!Subtarget->hasFSQRT() &&
148      !(TM.Options.UnsafeFPMath &&
149        Subtarget->hasFRSQRTES() && Subtarget->hasFRES()))
150    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
151
152  setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
153  setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
154
155  if (Subtarget->hasFPRND()) {
156    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
157    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
158    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
159
160    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
161    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
162    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
163
164    // frin does not implement "ties to even." Thus, this is safe only in
165    // fast-math mode.
166    if (TM.Options.UnsafeFPMath) {
167      setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
168      setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
169
170      // These need to set FE_INEXACT, and use a custom inserter.
171      setOperationAction(ISD::FRINT, MVT::f64, Legal);
172      setOperationAction(ISD::FRINT, MVT::f32, Legal);
173    }
174  }
175
176  // PowerPC does not have BSWAP, CTPOP or CTTZ
177  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
178  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
179  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
180  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
181  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
182  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
183  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
184  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
185
186  if (Subtarget->hasPOPCNTD()) {
187    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
188    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
189  } else {
190    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
191    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
192  }
193
194  // PowerPC does not have ROTR
195  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
196  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
197
198  // PowerPC does not have Select
199  setOperationAction(ISD::SELECT, MVT::i32, Expand);
200  setOperationAction(ISD::SELECT, MVT::i64, Expand);
201  setOperationAction(ISD::SELECT, MVT::f32, Expand);
202  setOperationAction(ISD::SELECT, MVT::f64, Expand);
203
204  // PowerPC wants to turn select_cc of FP into fsel when possible.
205  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
206  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
207
208  // PowerPC wants to optimize integer setcc a bit
209  setOperationAction(ISD::SETCC, MVT::i32, Custom);
210
211  // PowerPC does not have BRCOND which requires SetCC
212  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
213
214  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
215
216  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
217  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
218
219  // PowerPC does not have [U|S]INT_TO_FP
220  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
221  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
222
223  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
224  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
225  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
226  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
227
228  // We cannot sextinreg(i1).  Expand to shifts.
229  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
230
231  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
232  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
233  // support continuation, user-level threading, and etc.. As a result, no
234  // other SjLj exception interfaces are implemented and please don't build
235  // your own exception handling based on them.
236  // LLVM/Clang supports zero-cost DWARF exception handling.
237  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
238  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
239
240  // We want to legalize GlobalAddress and ConstantPool nodes into the
241  // appropriate instructions to materialize the address.
242  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
243  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
244  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
245  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
246  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
247  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
248  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
249  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
250  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
251  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
252
253  // TRAP is legal.
254  setOperationAction(ISD::TRAP, MVT::Other, Legal);
255
256  // TRAMPOLINE is custom lowered.
257  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
258  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
259
260  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
261  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
262
263  if (Subtarget->isSVR4ABI()) {
264    if (isPPC64) {
265      // VAARG always uses double-word chunks, so promote anything smaller.
266      setOperationAction(ISD::VAARG, MVT::i1, Promote);
267      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
268      setOperationAction(ISD::VAARG, MVT::i8, Promote);
269      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
270      setOperationAction(ISD::VAARG, MVT::i16, Promote);
271      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
272      setOperationAction(ISD::VAARG, MVT::i32, Promote);
273      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
274      setOperationAction(ISD::VAARG, MVT::Other, Expand);
275    } else {
276      // VAARG is custom lowered with the 32-bit SVR4 ABI.
277      setOperationAction(ISD::VAARG, MVT::Other, Custom);
278      setOperationAction(ISD::VAARG, MVT::i64, Custom);
279    }
280  } else
281    setOperationAction(ISD::VAARG, MVT::Other, Expand);
282
283  // Use the default implementation.
284  setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
285  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
286  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
287  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
288  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
289  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
290
291  // We want to custom lower some of our intrinsics.
292  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
293
294  // To handle counter-based loop conditions.
295  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
296
297  // Comparisons that require checking two conditions.
298  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
299  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
300  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
301  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
302  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
303  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
304  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
305  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
306  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
307  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
308  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
309  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
310
311  if (Subtarget->has64BitSupport()) {
312    // They also have instructions for converting between i64 and fp.
313    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
314    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
315    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
316    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
317    // This is just the low 32 bits of a (signed) fp->i64 conversion.
318    // We cannot do this with Promote because i64 is not a legal type.
319    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
320
321    if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64())
322      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
323  } else {
324    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
325    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
326  }
327
328  // With the instructions enabled under FPCVT, we can do everything.
329  if (PPCSubTarget.hasFPCVT()) {
330    if (Subtarget->has64BitSupport()) {
331      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
332      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
333      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
334      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
335    }
336
337    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
338    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
339    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
340    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
341  }
342
343  if (Subtarget->use64BitRegs()) {
344    // 64-bit PowerPC implementations can support i64 types directly
345    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
346    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
347    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
348    // 64-bit PowerPC wants to expand i128 shifts itself.
349    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
350    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
351    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
352  } else {
353    // 32-bit PowerPC wants to expand i64 shifts itself.
354    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
355    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
356    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
357  }
358
359  if (Subtarget->hasAltivec()) {
360    // First set operation action for all vector types to expand. Then we
361    // will selectively turn on ones that can be effectively codegen'd.
362    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
363         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
364      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
365
366      // add/sub are legal for all supported vector VT's.
367      setOperationAction(ISD::ADD , VT, Legal);
368      setOperationAction(ISD::SUB , VT, Legal);
369
370      // We promote all shuffles to v16i8.
371      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
372      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
373
374      // We promote all non-typed operations to v4i32.
375      setOperationAction(ISD::AND   , VT, Promote);
376      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
377      setOperationAction(ISD::OR    , VT, Promote);
378      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
379      setOperationAction(ISD::XOR   , VT, Promote);
380      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
381      setOperationAction(ISD::LOAD  , VT, Promote);
382      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
383      setOperationAction(ISD::SELECT, VT, Promote);
384      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
385      setOperationAction(ISD::STORE, VT, Promote);
386      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
387
388      // No other operations are legal.
389      setOperationAction(ISD::MUL , VT, Expand);
390      setOperationAction(ISD::SDIV, VT, Expand);
391      setOperationAction(ISD::SREM, VT, Expand);
392      setOperationAction(ISD::UDIV, VT, Expand);
393      setOperationAction(ISD::UREM, VT, Expand);
394      setOperationAction(ISD::FDIV, VT, Expand);
395      setOperationAction(ISD::FREM, VT, Expand);
396      setOperationAction(ISD::FNEG, VT, Expand);
397      setOperationAction(ISD::FSQRT, VT, Expand);
398      setOperationAction(ISD::FLOG, VT, Expand);
399      setOperationAction(ISD::FLOG10, VT, Expand);
400      setOperationAction(ISD::FLOG2, VT, Expand);
401      setOperationAction(ISD::FEXP, VT, Expand);
402      setOperationAction(ISD::FEXP2, VT, Expand);
403      setOperationAction(ISD::FSIN, VT, Expand);
404      setOperationAction(ISD::FCOS, VT, Expand);
405      setOperationAction(ISD::FABS, VT, Expand);
406      setOperationAction(ISD::FPOWI, VT, Expand);
407      setOperationAction(ISD::FFLOOR, VT, Expand);
408      setOperationAction(ISD::FCEIL,  VT, Expand);
409      setOperationAction(ISD::FTRUNC, VT, Expand);
410      setOperationAction(ISD::FRINT,  VT, Expand);
411      setOperationAction(ISD::FNEARBYINT, VT, Expand);
412      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
413      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
414      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
415      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
416      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
417      setOperationAction(ISD::UDIVREM, VT, Expand);
418      setOperationAction(ISD::SDIVREM, VT, Expand);
419      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
420      setOperationAction(ISD::FPOW, VT, Expand);
421      setOperationAction(ISD::CTPOP, VT, Expand);
422      setOperationAction(ISD::CTLZ, VT, Expand);
423      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
424      setOperationAction(ISD::CTTZ, VT, Expand);
425      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
426      setOperationAction(ISD::VSELECT, VT, Expand);
427      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
428
429      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
430           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
431        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
432        setTruncStoreAction(VT, InnerVT, Expand);
433      }
434      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
435      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
436      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
437    }
438
439    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
440    // with merges, splats, etc.
441    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
442
443    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
444    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
445    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
446    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
447    setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
448    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
449    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
450    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
451    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
452    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
453    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
454    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
455    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
456    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
457
458    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
459    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
460    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
461    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
462
463    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
464    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
465
466    if (TM.Options.UnsafeFPMath) {
467      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
468      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
469    }
470
471    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
472    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
473    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
474
475    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
476    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
477
478    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
479    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
480    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
481    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
482
483    // Altivec does not contain unordered floating-point compare instructions
484    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
485    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
486    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
487    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
488    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
489    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
490  }
491
492  if (Subtarget->has64BitSupport()) {
493    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
494    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
495  }
496
497  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
498  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
499  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
500  setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
501
502  setBooleanContents(ZeroOrOneBooleanContent);
503  // Altivec instructions set fields to all zeros or all ones.
504  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
505
506  if (isPPC64) {
507    setStackPointerRegisterToSaveRestore(PPC::X1);
508    setExceptionPointerRegister(PPC::X3);
509    setExceptionSelectorRegister(PPC::X4);
510  } else {
511    setStackPointerRegisterToSaveRestore(PPC::R1);
512    setExceptionPointerRegister(PPC::R3);
513    setExceptionSelectorRegister(PPC::R4);
514  }
515
516  // We have target-specific dag combine patterns for the following nodes:
517  setTargetDAGCombine(ISD::SINT_TO_FP);
518  setTargetDAGCombine(ISD::LOAD);
519  setTargetDAGCombine(ISD::STORE);
520  setTargetDAGCombine(ISD::BR_CC);
521  setTargetDAGCombine(ISD::BSWAP);
522  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
523
524  // Use reciprocal estimates.
525  if (TM.Options.UnsafeFPMath) {
526    setTargetDAGCombine(ISD::FDIV);
527    setTargetDAGCombine(ISD::FSQRT);
528  }
529
530  // Darwin long double math library functions have $LDBL128 appended.
531  if (Subtarget->isDarwin()) {
532    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
533    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
534    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
535    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
536    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
537    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
538    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
539    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
540    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
541    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
542  }
543
544  setMinFunctionAlignment(2);
545  if (PPCSubTarget.isDarwin())
546    setPrefFunctionAlignment(4);
547
548  if (isPPC64 && Subtarget->isJITCodeModel())
549    // Temporary workaround for the inability of PPC64 JIT to handle jump
550    // tables.
551    setSupportJumpTables(false);
552
553  setInsertFencesForAtomic(true);
554
555  setSchedulingPreference(Sched::Hybrid);
556
557  computeRegisterProperties();
558
559  // The Freescale cores does better with aggressive inlining of memcpy and
560  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
561  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
562      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
563    MaxStoresPerMemset = 32;
564    MaxStoresPerMemsetOptSize = 16;
565    MaxStoresPerMemcpy = 32;
566    MaxStoresPerMemcpyOptSize = 8;
567    MaxStoresPerMemmove = 32;
568    MaxStoresPerMemmoveOptSize = 8;
569
570    setPrefFunctionAlignment(4);
571  }
572}
573
574/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
575/// function arguments in the caller parameter area.
576unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
577  const TargetMachine &TM = getTargetMachine();
578  // Darwin passes everything on 4 byte boundary.
579  if (TM.getSubtarget<PPCSubtarget>().isDarwin())
580    return 4;
581
582  // 16byte and wider vectors are passed on 16byte boundary.
583  if (VectorType *VTy = dyn_cast<VectorType>(Ty))
584    if (VTy->getBitWidth() >= 128)
585      return 16;
586
587  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
588   if (PPCSubTarget.isPPC64())
589     return 8;
590
591  return 4;
592}
593
594const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
595  switch (Opcode) {
596  default: return 0;
597  case PPCISD::FSEL:            return "PPCISD::FSEL";
598  case PPCISD::FCFID:           return "PPCISD::FCFID";
599  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
600  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
601  case PPCISD::FRE:             return "PPCISD::FRE";
602  case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
603  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
604  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
605  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
606  case PPCISD::VPERM:           return "PPCISD::VPERM";
607  case PPCISD::Hi:              return "PPCISD::Hi";
608  case PPCISD::Lo:              return "PPCISD::Lo";
609  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
610  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
611  case PPCISD::LOAD:            return "PPCISD::LOAD";
612  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
613  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
614  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
615  case PPCISD::SRL:             return "PPCISD::SRL";
616  case PPCISD::SRA:             return "PPCISD::SRA";
617  case PPCISD::SHL:             return "PPCISD::SHL";
618  case PPCISD::CALL:            return "PPCISD::CALL";
619  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
620  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
621  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
622  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
623  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
624  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
625  case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
626  case PPCISD::VCMP:            return "PPCISD::VCMP";
627  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
628  case PPCISD::LBRX:            return "PPCISD::LBRX";
629  case PPCISD::STBRX:           return "PPCISD::STBRX";
630  case PPCISD::LARX:            return "PPCISD::LARX";
631  case PPCISD::STCX:            return "PPCISD::STCX";
632  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
633  case PPCISD::BDNZ:            return "PPCISD::BDNZ";
634  case PPCISD::BDZ:             return "PPCISD::BDZ";
635  case PPCISD::MFFS:            return "PPCISD::MFFS";
636  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
637  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
638  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
639  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
640  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
641  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
642  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
643  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
644  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
645  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
646  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
647  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
648  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
649  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
650  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
651  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
652  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
653  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
654  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
655  case PPCISD::SC:              return "PPCISD::SC";
656  }
657}
658
659EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
660  if (!VT.isVector())
661    return MVT::i32;
662  return VT.changeVectorElementTypeToInteger();
663}
664
665//===----------------------------------------------------------------------===//
666// Node matching predicates, for use by the tblgen matching code.
667//===----------------------------------------------------------------------===//
668
669/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
670static bool isFloatingPointZero(SDValue Op) {
671  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
672    return CFP->getValueAPF().isZero();
673  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
674    // Maybe this has already been legalized into the constant pool?
675    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
676      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
677        return CFP->getValueAPF().isZero();
678  }
679  return false;
680}
681
682/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
683/// true if Op is undef or if it matches the specified value.
684static bool isConstantOrUndef(int Op, int Val) {
685  return Op < 0 || Op == Val;
686}
687
688/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
689/// VPKUHUM instruction.
690bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
691  if (!isUnary) {
692    for (unsigned i = 0; i != 16; ++i)
693      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
694        return false;
695  } else {
696    for (unsigned i = 0; i != 8; ++i)
697      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
698          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
699        return false;
700  }
701  return true;
702}
703
704/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
705/// VPKUWUM instruction.
706bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
707  if (!isUnary) {
708    for (unsigned i = 0; i != 16; i += 2)
709      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
710          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
711        return false;
712  } else {
713    for (unsigned i = 0; i != 8; i += 2)
714      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
715          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
716          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
717          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
718        return false;
719  }
720  return true;
721}
722
723/// isVMerge - Common function, used to match vmrg* shuffles.
724///
725static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
726                     unsigned LHSStart, unsigned RHSStart) {
727  assert(N->getValueType(0) == MVT::v16i8 &&
728         "PPC only supports shuffles by bytes!");
729  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
730         "Unsupported merge size!");
731
732  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
733    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
734      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
735                             LHSStart+j+i*UnitSize) ||
736          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
737                             RHSStart+j+i*UnitSize))
738        return false;
739    }
740  return true;
741}
742
743/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
744/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
745bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
746                             bool isUnary) {
747  if (!isUnary)
748    return isVMerge(N, UnitSize, 8, 24);
749  return isVMerge(N, UnitSize, 8, 8);
750}
751
752/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
753/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
754bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
755                             bool isUnary) {
756  if (!isUnary)
757    return isVMerge(N, UnitSize, 0, 16);
758  return isVMerge(N, UnitSize, 0, 0);
759}
760
761
762/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
763/// amount, otherwise return -1.
764int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
765  assert(N->getValueType(0) == MVT::v16i8 &&
766         "PPC only supports shuffles by bytes!");
767
768  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
769
770  // Find the first non-undef value in the shuffle mask.
771  unsigned i;
772  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
773    /*search*/;
774
775  if (i == 16) return -1;  // all undef.
776
777  // Otherwise, check to see if the rest of the elements are consecutively
778  // numbered from this value.
779  unsigned ShiftAmt = SVOp->getMaskElt(i);
780  if (ShiftAmt < i) return -1;
781  ShiftAmt -= i;
782
783  if (!isUnary) {
784    // Check the rest of the elements to see if they are consecutive.
785    for (++i; i != 16; ++i)
786      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
787        return -1;
788  } else {
789    // Check the rest of the elements to see if they are consecutive.
790    for (++i; i != 16; ++i)
791      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
792        return -1;
793  }
794  return ShiftAmt;
795}
796
797/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
798/// specifies a splat of a single element that is suitable for input to
799/// VSPLTB/VSPLTH/VSPLTW.
800bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
801  assert(N->getValueType(0) == MVT::v16i8 &&
802         (EltSize == 1 || EltSize == 2 || EltSize == 4));
803
804  // This is a splat operation if each element of the permute is the same, and
805  // if the value doesn't reference the second vector.
806  unsigned ElementBase = N->getMaskElt(0);
807
808  // FIXME: Handle UNDEF elements too!
809  if (ElementBase >= 16)
810    return false;
811
812  // Check that the indices are consecutive, in the case of a multi-byte element
813  // splatted with a v16i8 mask.
814  for (unsigned i = 1; i != EltSize; ++i)
815    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
816      return false;
817
818  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
819    if (N->getMaskElt(i) < 0) continue;
820    for (unsigned j = 0; j != EltSize; ++j)
821      if (N->getMaskElt(i+j) != N->getMaskElt(j))
822        return false;
823  }
824  return true;
825}
826
827/// isAllNegativeZeroVector - Returns true if all elements of build_vector
828/// are -0.0.
829bool PPC::isAllNegativeZeroVector(SDNode *N) {
830  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
831
832  APInt APVal, APUndef;
833  unsigned BitSize;
834  bool HasAnyUndefs;
835
836  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
837    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
838      return CFP->getValueAPF().isNegZero();
839
840  return false;
841}
842
843/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
844/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
845unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
846  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
847  assert(isSplatShuffleMask(SVOp, EltSize));
848  return SVOp->getMaskElt(0) / EltSize;
849}
850
851/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
852/// by using a vspltis[bhw] instruction of the specified element size, return
853/// the constant being splatted.  The ByteSize field indicates the number of
854/// bytes of each element [124] -> [bhw].
855SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
856  SDValue OpVal(0, 0);
857
858  // If ByteSize of the splat is bigger than the element size of the
859  // build_vector, then we have a case where we are checking for a splat where
860  // multiple elements of the buildvector are folded together into a single
861  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
862  unsigned EltSize = 16/N->getNumOperands();
863  if (EltSize < ByteSize) {
864    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
865    SDValue UniquedVals[4];
866    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
867
868    // See if all of the elements in the buildvector agree across.
869    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
870      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
871      // If the element isn't a constant, bail fully out.
872      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
873
874
875      if (UniquedVals[i&(Multiple-1)].getNode() == 0)
876        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
877      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
878        return SDValue();  // no match.
879    }
880
881    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
882    // either constant or undef values that are identical for each chunk.  See
883    // if these chunks can form into a larger vspltis*.
884
885    // Check to see if all of the leading entries are either 0 or -1.  If
886    // neither, then this won't fit into the immediate field.
887    bool LeadingZero = true;
888    bool LeadingOnes = true;
889    for (unsigned i = 0; i != Multiple-1; ++i) {
890      if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
891
892      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
893      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
894    }
895    // Finally, check the least significant entry.
896    if (LeadingZero) {
897      if (UniquedVals[Multiple-1].getNode() == 0)
898        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
899      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
900      if (Val < 16)
901        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
902    }
903    if (LeadingOnes) {
904      if (UniquedVals[Multiple-1].getNode() == 0)
905        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
906      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
907      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
908        return DAG.getTargetConstant(Val, MVT::i32);
909    }
910
911    return SDValue();
912  }
913
914  // Check to see if this buildvec has a single non-undef value in its elements.
915  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
916    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
917    if (OpVal.getNode() == 0)
918      OpVal = N->getOperand(i);
919    else if (OpVal != N->getOperand(i))
920      return SDValue();
921  }
922
923  if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
924
925  unsigned ValSizeInBytes = EltSize;
926  uint64_t Value = 0;
927  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
928    Value = CN->getZExtValue();
929  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
930    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
931    Value = FloatToBits(CN->getValueAPF().convertToFloat());
932  }
933
934  // If the splat value is larger than the element value, then we can never do
935  // this splat.  The only case that we could fit the replicated bits into our
936  // immediate field for would be zero, and we prefer to use vxor for it.
937  if (ValSizeInBytes < ByteSize) return SDValue();
938
939  // If the element value is larger than the splat value, cut it in half and
940  // check to see if the two halves are equal.  Continue doing this until we
941  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
942  while (ValSizeInBytes > ByteSize) {
943    ValSizeInBytes >>= 1;
944
945    // If the top half equals the bottom half, we're still ok.
946    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
947         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
948      return SDValue();
949  }
950
951  // Properly sign extend the value.
952  int MaskVal = SignExtend32(Value, ByteSize * 8);
953
954  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
955  if (MaskVal == 0) return SDValue();
956
957  // Finally, if this value fits in a 5 bit sext field, return it
958  if (SignExtend32<5>(MaskVal) == MaskVal)
959    return DAG.getTargetConstant(MaskVal, MVT::i32);
960  return SDValue();
961}
962
963//===----------------------------------------------------------------------===//
964//  Addressing Mode Selection
965//===----------------------------------------------------------------------===//
966
967/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
968/// or 64-bit immediate, and if the value can be accurately represented as a
969/// sign extension from a 16-bit value.  If so, this returns true and the
970/// immediate.
971static bool isIntS16Immediate(SDNode *N, short &Imm) {
972  if (N->getOpcode() != ISD::Constant)
973    return false;
974
975  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
976  if (N->getValueType(0) == MVT::i32)
977    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
978  else
979    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
980}
981static bool isIntS16Immediate(SDValue Op, short &Imm) {
982  return isIntS16Immediate(Op.getNode(), Imm);
983}
984
985
986/// SelectAddressRegReg - Given the specified addressed, check to see if it
987/// can be represented as an indexed [r+r] operation.  Returns false if it
988/// can be more efficiently represented with [r+imm].
989bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
990                                            SDValue &Index,
991                                            SelectionDAG &DAG) const {
992  short imm = 0;
993  if (N.getOpcode() == ISD::ADD) {
994    if (isIntS16Immediate(N.getOperand(1), imm))
995      return false;    // r+i
996    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
997      return false;    // r+i
998
999    Base = N.getOperand(0);
1000    Index = N.getOperand(1);
1001    return true;
1002  } else if (N.getOpcode() == ISD::OR) {
1003    if (isIntS16Immediate(N.getOperand(1), imm))
1004      return false;    // r+i can fold it if we can.
1005
1006    // If this is an or of disjoint bitfields, we can codegen this as an add
1007    // (for better address arithmetic) if the LHS and RHS of the OR are provably
1008    // disjoint.
1009    APInt LHSKnownZero, LHSKnownOne;
1010    APInt RHSKnownZero, RHSKnownOne;
1011    DAG.ComputeMaskedBits(N.getOperand(0),
1012                          LHSKnownZero, LHSKnownOne);
1013
1014    if (LHSKnownZero.getBoolValue()) {
1015      DAG.ComputeMaskedBits(N.getOperand(1),
1016                            RHSKnownZero, RHSKnownOne);
1017      // If all of the bits are known zero on the LHS or RHS, the add won't
1018      // carry.
1019      if (~(LHSKnownZero | RHSKnownZero) == 0) {
1020        Base = N.getOperand(0);
1021        Index = N.getOperand(1);
1022        return true;
1023      }
1024    }
1025  }
1026
1027  return false;
1028}
1029
1030/// Returns true if the address N can be represented by a base register plus
1031/// a signed 16-bit displacement [r+imm], and if it is not better
1032/// represented as reg+reg.  If Aligned is true, only accept displacements
1033/// suitable for STD and friends, i.e. multiples of 4.
1034bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1035                                            SDValue &Base,
1036                                            SelectionDAG &DAG,
1037                                            bool Aligned) const {
1038  // FIXME dl should come from parent load or store, not from address
1039  SDLoc dl(N);
1040  // If this can be more profitably realized as r+r, fail.
1041  if (SelectAddressRegReg(N, Disp, Base, DAG))
1042    return false;
1043
1044  if (N.getOpcode() == ISD::ADD) {
1045    short imm = 0;
1046    if (isIntS16Immediate(N.getOperand(1), imm) &&
1047        (!Aligned || (imm & 3) == 0)) {
1048      Disp = DAG.getTargetConstant(imm, N.getValueType());
1049      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1050        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1051      } else {
1052        Base = N.getOperand(0);
1053      }
1054      return true; // [r+i]
1055    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1056      // Match LOAD (ADD (X, Lo(G))).
1057      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1058             && "Cannot handle constant offsets yet!");
1059      Disp = N.getOperand(1).getOperand(0);  // The global address.
1060      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1061             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1062             Disp.getOpcode() == ISD::TargetConstantPool ||
1063             Disp.getOpcode() == ISD::TargetJumpTable);
1064      Base = N.getOperand(0);
1065      return true;  // [&g+r]
1066    }
1067  } else if (N.getOpcode() == ISD::OR) {
1068    short imm = 0;
1069    if (isIntS16Immediate(N.getOperand(1), imm) &&
1070        (!Aligned || (imm & 3) == 0)) {
1071      // If this is an or of disjoint bitfields, we can codegen this as an add
1072      // (for better address arithmetic) if the LHS and RHS of the OR are
1073      // provably disjoint.
1074      APInt LHSKnownZero, LHSKnownOne;
1075      DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1076
1077      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1078        // If all of the bits are known zero on the LHS or RHS, the add won't
1079        // carry.
1080        Base = N.getOperand(0);
1081        Disp = DAG.getTargetConstant(imm, N.getValueType());
1082        return true;
1083      }
1084    }
1085  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1086    // Loading from a constant address.
1087
1088    // If this address fits entirely in a 16-bit sext immediate field, codegen
1089    // this as "d, 0"
1090    short Imm;
1091    if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1092      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1093      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1094                             CN->getValueType(0));
1095      return true;
1096    }
1097
1098    // Handle 32-bit sext immediates with LIS + addr mode.
1099    if ((CN->getValueType(0) == MVT::i32 ||
1100         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1101        (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1102      int Addr = (int)CN->getZExtValue();
1103
1104      // Otherwise, break this down into an LIS + disp.
1105      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1106
1107      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1108      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1109      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1110      return true;
1111    }
1112  }
1113
1114  Disp = DAG.getTargetConstant(0, getPointerTy());
1115  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1116    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1117  else
1118    Base = N;
1119  return true;      // [r+0]
1120}
1121
1122/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1123/// represented as an indexed [r+r] operation.
1124bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1125                                                SDValue &Index,
1126                                                SelectionDAG &DAG) const {
1127  // Check to see if we can easily represent this as an [r+r] address.  This
1128  // will fail if it thinks that the address is more profitably represented as
1129  // reg+imm, e.g. where imm = 0.
1130  if (SelectAddressRegReg(N, Base, Index, DAG))
1131    return true;
1132
1133  // If the operand is an addition, always emit this as [r+r], since this is
1134  // better (for code size, and execution, as the memop does the add for free)
1135  // than emitting an explicit add.
1136  if (N.getOpcode() == ISD::ADD) {
1137    Base = N.getOperand(0);
1138    Index = N.getOperand(1);
1139    return true;
1140  }
1141
1142  // Otherwise, do it the hard way, using R0 as the base register.
1143  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1144                         N.getValueType());
1145  Index = N;
1146  return true;
1147}
1148
1149/// getPreIndexedAddressParts - returns true by value, base pointer and
1150/// offset pointer and addressing mode by reference if the node's address
1151/// can be legally represented as pre-indexed load / store address.
1152bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1153                                                  SDValue &Offset,
1154                                                  ISD::MemIndexedMode &AM,
1155                                                  SelectionDAG &DAG) const {
1156  if (DisablePPCPreinc) return false;
1157
1158  bool isLoad = true;
1159  SDValue Ptr;
1160  EVT VT;
1161  unsigned Alignment;
1162  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1163    Ptr = LD->getBasePtr();
1164    VT = LD->getMemoryVT();
1165    Alignment = LD->getAlignment();
1166  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1167    Ptr = ST->getBasePtr();
1168    VT  = ST->getMemoryVT();
1169    Alignment = ST->getAlignment();
1170    isLoad = false;
1171  } else
1172    return false;
1173
1174  // PowerPC doesn't have preinc load/store instructions for vectors.
1175  if (VT.isVector())
1176    return false;
1177
1178  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1179
1180    // Common code will reject creating a pre-inc form if the base pointer
1181    // is a frame index, or if N is a store and the base pointer is either
1182    // the same as or a predecessor of the value being stored.  Check for
1183    // those situations here, and try with swapped Base/Offset instead.
1184    bool Swap = false;
1185
1186    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1187      Swap = true;
1188    else if (!isLoad) {
1189      SDValue Val = cast<StoreSDNode>(N)->getValue();
1190      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1191        Swap = true;
1192    }
1193
1194    if (Swap)
1195      std::swap(Base, Offset);
1196
1197    AM = ISD::PRE_INC;
1198    return true;
1199  }
1200
1201  // LDU/STU can only handle immediates that are a multiple of 4.
1202  if (VT != MVT::i64) {
1203    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1204      return false;
1205  } else {
1206    // LDU/STU need an address with at least 4-byte alignment.
1207    if (Alignment < 4)
1208      return false;
1209
1210    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1211      return false;
1212  }
1213
1214  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1215    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1216    // sext i32 to i64 when addr mode is r+i.
1217    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1218        LD->getExtensionType() == ISD::SEXTLOAD &&
1219        isa<ConstantSDNode>(Offset))
1220      return false;
1221  }
1222
1223  AM = ISD::PRE_INC;
1224  return true;
1225}
1226
1227//===----------------------------------------------------------------------===//
1228//  LowerOperation implementation
1229//===----------------------------------------------------------------------===//
1230
1231/// GetLabelAccessInfo - Return true if we should reference labels using a
1232/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1233static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1234                               unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1235  HiOpFlags = PPCII::MO_HA;
1236  LoOpFlags = PPCII::MO_LO;
1237
1238  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1239  // non-darwin platform.  We don't support PIC on other platforms yet.
1240  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1241               TM.getSubtarget<PPCSubtarget>().isDarwin();
1242  if (isPIC) {
1243    HiOpFlags |= PPCII::MO_PIC_FLAG;
1244    LoOpFlags |= PPCII::MO_PIC_FLAG;
1245  }
1246
1247  // If this is a reference to a global value that requires a non-lazy-ptr, make
1248  // sure that instruction lowering adds it.
1249  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1250    HiOpFlags |= PPCII::MO_NLP_FLAG;
1251    LoOpFlags |= PPCII::MO_NLP_FLAG;
1252
1253    if (GV->hasHiddenVisibility()) {
1254      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1255      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1256    }
1257  }
1258
1259  return isPIC;
1260}
1261
1262static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1263                             SelectionDAG &DAG) {
1264  EVT PtrVT = HiPart.getValueType();
1265  SDValue Zero = DAG.getConstant(0, PtrVT);
1266  SDLoc DL(HiPart);
1267
1268  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1269  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1270
1271  // With PIC, the first instruction is actually "GR+hi(&G)".
1272  if (isPIC)
1273    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1274                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1275
1276  // Generate non-pic code that has direct accesses to the constant pool.
1277  // The address of the global is just (hi(&g)+lo(&g)).
1278  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1279}
1280
1281SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1282                                             SelectionDAG &DAG) const {
1283  EVT PtrVT = Op.getValueType();
1284  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1285  const Constant *C = CP->getConstVal();
1286
1287  // 64-bit SVR4 ABI code is always position-independent.
1288  // The actual address of the GlobalValue is stored in the TOC.
1289  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1290    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1291    return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
1292                       DAG.getRegister(PPC::X2, MVT::i64));
1293  }
1294
1295  unsigned MOHiFlag, MOLoFlag;
1296  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1297  SDValue CPIHi =
1298    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1299  SDValue CPILo =
1300    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1301  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1302}
1303
1304SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1305  EVT PtrVT = Op.getValueType();
1306  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1307
1308  // 64-bit SVR4 ABI code is always position-independent.
1309  // The actual address of the GlobalValue is stored in the TOC.
1310  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1311    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1312    return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
1313                       DAG.getRegister(PPC::X2, MVT::i64));
1314  }
1315
1316  unsigned MOHiFlag, MOLoFlag;
1317  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1318  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1319  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1320  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1321}
1322
1323SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1324                                             SelectionDAG &DAG) const {
1325  EVT PtrVT = Op.getValueType();
1326
1327  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1328
1329  unsigned MOHiFlag, MOLoFlag;
1330  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1331  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1332  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1333  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1334}
1335
1336SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1337                                              SelectionDAG &DAG) const {
1338
1339  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1340  SDLoc dl(GA);
1341  const GlobalValue *GV = GA->getGlobal();
1342  EVT PtrVT = getPointerTy();
1343  bool is64bit = PPCSubTarget.isPPC64();
1344
1345  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1346
1347  if (Model == TLSModel::LocalExec) {
1348    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1349                                               PPCII::MO_TPREL_HA);
1350    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1351                                               PPCII::MO_TPREL_LO);
1352    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1353                                     is64bit ? MVT::i64 : MVT::i32);
1354    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1355    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1356  }
1357
1358  if (!is64bit)
1359    llvm_unreachable("only local-exec is currently supported for ppc32");
1360
1361  if (Model == TLSModel::InitialExec) {
1362    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1363    SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1364                                                PPCII::MO_TLS);
1365    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1366    SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1367                                     PtrVT, GOTReg, TGA);
1368    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1369                                   PtrVT, TGA, TPOffsetHi);
1370    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
1371  }
1372
1373  if (Model == TLSModel::GeneralDynamic) {
1374    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1375    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1376    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1377                                     GOTReg, TGA);
1378    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1379                                   GOTEntryHi, TGA);
1380
1381    // We need a chain node, and don't have one handy.  The underlying
1382    // call has no side effects, so using the function entry node
1383    // suffices.
1384    SDValue Chain = DAG.getEntryNode();
1385    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1386    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1387    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1388                                  PtrVT, ParmReg, TGA);
1389    // The return value from GET_TLS_ADDR really is in X3 already, but
1390    // some hacks are needed here to tie everything together.  The extra
1391    // copies dissolve during subsequent transforms.
1392    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1393    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1394  }
1395
1396  if (Model == TLSModel::LocalDynamic) {
1397    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1398    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1399    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1400                                     GOTReg, TGA);
1401    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1402                                   GOTEntryHi, TGA);
1403
1404    // We need a chain node, and don't have one handy.  The underlying
1405    // call has no side effects, so using the function entry node
1406    // suffices.
1407    SDValue Chain = DAG.getEntryNode();
1408    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1409    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1410    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1411                                  PtrVT, ParmReg, TGA);
1412    // The return value from GET_TLSLD_ADDR really is in X3 already, but
1413    // some hacks are needed here to tie everything together.  The extra
1414    // copies dissolve during subsequent transforms.
1415    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1416    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1417                                      Chain, ParmReg, TGA);
1418    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1419  }
1420
1421  llvm_unreachable("Unknown TLS model!");
1422}
1423
1424SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1425                                              SelectionDAG &DAG) const {
1426  EVT PtrVT = Op.getValueType();
1427  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1428  SDLoc DL(GSDN);
1429  const GlobalValue *GV = GSDN->getGlobal();
1430
1431  // 64-bit SVR4 ABI code is always position-independent.
1432  // The actual address of the GlobalValue is stored in the TOC.
1433  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1434    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1435    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1436                       DAG.getRegister(PPC::X2, MVT::i64));
1437  }
1438
1439  unsigned MOHiFlag, MOLoFlag;
1440  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1441
1442  SDValue GAHi =
1443    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1444  SDValue GALo =
1445    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1446
1447  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1448
1449  // If the global reference is actually to a non-lazy-pointer, we have to do an
1450  // extra load to get the address of the global.
1451  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1452    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1453                      false, false, false, 0);
1454  return Ptr;
1455}
1456
1457SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1458  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1459  SDLoc dl(Op);
1460
1461  // If we're comparing for equality to zero, expose the fact that this is
1462  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1463  // fold the new nodes.
1464  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1465    if (C->isNullValue() && CC == ISD::SETEQ) {
1466      EVT VT = Op.getOperand(0).getValueType();
1467      SDValue Zext = Op.getOperand(0);
1468      if (VT.bitsLT(MVT::i32)) {
1469        VT = MVT::i32;
1470        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1471      }
1472      unsigned Log2b = Log2_32(VT.getSizeInBits());
1473      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1474      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1475                                DAG.getConstant(Log2b, MVT::i32));
1476      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1477    }
1478    // Leave comparisons against 0 and -1 alone for now, since they're usually
1479    // optimized.  FIXME: revisit this when we can custom lower all setcc
1480    // optimizations.
1481    if (C->isAllOnesValue() || C->isNullValue())
1482      return SDValue();
1483  }
1484
1485  // If we have an integer seteq/setne, turn it into a compare against zero
1486  // by xor'ing the rhs with the lhs, which is faster than setting a
1487  // condition register, reading it back out, and masking the correct bit.  The
1488  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1489  // the result to other bit-twiddling opportunities.
1490  EVT LHSVT = Op.getOperand(0).getValueType();
1491  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1492    EVT VT = Op.getValueType();
1493    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1494                                Op.getOperand(1));
1495    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1496  }
1497  return SDValue();
1498}
1499
1500SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1501                                      const PPCSubtarget &Subtarget) const {
1502  SDNode *Node = Op.getNode();
1503  EVT VT = Node->getValueType(0);
1504  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1505  SDValue InChain = Node->getOperand(0);
1506  SDValue VAListPtr = Node->getOperand(1);
1507  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1508  SDLoc dl(Node);
1509
1510  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1511
1512  // gpr_index
1513  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1514                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1515                                    false, false, 0);
1516  InChain = GprIndex.getValue(1);
1517
1518  if (VT == MVT::i64) {
1519    // Check if GprIndex is even
1520    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1521                                 DAG.getConstant(1, MVT::i32));
1522    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1523                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1524    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1525                                          DAG.getConstant(1, MVT::i32));
1526    // Align GprIndex to be even if it isn't
1527    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1528                           GprIndex);
1529  }
1530
1531  // fpr index is 1 byte after gpr
1532  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1533                               DAG.getConstant(1, MVT::i32));
1534
1535  // fpr
1536  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1537                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1538                                    false, false, 0);
1539  InChain = FprIndex.getValue(1);
1540
1541  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1542                                       DAG.getConstant(8, MVT::i32));
1543
1544  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1545                                        DAG.getConstant(4, MVT::i32));
1546
1547  // areas
1548  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1549                                     MachinePointerInfo(), false, false,
1550                                     false, 0);
1551  InChain = OverflowArea.getValue(1);
1552
1553  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1554                                    MachinePointerInfo(), false, false,
1555                                    false, 0);
1556  InChain = RegSaveArea.getValue(1);
1557
1558  // select overflow_area if index > 8
1559  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1560                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1561
1562  // adjustment constant gpr_index * 4/8
1563  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1564                                    VT.isInteger() ? GprIndex : FprIndex,
1565                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1566                                                    MVT::i32));
1567
1568  // OurReg = RegSaveArea + RegConstant
1569  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1570                               RegConstant);
1571
1572  // Floating types are 32 bytes into RegSaveArea
1573  if (VT.isFloatingPoint())
1574    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1575                         DAG.getConstant(32, MVT::i32));
1576
1577  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1578  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1579                                   VT.isInteger() ? GprIndex : FprIndex,
1580                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1581                                                   MVT::i32));
1582
1583  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1584                              VT.isInteger() ? VAListPtr : FprPtr,
1585                              MachinePointerInfo(SV),
1586                              MVT::i8, false, false, 0);
1587
1588  // determine if we should load from reg_save_area or overflow_area
1589  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1590
1591  // increase overflow_area by 4/8 if gpr/fpr > 8
1592  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1593                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1594                                          MVT::i32));
1595
1596  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1597                             OverflowAreaPlusN);
1598
1599  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1600                              OverflowAreaPtr,
1601                              MachinePointerInfo(),
1602                              MVT::i32, false, false, 0);
1603
1604  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1605                     false, false, false, 0);
1606}
1607
1608SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1609                                                  SelectionDAG &DAG) const {
1610  return Op.getOperand(0);
1611}
1612
1613SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1614                                                SelectionDAG &DAG) const {
1615  SDValue Chain = Op.getOperand(0);
1616  SDValue Trmp = Op.getOperand(1); // trampoline
1617  SDValue FPtr = Op.getOperand(2); // nested function
1618  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1619  SDLoc dl(Op);
1620
1621  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1622  bool isPPC64 = (PtrVT == MVT::i64);
1623  Type *IntPtrTy =
1624    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1625                                                             *DAG.getContext());
1626
1627  TargetLowering::ArgListTy Args;
1628  TargetLowering::ArgListEntry Entry;
1629
1630  Entry.Ty = IntPtrTy;
1631  Entry.Node = Trmp; Args.push_back(Entry);
1632
1633  // TrampSize == (isPPC64 ? 48 : 40);
1634  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1635                               isPPC64 ? MVT::i64 : MVT::i32);
1636  Args.push_back(Entry);
1637
1638  Entry.Node = FPtr; Args.push_back(Entry);
1639  Entry.Node = Nest; Args.push_back(Entry);
1640
1641  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1642  TargetLowering::CallLoweringInfo CLI(Chain,
1643                                       Type::getVoidTy(*DAG.getContext()),
1644                                       false, false, false, false, 0,
1645                                       CallingConv::C,
1646                /*isTailCall=*/false,
1647                                       /*doesNotRet=*/false,
1648                                       /*isReturnValueUsed=*/true,
1649                DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1650                Args, DAG, dl);
1651  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1652
1653  return CallResult.second;
1654}
1655
1656SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1657                                        const PPCSubtarget &Subtarget) const {
1658  MachineFunction &MF = DAG.getMachineFunction();
1659  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1660
1661  SDLoc dl(Op);
1662
1663  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1664    // vastart just stores the address of the VarArgsFrameIndex slot into the
1665    // memory location argument.
1666    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1667    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1668    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1669    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1670                        MachinePointerInfo(SV),
1671                        false, false, 0);
1672  }
1673
1674  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1675  // We suppose the given va_list is already allocated.
1676  //
1677  // typedef struct {
1678  //  char gpr;     /* index into the array of 8 GPRs
1679  //                 * stored in the register save area
1680  //                 * gpr=0 corresponds to r3,
1681  //                 * gpr=1 to r4, etc.
1682  //                 */
1683  //  char fpr;     /* index into the array of 8 FPRs
1684  //                 * stored in the register save area
1685  //                 * fpr=0 corresponds to f1,
1686  //                 * fpr=1 to f2, etc.
1687  //                 */
1688  //  char *overflow_arg_area;
1689  //                /* location on stack that holds
1690  //                 * the next overflow argument
1691  //                 */
1692  //  char *reg_save_area;
1693  //               /* where r3:r10 and f1:f8 (if saved)
1694  //                * are stored
1695  //                */
1696  // } va_list[1];
1697
1698
1699  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1700  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1701
1702
1703  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1704
1705  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1706                                            PtrVT);
1707  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1708                                 PtrVT);
1709
1710  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1711  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1712
1713  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1714  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1715
1716  uint64_t FPROffset = 1;
1717  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1718
1719  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1720
1721  // Store first byte : number of int regs
1722  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1723                                         Op.getOperand(1),
1724                                         MachinePointerInfo(SV),
1725                                         MVT::i8, false, false, 0);
1726  uint64_t nextOffset = FPROffset;
1727  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1728                                  ConstFPROffset);
1729
1730  // Store second byte : number of float regs
1731  SDValue secondStore =
1732    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1733                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1734                      false, false, 0);
1735  nextOffset += StackOffset;
1736  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1737
1738  // Store second word : arguments given on stack
1739  SDValue thirdStore =
1740    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1741                 MachinePointerInfo(SV, nextOffset),
1742                 false, false, 0);
1743  nextOffset += FrameOffset;
1744  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1745
1746  // Store third word : arguments given in registers
1747  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1748                      MachinePointerInfo(SV, nextOffset),
1749                      false, false, 0);
1750
1751}
1752
1753#include "PPCGenCallingConv.inc"
1754
1755bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1756                                      CCValAssign::LocInfo &LocInfo,
1757                                      ISD::ArgFlagsTy &ArgFlags,
1758                                      CCState &State) {
1759  return true;
1760}
1761
1762bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1763                                             MVT &LocVT,
1764                                             CCValAssign::LocInfo &LocInfo,
1765                                             ISD::ArgFlagsTy &ArgFlags,
1766                                             CCState &State) {
1767  static const uint16_t ArgRegs[] = {
1768    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1769    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1770  };
1771  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1772
1773  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1774
1775  // Skip one register if the first unallocated register has an even register
1776  // number and there are still argument registers available which have not been
1777  // allocated yet. RegNum is actually an index into ArgRegs, which means we
1778  // need to skip a register if RegNum is odd.
1779  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1780    State.AllocateReg(ArgRegs[RegNum]);
1781  }
1782
1783  // Always return false here, as this function only makes sure that the first
1784  // unallocated register has an odd register number and does not actually
1785  // allocate a register for the current argument.
1786  return false;
1787}
1788
1789bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1790                                               MVT &LocVT,
1791                                               CCValAssign::LocInfo &LocInfo,
1792                                               ISD::ArgFlagsTy &ArgFlags,
1793                                               CCState &State) {
1794  static const uint16_t ArgRegs[] = {
1795    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1796    PPC::F8
1797  };
1798
1799  const unsigned NumArgRegs = array_lengthof(ArgRegs);
1800
1801  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1802
1803  // If there is only one Floating-point register left we need to put both f64
1804  // values of a split ppc_fp128 value on the stack.
1805  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1806    State.AllocateReg(ArgRegs[RegNum]);
1807  }
1808
1809  // Always return false here, as this function only makes sure that the two f64
1810  // values a ppc_fp128 value is split into are both passed in registers or both
1811  // passed on the stack and does not actually allocate a register for the
1812  // current argument.
1813  return false;
1814}
1815
1816/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1817/// on Darwin.
1818static const uint16_t *GetFPR() {
1819  static const uint16_t FPR[] = {
1820    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1821    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1822  };
1823
1824  return FPR;
1825}
1826
1827/// CalculateStackSlotSize - Calculates the size reserved for this argument on
1828/// the stack.
1829static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1830                                       unsigned PtrByteSize) {
1831  unsigned ArgSize = ArgVT.getSizeInBits()/8;
1832  if (Flags.isByVal())
1833    ArgSize = Flags.getByValSize();
1834  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1835
1836  return ArgSize;
1837}
1838
1839SDValue
1840PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1841                                        CallingConv::ID CallConv, bool isVarArg,
1842                                        const SmallVectorImpl<ISD::InputArg>
1843                                          &Ins,
1844                                        SDLoc dl, SelectionDAG &DAG,
1845                                        SmallVectorImpl<SDValue> &InVals)
1846                                          const {
1847  if (PPCSubTarget.isSVR4ABI()) {
1848    if (PPCSubTarget.isPPC64())
1849      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1850                                         dl, DAG, InVals);
1851    else
1852      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1853                                         dl, DAG, InVals);
1854  } else {
1855    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1856                                       dl, DAG, InVals);
1857  }
1858}
1859
1860SDValue
1861PPCTargetLowering::LowerFormalArguments_32SVR4(
1862                                      SDValue Chain,
1863                                      CallingConv::ID CallConv, bool isVarArg,
1864                                      const SmallVectorImpl<ISD::InputArg>
1865                                        &Ins,
1866                                      SDLoc dl, SelectionDAG &DAG,
1867                                      SmallVectorImpl<SDValue> &InVals) const {
1868
1869  // 32-bit SVR4 ABI Stack Frame Layout:
1870  //              +-----------------------------------+
1871  //        +-->  |            Back chain             |
1872  //        |     +-----------------------------------+
1873  //        |     | Floating-point register save area |
1874  //        |     +-----------------------------------+
1875  //        |     |    General register save area     |
1876  //        |     +-----------------------------------+
1877  //        |     |          CR save word             |
1878  //        |     +-----------------------------------+
1879  //        |     |         VRSAVE save word          |
1880  //        |     +-----------------------------------+
1881  //        |     |         Alignment padding         |
1882  //        |     +-----------------------------------+
1883  //        |     |     Vector register save area     |
1884  //        |     +-----------------------------------+
1885  //        |     |       Local variable space        |
1886  //        |     +-----------------------------------+
1887  //        |     |        Parameter list area        |
1888  //        |     +-----------------------------------+
1889  //        |     |           LR save word            |
1890  //        |     +-----------------------------------+
1891  // SP-->  +---  |            Back chain             |
1892  //              +-----------------------------------+
1893  //
1894  // Specifications:
1895  //   System V Application Binary Interface PowerPC Processor Supplement
1896  //   AltiVec Technology Programming Interface Manual
1897
1898  MachineFunction &MF = DAG.getMachineFunction();
1899  MachineFrameInfo *MFI = MF.getFrameInfo();
1900  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1901
1902  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1903  // Potential tail calls could cause overwriting of argument stack slots.
1904  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1905                       (CallConv == CallingConv::Fast));
1906  unsigned PtrByteSize = 4;
1907
1908  // Assign locations to all of the incoming arguments.
1909  SmallVector<CCValAssign, 16> ArgLocs;
1910  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1911                 getTargetMachine(), ArgLocs, *DAG.getContext());
1912
1913  // Reserve space for the linkage area on the stack.
1914  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1915
1916  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
1917
1918  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1919    CCValAssign &VA = ArgLocs[i];
1920
1921    // Arguments stored in registers.
1922    if (VA.isRegLoc()) {
1923      const TargetRegisterClass *RC;
1924      EVT ValVT = VA.getValVT();
1925
1926      switch (ValVT.getSimpleVT().SimpleTy) {
1927        default:
1928          llvm_unreachable("ValVT not supported by formal arguments Lowering");
1929        case MVT::i32:
1930          RC = &PPC::GPRCRegClass;
1931          break;
1932        case MVT::f32:
1933          RC = &PPC::F4RCRegClass;
1934          break;
1935        case MVT::f64:
1936          RC = &PPC::F8RCRegClass;
1937          break;
1938        case MVT::v16i8:
1939        case MVT::v8i16:
1940        case MVT::v4i32:
1941        case MVT::v4f32:
1942          RC = &PPC::VRRCRegClass;
1943          break;
1944      }
1945
1946      // Transform the arguments stored in physical registers into virtual ones.
1947      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1948      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1949
1950      InVals.push_back(ArgValue);
1951    } else {
1952      // Argument stored in memory.
1953      assert(VA.isMemLoc());
1954
1955      unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1956      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1957                                      isImmutable);
1958
1959      // Create load nodes to retrieve arguments from the stack.
1960      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1961      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1962                                   MachinePointerInfo(),
1963                                   false, false, false, 0));
1964    }
1965  }
1966
1967  // Assign locations to all of the incoming aggregate by value arguments.
1968  // Aggregates passed by value are stored in the local variable space of the
1969  // caller's stack frame, right above the parameter list area.
1970  SmallVector<CCValAssign, 16> ByValArgLocs;
1971  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1972                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
1973
1974  // Reserve stack space for the allocations in CCInfo.
1975  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1976
1977  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
1978
1979  // Area that is at least reserved in the caller of this function.
1980  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1981
1982  // Set the size that is at least reserved in caller of this function.  Tail
1983  // call optimized function's reserved stack space needs to be aligned so that
1984  // taking the difference between two stack areas will result in an aligned
1985  // stack.
1986  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1987
1988  MinReservedArea =
1989    std::max(MinReservedArea,
1990             PPCFrameLowering::getMinCallFrameSize(false, false));
1991
1992  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1993    getStackAlignment();
1994  unsigned AlignMask = TargetAlign-1;
1995  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1996
1997  FI->setMinReservedArea(MinReservedArea);
1998
1999  SmallVector<SDValue, 8> MemOps;
2000
2001  // If the function takes variable number of arguments, make a frame index for
2002  // the start of the first vararg value... for expansion of llvm.va_start.
2003  if (isVarArg) {
2004    static const uint16_t GPArgRegs[] = {
2005      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2006      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2007    };
2008    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2009
2010    static const uint16_t FPArgRegs[] = {
2011      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2012      PPC::F8
2013    };
2014    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2015
2016    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2017                                                          NumGPArgRegs));
2018    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2019                                                          NumFPArgRegs));
2020
2021    // Make room for NumGPArgRegs and NumFPArgRegs.
2022    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2023                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2024
2025    FuncInfo->setVarArgsStackOffset(
2026      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2027                             CCInfo.getNextStackOffset(), true));
2028
2029    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2030    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2031
2032    // The fixed integer arguments of a variadic function are stored to the
2033    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2034    // the result of va_next.
2035    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2036      // Get an existing live-in vreg, or add a new one.
2037      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2038      if (!VReg)
2039        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2040
2041      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2042      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2043                                   MachinePointerInfo(), false, false, 0);
2044      MemOps.push_back(Store);
2045      // Increment the address by four for the next argument to store
2046      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2047      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2048    }
2049
2050    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2051    // is set.
2052    // The double arguments are stored to the VarArgsFrameIndex
2053    // on the stack.
2054    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2055      // Get an existing live-in vreg, or add a new one.
2056      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2057      if (!VReg)
2058        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2059
2060      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2061      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2062                                   MachinePointerInfo(), false, false, 0);
2063      MemOps.push_back(Store);
2064      // Increment the address by eight for the next argument to store
2065      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2066                                         PtrVT);
2067      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2068    }
2069  }
2070
2071  if (!MemOps.empty())
2072    Chain = DAG.getNode(ISD::TokenFactor, dl,
2073                        MVT::Other, &MemOps[0], MemOps.size());
2074
2075  return Chain;
2076}
2077
2078// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2079// value to MVT::i64 and then truncate to the correct register size.
2080SDValue
2081PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2082                                     SelectionDAG &DAG, SDValue ArgVal,
2083                                     SDLoc dl) const {
2084  if (Flags.isSExt())
2085    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2086                         DAG.getValueType(ObjectVT));
2087  else if (Flags.isZExt())
2088    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2089                         DAG.getValueType(ObjectVT));
2090
2091  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2092}
2093
2094// Set the size that is at least reserved in caller of this function.  Tail
2095// call optimized functions' reserved stack space needs to be aligned so that
2096// taking the difference between two stack areas will result in an aligned
2097// stack.
2098void
2099PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2100                                      unsigned nAltivecParamsAtEnd,
2101                                      unsigned MinReservedArea,
2102                                      bool isPPC64) const {
2103  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2104  // Add the Altivec parameters at the end, if needed.
2105  if (nAltivecParamsAtEnd) {
2106    MinReservedArea = ((MinReservedArea+15)/16)*16;
2107    MinReservedArea += 16*nAltivecParamsAtEnd;
2108  }
2109  MinReservedArea =
2110    std::max(MinReservedArea,
2111             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2112  unsigned TargetAlign
2113    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2114        getStackAlignment();
2115  unsigned AlignMask = TargetAlign-1;
2116  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2117  FI->setMinReservedArea(MinReservedArea);
2118}
2119
2120SDValue
2121PPCTargetLowering::LowerFormalArguments_64SVR4(
2122                                      SDValue Chain,
2123                                      CallingConv::ID CallConv, bool isVarArg,
2124                                      const SmallVectorImpl<ISD::InputArg>
2125                                        &Ins,
2126                                      SDLoc dl, SelectionDAG &DAG,
2127                                      SmallVectorImpl<SDValue> &InVals) const {
2128  // TODO: add description of PPC stack frame format, or at least some docs.
2129  //
2130  MachineFunction &MF = DAG.getMachineFunction();
2131  MachineFrameInfo *MFI = MF.getFrameInfo();
2132  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2133
2134  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2135  // Potential tail calls could cause overwriting of argument stack slots.
2136  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2137                       (CallConv == CallingConv::Fast));
2138  unsigned PtrByteSize = 8;
2139
2140  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2141  // Area that is at least reserved in caller of this function.
2142  unsigned MinReservedArea = ArgOffset;
2143
2144  static const uint16_t GPR[] = {
2145    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2146    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2147  };
2148
2149  static const uint16_t *FPR = GetFPR();
2150
2151  static const uint16_t VR[] = {
2152    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2153    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2154  };
2155
2156  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2157  const unsigned Num_FPR_Regs = 13;
2158  const unsigned Num_VR_Regs  = array_lengthof(VR);
2159
2160  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2161
2162  // Add DAG nodes to load the arguments or copy them out of registers.  On
2163  // entry to a function on PPC, the arguments start after the linkage area,
2164  // although the first ones are often in registers.
2165
2166  SmallVector<SDValue, 8> MemOps;
2167  unsigned nAltivecParamsAtEnd = 0;
2168  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2169  unsigned CurArgIdx = 0;
2170  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2171    SDValue ArgVal;
2172    bool needsLoad = false;
2173    EVT ObjectVT = Ins[ArgNo].VT;
2174    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2175    unsigned ArgSize = ObjSize;
2176    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2177    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2178    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2179
2180    unsigned CurArgOffset = ArgOffset;
2181
2182    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2183    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2184        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2185      if (isVarArg) {
2186        MinReservedArea = ((MinReservedArea+15)/16)*16;
2187        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2188                                                  Flags,
2189                                                  PtrByteSize);
2190      } else
2191        nAltivecParamsAtEnd++;
2192    } else
2193      // Calculate min reserved area.
2194      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2195                                                Flags,
2196                                                PtrByteSize);
2197
2198    // FIXME the codegen can be much improved in some cases.
2199    // We do not have to keep everything in memory.
2200    if (Flags.isByVal()) {
2201      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2202      ObjSize = Flags.getByValSize();
2203      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2204      // Empty aggregate parameters do not take up registers.  Examples:
2205      //   struct { } a;
2206      //   union  { } b;
2207      //   int c[0];
2208      // etc.  However, we have to provide a place-holder in InVals, so
2209      // pretend we have an 8-byte item at the current address for that
2210      // purpose.
2211      if (!ObjSize) {
2212        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2213        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2214        InVals.push_back(FIN);
2215        continue;
2216      }
2217      // All aggregates smaller than 8 bytes must be passed right-justified.
2218      if (ObjSize < PtrByteSize)
2219        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2220      // The value of the object is its address.
2221      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2222      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2223      InVals.push_back(FIN);
2224
2225      if (ObjSize < 8) {
2226        if (GPR_idx != Num_GPR_Regs) {
2227          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2228          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2229          SDValue Store;
2230
2231          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2232            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2233                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
2234            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2235                                      MachinePointerInfo(FuncArg, CurArgOffset),
2236                                      ObjType, false, false, 0);
2237          } else {
2238            // For sizes that don't fit a truncating store (3, 5, 6, 7),
2239            // store the whole register as-is to the parameter save area
2240            // slot.  The address of the parameter was already calculated
2241            // above (InVals.push_back(FIN)) to be the right-justified
2242            // offset within the slot.  For this store, we need a new
2243            // frame index that points at the beginning of the slot.
2244            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2245            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2246            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2247                                 MachinePointerInfo(FuncArg, ArgOffset),
2248                                 false, false, 0);
2249          }
2250
2251          MemOps.push_back(Store);
2252          ++GPR_idx;
2253        }
2254        // Whether we copied from a register or not, advance the offset
2255        // into the parameter save area by a full doubleword.
2256        ArgOffset += PtrByteSize;
2257        continue;
2258      }
2259
2260      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2261        // Store whatever pieces of the object are in registers
2262        // to memory.  ArgOffset will be the address of the beginning
2263        // of the object.
2264        if (GPR_idx != Num_GPR_Regs) {
2265          unsigned VReg;
2266          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2267          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2268          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2269          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2270          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2271                                       MachinePointerInfo(FuncArg, ArgOffset),
2272                                       false, false, 0);
2273          MemOps.push_back(Store);
2274          ++GPR_idx;
2275          ArgOffset += PtrByteSize;
2276        } else {
2277          ArgOffset += ArgSize - j;
2278          break;
2279        }
2280      }
2281      continue;
2282    }
2283
2284    switch (ObjectVT.getSimpleVT().SimpleTy) {
2285    default: llvm_unreachable("Unhandled argument type!");
2286    case MVT::i32:
2287    case MVT::i64:
2288      if (GPR_idx != Num_GPR_Regs) {
2289        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2290        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2291
2292        if (ObjectVT == MVT::i32)
2293          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2294          // value to MVT::i64 and then truncate to the correct register size.
2295          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2296
2297        ++GPR_idx;
2298      } else {
2299        needsLoad = true;
2300        ArgSize = PtrByteSize;
2301      }
2302      ArgOffset += 8;
2303      break;
2304
2305    case MVT::f32:
2306    case MVT::f64:
2307      // Every 8 bytes of argument space consumes one of the GPRs available for
2308      // argument passing.
2309      if (GPR_idx != Num_GPR_Regs) {
2310        ++GPR_idx;
2311      }
2312      if (FPR_idx != Num_FPR_Regs) {
2313        unsigned VReg;
2314
2315        if (ObjectVT == MVT::f32)
2316          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2317        else
2318          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2319
2320        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2321        ++FPR_idx;
2322      } else {
2323        needsLoad = true;
2324        ArgSize = PtrByteSize;
2325      }
2326
2327      ArgOffset += 8;
2328      break;
2329    case MVT::v4f32:
2330    case MVT::v4i32:
2331    case MVT::v8i16:
2332    case MVT::v16i8:
2333      // Note that vector arguments in registers don't reserve stack space,
2334      // except in varargs functions.
2335      if (VR_idx != Num_VR_Regs) {
2336        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2337        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2338        if (isVarArg) {
2339          while ((ArgOffset % 16) != 0) {
2340            ArgOffset += PtrByteSize;
2341            if (GPR_idx != Num_GPR_Regs)
2342              GPR_idx++;
2343          }
2344          ArgOffset += 16;
2345          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2346        }
2347        ++VR_idx;
2348      } else {
2349        // Vectors are aligned.
2350        ArgOffset = ((ArgOffset+15)/16)*16;
2351        CurArgOffset = ArgOffset;
2352        ArgOffset += 16;
2353        needsLoad = true;
2354      }
2355      break;
2356    }
2357
2358    // We need to load the argument to a virtual register if we determined
2359    // above that we ran out of physical registers of the appropriate type.
2360    if (needsLoad) {
2361      int FI = MFI->CreateFixedObject(ObjSize,
2362                                      CurArgOffset + (ArgSize - ObjSize),
2363                                      isImmutable);
2364      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2365      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2366                           false, false, false, 0);
2367    }
2368
2369    InVals.push_back(ArgVal);
2370  }
2371
2372  // Set the size that is at least reserved in caller of this function.  Tail
2373  // call optimized functions' reserved stack space needs to be aligned so that
2374  // taking the difference between two stack areas will result in an aligned
2375  // stack.
2376  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2377
2378  // If the function takes variable number of arguments, make a frame index for
2379  // the start of the first vararg value... for expansion of llvm.va_start.
2380  if (isVarArg) {
2381    int Depth = ArgOffset;
2382
2383    FuncInfo->setVarArgsFrameIndex(
2384      MFI->CreateFixedObject(PtrByteSize, Depth, true));
2385    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2386
2387    // If this function is vararg, store any remaining integer argument regs
2388    // to their spots on the stack so that they may be loaded by deferencing the
2389    // result of va_next.
2390    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2391      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2392      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2393      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2394                                   MachinePointerInfo(), false, false, 0);
2395      MemOps.push_back(Store);
2396      // Increment the address by four for the next argument to store
2397      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2398      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2399    }
2400  }
2401
2402  if (!MemOps.empty())
2403    Chain = DAG.getNode(ISD::TokenFactor, dl,
2404                        MVT::Other, &MemOps[0], MemOps.size());
2405
2406  return Chain;
2407}
2408
2409SDValue
2410PPCTargetLowering::LowerFormalArguments_Darwin(
2411                                      SDValue Chain,
2412                                      CallingConv::ID CallConv, bool isVarArg,
2413                                      const SmallVectorImpl<ISD::InputArg>
2414                                        &Ins,
2415                                      SDLoc dl, SelectionDAG &DAG,
2416                                      SmallVectorImpl<SDValue> &InVals) const {
2417  // TODO: add description of PPC stack frame format, or at least some docs.
2418  //
2419  MachineFunction &MF = DAG.getMachineFunction();
2420  MachineFrameInfo *MFI = MF.getFrameInfo();
2421  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2422
2423  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2424  bool isPPC64 = PtrVT == MVT::i64;
2425  // Potential tail calls could cause overwriting of argument stack slots.
2426  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2427                       (CallConv == CallingConv::Fast));
2428  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2429
2430  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2431  // Area that is at least reserved in caller of this function.
2432  unsigned MinReservedArea = ArgOffset;
2433
2434  static const uint16_t GPR_32[] = {           // 32-bit registers.
2435    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2436    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2437  };
2438  static const uint16_t GPR_64[] = {           // 64-bit registers.
2439    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2440    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2441  };
2442
2443  static const uint16_t *FPR = GetFPR();
2444
2445  static const uint16_t VR[] = {
2446    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2447    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2448  };
2449
2450  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2451  const unsigned Num_FPR_Regs = 13;
2452  const unsigned Num_VR_Regs  = array_lengthof( VR);
2453
2454  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2455
2456  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2457
2458  // In 32-bit non-varargs functions, the stack space for vectors is after the
2459  // stack space for non-vectors.  We do not use this space unless we have
2460  // too many vectors to fit in registers, something that only occurs in
2461  // constructed examples:), but we have to walk the arglist to figure
2462  // that out...for the pathological case, compute VecArgOffset as the
2463  // start of the vector parameter area.  Computing VecArgOffset is the
2464  // entire point of the following loop.
2465  unsigned VecArgOffset = ArgOffset;
2466  if (!isVarArg && !isPPC64) {
2467    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2468         ++ArgNo) {
2469      EVT ObjectVT = Ins[ArgNo].VT;
2470      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2471
2472      if (Flags.isByVal()) {
2473        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2474        unsigned ObjSize = Flags.getByValSize();
2475        unsigned ArgSize =
2476                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2477        VecArgOffset += ArgSize;
2478        continue;
2479      }
2480
2481      switch(ObjectVT.getSimpleVT().SimpleTy) {
2482      default: llvm_unreachable("Unhandled argument type!");
2483      case MVT::i32:
2484      case MVT::f32:
2485        VecArgOffset += 4;
2486        break;
2487      case MVT::i64:  // PPC64
2488      case MVT::f64:
2489        // FIXME: We are guaranteed to be !isPPC64 at this point.
2490        // Does MVT::i64 apply?
2491        VecArgOffset += 8;
2492        break;
2493      case MVT::v4f32:
2494      case MVT::v4i32:
2495      case MVT::v8i16:
2496      case MVT::v16i8:
2497        // Nothing to do, we're only looking at Nonvector args here.
2498        break;
2499      }
2500    }
2501  }
2502  // We've found where the vector parameter area in memory is.  Skip the
2503  // first 12 parameters; these don't use that memory.
2504  VecArgOffset = ((VecArgOffset+15)/16)*16;
2505  VecArgOffset += 12*16;
2506
2507  // Add DAG nodes to load the arguments or copy them out of registers.  On
2508  // entry to a function on PPC, the arguments start after the linkage area,
2509  // although the first ones are often in registers.
2510
2511  SmallVector<SDValue, 8> MemOps;
2512  unsigned nAltivecParamsAtEnd = 0;
2513  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2514  unsigned CurArgIdx = 0;
2515  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2516    SDValue ArgVal;
2517    bool needsLoad = false;
2518    EVT ObjectVT = Ins[ArgNo].VT;
2519    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2520    unsigned ArgSize = ObjSize;
2521    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2522    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2523    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2524
2525    unsigned CurArgOffset = ArgOffset;
2526
2527    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2528    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2529        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2530      if (isVarArg || isPPC64) {
2531        MinReservedArea = ((MinReservedArea+15)/16)*16;
2532        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2533                                                  Flags,
2534                                                  PtrByteSize);
2535      } else  nAltivecParamsAtEnd++;
2536    } else
2537      // Calculate min reserved area.
2538      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2539                                                Flags,
2540                                                PtrByteSize);
2541
2542    // FIXME the codegen can be much improved in some cases.
2543    // We do not have to keep everything in memory.
2544    if (Flags.isByVal()) {
2545      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2546      ObjSize = Flags.getByValSize();
2547      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2548      // Objects of size 1 and 2 are right justified, everything else is
2549      // left justified.  This means the memory address is adjusted forwards.
2550      if (ObjSize==1 || ObjSize==2) {
2551        CurArgOffset = CurArgOffset + (4 - ObjSize);
2552      }
2553      // The value of the object is its address.
2554      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2555      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2556      InVals.push_back(FIN);
2557      if (ObjSize==1 || ObjSize==2) {
2558        if (GPR_idx != Num_GPR_Regs) {
2559          unsigned VReg;
2560          if (isPPC64)
2561            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2562          else
2563            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2564          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2565          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2566          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2567                                            MachinePointerInfo(FuncArg,
2568                                              CurArgOffset),
2569                                            ObjType, false, false, 0);
2570          MemOps.push_back(Store);
2571          ++GPR_idx;
2572        }
2573
2574        ArgOffset += PtrByteSize;
2575
2576        continue;
2577      }
2578      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2579        // Store whatever pieces of the object are in registers
2580        // to memory.  ArgOffset will be the address of the beginning
2581        // of the object.
2582        if (GPR_idx != Num_GPR_Regs) {
2583          unsigned VReg;
2584          if (isPPC64)
2585            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2586          else
2587            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2588          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2589          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2590          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2591          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2592                                       MachinePointerInfo(FuncArg, ArgOffset),
2593                                       false, false, 0);
2594          MemOps.push_back(Store);
2595          ++GPR_idx;
2596          ArgOffset += PtrByteSize;
2597        } else {
2598          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2599          break;
2600        }
2601      }
2602      continue;
2603    }
2604
2605    switch (ObjectVT.getSimpleVT().SimpleTy) {
2606    default: llvm_unreachable("Unhandled argument type!");
2607    case MVT::i32:
2608      if (!isPPC64) {
2609        if (GPR_idx != Num_GPR_Regs) {
2610          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2611          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2612          ++GPR_idx;
2613        } else {
2614          needsLoad = true;
2615          ArgSize = PtrByteSize;
2616        }
2617        // All int arguments reserve stack space in the Darwin ABI.
2618        ArgOffset += PtrByteSize;
2619        break;
2620      }
2621      // FALLTHROUGH
2622    case MVT::i64:  // PPC64
2623      if (GPR_idx != Num_GPR_Regs) {
2624        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2625        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2626
2627        if (ObjectVT == MVT::i32)
2628          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2629          // value to MVT::i64 and then truncate to the correct register size.
2630          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2631
2632        ++GPR_idx;
2633      } else {
2634        needsLoad = true;
2635        ArgSize = PtrByteSize;
2636      }
2637      // All int arguments reserve stack space in the Darwin ABI.
2638      ArgOffset += 8;
2639      break;
2640
2641    case MVT::f32:
2642    case MVT::f64:
2643      // Every 4 bytes of argument space consumes one of the GPRs available for
2644      // argument passing.
2645      if (GPR_idx != Num_GPR_Regs) {
2646        ++GPR_idx;
2647        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2648          ++GPR_idx;
2649      }
2650      if (FPR_idx != Num_FPR_Regs) {
2651        unsigned VReg;
2652
2653        if (ObjectVT == MVT::f32)
2654          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2655        else
2656          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2657
2658        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2659        ++FPR_idx;
2660      } else {
2661        needsLoad = true;
2662      }
2663
2664      // All FP arguments reserve stack space in the Darwin ABI.
2665      ArgOffset += isPPC64 ? 8 : ObjSize;
2666      break;
2667    case MVT::v4f32:
2668    case MVT::v4i32:
2669    case MVT::v8i16:
2670    case MVT::v16i8:
2671      // Note that vector arguments in registers don't reserve stack space,
2672      // except in varargs functions.
2673      if (VR_idx != Num_VR_Regs) {
2674        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2675        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2676        if (isVarArg) {
2677          while ((ArgOffset % 16) != 0) {
2678            ArgOffset += PtrByteSize;
2679            if (GPR_idx != Num_GPR_Regs)
2680              GPR_idx++;
2681          }
2682          ArgOffset += 16;
2683          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2684        }
2685        ++VR_idx;
2686      } else {
2687        if (!isVarArg && !isPPC64) {
2688          // Vectors go after all the nonvectors.
2689          CurArgOffset = VecArgOffset;
2690          VecArgOffset += 16;
2691        } else {
2692          // Vectors are aligned.
2693          ArgOffset = ((ArgOffset+15)/16)*16;
2694          CurArgOffset = ArgOffset;
2695          ArgOffset += 16;
2696        }
2697        needsLoad = true;
2698      }
2699      break;
2700    }
2701
2702    // We need to load the argument to a virtual register if we determined above
2703    // that we ran out of physical registers of the appropriate type.
2704    if (needsLoad) {
2705      int FI = MFI->CreateFixedObject(ObjSize,
2706                                      CurArgOffset + (ArgSize - ObjSize),
2707                                      isImmutable);
2708      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2709      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2710                           false, false, false, 0);
2711    }
2712
2713    InVals.push_back(ArgVal);
2714  }
2715
2716  // Set the size that is at least reserved in caller of this function.  Tail
2717  // call optimized functions' reserved stack space needs to be aligned so that
2718  // taking the difference between two stack areas will result in an aligned
2719  // stack.
2720  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
2721
2722  // If the function takes variable number of arguments, make a frame index for
2723  // the start of the first vararg value... for expansion of llvm.va_start.
2724  if (isVarArg) {
2725    int Depth = ArgOffset;
2726
2727    FuncInfo->setVarArgsFrameIndex(
2728      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2729                             Depth, true));
2730    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2731
2732    // If this function is vararg, store any remaining integer argument regs
2733    // to their spots on the stack so that they may be loaded by deferencing the
2734    // result of va_next.
2735    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2736      unsigned VReg;
2737
2738      if (isPPC64)
2739        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2740      else
2741        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2742
2743      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2744      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2745                                   MachinePointerInfo(), false, false, 0);
2746      MemOps.push_back(Store);
2747      // Increment the address by four for the next argument to store
2748      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2749      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2750    }
2751  }
2752
2753  if (!MemOps.empty())
2754    Chain = DAG.getNode(ISD::TokenFactor, dl,
2755                        MVT::Other, &MemOps[0], MemOps.size());
2756
2757  return Chain;
2758}
2759
2760/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2761/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2762static unsigned
2763CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2764                                     bool isPPC64,
2765                                     bool isVarArg,
2766                                     unsigned CC,
2767                                     const SmallVectorImpl<ISD::OutputArg>
2768                                       &Outs,
2769                                     const SmallVectorImpl<SDValue> &OutVals,
2770                                     unsigned &nAltivecParamsAtEnd) {
2771  // Count how many bytes are to be pushed on the stack, including the linkage
2772  // area, and parameter passing area.  We start with 24/48 bytes, which is
2773  // prereserved space for [SP][CR][LR][3 x unused].
2774  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2775  unsigned NumOps = Outs.size();
2776  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2777
2778  // Add up all the space actually used.
2779  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2780  // they all go in registers, but we must reserve stack space for them for
2781  // possible use by the caller.  In varargs or 64-bit calls, parameters are
2782  // assigned stack space in order, with padding so Altivec parameters are
2783  // 16-byte aligned.
2784  nAltivecParamsAtEnd = 0;
2785  for (unsigned i = 0; i != NumOps; ++i) {
2786    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2787    EVT ArgVT = Outs[i].VT;
2788    // Varargs Altivec parameters are padded to a 16 byte boundary.
2789    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2790        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2791      if (!isVarArg && !isPPC64) {
2792        // Non-varargs Altivec parameters go after all the non-Altivec
2793        // parameters; handle those later so we know how much padding we need.
2794        nAltivecParamsAtEnd++;
2795        continue;
2796      }
2797      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2798      NumBytes = ((NumBytes+15)/16)*16;
2799    }
2800    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2801  }
2802
2803   // Allow for Altivec parameters at the end, if needed.
2804  if (nAltivecParamsAtEnd) {
2805    NumBytes = ((NumBytes+15)/16)*16;
2806    NumBytes += 16*nAltivecParamsAtEnd;
2807  }
2808
2809  // The prolog code of the callee may store up to 8 GPR argument registers to
2810  // the stack, allowing va_start to index over them in memory if its varargs.
2811  // Because we cannot tell if this is needed on the caller side, we have to
2812  // conservatively assume that it is needed.  As such, make sure we have at
2813  // least enough stack space for the caller to store the 8 GPRs.
2814  NumBytes = std::max(NumBytes,
2815                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2816
2817  // Tail call needs the stack to be aligned.
2818  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2819    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2820      getFrameLowering()->getStackAlignment();
2821    unsigned AlignMask = TargetAlign-1;
2822    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2823  }
2824
2825  return NumBytes;
2826}
2827
2828/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2829/// adjusted to accommodate the arguments for the tailcall.
2830static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2831                                   unsigned ParamSize) {
2832
2833  if (!isTailCall) return 0;
2834
2835  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2836  unsigned CallerMinReservedArea = FI->getMinReservedArea();
2837  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2838  // Remember only if the new adjustement is bigger.
2839  if (SPDiff < FI->getTailCallSPDelta())
2840    FI->setTailCallSPDelta(SPDiff);
2841
2842  return SPDiff;
2843}
2844
2845/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2846/// for tail call optimization. Targets which want to do tail call
2847/// optimization should implement this function.
2848bool
2849PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2850                                                     CallingConv::ID CalleeCC,
2851                                                     bool isVarArg,
2852                                      const SmallVectorImpl<ISD::InputArg> &Ins,
2853                                                     SelectionDAG& DAG) const {
2854  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2855    return false;
2856
2857  // Variable argument functions are not supported.
2858  if (isVarArg)
2859    return false;
2860
2861  MachineFunction &MF = DAG.getMachineFunction();
2862  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2863  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2864    // Functions containing by val parameters are not supported.
2865    for (unsigned i = 0; i != Ins.size(); i++) {
2866       ISD::ArgFlagsTy Flags = Ins[i].Flags;
2867       if (Flags.isByVal()) return false;
2868    }
2869
2870    // Non PIC/GOT  tail calls are supported.
2871    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2872      return true;
2873
2874    // At the moment we can only do local tail calls (in same module, hidden
2875    // or protected) if we are generating PIC.
2876    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2877      return G->getGlobal()->hasHiddenVisibility()
2878          || G->getGlobal()->hasProtectedVisibility();
2879  }
2880
2881  return false;
2882}
2883
2884/// isCallCompatibleAddress - Return the immediate to use if the specified
2885/// 32-bit value is representable in the immediate field of a BxA instruction.
2886static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2887  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2888  if (!C) return 0;
2889
2890  int Addr = C->getZExtValue();
2891  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2892      SignExtend32<26>(Addr) != Addr)
2893    return 0;  // Top 6 bits have to be sext of immediate.
2894
2895  return DAG.getConstant((int)C->getZExtValue() >> 2,
2896                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2897}
2898
2899namespace {
2900
2901struct TailCallArgumentInfo {
2902  SDValue Arg;
2903  SDValue FrameIdxOp;
2904  int       FrameIdx;
2905
2906  TailCallArgumentInfo() : FrameIdx(0) {}
2907};
2908
2909}
2910
2911/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2912static void
2913StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2914                                           SDValue Chain,
2915                   const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2916                   SmallVector<SDValue, 8> &MemOpChains,
2917                   SDLoc dl) {
2918  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2919    SDValue Arg = TailCallArgs[i].Arg;
2920    SDValue FIN = TailCallArgs[i].FrameIdxOp;
2921    int FI = TailCallArgs[i].FrameIdx;
2922    // Store relative to framepointer.
2923    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2924                                       MachinePointerInfo::getFixedStack(FI),
2925                                       false, false, 0));
2926  }
2927}
2928
2929/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2930/// the appropriate stack slot for the tail call optimized function call.
2931static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2932                                               MachineFunction &MF,
2933                                               SDValue Chain,
2934                                               SDValue OldRetAddr,
2935                                               SDValue OldFP,
2936                                               int SPDiff,
2937                                               bool isPPC64,
2938                                               bool isDarwinABI,
2939                                               SDLoc dl) {
2940  if (SPDiff) {
2941    // Calculate the new stack slot for the return address.
2942    int SlotSize = isPPC64 ? 8 : 4;
2943    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2944                                                                   isDarwinABI);
2945    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2946                                                          NewRetAddrLoc, true);
2947    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2948    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2949    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2950                         MachinePointerInfo::getFixedStack(NewRetAddr),
2951                         false, false, 0);
2952
2953    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2954    // slot as the FP is never overwritten.
2955    if (isDarwinABI) {
2956      int NewFPLoc =
2957        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2958      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2959                                                          true);
2960      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2961      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2962                           MachinePointerInfo::getFixedStack(NewFPIdx),
2963                           false, false, 0);
2964    }
2965  }
2966  return Chain;
2967}
2968
2969/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2970/// the position of the argument.
2971static void
2972CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2973                         SDValue Arg, int SPDiff, unsigned ArgOffset,
2974                      SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2975  int Offset = ArgOffset + SPDiff;
2976  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2977  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2978  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2979  SDValue FIN = DAG.getFrameIndex(FI, VT);
2980  TailCallArgumentInfo Info;
2981  Info.Arg = Arg;
2982  Info.FrameIdxOp = FIN;
2983  Info.FrameIdx = FI;
2984  TailCallArguments.push_back(Info);
2985}
2986
2987/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2988/// stack slot. Returns the chain as result and the loaded frame pointers in
2989/// LROpOut/FPOpout. Used when tail calling.
2990SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2991                                                        int SPDiff,
2992                                                        SDValue Chain,
2993                                                        SDValue &LROpOut,
2994                                                        SDValue &FPOpOut,
2995                                                        bool isDarwinABI,
2996                                                        SDLoc dl) const {
2997  if (SPDiff) {
2998    // Load the LR and FP stack slot for later adjusting.
2999    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
3000    LROpOut = getReturnAddrFrameIndex(DAG);
3001    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3002                          false, false, false, 0);
3003    Chain = SDValue(LROpOut.getNode(), 1);
3004
3005    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3006    // slot as the FP is never overwritten.
3007    if (isDarwinABI) {
3008      FPOpOut = getFramePointerFrameIndex(DAG);
3009      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3010                            false, false, false, 0);
3011      Chain = SDValue(FPOpOut.getNode(), 1);
3012    }
3013  }
3014  return Chain;
3015}
3016
3017/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3018/// by "Src" to address "Dst" of size "Size".  Alignment information is
3019/// specified by the specific parameter attribute. The copy will be passed as
3020/// a byval function parameter.
3021/// Sometimes what we are copying is the end of a larger object, the part that
3022/// does not fit in registers.
3023static SDValue
3024CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3025                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3026                          SDLoc dl) {
3027  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3028  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3029                       false, false, MachinePointerInfo(0),
3030                       MachinePointerInfo(0));
3031}
3032
3033/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3034/// tail calls.
3035static void
3036LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3037                 SDValue Arg, SDValue PtrOff, int SPDiff,
3038                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3039                 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
3040                 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
3041                 SDLoc dl) {
3042  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3043  if (!isTailCall) {
3044    if (isVector) {
3045      SDValue StackPtr;
3046      if (isPPC64)
3047        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3048      else
3049        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3050      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3051                           DAG.getConstant(ArgOffset, PtrVT));
3052    }
3053    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3054                                       MachinePointerInfo(), false, false, 0));
3055  // Calculate and remember argument location.
3056  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3057                                  TailCallArguments);
3058}
3059
3060static
3061void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3062                     SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3063                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3064                     SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
3065  MachineFunction &MF = DAG.getMachineFunction();
3066
3067  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3068  // might overwrite each other in case of tail call optimization.
3069  SmallVector<SDValue, 8> MemOpChains2;
3070  // Do not flag preceding copytoreg stuff together with the following stuff.
3071  InFlag = SDValue();
3072  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3073                                    MemOpChains2, dl);
3074  if (!MemOpChains2.empty())
3075    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3076                        &MemOpChains2[0], MemOpChains2.size());
3077
3078  // Store the return address to the appropriate stack slot.
3079  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3080                                        isPPC64, isDarwinABI, dl);
3081
3082  // Emit callseq_end just before tailcall node.
3083  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3084                             DAG.getIntPtrConstant(0, true), InFlag, dl);
3085  InFlag = Chain.getValue(1);
3086}
3087
3088static
3089unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3090                     SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
3091                     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
3092                     SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
3093                     const PPCSubtarget &PPCSubTarget) {
3094
3095  bool isPPC64 = PPCSubTarget.isPPC64();
3096  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3097
3098  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3099  NodeTys.push_back(MVT::Other);   // Returns a chain
3100  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3101
3102  unsigned CallOpc = PPCISD::CALL;
3103
3104  bool needIndirectCall = true;
3105  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3106    // If this is an absolute destination address, use the munged value.
3107    Callee = SDValue(Dest, 0);
3108    needIndirectCall = false;
3109  }
3110
3111  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3112    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3113    // Use indirect calls for ALL functions calls in JIT mode, since the
3114    // far-call stubs may be outside relocation limits for a BL instruction.
3115    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3116      unsigned OpFlags = 0;
3117      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3118          (PPCSubTarget.getTargetTriple().isMacOSX() &&
3119           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3120          (G->getGlobal()->isDeclaration() ||
3121           G->getGlobal()->isWeakForLinker())) {
3122        // PC-relative references to external symbols should go through $stub,
3123        // unless we're building with the leopard linker or later, which
3124        // automatically synthesizes these stubs.
3125        OpFlags = PPCII::MO_DARWIN_STUB;
3126      }
3127
3128      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3129      // every direct call is) turn it into a TargetGlobalAddress /
3130      // TargetExternalSymbol node so that legalize doesn't hack it.
3131      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3132                                          Callee.getValueType(),
3133                                          0, OpFlags);
3134      needIndirectCall = false;
3135    }
3136  }
3137
3138  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3139    unsigned char OpFlags = 0;
3140
3141    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3142        (PPCSubTarget.getTargetTriple().isMacOSX() &&
3143         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3144      // PC-relative references to external symbols should go through $stub,
3145      // unless we're building with the leopard linker or later, which
3146      // automatically synthesizes these stubs.
3147      OpFlags = PPCII::MO_DARWIN_STUB;
3148    }
3149
3150    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3151                                         OpFlags);
3152    needIndirectCall = false;
3153  }
3154
3155  if (needIndirectCall) {
3156    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3157    // to do the call, we can't use PPCISD::CALL.
3158    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3159
3160    if (isSVR4ABI && isPPC64) {
3161      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3162      // entry point, but to the function descriptor (the function entry point
3163      // address is part of the function descriptor though).
3164      // The function descriptor is a three doubleword structure with the
3165      // following fields: function entry point, TOC base address and
3166      // environment pointer.
3167      // Thus for a call through a function pointer, the following actions need
3168      // to be performed:
3169      //   1. Save the TOC of the caller in the TOC save area of its stack
3170      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3171      //   2. Load the address of the function entry point from the function
3172      //      descriptor.
3173      //   3. Load the TOC of the callee from the function descriptor into r2.
3174      //   4. Load the environment pointer from the function descriptor into
3175      //      r11.
3176      //   5. Branch to the function entry point address.
3177      //   6. On return of the callee, the TOC of the caller needs to be
3178      //      restored (this is done in FinishCall()).
3179      //
3180      // All those operations are flagged together to ensure that no other
3181      // operations can be scheduled in between. E.g. without flagging the
3182      // operations together, a TOC access in the caller could be scheduled
3183      // between the load of the callee TOC and the branch to the callee, which
3184      // results in the TOC access going through the TOC of the callee instead
3185      // of going through the TOC of the caller, which leads to incorrect code.
3186
3187      // Load the address of the function entry point from the function
3188      // descriptor.
3189      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3190      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3191                                        InFlag.getNode() ? 3 : 2);
3192      Chain = LoadFuncPtr.getValue(1);
3193      InFlag = LoadFuncPtr.getValue(2);
3194
3195      // Load environment pointer into r11.
3196      // Offset of the environment pointer within the function descriptor.
3197      SDValue PtrOff = DAG.getIntPtrConstant(16);
3198
3199      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3200      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3201                                       InFlag);
3202      Chain = LoadEnvPtr.getValue(1);
3203      InFlag = LoadEnvPtr.getValue(2);
3204
3205      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3206                                        InFlag);
3207      Chain = EnvVal.getValue(0);
3208      InFlag = EnvVal.getValue(1);
3209
3210      // Load TOC of the callee into r2. We are using a target-specific load
3211      // with r2 hard coded, because the result of a target-independent load
3212      // would never go directly into r2, since r2 is a reserved register (which
3213      // prevents the register allocator from allocating it), resulting in an
3214      // additional register being allocated and an unnecessary move instruction
3215      // being generated.
3216      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3217      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3218                                       Callee, InFlag);
3219      Chain = LoadTOCPtr.getValue(0);
3220      InFlag = LoadTOCPtr.getValue(1);
3221
3222      MTCTROps[0] = Chain;
3223      MTCTROps[1] = LoadFuncPtr;
3224      MTCTROps[2] = InFlag;
3225    }
3226
3227    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3228                        2 + (InFlag.getNode() != 0));
3229    InFlag = Chain.getValue(1);
3230
3231    NodeTys.clear();
3232    NodeTys.push_back(MVT::Other);
3233    NodeTys.push_back(MVT::Glue);
3234    Ops.push_back(Chain);
3235    CallOpc = PPCISD::BCTRL;
3236    Callee.setNode(0);
3237    // Add use of X11 (holding environment pointer)
3238    if (isSVR4ABI && isPPC64)
3239      Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
3240    // Add CTR register as callee so a bctr can be emitted later.
3241    if (isTailCall)
3242      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3243  }
3244
3245  // If this is a direct call, pass the chain and the callee.
3246  if (Callee.getNode()) {
3247    Ops.push_back(Chain);
3248    Ops.push_back(Callee);
3249  }
3250  // If this is a tail call add stack pointer delta.
3251  if (isTailCall)
3252    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3253
3254  // Add argument registers to the end of the list so that they are known live
3255  // into the call.
3256  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3257    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3258                                  RegsToPass[i].second.getValueType()));
3259
3260  return CallOpc;
3261}
3262
3263static
3264bool isLocalCall(const SDValue &Callee)
3265{
3266  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3267    return !G->getGlobal()->isDeclaration() &&
3268           !G->getGlobal()->isWeakForLinker();
3269  return false;
3270}
3271
3272SDValue
3273PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3274                                   CallingConv::ID CallConv, bool isVarArg,
3275                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3276                                   SDLoc dl, SelectionDAG &DAG,
3277                                   SmallVectorImpl<SDValue> &InVals) const {
3278
3279  SmallVector<CCValAssign, 16> RVLocs;
3280  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3281                    getTargetMachine(), RVLocs, *DAG.getContext());
3282  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3283
3284  // Copy all of the result registers out of their specified physreg.
3285  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3286    CCValAssign &VA = RVLocs[i];
3287    assert(VA.isRegLoc() && "Can only return in registers!");
3288
3289    SDValue Val = DAG.getCopyFromReg(Chain, dl,
3290                                     VA.getLocReg(), VA.getLocVT(), InFlag);
3291    Chain = Val.getValue(1);
3292    InFlag = Val.getValue(2);
3293
3294    switch (VA.getLocInfo()) {
3295    default: llvm_unreachable("Unknown loc info!");
3296    case CCValAssign::Full: break;
3297    case CCValAssign::AExt:
3298      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3299      break;
3300    case CCValAssign::ZExt:
3301      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3302                        DAG.getValueType(VA.getValVT()));
3303      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3304      break;
3305    case CCValAssign::SExt:
3306      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3307                        DAG.getValueType(VA.getValVT()));
3308      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3309      break;
3310    }
3311
3312    InVals.push_back(Val);
3313  }
3314
3315  return Chain;
3316}
3317
3318SDValue
3319PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
3320                              bool isTailCall, bool isVarArg,
3321                              SelectionDAG &DAG,
3322                              SmallVector<std::pair<unsigned, SDValue>, 8>
3323                                &RegsToPass,
3324                              SDValue InFlag, SDValue Chain,
3325                              SDValue &Callee,
3326                              int SPDiff, unsigned NumBytes,
3327                              const SmallVectorImpl<ISD::InputArg> &Ins,
3328                              SmallVectorImpl<SDValue> &InVals) const {
3329  std::vector<EVT> NodeTys;
3330  SmallVector<SDValue, 8> Ops;
3331  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3332                                 isTailCall, RegsToPass, Ops, NodeTys,
3333                                 PPCSubTarget);
3334
3335  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3336  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3337    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3338
3339  // When performing tail call optimization the callee pops its arguments off
3340  // the stack. Account for this here so these bytes can be pushed back on in
3341  // PPCFrameLowering::eliminateCallFramePseudoInstr.
3342  int BytesCalleePops =
3343    (CallConv == CallingConv::Fast &&
3344     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3345
3346  // Add a register mask operand representing the call-preserved registers.
3347  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3348  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3349  assert(Mask && "Missing call preserved mask for calling convention");
3350  Ops.push_back(DAG.getRegisterMask(Mask));
3351
3352  if (InFlag.getNode())
3353    Ops.push_back(InFlag);
3354
3355  // Emit tail call.
3356  if (isTailCall) {
3357    assert(((Callee.getOpcode() == ISD::Register &&
3358             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3359            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3360            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3361            isa<ConstantSDNode>(Callee)) &&
3362    "Expecting an global address, external symbol, absolute value or register");
3363
3364    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3365  }
3366
3367  // Add a NOP immediately after the branch instruction when using the 64-bit
3368  // SVR4 ABI. At link time, if caller and callee are in a different module and
3369  // thus have a different TOC, the call will be replaced with a call to a stub
3370  // function which saves the current TOC, loads the TOC of the callee and
3371  // branches to the callee. The NOP will be replaced with a load instruction
3372  // which restores the TOC of the caller from the TOC save slot of the current
3373  // stack frame. If caller and callee belong to the same module (and have the
3374  // same TOC), the NOP will remain unchanged.
3375
3376  bool needsTOCRestore = false;
3377  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3378    if (CallOpc == PPCISD::BCTRL) {
3379      // This is a call through a function pointer.
3380      // Restore the caller TOC from the save area into R2.
3381      // See PrepareCall() for more information about calls through function
3382      // pointers in the 64-bit SVR4 ABI.
3383      // We are using a target-specific load with r2 hard coded, because the
3384      // result of a target-independent load would never go directly into r2,
3385      // since r2 is a reserved register (which prevents the register allocator
3386      // from allocating it), resulting in an additional register being
3387      // allocated and an unnecessary move instruction being generated.
3388      needsTOCRestore = true;
3389    } else if ((CallOpc == PPCISD::CALL) && !isLocalCall(Callee)) {
3390      // Otherwise insert NOP for non-local calls.
3391      CallOpc = PPCISD::CALL_NOP;
3392    }
3393  }
3394
3395  Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3396  InFlag = Chain.getValue(1);
3397
3398  if (needsTOCRestore) {
3399    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3400    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3401    InFlag = Chain.getValue(1);
3402  }
3403
3404  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3405                             DAG.getIntPtrConstant(BytesCalleePops, true),
3406                             InFlag, dl);
3407  if (!Ins.empty())
3408    InFlag = Chain.getValue(1);
3409
3410  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3411                         Ins, dl, DAG, InVals);
3412}
3413
3414SDValue
3415PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3416                             SmallVectorImpl<SDValue> &InVals) const {
3417  SelectionDAG &DAG                     = CLI.DAG;
3418  SDLoc &dl                          = CLI.DL;
3419  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3420  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
3421  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
3422  SDValue Chain                         = CLI.Chain;
3423  SDValue Callee                        = CLI.Callee;
3424  bool &isTailCall                      = CLI.IsTailCall;
3425  CallingConv::ID CallConv              = CLI.CallConv;
3426  bool isVarArg                         = CLI.IsVarArg;
3427
3428  if (isTailCall)
3429    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3430                                                   Ins, DAG);
3431
3432  if (PPCSubTarget.isSVR4ABI()) {
3433    if (PPCSubTarget.isPPC64())
3434      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3435                              isTailCall, Outs, OutVals, Ins,
3436                              dl, DAG, InVals);
3437    else
3438      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3439                              isTailCall, Outs, OutVals, Ins,
3440                              dl, DAG, InVals);
3441  }
3442
3443  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3444                          isTailCall, Outs, OutVals, Ins,
3445                          dl, DAG, InVals);
3446}
3447
3448SDValue
3449PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3450                                    CallingConv::ID CallConv, bool isVarArg,
3451                                    bool isTailCall,
3452                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3453                                    const SmallVectorImpl<SDValue> &OutVals,
3454                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3455                                    SDLoc dl, SelectionDAG &DAG,
3456                                    SmallVectorImpl<SDValue> &InVals) const {
3457  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3458  // of the 32-bit SVR4 ABI stack frame layout.
3459
3460  assert((CallConv == CallingConv::C ||
3461          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3462
3463  unsigned PtrByteSize = 4;
3464
3465  MachineFunction &MF = DAG.getMachineFunction();
3466
3467  // Mark this function as potentially containing a function that contains a
3468  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3469  // and restoring the callers stack pointer in this functions epilog. This is
3470  // done because by tail calling the called function might overwrite the value
3471  // in this function's (MF) stack pointer stack slot 0(SP).
3472  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3473      CallConv == CallingConv::Fast)
3474    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3475
3476  // Count how many bytes are to be pushed on the stack, including the linkage
3477  // area, parameter list area and the part of the local variable space which
3478  // contains copies of aggregates which are passed by value.
3479
3480  // Assign locations to all of the outgoing arguments.
3481  SmallVector<CCValAssign, 16> ArgLocs;
3482  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3483                 getTargetMachine(), ArgLocs, *DAG.getContext());
3484
3485  // Reserve space for the linkage area on the stack.
3486  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3487
3488  if (isVarArg) {
3489    // Handle fixed and variable vector arguments differently.
3490    // Fixed vector arguments go into registers as long as registers are
3491    // available. Variable vector arguments always go into memory.
3492    unsigned NumArgs = Outs.size();
3493
3494    for (unsigned i = 0; i != NumArgs; ++i) {
3495      MVT ArgVT = Outs[i].VT;
3496      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3497      bool Result;
3498
3499      if (Outs[i].IsFixed) {
3500        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3501                               CCInfo);
3502      } else {
3503        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3504                                      ArgFlags, CCInfo);
3505      }
3506
3507      if (Result) {
3508#ifndef NDEBUG
3509        errs() << "Call operand #" << i << " has unhandled type "
3510             << EVT(ArgVT).getEVTString() << "\n";
3511#endif
3512        llvm_unreachable(0);
3513      }
3514    }
3515  } else {
3516    // All arguments are treated the same.
3517    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3518  }
3519
3520  // Assign locations to all of the outgoing aggregate by value arguments.
3521  SmallVector<CCValAssign, 16> ByValArgLocs;
3522  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3523                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3524
3525  // Reserve stack space for the allocations in CCInfo.
3526  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3527
3528  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3529
3530  // Size of the linkage area, parameter list area and the part of the local
3531  // space variable where copies of aggregates which are passed by value are
3532  // stored.
3533  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3534
3535  // Calculate by how many bytes the stack has to be adjusted in case of tail
3536  // call optimization.
3537  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3538
3539  // Adjust the stack pointer for the new arguments...
3540  // These operations are automatically eliminated by the prolog/epilog pass
3541  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
3542                               dl);
3543  SDValue CallSeqStart = Chain;
3544
3545  // Load the return address and frame pointer so it can be moved somewhere else
3546  // later.
3547  SDValue LROp, FPOp;
3548  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3549                                       dl);
3550
3551  // Set up a copy of the stack pointer for use loading and storing any
3552  // arguments that may not fit in the registers available for argument
3553  // passing.
3554  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3555
3556  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3557  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3558  SmallVector<SDValue, 8> MemOpChains;
3559
3560  bool seenFloatArg = false;
3561  // Walk the register/memloc assignments, inserting copies/loads.
3562  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3563       i != e;
3564       ++i) {
3565    CCValAssign &VA = ArgLocs[i];
3566    SDValue Arg = OutVals[i];
3567    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3568
3569    if (Flags.isByVal()) {
3570      // Argument is an aggregate which is passed by value, thus we need to
3571      // create a copy of it in the local variable space of the current stack
3572      // frame (which is the stack frame of the caller) and pass the address of
3573      // this copy to the callee.
3574      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3575      CCValAssign &ByValVA = ByValArgLocs[j++];
3576      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3577
3578      // Memory reserved in the local variable space of the callers stack frame.
3579      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3580
3581      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3582      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3583
3584      // Create a copy of the argument in the local area of the current
3585      // stack frame.
3586      SDValue MemcpyCall =
3587        CreateCopyOfByValArgument(Arg, PtrOff,
3588                                  CallSeqStart.getNode()->getOperand(0),
3589                                  Flags, DAG, dl);
3590
3591      // This must go outside the CALLSEQ_START..END.
3592      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3593                           CallSeqStart.getNode()->getOperand(1),
3594                           SDLoc(MemcpyCall));
3595      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3596                             NewCallSeqStart.getNode());
3597      Chain = CallSeqStart = NewCallSeqStart;
3598
3599      // Pass the address of the aggregate copy on the stack either in a
3600      // physical register or in the parameter list area of the current stack
3601      // frame to the callee.
3602      Arg = PtrOff;
3603    }
3604
3605    if (VA.isRegLoc()) {
3606      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3607      // Put argument in a physical register.
3608      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3609    } else {
3610      // Put argument in the parameter list area of the current stack frame.
3611      assert(VA.isMemLoc());
3612      unsigned LocMemOffset = VA.getLocMemOffset();
3613
3614      if (!isTailCall) {
3615        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3616        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3617
3618        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3619                                           MachinePointerInfo(),
3620                                           false, false, 0));
3621      } else {
3622        // Calculate and remember argument location.
3623        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3624                                 TailCallArguments);
3625      }
3626    }
3627  }
3628
3629  if (!MemOpChains.empty())
3630    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3631                        &MemOpChains[0], MemOpChains.size());
3632
3633  // Build a sequence of copy-to-reg nodes chained together with token chain
3634  // and flag operands which copy the outgoing args into the appropriate regs.
3635  SDValue InFlag;
3636  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3637    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3638                             RegsToPass[i].second, InFlag);
3639    InFlag = Chain.getValue(1);
3640  }
3641
3642  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3643  // registers.
3644  if (isVarArg) {
3645    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3646    SDValue Ops[] = { Chain, InFlag };
3647
3648    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3649                        dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3650
3651    InFlag = Chain.getValue(1);
3652  }
3653
3654  if (isTailCall)
3655    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3656                    false, TailCallArguments);
3657
3658  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3659                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3660                    Ins, InVals);
3661}
3662
3663// Copy an argument into memory, being careful to do this outside the
3664// call sequence for the call to which the argument belongs.
3665SDValue
3666PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3667                                              SDValue CallSeqStart,
3668                                              ISD::ArgFlagsTy Flags,
3669                                              SelectionDAG &DAG,
3670                                              SDLoc dl) const {
3671  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3672                        CallSeqStart.getNode()->getOperand(0),
3673                        Flags, DAG, dl);
3674  // The MEMCPY must go outside the CALLSEQ_START..END.
3675  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3676                             CallSeqStart.getNode()->getOperand(1),
3677                             SDLoc(MemcpyCall));
3678  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3679                         NewCallSeqStart.getNode());
3680  return NewCallSeqStart;
3681}
3682
3683SDValue
3684PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3685                                    CallingConv::ID CallConv, bool isVarArg,
3686                                    bool isTailCall,
3687                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3688                                    const SmallVectorImpl<SDValue> &OutVals,
3689                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3690                                    SDLoc dl, SelectionDAG &DAG,
3691                                    SmallVectorImpl<SDValue> &InVals) const {
3692
3693  unsigned NumOps = Outs.size();
3694
3695  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3696  unsigned PtrByteSize = 8;
3697
3698  MachineFunction &MF = DAG.getMachineFunction();
3699
3700  // Mark this function as potentially containing a function that contains a
3701  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3702  // and restoring the callers stack pointer in this functions epilog. This is
3703  // done because by tail calling the called function might overwrite the value
3704  // in this function's (MF) stack pointer stack slot 0(SP).
3705  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3706      CallConv == CallingConv::Fast)
3707    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3708
3709  unsigned nAltivecParamsAtEnd = 0;
3710
3711  // Count how many bytes are to be pushed on the stack, including the linkage
3712  // area, and parameter passing area.  We start with at least 48 bytes, which
3713  // is reserved space for [SP][CR][LR][3 x unused].
3714  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
3715  // of this call.
3716  unsigned NumBytes =
3717    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
3718                                         Outs, OutVals, nAltivecParamsAtEnd);
3719
3720  // Calculate by how many bytes the stack has to be adjusted in case of tail
3721  // call optimization.
3722  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3723
3724  // To protect arguments on the stack from being clobbered in a tail call,
3725  // force all the loads to happen before doing any other lowering.
3726  if (isTailCall)
3727    Chain = DAG.getStackArgumentTokenFactor(Chain);
3728
3729  // Adjust the stack pointer for the new arguments...
3730  // These operations are automatically eliminated by the prolog/epilog pass
3731  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
3732                               dl);
3733  SDValue CallSeqStart = Chain;
3734
3735  // Load the return address and frame pointer so it can be move somewhere else
3736  // later.
3737  SDValue LROp, FPOp;
3738  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3739                                       dl);
3740
3741  // Set up a copy of the stack pointer for use loading and storing any
3742  // arguments that may not fit in the registers available for argument
3743  // passing.
3744  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3745
3746  // Figure out which arguments are going to go in registers, and which in
3747  // memory.  Also, if this is a vararg function, floating point operations
3748  // must be stored to our stack, and loaded into integer regs as well, if
3749  // any integer regs are available for argument passing.
3750  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
3751  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3752
3753  static const uint16_t GPR[] = {
3754    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3755    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3756  };
3757  static const uint16_t *FPR = GetFPR();
3758
3759  static const uint16_t VR[] = {
3760    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3761    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3762  };
3763  const unsigned NumGPRs = array_lengthof(GPR);
3764  const unsigned NumFPRs = 13;
3765  const unsigned NumVRs  = array_lengthof(VR);
3766
3767  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3768  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3769
3770  SmallVector<SDValue, 8> MemOpChains;
3771  for (unsigned i = 0; i != NumOps; ++i) {
3772    SDValue Arg = OutVals[i];
3773    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3774
3775    // PtrOff will be used to store the current argument to the stack if a
3776    // register cannot be found for it.
3777    SDValue PtrOff;
3778
3779    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3780
3781    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3782
3783    // Promote integers to 64-bit values.
3784    if (Arg.getValueType() == MVT::i32) {
3785      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3786      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3787      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3788    }
3789
3790    // FIXME memcpy is used way more than necessary.  Correctness first.
3791    // Note: "by value" is code for passing a structure by value, not
3792    // basic types.
3793    if (Flags.isByVal()) {
3794      // Note: Size includes alignment padding, so
3795      //   struct x { short a; char b; }
3796      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
3797      // These are the proper values we need for right-justifying the
3798      // aggregate in a parameter register.
3799      unsigned Size = Flags.getByValSize();
3800
3801      // An empty aggregate parameter takes up no storage and no
3802      // registers.
3803      if (Size == 0)
3804        continue;
3805
3806      // All aggregates smaller than 8 bytes must be passed right-justified.
3807      if (Size==1 || Size==2 || Size==4) {
3808        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3809        if (GPR_idx != NumGPRs) {
3810          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3811                                        MachinePointerInfo(), VT,
3812                                        false, false, 0);
3813          MemOpChains.push_back(Load.getValue(1));
3814          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3815
3816          ArgOffset += PtrByteSize;
3817          continue;
3818        }
3819      }
3820
3821      if (GPR_idx == NumGPRs && Size < 8) {
3822        SDValue Const = DAG.getConstant(PtrByteSize - Size,
3823                                        PtrOff.getValueType());
3824        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3825        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3826                                                          CallSeqStart,
3827                                                          Flags, DAG, dl);
3828        ArgOffset += PtrByteSize;
3829        continue;
3830      }
3831      // Copy entire object into memory.  There are cases where gcc-generated
3832      // code assumes it is there, even if it could be put entirely into
3833      // registers.  (This is not what the doc says.)
3834
3835      // FIXME: The above statement is likely due to a misunderstanding of the
3836      // documents.  All arguments must be copied into the parameter area BY
3837      // THE CALLEE in the event that the callee takes the address of any
3838      // formal argument.  That has not yet been implemented.  However, it is
3839      // reasonable to use the stack area as a staging area for the register
3840      // load.
3841
3842      // Skip this for small aggregates, as we will use the same slot for a
3843      // right-justified copy, below.
3844      if (Size >= 8)
3845        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
3846                                                          CallSeqStart,
3847                                                          Flags, DAG, dl);
3848
3849      // When a register is available, pass a small aggregate right-justified.
3850      if (Size < 8 && GPR_idx != NumGPRs) {
3851        // The easiest way to get this right-justified in a register
3852        // is to copy the structure into the rightmost portion of a
3853        // local variable slot, then load the whole slot into the
3854        // register.
3855        // FIXME: The memcpy seems to produce pretty awful code for
3856        // small aggregates, particularly for packed ones.
3857        // FIXME: It would be preferable to use the slot in the
3858        // parameter save area instead of a new local variable.
3859        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3860        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3861        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3862                                                          CallSeqStart,
3863                                                          Flags, DAG, dl);
3864
3865        // Load the slot into the register.
3866        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3867                                   MachinePointerInfo(),
3868                                   false, false, false, 0);
3869        MemOpChains.push_back(Load.getValue(1));
3870        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3871
3872        // Done with this argument.
3873        ArgOffset += PtrByteSize;
3874        continue;
3875      }
3876
3877      // For aggregates larger than PtrByteSize, copy the pieces of the
3878      // object that fit into registers from the parameter save area.
3879      for (unsigned j=0; j<Size; j+=PtrByteSize) {
3880        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3881        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3882        if (GPR_idx != NumGPRs) {
3883          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3884                                     MachinePointerInfo(),
3885                                     false, false, false, 0);
3886          MemOpChains.push_back(Load.getValue(1));
3887          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3888          ArgOffset += PtrByteSize;
3889        } else {
3890          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3891          break;
3892        }
3893      }
3894      continue;
3895    }
3896
3897    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3898    default: llvm_unreachable("Unexpected ValueType for argument!");
3899    case MVT::i32:
3900    case MVT::i64:
3901      if (GPR_idx != NumGPRs) {
3902        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3903      } else {
3904        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3905                         true, isTailCall, false, MemOpChains,
3906                         TailCallArguments, dl);
3907      }
3908      ArgOffset += PtrByteSize;
3909      break;
3910    case MVT::f32:
3911    case MVT::f64:
3912      if (FPR_idx != NumFPRs) {
3913        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3914
3915        if (isVarArg) {
3916          // A single float or an aggregate containing only a single float
3917          // must be passed right-justified in the stack doubleword, and
3918          // in the GPR, if one is available.
3919          SDValue StoreOff;
3920          if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
3921            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3922            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3923          } else
3924            StoreOff = PtrOff;
3925
3926          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
3927                                       MachinePointerInfo(), false, false, 0);
3928          MemOpChains.push_back(Store);
3929
3930          // Float varargs are always shadowed in available integer registers
3931          if (GPR_idx != NumGPRs) {
3932            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3933                                       MachinePointerInfo(), false, false,
3934                                       false, 0);
3935            MemOpChains.push_back(Load.getValue(1));
3936            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3937          }
3938        } else if (GPR_idx != NumGPRs)
3939          // If we have any FPRs remaining, we may also have GPRs remaining.
3940          ++GPR_idx;
3941      } else {
3942        // Single-precision floating-point values are mapped to the
3943        // second (rightmost) word of the stack doubleword.
3944        if (Arg.getValueType() == MVT::f32) {
3945          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3946          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3947        }
3948
3949        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3950                         true, isTailCall, false, MemOpChains,
3951                         TailCallArguments, dl);
3952      }
3953      ArgOffset += 8;
3954      break;
3955    case MVT::v4f32:
3956    case MVT::v4i32:
3957    case MVT::v8i16:
3958    case MVT::v16i8:
3959      if (isVarArg) {
3960        // These go aligned on the stack, or in the corresponding R registers
3961        // when within range.  The Darwin PPC ABI doc claims they also go in
3962        // V registers; in fact gcc does this only for arguments that are
3963        // prototyped, not for those that match the ...  We do it for all
3964        // arguments, seems to work.
3965        while (ArgOffset % 16 !=0) {
3966          ArgOffset += PtrByteSize;
3967          if (GPR_idx != NumGPRs)
3968            GPR_idx++;
3969        }
3970        // We could elide this store in the case where the object fits
3971        // entirely in R registers.  Maybe later.
3972        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3973                            DAG.getConstant(ArgOffset, PtrVT));
3974        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3975                                     MachinePointerInfo(), false, false, 0);
3976        MemOpChains.push_back(Store);
3977        if (VR_idx != NumVRs) {
3978          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3979                                     MachinePointerInfo(),
3980                                     false, false, false, 0);
3981          MemOpChains.push_back(Load.getValue(1));
3982          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3983        }
3984        ArgOffset += 16;
3985        for (unsigned i=0; i<16; i+=PtrByteSize) {
3986          if (GPR_idx == NumGPRs)
3987            break;
3988          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3989                                  DAG.getConstant(i, PtrVT));
3990          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3991                                     false, false, false, 0);
3992          MemOpChains.push_back(Load.getValue(1));
3993          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3994        }
3995        break;
3996      }
3997
3998      // Non-varargs Altivec params generally go in registers, but have
3999      // stack space allocated at the end.
4000      if (VR_idx != NumVRs) {
4001        // Doesn't have GPR space allocated.
4002        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4003      } else {
4004        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4005                         true, isTailCall, true, MemOpChains,
4006                         TailCallArguments, dl);
4007        ArgOffset += 16;
4008      }
4009      break;
4010    }
4011  }
4012
4013  if (!MemOpChains.empty())
4014    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4015                        &MemOpChains[0], MemOpChains.size());
4016
4017  // Check if this is an indirect call (MTCTR/BCTRL).
4018  // See PrepareCall() for more information about calls through function
4019  // pointers in the 64-bit SVR4 ABI.
4020  if (!isTailCall &&
4021      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4022      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4023      !isBLACompatibleAddress(Callee, DAG)) {
4024    // Load r2 into a virtual register and store it to the TOC save area.
4025    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4026    // TOC save area offset.
4027    SDValue PtrOff = DAG.getIntPtrConstant(40);
4028    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4029    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4030                         false, false, 0);
4031    // R12 must contain the address of an indirect callee.  This does not
4032    // mean the MTCTR instruction must use R12; it's easier to model this
4033    // as an extra parameter, so do that.
4034    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4035  }
4036
4037  // Build a sequence of copy-to-reg nodes chained together with token chain
4038  // and flag operands which copy the outgoing args into the appropriate regs.
4039  SDValue InFlag;
4040  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4041    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4042                             RegsToPass[i].second, InFlag);
4043    InFlag = Chain.getValue(1);
4044  }
4045
4046  if (isTailCall)
4047    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4048                    FPOp, true, TailCallArguments);
4049
4050  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4051                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4052                    Ins, InVals);
4053}
4054
4055SDValue
4056PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4057                                    CallingConv::ID CallConv, bool isVarArg,
4058                                    bool isTailCall,
4059                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4060                                    const SmallVectorImpl<SDValue> &OutVals,
4061                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4062                                    SDLoc dl, SelectionDAG &DAG,
4063                                    SmallVectorImpl<SDValue> &InVals) const {
4064
4065  unsigned NumOps = Outs.size();
4066
4067  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4068  bool isPPC64 = PtrVT == MVT::i64;
4069  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4070
4071  MachineFunction &MF = DAG.getMachineFunction();
4072
4073  // Mark this function as potentially containing a function that contains a
4074  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4075  // and restoring the callers stack pointer in this functions epilog. This is
4076  // done because by tail calling the called function might overwrite the value
4077  // in this function's (MF) stack pointer stack slot 0(SP).
4078  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4079      CallConv == CallingConv::Fast)
4080    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4081
4082  unsigned nAltivecParamsAtEnd = 0;
4083
4084  // Count how many bytes are to be pushed on the stack, including the linkage
4085  // area, and parameter passing area.  We start with 24/48 bytes, which is
4086  // prereserved space for [SP][CR][LR][3 x unused].
4087  unsigned NumBytes =
4088    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4089                                         Outs, OutVals,
4090                                         nAltivecParamsAtEnd);
4091
4092  // Calculate by how many bytes the stack has to be adjusted in case of tail
4093  // call optimization.
4094  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4095
4096  // To protect arguments on the stack from being clobbered in a tail call,
4097  // force all the loads to happen before doing any other lowering.
4098  if (isTailCall)
4099    Chain = DAG.getStackArgumentTokenFactor(Chain);
4100
4101  // Adjust the stack pointer for the new arguments...
4102  // These operations are automatically eliminated by the prolog/epilog pass
4103  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
4104                               dl);
4105  SDValue CallSeqStart = Chain;
4106
4107  // Load the return address and frame pointer so it can be move somewhere else
4108  // later.
4109  SDValue LROp, FPOp;
4110  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4111                                       dl);
4112
4113  // Set up a copy of the stack pointer for use loading and storing any
4114  // arguments that may not fit in the registers available for argument
4115  // passing.
4116  SDValue StackPtr;
4117  if (isPPC64)
4118    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4119  else
4120    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4121
4122  // Figure out which arguments are going to go in registers, and which in
4123  // memory.  Also, if this is a vararg function, floating point operations
4124  // must be stored to our stack, and loaded into integer regs as well, if
4125  // any integer regs are available for argument passing.
4126  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4127  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4128
4129  static const uint16_t GPR_32[] = {           // 32-bit registers.
4130    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4131    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4132  };
4133  static const uint16_t GPR_64[] = {           // 64-bit registers.
4134    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4135    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4136  };
4137  static const uint16_t *FPR = GetFPR();
4138
4139  static const uint16_t VR[] = {
4140    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4141    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4142  };
4143  const unsigned NumGPRs = array_lengthof(GPR_32);
4144  const unsigned NumFPRs = 13;
4145  const unsigned NumVRs  = array_lengthof(VR);
4146
4147  const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
4148
4149  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4150  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4151
4152  SmallVector<SDValue, 8> MemOpChains;
4153  for (unsigned i = 0; i != NumOps; ++i) {
4154    SDValue Arg = OutVals[i];
4155    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4156
4157    // PtrOff will be used to store the current argument to the stack if a
4158    // register cannot be found for it.
4159    SDValue PtrOff;
4160
4161    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4162
4163    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4164
4165    // On PPC64, promote integers to 64-bit values.
4166    if (isPPC64 && Arg.getValueType() == MVT::i32) {
4167      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4168      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4169      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4170    }
4171
4172    // FIXME memcpy is used way more than necessary.  Correctness first.
4173    // Note: "by value" is code for passing a structure by value, not
4174    // basic types.
4175    if (Flags.isByVal()) {
4176      unsigned Size = Flags.getByValSize();
4177      // Very small objects are passed right-justified.  Everything else is
4178      // passed left-justified.
4179      if (Size==1 || Size==2) {
4180        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4181        if (GPR_idx != NumGPRs) {
4182          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4183                                        MachinePointerInfo(), VT,
4184                                        false, false, 0);
4185          MemOpChains.push_back(Load.getValue(1));
4186          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4187
4188          ArgOffset += PtrByteSize;
4189        } else {
4190          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4191                                          PtrOff.getValueType());
4192          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4193          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4194                                                            CallSeqStart,
4195                                                            Flags, DAG, dl);
4196          ArgOffset += PtrByteSize;
4197        }
4198        continue;
4199      }
4200      // Copy entire object into memory.  There are cases where gcc-generated
4201      // code assumes it is there, even if it could be put entirely into
4202      // registers.  (This is not what the doc says.)
4203      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4204                                                        CallSeqStart,
4205                                                        Flags, DAG, dl);
4206
4207      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4208      // copy the pieces of the object that fit into registers from the
4209      // parameter save area.
4210      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4211        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4212        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4213        if (GPR_idx != NumGPRs) {
4214          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4215                                     MachinePointerInfo(),
4216                                     false, false, false, 0);
4217          MemOpChains.push_back(Load.getValue(1));
4218          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4219          ArgOffset += PtrByteSize;
4220        } else {
4221          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4222          break;
4223        }
4224      }
4225      continue;
4226    }
4227
4228    switch (Arg.getValueType().getSimpleVT().SimpleTy) {
4229    default: llvm_unreachable("Unexpected ValueType for argument!");
4230    case MVT::i32:
4231    case MVT::i64:
4232      if (GPR_idx != NumGPRs) {
4233        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4234      } else {
4235        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4236                         isPPC64, isTailCall, false, MemOpChains,
4237                         TailCallArguments, dl);
4238      }
4239      ArgOffset += PtrByteSize;
4240      break;
4241    case MVT::f32:
4242    case MVT::f64:
4243      if (FPR_idx != NumFPRs) {
4244        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4245
4246        if (isVarArg) {
4247          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4248                                       MachinePointerInfo(), false, false, 0);
4249          MemOpChains.push_back(Store);
4250
4251          // Float varargs are always shadowed in available integer registers
4252          if (GPR_idx != NumGPRs) {
4253            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4254                                       MachinePointerInfo(), false, false,
4255                                       false, 0);
4256            MemOpChains.push_back(Load.getValue(1));
4257            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4258          }
4259          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4260            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4261            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4262            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4263                                       MachinePointerInfo(),
4264                                       false, false, false, 0);
4265            MemOpChains.push_back(Load.getValue(1));
4266            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4267          }
4268        } else {
4269          // If we have any FPRs remaining, we may also have GPRs remaining.
4270          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4271          // GPRs.
4272          if (GPR_idx != NumGPRs)
4273            ++GPR_idx;
4274          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4275              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4276            ++GPR_idx;
4277        }
4278      } else
4279        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4280                         isPPC64, isTailCall, false, MemOpChains,
4281                         TailCallArguments, dl);
4282      if (isPPC64)
4283        ArgOffset += 8;
4284      else
4285        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4286      break;
4287    case MVT::v4f32:
4288    case MVT::v4i32:
4289    case MVT::v8i16:
4290    case MVT::v16i8:
4291      if (isVarArg) {
4292        // These go aligned on the stack, or in the corresponding R registers
4293        // when within range.  The Darwin PPC ABI doc claims they also go in
4294        // V registers; in fact gcc does this only for arguments that are
4295        // prototyped, not for those that match the ...  We do it for all
4296        // arguments, seems to work.
4297        while (ArgOffset % 16 !=0) {
4298          ArgOffset += PtrByteSize;
4299          if (GPR_idx != NumGPRs)
4300            GPR_idx++;
4301        }
4302        // We could elide this store in the case where the object fits
4303        // entirely in R registers.  Maybe later.
4304        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4305                            DAG.getConstant(ArgOffset, PtrVT));
4306        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4307                                     MachinePointerInfo(), false, false, 0);
4308        MemOpChains.push_back(Store);
4309        if (VR_idx != NumVRs) {
4310          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4311                                     MachinePointerInfo(),
4312                                     false, false, false, 0);
4313          MemOpChains.push_back(Load.getValue(1));
4314          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4315        }
4316        ArgOffset += 16;
4317        for (unsigned i=0; i<16; i+=PtrByteSize) {
4318          if (GPR_idx == NumGPRs)
4319            break;
4320          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4321                                  DAG.getConstant(i, PtrVT));
4322          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4323                                     false, false, false, 0);
4324          MemOpChains.push_back(Load.getValue(1));
4325          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4326        }
4327        break;
4328      }
4329
4330      // Non-varargs Altivec params generally go in registers, but have
4331      // stack space allocated at the end.
4332      if (VR_idx != NumVRs) {
4333        // Doesn't have GPR space allocated.
4334        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4335      } else if (nAltivecParamsAtEnd==0) {
4336        // We are emitting Altivec params in order.
4337        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4338                         isPPC64, isTailCall, true, MemOpChains,
4339                         TailCallArguments, dl);
4340        ArgOffset += 16;
4341      }
4342      break;
4343    }
4344  }
4345  // If all Altivec parameters fit in registers, as they usually do,
4346  // they get stack space following the non-Altivec parameters.  We
4347  // don't track this here because nobody below needs it.
4348  // If there are more Altivec parameters than fit in registers emit
4349  // the stores here.
4350  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4351    unsigned j = 0;
4352    // Offset is aligned; skip 1st 12 params which go in V registers.
4353    ArgOffset = ((ArgOffset+15)/16)*16;
4354    ArgOffset += 12*16;
4355    for (unsigned i = 0; i != NumOps; ++i) {
4356      SDValue Arg = OutVals[i];
4357      EVT ArgType = Outs[i].VT;
4358      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4359          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4360        if (++j > NumVRs) {
4361          SDValue PtrOff;
4362          // We are emitting Altivec params in order.
4363          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4364                           isPPC64, isTailCall, true, MemOpChains,
4365                           TailCallArguments, dl);
4366          ArgOffset += 16;
4367        }
4368      }
4369    }
4370  }
4371
4372  if (!MemOpChains.empty())
4373    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4374                        &MemOpChains[0], MemOpChains.size());
4375
4376  // On Darwin, R12 must contain the address of an indirect callee.  This does
4377  // not mean the MTCTR instruction must use R12; it's easier to model this as
4378  // an extra parameter, so do that.
4379  if (!isTailCall &&
4380      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4381      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4382      !isBLACompatibleAddress(Callee, DAG))
4383    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4384                                                   PPC::R12), Callee));
4385
4386  // Build a sequence of copy-to-reg nodes chained together with token chain
4387  // and flag operands which copy the outgoing args into the appropriate regs.
4388  SDValue InFlag;
4389  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4390    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4391                             RegsToPass[i].second, InFlag);
4392    InFlag = Chain.getValue(1);
4393  }
4394
4395  if (isTailCall)
4396    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4397                    FPOp, true, TailCallArguments);
4398
4399  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4400                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4401                    Ins, InVals);
4402}
4403
4404bool
4405PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4406                                  MachineFunction &MF, bool isVarArg,
4407                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
4408                                  LLVMContext &Context) const {
4409  SmallVector<CCValAssign, 16> RVLocs;
4410  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4411                 RVLocs, Context);
4412  return CCInfo.CheckReturn(Outs, RetCC_PPC);
4413}
4414
4415SDValue
4416PPCTargetLowering::LowerReturn(SDValue Chain,
4417                               CallingConv::ID CallConv, bool isVarArg,
4418                               const SmallVectorImpl<ISD::OutputArg> &Outs,
4419                               const SmallVectorImpl<SDValue> &OutVals,
4420                               SDLoc dl, SelectionDAG &DAG) const {
4421
4422  SmallVector<CCValAssign, 16> RVLocs;
4423  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4424                 getTargetMachine(), RVLocs, *DAG.getContext());
4425  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4426
4427  SDValue Flag;
4428  SmallVector<SDValue, 4> RetOps(1, Chain);
4429
4430  // Copy the result values into the output registers.
4431  for (unsigned i = 0; i != RVLocs.size(); ++i) {
4432    CCValAssign &VA = RVLocs[i];
4433    assert(VA.isRegLoc() && "Can only return in registers!");
4434
4435    SDValue Arg = OutVals[i];
4436
4437    switch (VA.getLocInfo()) {
4438    default: llvm_unreachable("Unknown loc info!");
4439    case CCValAssign::Full: break;
4440    case CCValAssign::AExt:
4441      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4442      break;
4443    case CCValAssign::ZExt:
4444      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4445      break;
4446    case CCValAssign::SExt:
4447      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4448      break;
4449    }
4450
4451    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4452    Flag = Chain.getValue(1);
4453    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4454  }
4455
4456  RetOps[0] = Chain;  // Update chain.
4457
4458  // Add the flag if we have it.
4459  if (Flag.getNode())
4460    RetOps.push_back(Flag);
4461
4462  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
4463                     &RetOps[0], RetOps.size());
4464}
4465
4466SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4467                                   const PPCSubtarget &Subtarget) const {
4468  // When we pop the dynamic allocation we need to restore the SP link.
4469  SDLoc dl(Op);
4470
4471  // Get the corect type for pointers.
4472  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4473
4474  // Construct the stack pointer operand.
4475  bool isPPC64 = Subtarget.isPPC64();
4476  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4477  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4478
4479  // Get the operands for the STACKRESTORE.
4480  SDValue Chain = Op.getOperand(0);
4481  SDValue SaveSP = Op.getOperand(1);
4482
4483  // Load the old link SP.
4484  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4485                                   MachinePointerInfo(),
4486                                   false, false, false, 0);
4487
4488  // Restore the stack pointer.
4489  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4490
4491  // Store the old link SP.
4492  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4493                      false, false, 0);
4494}
4495
4496
4497
4498SDValue
4499PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4500  MachineFunction &MF = DAG.getMachineFunction();
4501  bool isPPC64 = PPCSubTarget.isPPC64();
4502  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4503  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4504
4505  // Get current frame pointer save index.  The users of this index will be
4506  // primarily DYNALLOC instructions.
4507  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4508  int RASI = FI->getReturnAddrSaveIndex();
4509
4510  // If the frame pointer save index hasn't been defined yet.
4511  if (!RASI) {
4512    // Find out what the fix offset of the frame pointer save area.
4513    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4514    // Allocate the frame index for frame pointer save area.
4515    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4516    // Save the result.
4517    FI->setReturnAddrSaveIndex(RASI);
4518  }
4519  return DAG.getFrameIndex(RASI, PtrVT);
4520}
4521
4522SDValue
4523PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4524  MachineFunction &MF = DAG.getMachineFunction();
4525  bool isPPC64 = PPCSubTarget.isPPC64();
4526  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4527  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4528
4529  // Get current frame pointer save index.  The users of this index will be
4530  // primarily DYNALLOC instructions.
4531  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4532  int FPSI = FI->getFramePointerSaveIndex();
4533
4534  // If the frame pointer save index hasn't been defined yet.
4535  if (!FPSI) {
4536    // Find out what the fix offset of the frame pointer save area.
4537    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4538                                                           isDarwinABI);
4539
4540    // Allocate the frame index for frame pointer save area.
4541    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4542    // Save the result.
4543    FI->setFramePointerSaveIndex(FPSI);
4544  }
4545  return DAG.getFrameIndex(FPSI, PtrVT);
4546}
4547
4548SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4549                                         SelectionDAG &DAG,
4550                                         const PPCSubtarget &Subtarget) const {
4551  // Get the inputs.
4552  SDValue Chain = Op.getOperand(0);
4553  SDValue Size  = Op.getOperand(1);
4554  SDLoc dl(Op);
4555
4556  // Get the corect type for pointers.
4557  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4558  // Negate the size.
4559  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4560                                  DAG.getConstant(0, PtrVT), Size);
4561  // Construct a node for the frame pointer save index.
4562  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4563  // Build a DYNALLOC node.
4564  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4565  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4566  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4567}
4568
4569SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
4570                                               SelectionDAG &DAG) const {
4571  SDLoc DL(Op);
4572  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
4573                     DAG.getVTList(MVT::i32, MVT::Other),
4574                     Op.getOperand(0), Op.getOperand(1));
4575}
4576
4577SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
4578                                                SelectionDAG &DAG) const {
4579  SDLoc DL(Op);
4580  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
4581                     Op.getOperand(0), Op.getOperand(1));
4582}
4583
4584/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4585/// possible.
4586SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4587  // Not FP? Not a fsel.
4588  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4589      !Op.getOperand(2).getValueType().isFloatingPoint())
4590    return Op;
4591
4592  // We might be able to do better than this under some circumstances, but in
4593  // general, fsel-based lowering of select is a finite-math-only optimization.
4594  // For more information, see section F.3 of the 2.06 ISA specification.
4595  if (!DAG.getTarget().Options.NoInfsFPMath ||
4596      !DAG.getTarget().Options.NoNaNsFPMath)
4597    return Op;
4598
4599  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4600
4601  EVT ResVT = Op.getValueType();
4602  EVT CmpVT = Op.getOperand(0).getValueType();
4603  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4604  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4605  SDLoc dl(Op);
4606
4607  // If the RHS of the comparison is a 0.0, we don't need to do the
4608  // subtraction at all.
4609  SDValue Sel1;
4610  if (isFloatingPointZero(RHS))
4611    switch (CC) {
4612    default: break;       // SETUO etc aren't handled by fsel.
4613    case ISD::SETNE:
4614      std::swap(TV, FV);
4615    case ISD::SETEQ:
4616      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4617        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4618      Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4619      if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
4620        Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
4621      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4622                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
4623    case ISD::SETULT:
4624    case ISD::SETLT:
4625      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4626    case ISD::SETOGE:
4627    case ISD::SETGE:
4628      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4629        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4630      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4631    case ISD::SETUGT:
4632    case ISD::SETGT:
4633      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4634    case ISD::SETOLE:
4635    case ISD::SETLE:
4636      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4637        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4638      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4639                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4640    }
4641
4642  SDValue Cmp;
4643  switch (CC) {
4644  default: break;       // SETUO etc aren't handled by fsel.
4645  case ISD::SETNE:
4646    std::swap(TV, FV);
4647  case ISD::SETEQ:
4648    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4649    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4650      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4651    Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4652    if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
4653      Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
4654    return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4655                       DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
4656  case ISD::SETULT:
4657  case ISD::SETLT:
4658    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4659    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4660      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4661    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4662  case ISD::SETOGE:
4663  case ISD::SETGE:
4664    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4665    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4666      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4667    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4668  case ISD::SETUGT:
4669  case ISD::SETGT:
4670    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4671    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4672      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4673    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4674  case ISD::SETOLE:
4675  case ISD::SETLE:
4676    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4677    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
4678      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4679    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4680  }
4681  return Op;
4682}
4683
4684// FIXME: Split this code up when LegalizeDAGTypes lands.
4685SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4686                                           SDLoc dl) const {
4687  assert(Op.getOperand(0).getValueType().isFloatingPoint());
4688  SDValue Src = Op.getOperand(0);
4689
4690  // If we have a long double here, it must be that we have an undef of
4691  // that type.  In this case return an undef of the target type.
4692  if (Src.getValueType() == MVT::ppcf128) {
4693    assert(Src.getOpcode() == ISD::UNDEF && "Unhandled ppcf128!");
4694    return DAG.getNode(ISD::UNDEF, dl,
4695                       Op.getValueType().getSimpleVT().SimpleTy);
4696  }
4697
4698  if (Src.getValueType() == MVT::f32)
4699    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4700
4701  SDValue Tmp;
4702  switch (Op.getValueType().getSimpleVT().SimpleTy) {
4703  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4704  case MVT::i32:
4705    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4706                        (PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ :
4707                                                   PPCISD::FCTIDZ),
4708                      dl, MVT::f64, Src);
4709    break;
4710  case MVT::i64:
4711    assert((Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()) &&
4712           "i64 FP_TO_UINT is supported only with FPCVT");
4713    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
4714                                                        PPCISD::FCTIDUZ,
4715                      dl, MVT::f64, Src);
4716    break;
4717  }
4718
4719  // Convert the FP value to an int value through memory.
4720  bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() &&
4721    (Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT());
4722  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
4723  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
4724  MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
4725
4726  // Emit a store to the stack slot.
4727  SDValue Chain;
4728  if (i32Stack) {
4729    MachineFunction &MF = DAG.getMachineFunction();
4730    MachineMemOperand *MMO =
4731      MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
4732    SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
4733    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
4734              DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
4735              MVT::i32, MMO);
4736  } else
4737    Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4738                         MPI, false, false, 0);
4739
4740  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
4741  // add in a bias.
4742  if (Op.getValueType() == MVT::i32 && !i32Stack) {
4743    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4744                        DAG.getConstant(4, FIPtr.getValueType()));
4745    MPI = MachinePointerInfo();
4746  }
4747
4748  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
4749                     false, false, false, 0);
4750}
4751
4752SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
4753                                           SelectionDAG &DAG) const {
4754  SDLoc dl(Op);
4755  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4756  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4757    return SDValue();
4758
4759  assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
4760         "UINT_TO_FP is supported only with FPCVT");
4761
4762  // If we have FCFIDS, then use it when converting to single-precision.
4763  // Otherwise, convert to double-precision and then round.
4764  unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
4765                   (Op.getOpcode() == ISD::UINT_TO_FP ?
4766                    PPCISD::FCFIDUS : PPCISD::FCFIDS) :
4767                   (Op.getOpcode() == ISD::UINT_TO_FP ?
4768                    PPCISD::FCFIDU : PPCISD::FCFID);
4769  MVT      FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
4770                   MVT::f32 : MVT::f64;
4771
4772  if (Op.getOperand(0).getValueType() == MVT::i64) {
4773    SDValue SINT = Op.getOperand(0);
4774    // When converting to single-precision, we actually need to convert
4775    // to double-precision first and then round to single-precision.
4776    // To avoid double-rounding effects during that operation, we have
4777    // to prepare the input operand.  Bits that might be truncated when
4778    // converting to double-precision are replaced by a bit that won't
4779    // be lost at this stage, but is below the single-precision rounding
4780    // position.
4781    //
4782    // However, if -enable-unsafe-fp-math is in effect, accept double
4783    // rounding to avoid the extra overhead.
4784    if (Op.getValueType() == MVT::f32 &&
4785        !PPCSubTarget.hasFPCVT() &&
4786        !DAG.getTarget().Options.UnsafeFPMath) {
4787
4788      // Twiddle input to make sure the low 11 bits are zero.  (If this
4789      // is the case, we are guaranteed the value will fit into the 53 bit
4790      // mantissa of an IEEE double-precision value without rounding.)
4791      // If any of those low 11 bits were not zero originally, make sure
4792      // bit 12 (value 2048) is set instead, so that the final rounding
4793      // to single-precision gets the correct result.
4794      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4795                                  SINT, DAG.getConstant(2047, MVT::i64));
4796      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
4797                          Round, DAG.getConstant(2047, MVT::i64));
4798      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
4799      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4800                          Round, DAG.getConstant(-2048, MVT::i64));
4801
4802      // However, we cannot use that value unconditionally: if the magnitude
4803      // of the input value is small, the bit-twiddling we did above might
4804      // end up visibly changing the output.  Fortunately, in that case, we
4805      // don't need to twiddle bits since the original input will convert
4806      // exactly to double-precision floating-point already.  Therefore,
4807      // construct a conditional to use the original value if the top 11
4808      // bits are all sign-bit copies, and use the rounded value computed
4809      // above otherwise.
4810      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
4811                                 SINT, DAG.getConstant(53, MVT::i32));
4812      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
4813                         Cond, DAG.getConstant(1, MVT::i64));
4814      Cond = DAG.getSetCC(dl, MVT::i32,
4815                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
4816
4817      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
4818    }
4819
4820    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
4821    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
4822
4823    if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
4824      FP = DAG.getNode(ISD::FP_ROUND, dl,
4825                       MVT::f32, FP, DAG.getIntPtrConstant(0));
4826    return FP;
4827  }
4828
4829  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4830         "Unhandled INT_TO_FP type in custom expander!");
4831  // Since we only generate this in 64-bit mode, we can take advantage of
4832  // 64-bit registers.  In particular, sign extend the input value into the
4833  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4834  // then lfd it and fcfid it.
4835  MachineFunction &MF = DAG.getMachineFunction();
4836  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4837  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4838
4839  SDValue Ld;
4840  if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) {
4841    int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
4842    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4843
4844    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
4845                                 MachinePointerInfo::getFixedStack(FrameIdx),
4846                                 false, false, 0);
4847
4848    assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
4849           "Expected an i32 store");
4850    MachineMemOperand *MMO =
4851      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4852                              MachineMemOperand::MOLoad, 4, 4);
4853    SDValue Ops[] = { Store, FIdx };
4854    Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
4855                                   PPCISD::LFIWZX : PPCISD::LFIWAX,
4856                                 dl, DAG.getVTList(MVT::f64, MVT::Other),
4857                                 Ops, 2, MVT::i32, MMO);
4858  } else {
4859    assert(PPCSubTarget.isPPC64() &&
4860           "i32->FP without LFIWAX supported only on PPC64");
4861
4862    int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4863    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4864
4865    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
4866                                Op.getOperand(0));
4867
4868    // STD the extended value into the stack slot.
4869    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
4870                                 MachinePointerInfo::getFixedStack(FrameIdx),
4871                                 false, false, 0);
4872
4873    // Load the value as a double.
4874    Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
4875                     MachinePointerInfo::getFixedStack(FrameIdx),
4876                     false, false, false, 0);
4877  }
4878
4879  // FCFID it and return it.
4880  SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
4881  if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
4882    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4883  return FP;
4884}
4885
4886SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4887                                            SelectionDAG &DAG) const {
4888  SDLoc dl(Op);
4889  /*
4890   The rounding mode is in bits 30:31 of FPSR, and has the following
4891   settings:
4892     00 Round to nearest
4893     01 Round to 0
4894     10 Round to +inf
4895     11 Round to -inf
4896
4897  FLT_ROUNDS, on the other hand, expects the following:
4898    -1 Undefined
4899     0 Round to 0
4900     1 Round to nearest
4901     2 Round to +inf
4902     3 Round to -inf
4903
4904  To perform the conversion, we do:
4905    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
4906  */
4907
4908  MachineFunction &MF = DAG.getMachineFunction();
4909  EVT VT = Op.getValueType();
4910  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4911  SDValue MFFSreg, InFlag;
4912
4913  // Save FP Control Word to register
4914  EVT NodeTys[] = {
4915    MVT::f64,    // return register
4916    MVT::Glue    // unused in this context
4917  };
4918  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4919
4920  // Save FP register to stack slot
4921  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
4922  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
4923  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
4924                               StackSlot, MachinePointerInfo(), false, false,0);
4925
4926  // Load FP Control Word from low 32 bits of stack slot.
4927  SDValue Four = DAG.getConstant(4, PtrVT);
4928  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
4929  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
4930                            false, false, false, 0);
4931
4932  // Transform as necessary
4933  SDValue CWD1 =
4934    DAG.getNode(ISD::AND, dl, MVT::i32,
4935                CWD, DAG.getConstant(3, MVT::i32));
4936  SDValue CWD2 =
4937    DAG.getNode(ISD::SRL, dl, MVT::i32,
4938                DAG.getNode(ISD::AND, dl, MVT::i32,
4939                            DAG.getNode(ISD::XOR, dl, MVT::i32,
4940                                        CWD, DAG.getConstant(3, MVT::i32)),
4941                            DAG.getConstant(3, MVT::i32)),
4942                DAG.getConstant(1, MVT::i32));
4943
4944  SDValue RetVal =
4945    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
4946
4947  return DAG.getNode((VT.getSizeInBits() < 16 ?
4948                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
4949}
4950
4951SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4952  EVT VT = Op.getValueType();
4953  unsigned BitWidth = VT.getSizeInBits();
4954  SDLoc dl(Op);
4955  assert(Op.getNumOperands() == 3 &&
4956         VT == Op.getOperand(1).getValueType() &&
4957         "Unexpected SHL!");
4958
4959  // Expand into a bunch of logical ops.  Note that these ops
4960  // depend on the PPC behavior for oversized shift amounts.
4961  SDValue Lo = Op.getOperand(0);
4962  SDValue Hi = Op.getOperand(1);
4963  SDValue Amt = Op.getOperand(2);
4964  EVT AmtVT = Amt.getValueType();
4965
4966  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4967                             DAG.getConstant(BitWidth, AmtVT), Amt);
4968  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
4969  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
4970  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
4971  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4972                             DAG.getConstant(-BitWidth, AmtVT));
4973  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
4974  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4975  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
4976  SDValue OutOps[] = { OutLo, OutHi };
4977  return DAG.getMergeValues(OutOps, 2, dl);
4978}
4979
4980SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4981  EVT VT = Op.getValueType();
4982  SDLoc dl(Op);
4983  unsigned BitWidth = VT.getSizeInBits();
4984  assert(Op.getNumOperands() == 3 &&
4985         VT == Op.getOperand(1).getValueType() &&
4986         "Unexpected SRL!");
4987
4988  // Expand into a bunch of logical ops.  Note that these ops
4989  // depend on the PPC behavior for oversized shift amounts.
4990  SDValue Lo = Op.getOperand(0);
4991  SDValue Hi = Op.getOperand(1);
4992  SDValue Amt = Op.getOperand(2);
4993  EVT AmtVT = Amt.getValueType();
4994
4995  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4996                             DAG.getConstant(BitWidth, AmtVT), Amt);
4997  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4998  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4999  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5000  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5001                             DAG.getConstant(-BitWidth, AmtVT));
5002  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
5003  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5004  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
5005  SDValue OutOps[] = { OutLo, OutHi };
5006  return DAG.getMergeValues(OutOps, 2, dl);
5007}
5008
5009SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
5010  SDLoc dl(Op);
5011  EVT VT = Op.getValueType();
5012  unsigned BitWidth = VT.getSizeInBits();
5013  assert(Op.getNumOperands() == 3 &&
5014         VT == Op.getOperand(1).getValueType() &&
5015         "Unexpected SRA!");
5016
5017  // Expand into a bunch of logical ops, followed by a select_cc.
5018  SDValue Lo = Op.getOperand(0);
5019  SDValue Hi = Op.getOperand(1);
5020  SDValue Amt = Op.getOperand(2);
5021  EVT AmtVT = Amt.getValueType();
5022
5023  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5024                             DAG.getConstant(BitWidth, AmtVT), Amt);
5025  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5026  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5027  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5028  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5029                             DAG.getConstant(-BitWidth, AmtVT));
5030  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
5031  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
5032  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
5033                                  Tmp4, Tmp6, ISD::SETLE);
5034  SDValue OutOps[] = { OutLo, OutHi };
5035  return DAG.getMergeValues(OutOps, 2, dl);
5036}
5037
5038//===----------------------------------------------------------------------===//
5039// Vector related lowering.
5040//
5041
5042/// BuildSplatI - Build a canonical splati of Val with an element size of
5043/// SplatSize.  Cast the result to VT.
5044static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
5045                             SelectionDAG &DAG, SDLoc dl) {
5046  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
5047
5048  static const EVT VTys[] = { // canonical VT to use for each size.
5049    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
5050  };
5051
5052  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
5053
5054  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
5055  if (Val == -1)
5056    SplatSize = 1;
5057
5058  EVT CanonicalVT = VTys[SplatSize-1];
5059
5060  // Build a canonical splat for this value.
5061  SDValue Elt = DAG.getConstant(Val, MVT::i32);
5062  SmallVector<SDValue, 8> Ops;
5063  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
5064  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
5065                              &Ops[0], Ops.size());
5066  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
5067}
5068
5069/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
5070/// specified intrinsic ID.
5071static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
5072                                SelectionDAG &DAG, SDLoc dl,
5073                                EVT DestVT = MVT::Other) {
5074  if (DestVT == MVT::Other) DestVT = Op.getValueType();
5075  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5076                     DAG.getConstant(IID, MVT::i32), Op);
5077}
5078
5079/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
5080/// specified intrinsic ID.
5081static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
5082                                SelectionDAG &DAG, SDLoc dl,
5083                                EVT DestVT = MVT::Other) {
5084  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
5085  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5086                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
5087}
5088
5089/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
5090/// specified intrinsic ID.
5091static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
5092                                SDValue Op2, SelectionDAG &DAG,
5093                                SDLoc dl, EVT DestVT = MVT::Other) {
5094  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
5095  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5096                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
5097}
5098
5099
5100/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
5101/// amount.  The result has the specified value type.
5102static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
5103                             EVT VT, SelectionDAG &DAG, SDLoc dl) {
5104  // Force LHS/RHS to be the right type.
5105  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
5106  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
5107
5108  int Ops[16];
5109  for (unsigned i = 0; i != 16; ++i)
5110    Ops[i] = i + Amt;
5111  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
5112  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5113}
5114
5115// If this is a case we can't handle, return null and let the default
5116// expansion code take care of it.  If we CAN select this case, and if it
5117// selects to a single instruction, return Op.  Otherwise, if we can codegen
5118// this case more efficiently than a constant pool load, lower it to the
5119// sequence of ops that should be used.
5120SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
5121                                             SelectionDAG &DAG) const {
5122  SDLoc dl(Op);
5123  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5124  assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
5125
5126  // Check if this is a splat of a constant value.
5127  APInt APSplatBits, APSplatUndef;
5128  unsigned SplatBitSize;
5129  bool HasAnyUndefs;
5130  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
5131                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
5132    return SDValue();
5133
5134  unsigned SplatBits = APSplatBits.getZExtValue();
5135  unsigned SplatUndef = APSplatUndef.getZExtValue();
5136  unsigned SplatSize = SplatBitSize / 8;
5137
5138  // First, handle single instruction cases.
5139
5140  // All zeros?
5141  if (SplatBits == 0) {
5142    // Canonicalize all zero vectors to be v4i32.
5143    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5144      SDValue Z = DAG.getConstant(0, MVT::i32);
5145      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5146      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5147    }
5148    return Op;
5149  }
5150
5151  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5152  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5153                    (32-SplatBitSize));
5154  if (SextVal >= -16 && SextVal <= 15)
5155    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5156
5157
5158  // Two instruction sequences.
5159
5160  // If this value is in the range [-32,30] and is even, use:
5161  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5162  // If this value is in the range [17,31] and is odd, use:
5163  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5164  // If this value is in the range [-31,-17] and is odd, use:
5165  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5166  // Note the last two are three-instruction sequences.
5167  if (SextVal >= -32 && SextVal <= 31) {
5168    // To avoid having these optimizations undone by constant folding,
5169    // we convert to a pseudo that will be expanded later into one of
5170    // the above forms.
5171    SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5172    EVT VT = Op.getValueType();
5173    int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
5174    SDValue EltSize = DAG.getConstant(Size, MVT::i32);
5175    return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5176  }
5177
5178  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5179  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5180  // for fneg/fabs.
5181  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5182    // Make -1 and vspltisw -1:
5183    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5184
5185    // Make the VSLW intrinsic, computing 0x8000_0000.
5186    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5187                                   OnesV, DAG, dl);
5188
5189    // xor by OnesV to invert it.
5190    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5191    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5192  }
5193
5194  // Check to see if this is a wide variety of vsplti*, binop self cases.
5195  static const signed char SplatCsts[] = {
5196    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5197    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5198  };
5199
5200  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5201    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5202    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5203    int i = SplatCsts[idx];
5204
5205    // Figure out what shift amount will be used by altivec if shifted by i in
5206    // this splat size.
5207    unsigned TypeShiftAmt = i & (SplatBitSize-1);
5208
5209    // vsplti + shl self.
5210    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5211      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5212      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5213        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5214        Intrinsic::ppc_altivec_vslw
5215      };
5216      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5217      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5218    }
5219
5220    // vsplti + srl self.
5221    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5222      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5223      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5224        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5225        Intrinsic::ppc_altivec_vsrw
5226      };
5227      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5228      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5229    }
5230
5231    // vsplti + sra self.
5232    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5233      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5234      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5235        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5236        Intrinsic::ppc_altivec_vsraw
5237      };
5238      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5239      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5240    }
5241
5242    // vsplti + rol self.
5243    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5244                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5245      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5246      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5247        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5248        Intrinsic::ppc_altivec_vrlw
5249      };
5250      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5251      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5252    }
5253
5254    // t = vsplti c, result = vsldoi t, t, 1
5255    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5256      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5257      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5258    }
5259    // t = vsplti c, result = vsldoi t, t, 2
5260    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5261      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5262      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5263    }
5264    // t = vsplti c, result = vsldoi t, t, 3
5265    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5266      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5267      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5268    }
5269  }
5270
5271  return SDValue();
5272}
5273
5274/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5275/// the specified operations to build the shuffle.
5276static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5277                                      SDValue RHS, SelectionDAG &DAG,
5278                                      SDLoc dl) {
5279  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5280  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5281  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5282
5283  enum {
5284    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5285    OP_VMRGHW,
5286    OP_VMRGLW,
5287    OP_VSPLTISW0,
5288    OP_VSPLTISW1,
5289    OP_VSPLTISW2,
5290    OP_VSPLTISW3,
5291    OP_VSLDOI4,
5292    OP_VSLDOI8,
5293    OP_VSLDOI12
5294  };
5295
5296  if (OpNum == OP_COPY) {
5297    if (LHSID == (1*9+2)*9+3) return LHS;
5298    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5299    return RHS;
5300  }
5301
5302  SDValue OpLHS, OpRHS;
5303  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5304  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5305
5306  int ShufIdxs[16];
5307  switch (OpNum) {
5308  default: llvm_unreachable("Unknown i32 permute!");
5309  case OP_VMRGHW:
5310    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5311    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5312    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5313    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5314    break;
5315  case OP_VMRGLW:
5316    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5317    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5318    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5319    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5320    break;
5321  case OP_VSPLTISW0:
5322    for (unsigned i = 0; i != 16; ++i)
5323      ShufIdxs[i] = (i&3)+0;
5324    break;
5325  case OP_VSPLTISW1:
5326    for (unsigned i = 0; i != 16; ++i)
5327      ShufIdxs[i] = (i&3)+4;
5328    break;
5329  case OP_VSPLTISW2:
5330    for (unsigned i = 0; i != 16; ++i)
5331      ShufIdxs[i] = (i&3)+8;
5332    break;
5333  case OP_VSPLTISW3:
5334    for (unsigned i = 0; i != 16; ++i)
5335      ShufIdxs[i] = (i&3)+12;
5336    break;
5337  case OP_VSLDOI4:
5338    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5339  case OP_VSLDOI8:
5340    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5341  case OP_VSLDOI12:
5342    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5343  }
5344  EVT VT = OpLHS.getValueType();
5345  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5346  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5347  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5348  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5349}
5350
5351/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5352/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5353/// return the code it can be lowered into.  Worst case, it can always be
5354/// lowered into a vperm.
5355SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5356                                               SelectionDAG &DAG) const {
5357  SDLoc dl(Op);
5358  SDValue V1 = Op.getOperand(0);
5359  SDValue V2 = Op.getOperand(1);
5360  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5361  EVT VT = Op.getValueType();
5362
5363  // Cases that are handled by instructions that take permute immediates
5364  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5365  // selected by the instruction selector.
5366  if (V2.getOpcode() == ISD::UNDEF) {
5367    if (PPC::isSplatShuffleMask(SVOp, 1) ||
5368        PPC::isSplatShuffleMask(SVOp, 2) ||
5369        PPC::isSplatShuffleMask(SVOp, 4) ||
5370        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5371        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5372        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5373        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5374        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5375        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5376        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5377        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5378        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5379      return Op;
5380    }
5381  }
5382
5383  // Altivec has a variety of "shuffle immediates" that take two vector inputs
5384  // and produce a fixed permutation.  If any of these match, do not lower to
5385  // VPERM.
5386  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5387      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5388      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5389      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5390      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5391      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5392      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5393      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5394      PPC::isVMRGHShuffleMask(SVOp, 4, false))
5395    return Op;
5396
5397  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5398  // perfect shuffle table to emit an optimal matching sequence.
5399  ArrayRef<int> PermMask = SVOp->getMask();
5400
5401  unsigned PFIndexes[4];
5402  bool isFourElementShuffle = true;
5403  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5404    unsigned EltNo = 8;   // Start out undef.
5405    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5406      if (PermMask[i*4+j] < 0)
5407        continue;   // Undef, ignore it.
5408
5409      unsigned ByteSource = PermMask[i*4+j];
5410      if ((ByteSource & 3) != j) {
5411        isFourElementShuffle = false;
5412        break;
5413      }
5414
5415      if (EltNo == 8) {
5416        EltNo = ByteSource/4;
5417      } else if (EltNo != ByteSource/4) {
5418        isFourElementShuffle = false;
5419        break;
5420      }
5421    }
5422    PFIndexes[i] = EltNo;
5423  }
5424
5425  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5426  // perfect shuffle vector to determine if it is cost effective to do this as
5427  // discrete instructions, or whether we should use a vperm.
5428  if (isFourElementShuffle) {
5429    // Compute the index in the perfect shuffle table.
5430    unsigned PFTableIndex =
5431      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5432
5433    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5434    unsigned Cost  = (PFEntry >> 30);
5435
5436    // Determining when to avoid vperm is tricky.  Many things affect the cost
5437    // of vperm, particularly how many times the perm mask needs to be computed.
5438    // For example, if the perm mask can be hoisted out of a loop or is already
5439    // used (perhaps because there are multiple permutes with the same shuffle
5440    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5441    // the loop requires an extra register.
5442    //
5443    // As a compromise, we only emit discrete instructions if the shuffle can be
5444    // generated in 3 or fewer operations.  When we have loop information
5445    // available, if this block is within a loop, we should avoid using vperm
5446    // for 3-operation perms and use a constant pool load instead.
5447    if (Cost < 3)
5448      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5449  }
5450
5451  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5452  // vector that will get spilled to the constant pool.
5453  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5454
5455  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5456  // that it is in input element units, not in bytes.  Convert now.
5457  EVT EltVT = V1.getValueType().getVectorElementType();
5458  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5459
5460  SmallVector<SDValue, 16> ResultMask;
5461  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5462    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5463
5464    for (unsigned j = 0; j != BytesPerElement; ++j)
5465      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5466                                           MVT::i32));
5467  }
5468
5469  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5470                                    &ResultMask[0], ResultMask.size());
5471  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5472}
5473
5474/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5475/// altivec comparison.  If it is, return true and fill in Opc/isDot with
5476/// information about the intrinsic.
5477static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5478                                  bool &isDot) {
5479  unsigned IntrinsicID =
5480    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5481  CompareOpc = -1;
5482  isDot = false;
5483  switch (IntrinsicID) {
5484  default: return false;
5485    // Comparison predicates.
5486  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5487  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5488  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5489  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5490  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5491  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5492  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5493  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5494  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5495  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5496  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5497  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5498  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5499
5500    // Normal Comparisons.
5501  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5502  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5503  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5504  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5505  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5506  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5507  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5508  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5509  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5510  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5511  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5512  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5513  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5514  }
5515  return true;
5516}
5517
5518/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5519/// lower, do it, otherwise return null.
5520SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5521                                                   SelectionDAG &DAG) const {
5522  // If this is a lowered altivec predicate compare, CompareOpc is set to the
5523  // opcode number of the comparison.
5524  SDLoc dl(Op);
5525  int CompareOpc;
5526  bool isDot;
5527  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5528    return SDValue();    // Don't custom lower most intrinsics.
5529
5530  // If this is a non-dot comparison, make the VCMP node and we are done.
5531  if (!isDot) {
5532    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5533                              Op.getOperand(1), Op.getOperand(2),
5534                              DAG.getConstant(CompareOpc, MVT::i32));
5535    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5536  }
5537
5538  // Create the PPCISD altivec 'dot' comparison node.
5539  SDValue Ops[] = {
5540    Op.getOperand(2),  // LHS
5541    Op.getOperand(3),  // RHS
5542    DAG.getConstant(CompareOpc, MVT::i32)
5543  };
5544  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
5545  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5546
5547  // Now that we have the comparison, emit a copy from the CR to a GPR.
5548  // This is flagged to the above dot comparison.
5549  SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
5550                                DAG.getRegister(PPC::CR6, MVT::i32),
5551                                CompNode.getValue(1));
5552
5553  // Unpack the result based on how the target uses it.
5554  unsigned BitNo;   // Bit # of CR6.
5555  bool InvertBit;   // Invert result?
5556  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5557  default:  // Can't happen, don't crash on invalid number though.
5558  case 0:   // Return the value of the EQ bit of CR6.
5559    BitNo = 0; InvertBit = false;
5560    break;
5561  case 1:   // Return the inverted value of the EQ bit of CR6.
5562    BitNo = 0; InvertBit = true;
5563    break;
5564  case 2:   // Return the value of the LT bit of CR6.
5565    BitNo = 2; InvertBit = false;
5566    break;
5567  case 3:   // Return the inverted value of the LT bit of CR6.
5568    BitNo = 2; InvertBit = true;
5569    break;
5570  }
5571
5572  // Shift the bit into the low position.
5573  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5574                      DAG.getConstant(8-(3-BitNo), MVT::i32));
5575  // Isolate the bit.
5576  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5577                      DAG.getConstant(1, MVT::i32));
5578
5579  // If we are supposed to, toggle the bit.
5580  if (InvertBit)
5581    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5582                        DAG.getConstant(1, MVT::i32));
5583  return Flags;
5584}
5585
5586SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5587                                                   SelectionDAG &DAG) const {
5588  SDLoc dl(Op);
5589  // Create a stack slot that is 16-byte aligned.
5590  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5591  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5592  EVT PtrVT = getPointerTy();
5593  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5594
5595  // Store the input value into Value#0 of the stack slot.
5596  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5597                               Op.getOperand(0), FIdx, MachinePointerInfo(),
5598                               false, false, 0);
5599  // Load it out.
5600  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5601                     false, false, false, 0);
5602}
5603
5604SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5605  SDLoc dl(Op);
5606  if (Op.getValueType() == MVT::v4i32) {
5607    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5608
5609    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
5610    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
5611
5612    SDValue RHSSwap =   // = vrlw RHS, 16
5613      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
5614
5615    // Shrinkify inputs to v8i16.
5616    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
5617    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
5618    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
5619
5620    // Low parts multiplied together, generating 32-bit results (we ignore the
5621    // top parts).
5622    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
5623                                        LHS, RHS, DAG, dl, MVT::v4i32);
5624
5625    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
5626                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
5627    // Shift the high parts up 16 bits.
5628    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
5629                              Neg16, DAG, dl);
5630    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
5631  } else if (Op.getValueType() == MVT::v8i16) {
5632    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5633
5634    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
5635
5636    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
5637                            LHS, RHS, Zero, DAG, dl);
5638  } else if (Op.getValueType() == MVT::v16i8) {
5639    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5640
5641    // Multiply the even 8-bit parts, producing 16-bit sums.
5642    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
5643                                           LHS, RHS, DAG, dl, MVT::v8i16);
5644    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
5645
5646    // Multiply the odd 8-bit parts, producing 16-bit sums.
5647    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5648                                          LHS, RHS, DAG, dl, MVT::v8i16);
5649    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5650
5651    // Merge the results together.
5652    int Ops[16];
5653    for (unsigned i = 0; i != 8; ++i) {
5654      Ops[i*2  ] = 2*i+1;
5655      Ops[i*2+1] = 2*i+1+16;
5656    }
5657    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5658  } else {
5659    llvm_unreachable("Unknown mul to lower!");
5660  }
5661}
5662
5663/// LowerOperation - Provide custom lowering hooks for some operations.
5664///
5665SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5666  switch (Op.getOpcode()) {
5667  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5668  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5669  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
5670  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5671  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5672  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5673  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5674  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
5675  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
5676  case ISD::VASTART:
5677    return LowerVASTART(Op, DAG, PPCSubTarget);
5678
5679  case ISD::VAARG:
5680    return LowerVAARG(Op, DAG, PPCSubTarget);
5681
5682  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5683  case ISD::DYNAMIC_STACKALLOC:
5684    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5685
5686  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
5687  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
5688
5689  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
5690  case ISD::FP_TO_UINT:
5691  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
5692                                                       SDLoc(Op));
5693  case ISD::UINT_TO_FP:
5694  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
5695  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5696
5697  // Lower 64-bit shifts.
5698  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
5699  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
5700  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
5701
5702  // Vector-related lowering.
5703  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5704  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5705  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5706  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5707  case ISD::MUL:                return LowerMUL(Op, DAG);
5708
5709  // For counter-based loop handling.
5710  case ISD::INTRINSIC_W_CHAIN:  return SDValue();
5711
5712  // Frame & Return address.
5713  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5714  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5715  }
5716}
5717
5718void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5719                                           SmallVectorImpl<SDValue>&Results,
5720                                           SelectionDAG &DAG) const {
5721  const TargetMachine &TM = getTargetMachine();
5722  SDLoc dl(N);
5723  switch (N->getOpcode()) {
5724  default:
5725    llvm_unreachable("Do not know how to custom type legalize this operation!");
5726  case ISD::INTRINSIC_W_CHAIN: {
5727    if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
5728        Intrinsic::ppc_is_decremented_ctr_nonzero)
5729      break;
5730
5731    assert(N->getValueType(0) == MVT::i1 &&
5732           "Unexpected result type for CTR decrement intrinsic");
5733    EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
5734    SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
5735    SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
5736                                 N->getOperand(1));
5737
5738    Results.push_back(NewInt);
5739    Results.push_back(NewInt.getValue(1));
5740    break;
5741  }
5742  case ISD::VAARG: {
5743    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5744        || TM.getSubtarget<PPCSubtarget>().isPPC64())
5745      return;
5746
5747    EVT VT = N->getValueType(0);
5748
5749    if (VT == MVT::i64) {
5750      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5751
5752      Results.push_back(NewNode);
5753      Results.push_back(NewNode.getValue(1));
5754    }
5755    return;
5756  }
5757  case ISD::FP_ROUND_INREG: {
5758    assert(N->getValueType(0) == MVT::ppcf128);
5759    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5760    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5761                             MVT::f64, N->getOperand(0),
5762                             DAG.getIntPtrConstant(0));
5763    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5764                             MVT::f64, N->getOperand(0),
5765                             DAG.getIntPtrConstant(1));
5766
5767    // Add the two halves of the long double in round-to-zero mode.
5768    SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
5769
5770    // We know the low half is about to be thrown away, so just use something
5771    // convenient.
5772    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5773                                FPreg, FPreg));
5774    return;
5775  }
5776  case ISD::FP_TO_SINT:
5777    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5778    return;
5779  }
5780}
5781
5782
5783//===----------------------------------------------------------------------===//
5784//  Other Lowering Code
5785//===----------------------------------------------------------------------===//
5786
5787MachineBasicBlock *
5788PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5789                                    bool is64bit, unsigned BinOpcode) const {
5790  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5791  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5792
5793  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5794  MachineFunction *F = BB->getParent();
5795  MachineFunction::iterator It = BB;
5796  ++It;
5797
5798  unsigned dest = MI->getOperand(0).getReg();
5799  unsigned ptrA = MI->getOperand(1).getReg();
5800  unsigned ptrB = MI->getOperand(2).getReg();
5801  unsigned incr = MI->getOperand(3).getReg();
5802  DebugLoc dl = MI->getDebugLoc();
5803
5804  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5805  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5806  F->insert(It, loopMBB);
5807  F->insert(It, exitMBB);
5808  exitMBB->splice(exitMBB->begin(), BB,
5809                  llvm::next(MachineBasicBlock::iterator(MI)),
5810                  BB->end());
5811  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5812
5813  MachineRegisterInfo &RegInfo = F->getRegInfo();
5814  unsigned TmpReg = (!BinOpcode) ? incr :
5815    RegInfo.createVirtualRegister(
5816       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5817                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5818
5819  //  thisMBB:
5820  //   ...
5821  //   fallthrough --> loopMBB
5822  BB->addSuccessor(loopMBB);
5823
5824  //  loopMBB:
5825  //   l[wd]arx dest, ptr
5826  //   add r0, dest, incr
5827  //   st[wd]cx. r0, ptr
5828  //   bne- loopMBB
5829  //   fallthrough --> exitMBB
5830  BB = loopMBB;
5831  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5832    .addReg(ptrA).addReg(ptrB);
5833  if (BinOpcode)
5834    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5835  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5836    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5837  BuildMI(BB, dl, TII->get(PPC::BCC))
5838    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5839  BB->addSuccessor(loopMBB);
5840  BB->addSuccessor(exitMBB);
5841
5842  //  exitMBB:
5843  //   ...
5844  BB = exitMBB;
5845  return BB;
5846}
5847
5848MachineBasicBlock *
5849PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5850                                            MachineBasicBlock *BB,
5851                                            bool is8bit,    // operation
5852                                            unsigned BinOpcode) const {
5853  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5854  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5855  // In 64 bit mode we have to use 64 bits for addresses, even though the
5856  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
5857  // registers without caring whether they're 32 or 64, but here we're
5858  // doing actual arithmetic on the addresses.
5859  bool is64bit = PPCSubTarget.isPPC64();
5860  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
5861
5862  const BasicBlock *LLVM_BB = BB->getBasicBlock();
5863  MachineFunction *F = BB->getParent();
5864  MachineFunction::iterator It = BB;
5865  ++It;
5866
5867  unsigned dest = MI->getOperand(0).getReg();
5868  unsigned ptrA = MI->getOperand(1).getReg();
5869  unsigned ptrB = MI->getOperand(2).getReg();
5870  unsigned incr = MI->getOperand(3).getReg();
5871  DebugLoc dl = MI->getDebugLoc();
5872
5873  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5874  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5875  F->insert(It, loopMBB);
5876  F->insert(It, exitMBB);
5877  exitMBB->splice(exitMBB->begin(), BB,
5878                  llvm::next(MachineBasicBlock::iterator(MI)),
5879                  BB->end());
5880  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5881
5882  MachineRegisterInfo &RegInfo = F->getRegInfo();
5883  const TargetRegisterClass *RC =
5884    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5885              (const TargetRegisterClass *) &PPC::GPRCRegClass;
5886  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5887  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5888  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5889  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5890  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5891  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5892  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5893  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5894  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
5895  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5896  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5897  unsigned Ptr1Reg;
5898  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
5899
5900  //  thisMBB:
5901  //   ...
5902  //   fallthrough --> loopMBB
5903  BB->addSuccessor(loopMBB);
5904
5905  // The 4-byte load must be aligned, while a char or short may be
5906  // anywhere in the word.  Hence all this nasty bookkeeping code.
5907  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5908  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5909  //   xori shift, shift1, 24 [16]
5910  //   rlwinm ptr, ptr1, 0, 0, 29
5911  //   slw incr2, incr, shift
5912  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5913  //   slw mask, mask2, shift
5914  //  loopMBB:
5915  //   lwarx tmpDest, ptr
5916  //   add tmp, tmpDest, incr2
5917  //   andc tmp2, tmpDest, mask
5918  //   and tmp3, tmp, mask
5919  //   or tmp4, tmp3, tmp2
5920  //   stwcx. tmp4, ptr
5921  //   bne- loopMBB
5922  //   fallthrough --> exitMBB
5923  //   srw dest, tmpDest, shift
5924  if (ptrA != ZeroReg) {
5925    Ptr1Reg = RegInfo.createVirtualRegister(RC);
5926    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5927      .addReg(ptrA).addReg(ptrB);
5928  } else {
5929    Ptr1Reg = ptrB;
5930  }
5931  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5932      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5933  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5934      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5935  if (is64bit)
5936    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5937      .addReg(Ptr1Reg).addImm(0).addImm(61);
5938  else
5939    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5940      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5941  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5942      .addReg(incr).addReg(ShiftReg);
5943  if (is8bit)
5944    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5945  else {
5946    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5947    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5948  }
5949  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5950      .addReg(Mask2Reg).addReg(ShiftReg);
5951
5952  BB = loopMBB;
5953  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5954    .addReg(ZeroReg).addReg(PtrReg);
5955  if (BinOpcode)
5956    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
5957      .addReg(Incr2Reg).addReg(TmpDestReg);
5958  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
5959    .addReg(TmpDestReg).addReg(MaskReg);
5960  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
5961    .addReg(TmpReg).addReg(MaskReg);
5962  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
5963    .addReg(Tmp3Reg).addReg(Tmp2Reg);
5964  BuildMI(BB, dl, TII->get(PPC::STWCX))
5965    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
5966  BuildMI(BB, dl, TII->get(PPC::BCC))
5967    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5968  BB->addSuccessor(loopMBB);
5969  BB->addSuccessor(exitMBB);
5970
5971  //  exitMBB:
5972  //   ...
5973  BB = exitMBB;
5974  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
5975    .addReg(ShiftReg);
5976  return BB;
5977}
5978
5979llvm::MachineBasicBlock*
5980PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
5981                                    MachineBasicBlock *MBB) const {
5982  DebugLoc DL = MI->getDebugLoc();
5983  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5984
5985  MachineFunction *MF = MBB->getParent();
5986  MachineRegisterInfo &MRI = MF->getRegInfo();
5987
5988  const BasicBlock *BB = MBB->getBasicBlock();
5989  MachineFunction::iterator I = MBB;
5990  ++I;
5991
5992  // Memory Reference
5993  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
5994  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
5995
5996  unsigned DstReg = MI->getOperand(0).getReg();
5997  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
5998  assert(RC->hasType(MVT::i32) && "Invalid destination!");
5999  unsigned mainDstReg = MRI.createVirtualRegister(RC);
6000  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
6001
6002  MVT PVT = getPointerTy();
6003  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6004         "Invalid Pointer Size!");
6005  // For v = setjmp(buf), we generate
6006  //
6007  // thisMBB:
6008  //  SjLjSetup mainMBB
6009  //  bl mainMBB
6010  //  v_restore = 1
6011  //  b sinkMBB
6012  //
6013  // mainMBB:
6014  //  buf[LabelOffset] = LR
6015  //  v_main = 0
6016  //
6017  // sinkMBB:
6018  //  v = phi(main, restore)
6019  //
6020
6021  MachineBasicBlock *thisMBB = MBB;
6022  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
6023  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
6024  MF->insert(I, mainMBB);
6025  MF->insert(I, sinkMBB);
6026
6027  MachineInstrBuilder MIB;
6028
6029  // Transfer the remainder of BB and its successor edges to sinkMBB.
6030  sinkMBB->splice(sinkMBB->begin(), MBB,
6031                  llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
6032  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
6033
6034  // Note that the structure of the jmp_buf used here is not compatible
6035  // with that used by libc, and is not designed to be. Specifically, it
6036  // stores only those 'reserved' registers that LLVM does not otherwise
6037  // understand how to spill. Also, by convention, by the time this
6038  // intrinsic is called, Clang has already stored the frame address in the
6039  // first slot of the buffer and stack address in the third. Following the
6040  // X86 target code, we'll store the jump address in the second slot. We also
6041  // need to save the TOC pointer (R2) to handle jumps between shared
6042  // libraries, and that will be stored in the fourth slot. The thread
6043  // identifier (R13) is not affected.
6044
6045  // thisMBB:
6046  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6047  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6048
6049  // Prepare IP either in reg.
6050  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
6051  unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
6052  unsigned BufReg = MI->getOperand(1).getReg();
6053
6054  if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
6055    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
6056            .addReg(PPC::X2)
6057            .addImm(TOCOffset)
6058            .addReg(BufReg);
6059
6060    MIB.setMemRefs(MMOBegin, MMOEnd);
6061  }
6062
6063  // Setup
6064  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
6065  const PPCRegisterInfo *TRI =
6066    static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
6067  MIB.addRegMask(TRI->getNoPreservedMask());
6068
6069  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
6070
6071  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
6072          .addMBB(mainMBB);
6073  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
6074
6075  thisMBB->addSuccessor(mainMBB, /* weight */ 0);
6076  thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
6077
6078  // mainMBB:
6079  //  mainDstReg = 0
6080  MIB = BuildMI(mainMBB, DL,
6081    TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
6082
6083  // Store IP
6084  if (PPCSubTarget.isPPC64()) {
6085    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
6086            .addReg(LabelReg)
6087            .addImm(LabelOffset)
6088            .addReg(BufReg);
6089  } else {
6090    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
6091            .addReg(LabelReg)
6092            .addImm(LabelOffset)
6093            .addReg(BufReg);
6094  }
6095
6096  MIB.setMemRefs(MMOBegin, MMOEnd);
6097
6098  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
6099  mainMBB->addSuccessor(sinkMBB);
6100
6101  // sinkMBB:
6102  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
6103          TII->get(PPC::PHI), DstReg)
6104    .addReg(mainDstReg).addMBB(mainMBB)
6105    .addReg(restoreDstReg).addMBB(thisMBB);
6106
6107  MI->eraseFromParent();
6108  return sinkMBB;
6109}
6110
6111MachineBasicBlock *
6112PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
6113                                     MachineBasicBlock *MBB) const {
6114  DebugLoc DL = MI->getDebugLoc();
6115  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6116
6117  MachineFunction *MF = MBB->getParent();
6118  MachineRegisterInfo &MRI = MF->getRegInfo();
6119
6120  // Memory Reference
6121  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6122  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6123
6124  MVT PVT = getPointerTy();
6125  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6126         "Invalid Pointer Size!");
6127
6128  const TargetRegisterClass *RC =
6129    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6130  unsigned Tmp = MRI.createVirtualRegister(RC);
6131  // Since FP is only updated here but NOT referenced, it's treated as GPR.
6132  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
6133  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
6134
6135  MachineInstrBuilder MIB;
6136
6137  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6138  const int64_t SPOffset    = 2 * PVT.getStoreSize();
6139  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6140
6141  unsigned BufReg = MI->getOperand(0).getReg();
6142
6143  // Reload FP (the jumped-to function may not have had a
6144  // frame pointer, and if so, then its r31 will be restored
6145  // as necessary).
6146  if (PVT == MVT::i64) {
6147    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
6148            .addImm(0)
6149            .addReg(BufReg);
6150  } else {
6151    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
6152            .addImm(0)
6153            .addReg(BufReg);
6154  }
6155  MIB.setMemRefs(MMOBegin, MMOEnd);
6156
6157  // Reload IP
6158  if (PVT == MVT::i64) {
6159    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
6160            .addImm(LabelOffset)
6161            .addReg(BufReg);
6162  } else {
6163    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
6164            .addImm(LabelOffset)
6165            .addReg(BufReg);
6166  }
6167  MIB.setMemRefs(MMOBegin, MMOEnd);
6168
6169  // Reload SP
6170  if (PVT == MVT::i64) {
6171    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
6172            .addImm(SPOffset)
6173            .addReg(BufReg);
6174  } else {
6175    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
6176            .addImm(SPOffset)
6177            .addReg(BufReg);
6178  }
6179  MIB.setMemRefs(MMOBegin, MMOEnd);
6180
6181  // FIXME: When we also support base pointers, that register must also be
6182  // restored here.
6183
6184  // Reload TOC
6185  if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
6186    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
6187            .addImm(TOCOffset)
6188            .addReg(BufReg);
6189
6190    MIB.setMemRefs(MMOBegin, MMOEnd);
6191  }
6192
6193  // Jump
6194  BuildMI(*MBB, MI, DL,
6195          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
6196  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
6197
6198  MI->eraseFromParent();
6199  return MBB;
6200}
6201
6202MachineBasicBlock *
6203PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6204                                               MachineBasicBlock *BB) const {
6205  if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
6206      MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
6207    return emitEHSjLjSetJmp(MI, BB);
6208  } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
6209             MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
6210    return emitEHSjLjLongJmp(MI, BB);
6211  }
6212
6213  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6214
6215  // To "insert" these instructions we actually have to insert their
6216  // control-flow patterns.
6217  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6218  MachineFunction::iterator It = BB;
6219  ++It;
6220
6221  MachineFunction *F = BB->getParent();
6222
6223  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6224                                 MI->getOpcode() == PPC::SELECT_CC_I8)) {
6225    SmallVector<MachineOperand, 2> Cond;
6226    Cond.push_back(MI->getOperand(4));
6227    Cond.push_back(MI->getOperand(1));
6228
6229    DebugLoc dl = MI->getDebugLoc();
6230    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6231    TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
6232                      Cond, MI->getOperand(2).getReg(),
6233                      MI->getOperand(3).getReg());
6234  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6235             MI->getOpcode() == PPC::SELECT_CC_I8 ||
6236             MI->getOpcode() == PPC::SELECT_CC_F4 ||
6237             MI->getOpcode() == PPC::SELECT_CC_F8 ||
6238             MI->getOpcode() == PPC::SELECT_CC_VRRC) {
6239
6240
6241    // The incoming instruction knows the destination vreg to set, the
6242    // condition code register to branch on, the true/false values to
6243    // select between, and a branch opcode to use.
6244
6245    //  thisMBB:
6246    //  ...
6247    //   TrueVal = ...
6248    //   cmpTY ccX, r1, r2
6249    //   bCC copy1MBB
6250    //   fallthrough --> copy0MBB
6251    MachineBasicBlock *thisMBB = BB;
6252    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6253    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6254    unsigned SelectPred = MI->getOperand(4).getImm();
6255    DebugLoc dl = MI->getDebugLoc();
6256    F->insert(It, copy0MBB);
6257    F->insert(It, sinkMBB);
6258
6259    // Transfer the remainder of BB and its successor edges to sinkMBB.
6260    sinkMBB->splice(sinkMBB->begin(), BB,
6261                    llvm::next(MachineBasicBlock::iterator(MI)),
6262                    BB->end());
6263    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6264
6265    // Next, add the true and fallthrough blocks as its successors.
6266    BB->addSuccessor(copy0MBB);
6267    BB->addSuccessor(sinkMBB);
6268
6269    BuildMI(BB, dl, TII->get(PPC::BCC))
6270      .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6271
6272    //  copy0MBB:
6273    //   %FalseValue = ...
6274    //   # fallthrough to sinkMBB
6275    BB = copy0MBB;
6276
6277    // Update machine-CFG edges
6278    BB->addSuccessor(sinkMBB);
6279
6280    //  sinkMBB:
6281    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6282    //  ...
6283    BB = sinkMBB;
6284    BuildMI(*BB, BB->begin(), dl,
6285            TII->get(PPC::PHI), MI->getOperand(0).getReg())
6286      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
6287      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6288  }
6289  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
6290    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
6291  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
6292    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
6293  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
6294    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
6295  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
6296    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
6297
6298  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
6299    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
6300  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
6301    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
6302  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
6303    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
6304  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
6305    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
6306
6307  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
6308    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
6309  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
6310    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
6311  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
6312    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
6313  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
6314    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
6315
6316  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
6317    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
6318  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
6319    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
6320  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
6321    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6322  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6323    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6324
6325  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6326    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6327  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6328    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6329  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6330    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6331  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6332    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6333
6334  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6335    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6336  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6337    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6338  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6339    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6340  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6341    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6342
6343  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6344    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6345  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6346    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6347  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6348    BB = EmitAtomicBinary(MI, BB, false, 0);
6349  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6350    BB = EmitAtomicBinary(MI, BB, true, 0);
6351
6352  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6353           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6354    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6355
6356    unsigned dest   = MI->getOperand(0).getReg();
6357    unsigned ptrA   = MI->getOperand(1).getReg();
6358    unsigned ptrB   = MI->getOperand(2).getReg();
6359    unsigned oldval = MI->getOperand(3).getReg();
6360    unsigned newval = MI->getOperand(4).getReg();
6361    DebugLoc dl     = MI->getDebugLoc();
6362
6363    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6364    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6365    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6366    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6367    F->insert(It, loop1MBB);
6368    F->insert(It, loop2MBB);
6369    F->insert(It, midMBB);
6370    F->insert(It, exitMBB);
6371    exitMBB->splice(exitMBB->begin(), BB,
6372                    llvm::next(MachineBasicBlock::iterator(MI)),
6373                    BB->end());
6374    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6375
6376    //  thisMBB:
6377    //   ...
6378    //   fallthrough --> loopMBB
6379    BB->addSuccessor(loop1MBB);
6380
6381    // loop1MBB:
6382    //   l[wd]arx dest, ptr
6383    //   cmp[wd] dest, oldval
6384    //   bne- midMBB
6385    // loop2MBB:
6386    //   st[wd]cx. newval, ptr
6387    //   bne- loopMBB
6388    //   b exitBB
6389    // midMBB:
6390    //   st[wd]cx. dest, ptr
6391    // exitBB:
6392    BB = loop1MBB;
6393    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6394      .addReg(ptrA).addReg(ptrB);
6395    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6396      .addReg(oldval).addReg(dest);
6397    BuildMI(BB, dl, TII->get(PPC::BCC))
6398      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6399    BB->addSuccessor(loop2MBB);
6400    BB->addSuccessor(midMBB);
6401
6402    BB = loop2MBB;
6403    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6404      .addReg(newval).addReg(ptrA).addReg(ptrB);
6405    BuildMI(BB, dl, TII->get(PPC::BCC))
6406      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6407    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6408    BB->addSuccessor(loop1MBB);
6409    BB->addSuccessor(exitMBB);
6410
6411    BB = midMBB;
6412    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6413      .addReg(dest).addReg(ptrA).addReg(ptrB);
6414    BB->addSuccessor(exitMBB);
6415
6416    //  exitMBB:
6417    //   ...
6418    BB = exitMBB;
6419  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6420             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6421    // We must use 64-bit registers for addresses when targeting 64-bit,
6422    // since we're actually doing arithmetic on them.  Other registers
6423    // can be 32-bit.
6424    bool is64bit = PPCSubTarget.isPPC64();
6425    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6426
6427    unsigned dest   = MI->getOperand(0).getReg();
6428    unsigned ptrA   = MI->getOperand(1).getReg();
6429    unsigned ptrB   = MI->getOperand(2).getReg();
6430    unsigned oldval = MI->getOperand(3).getReg();
6431    unsigned newval = MI->getOperand(4).getReg();
6432    DebugLoc dl     = MI->getDebugLoc();
6433
6434    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6435    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6436    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6437    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6438    F->insert(It, loop1MBB);
6439    F->insert(It, loop2MBB);
6440    F->insert(It, midMBB);
6441    F->insert(It, exitMBB);
6442    exitMBB->splice(exitMBB->begin(), BB,
6443                    llvm::next(MachineBasicBlock::iterator(MI)),
6444                    BB->end());
6445    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6446
6447    MachineRegisterInfo &RegInfo = F->getRegInfo();
6448    const TargetRegisterClass *RC =
6449      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6450                (const TargetRegisterClass *) &PPC::GPRCRegClass;
6451    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6452    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6453    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6454    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6455    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6456    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6457    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6458    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6459    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6460    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6461    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6462    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6463    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6464    unsigned Ptr1Reg;
6465    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6466    unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6467    //  thisMBB:
6468    //   ...
6469    //   fallthrough --> loopMBB
6470    BB->addSuccessor(loop1MBB);
6471
6472    // The 4-byte load must be aligned, while a char or short may be
6473    // anywhere in the word.  Hence all this nasty bookkeeping code.
6474    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6475    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6476    //   xori shift, shift1, 24 [16]
6477    //   rlwinm ptr, ptr1, 0, 0, 29
6478    //   slw newval2, newval, shift
6479    //   slw oldval2, oldval,shift
6480    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6481    //   slw mask, mask2, shift
6482    //   and newval3, newval2, mask
6483    //   and oldval3, oldval2, mask
6484    // loop1MBB:
6485    //   lwarx tmpDest, ptr
6486    //   and tmp, tmpDest, mask
6487    //   cmpw tmp, oldval3
6488    //   bne- midMBB
6489    // loop2MBB:
6490    //   andc tmp2, tmpDest, mask
6491    //   or tmp4, tmp2, newval3
6492    //   stwcx. tmp4, ptr
6493    //   bne- loop1MBB
6494    //   b exitBB
6495    // midMBB:
6496    //   stwcx. tmpDest, ptr
6497    // exitBB:
6498    //   srw dest, tmpDest, shift
6499    if (ptrA != ZeroReg) {
6500      Ptr1Reg = RegInfo.createVirtualRegister(RC);
6501      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6502        .addReg(ptrA).addReg(ptrB);
6503    } else {
6504      Ptr1Reg = ptrB;
6505    }
6506    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6507        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6508    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6509        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6510    if (is64bit)
6511      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6512        .addReg(Ptr1Reg).addImm(0).addImm(61);
6513    else
6514      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6515        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6516    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6517        .addReg(newval).addReg(ShiftReg);
6518    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6519        .addReg(oldval).addReg(ShiftReg);
6520    if (is8bit)
6521      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6522    else {
6523      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6524      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6525        .addReg(Mask3Reg).addImm(65535);
6526    }
6527    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6528        .addReg(Mask2Reg).addReg(ShiftReg);
6529    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6530        .addReg(NewVal2Reg).addReg(MaskReg);
6531    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6532        .addReg(OldVal2Reg).addReg(MaskReg);
6533
6534    BB = loop1MBB;
6535    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6536        .addReg(ZeroReg).addReg(PtrReg);
6537    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6538        .addReg(TmpDestReg).addReg(MaskReg);
6539    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6540        .addReg(TmpReg).addReg(OldVal3Reg);
6541    BuildMI(BB, dl, TII->get(PPC::BCC))
6542        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6543    BB->addSuccessor(loop2MBB);
6544    BB->addSuccessor(midMBB);
6545
6546    BB = loop2MBB;
6547    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6548        .addReg(TmpDestReg).addReg(MaskReg);
6549    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6550        .addReg(Tmp2Reg).addReg(NewVal3Reg);
6551    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6552        .addReg(ZeroReg).addReg(PtrReg);
6553    BuildMI(BB, dl, TII->get(PPC::BCC))
6554      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6555    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6556    BB->addSuccessor(loop1MBB);
6557    BB->addSuccessor(exitMBB);
6558
6559    BB = midMBB;
6560    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
6561      .addReg(ZeroReg).addReg(PtrReg);
6562    BB->addSuccessor(exitMBB);
6563
6564    //  exitMBB:
6565    //   ...
6566    BB = exitMBB;
6567    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
6568      .addReg(ShiftReg);
6569  } else if (MI->getOpcode() == PPC::FADDrtz) {
6570    // This pseudo performs an FADD with rounding mode temporarily forced
6571    // to round-to-zero.  We emit this via custom inserter since the FPSCR
6572    // is not modeled at the SelectionDAG level.
6573    unsigned Dest = MI->getOperand(0).getReg();
6574    unsigned Src1 = MI->getOperand(1).getReg();
6575    unsigned Src2 = MI->getOperand(2).getReg();
6576    DebugLoc dl   = MI->getDebugLoc();
6577
6578    MachineRegisterInfo &RegInfo = F->getRegInfo();
6579    unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
6580
6581    // Save FPSCR value.
6582    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
6583
6584    // Set rounding mode to round-to-zero.
6585    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
6586    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
6587
6588    // Perform addition.
6589    BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
6590
6591    // Restore FPSCR value.
6592    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
6593  } else if (MI->getOpcode() == PPC::FRINDrint ||
6594             MI->getOpcode() == PPC::FRINSrint) {
6595    bool isf32 = MI->getOpcode() == PPC::FRINSrint;
6596    unsigned Dest = MI->getOperand(0).getReg();
6597    unsigned Src = MI->getOperand(1).getReg();
6598    DebugLoc dl   = MI->getDebugLoc();
6599
6600    MachineRegisterInfo &RegInfo = F->getRegInfo();
6601    unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
6602
6603    // Perform the rounding.
6604    BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FRINS : PPC::FRIND), Dest)
6605      .addReg(Src);
6606
6607    // Compare the results.
6608    BuildMI(*BB, MI, dl, TII->get(isf32 ? PPC::FCMPUS : PPC::FCMPUD), CRReg)
6609      .addReg(Dest).addReg(Src);
6610
6611    // If the results were not equal, then set the FPSCR XX bit.
6612    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6613    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6614    F->insert(It, midMBB);
6615    F->insert(It, exitMBB);
6616    exitMBB->splice(exitMBB->begin(), BB,
6617                    llvm::next(MachineBasicBlock::iterator(MI)),
6618                    BB->end());
6619    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6620
6621    BuildMI(*BB, MI, dl, TII->get(PPC::BCC))
6622      .addImm(PPC::PRED_EQ).addReg(CRReg).addMBB(exitMBB);
6623
6624    BB->addSuccessor(midMBB);
6625    BB->addSuccessor(exitMBB);
6626
6627    BB = midMBB;
6628
6629    // Set the FPSCR XX bit (FE_INEXACT). Note that we cannot just set
6630    // the FI bit here because that will not automatically set XX also,
6631    // and XX is what libm interprets as the FE_INEXACT flag.
6632    BuildMI(BB, dl, TII->get(PPC::MTFSB1)).addImm(/* 38 - 32 = */ 6);
6633    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6634
6635    BB->addSuccessor(exitMBB);
6636
6637    BB = exitMBB;
6638  } else {
6639    llvm_unreachable("Unexpected instr type to insert");
6640  }
6641
6642  MI->eraseFromParent();   // The pseudo instruction is gone now.
6643  return BB;
6644}
6645
6646//===----------------------------------------------------------------------===//
6647// Target Optimization Hooks
6648//===----------------------------------------------------------------------===//
6649
6650SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
6651                                               DAGCombinerInfo &DCI) const {
6652  if (DCI.isAfterLegalizeVectorOps())
6653    return SDValue();
6654
6655  EVT VT = Op.getValueType();
6656
6657  if ((VT == MVT::f32 && PPCSubTarget.hasFRES()) ||
6658      (VT == MVT::f64 && PPCSubTarget.hasFRE())  ||
6659      (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
6660
6661    // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
6662    // For the reciprocal, we need to find the zero of the function:
6663    //   F(X) = A X - 1 [which has a zero at X = 1/A]
6664    //     =>
6665    //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
6666    //     does not require additional intermediate precision]
6667
6668    // Convergence is quadratic, so we essentially double the number of digits
6669    // correct after every iteration. The minimum architected relative
6670    // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
6671    // 23 digits and double has 52 digits.
6672    int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
6673    if (VT.getScalarType() == MVT::f64)
6674      ++Iterations;
6675
6676    SelectionDAG &DAG = DCI.DAG;
6677    SDLoc dl(Op);
6678
6679    SDValue FPOne =
6680      DAG.getConstantFP(1.0, VT.getScalarType());
6681    if (VT.isVector()) {
6682      assert(VT.getVectorNumElements() == 4 &&
6683             "Unknown vector type");
6684      FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
6685                          FPOne, FPOne, FPOne, FPOne);
6686    }
6687
6688    SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
6689    DCI.AddToWorklist(Est.getNode());
6690
6691    // Newton iterations: Est = Est + Est (1 - Arg * Est)
6692    for (int i = 0; i < Iterations; ++i) {
6693      SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
6694      DCI.AddToWorklist(NewEst.getNode());
6695
6696      NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
6697      DCI.AddToWorklist(NewEst.getNode());
6698
6699      NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
6700      DCI.AddToWorklist(NewEst.getNode());
6701
6702      Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
6703      DCI.AddToWorklist(Est.getNode());
6704    }
6705
6706    return Est;
6707  }
6708
6709  return SDValue();
6710}
6711
6712SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
6713                                             DAGCombinerInfo &DCI) const {
6714  if (DCI.isAfterLegalizeVectorOps())
6715    return SDValue();
6716
6717  EVT VT = Op.getValueType();
6718
6719  if ((VT == MVT::f32 && PPCSubTarget.hasFRSQRTES()) ||
6720      (VT == MVT::f64 && PPCSubTarget.hasFRSQRTE())  ||
6721      (VT == MVT::v4f32 && PPCSubTarget.hasAltivec())) {
6722
6723    // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
6724    // For the reciprocal sqrt, we need to find the zero of the function:
6725    //   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
6726    //     =>
6727    //   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
6728    // As a result, we precompute A/2 prior to the iteration loop.
6729
6730    // Convergence is quadratic, so we essentially double the number of digits
6731    // correct after every iteration. The minimum architected relative
6732    // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
6733    // 23 digits and double has 52 digits.
6734    int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
6735    if (VT.getScalarType() == MVT::f64)
6736      ++Iterations;
6737
6738    SelectionDAG &DAG = DCI.DAG;
6739    SDLoc dl(Op);
6740
6741    SDValue FPThreeHalves =
6742      DAG.getConstantFP(1.5, VT.getScalarType());
6743    if (VT.isVector()) {
6744      assert(VT.getVectorNumElements() == 4 &&
6745             "Unknown vector type");
6746      FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
6747                                  FPThreeHalves, FPThreeHalves,
6748                                  FPThreeHalves, FPThreeHalves);
6749    }
6750
6751    SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
6752    DCI.AddToWorklist(Est.getNode());
6753
6754    // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
6755    // this entire sequence requires only one FP constant.
6756    SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
6757    DCI.AddToWorklist(HalfArg.getNode());
6758
6759    HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
6760    DCI.AddToWorklist(HalfArg.getNode());
6761
6762    // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
6763    for (int i = 0; i < Iterations; ++i) {
6764      SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
6765      DCI.AddToWorklist(NewEst.getNode());
6766
6767      NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
6768      DCI.AddToWorklist(NewEst.getNode());
6769
6770      NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
6771      DCI.AddToWorklist(NewEst.getNode());
6772
6773      Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
6774      DCI.AddToWorklist(Est.getNode());
6775    }
6776
6777    return Est;
6778  }
6779
6780  return SDValue();
6781}
6782
6783// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
6784// not enforce equality of the chain operands.
6785static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
6786                            unsigned Bytes, int Dist,
6787                            SelectionDAG &DAG) {
6788  EVT VT = LS->getMemoryVT();
6789  if (VT.getSizeInBits() / 8 != Bytes)
6790    return false;
6791
6792  SDValue Loc = LS->getBasePtr();
6793  SDValue BaseLoc = Base->getBasePtr();
6794  if (Loc.getOpcode() == ISD::FrameIndex) {
6795    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6796      return false;
6797    const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6798    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6799    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6800    int FS  = MFI->getObjectSize(FI);
6801    int BFS = MFI->getObjectSize(BFI);
6802    if (FS != BFS || FS != (int)Bytes) return false;
6803    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6804  }
6805
6806  // Handle X+C
6807  if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6808      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6809    return true;
6810
6811  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6812  const GlobalValue *GV1 = NULL;
6813  const GlobalValue *GV2 = NULL;
6814  int64_t Offset1 = 0;
6815  int64_t Offset2 = 0;
6816  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6817  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6818  if (isGA1 && isGA2 && GV1 == GV2)
6819    return Offset1 == (Offset2 + Dist*Bytes);
6820  return false;
6821}
6822
6823// Return true is there is a nearyby consecutive load to the one provided
6824// (regardless of alignment). We search up and down the chain, looking though
6825// token factors and other loads (but nothing else). As a result, a true
6826// results indicates that it is safe to create a new consecutive load adjacent
6827// to the load provided.
6828static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
6829  SDValue Chain = LD->getChain();
6830  EVT VT = LD->getMemoryVT();
6831
6832  SmallSet<SDNode *, 16> LoadRoots;
6833  SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
6834  SmallSet<SDNode *, 16> Visited;
6835
6836  // First, search up the chain, branching to follow all token-factor operands.
6837  // If we find a consecutive load, then we're done, otherwise, record all
6838  // nodes just above the top-level loads and token factors.
6839  while (!Queue.empty()) {
6840    SDNode *ChainNext = Queue.pop_back_val();
6841    if (!Visited.insert(ChainNext))
6842      continue;
6843
6844    if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
6845      if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
6846        return true;
6847
6848      if (!Visited.count(ChainLD->getChain().getNode()))
6849        Queue.push_back(ChainLD->getChain().getNode());
6850    } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
6851      for (SDNode::op_iterator O = ChainNext->op_begin(),
6852           OE = ChainNext->op_end(); O != OE; ++O)
6853        if (!Visited.count(O->getNode()))
6854          Queue.push_back(O->getNode());
6855    } else
6856      LoadRoots.insert(ChainNext);
6857  }
6858
6859  // Second, search down the chain, starting from the top-level nodes recorded
6860  // in the first phase. These top-level nodes are the nodes just above all
6861  // loads and token factors. Starting with their uses, recursively look though
6862  // all loads (just the chain uses) and token factors to find a consecutive
6863  // load.
6864  Visited.clear();
6865  Queue.clear();
6866
6867  for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
6868       IE = LoadRoots.end(); I != IE; ++I) {
6869    Queue.push_back(*I);
6870
6871    while (!Queue.empty()) {
6872      SDNode *LoadRoot = Queue.pop_back_val();
6873      if (!Visited.insert(LoadRoot))
6874        continue;
6875
6876      if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
6877        if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
6878          return true;
6879
6880      for (SDNode::use_iterator UI = LoadRoot->use_begin(),
6881           UE = LoadRoot->use_end(); UI != UE; ++UI)
6882        if (((isa<LoadSDNode>(*UI) &&
6883            cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
6884            UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
6885          Queue.push_back(*UI);
6886    }
6887  }
6888
6889  return false;
6890}
6891
6892SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
6893                                             DAGCombinerInfo &DCI) const {
6894  const TargetMachine &TM = getTargetMachine();
6895  SelectionDAG &DAG = DCI.DAG;
6896  SDLoc dl(N);
6897  switch (N->getOpcode()) {
6898  default: break;
6899  case PPCISD::SHL:
6900    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6901      if (C->isNullValue())   // 0 << V -> 0.
6902        return N->getOperand(0);
6903    }
6904    break;
6905  case PPCISD::SRL:
6906    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6907      if (C->isNullValue())   // 0 >>u V -> 0.
6908        return N->getOperand(0);
6909    }
6910    break;
6911  case PPCISD::SRA:
6912    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6913      if (C->isNullValue() ||   //  0 >>s V -> 0.
6914          C->isAllOnesValue())    // -1 >>s V -> -1.
6915        return N->getOperand(0);
6916    }
6917    break;
6918  case ISD::FDIV: {
6919    assert(TM.Options.UnsafeFPMath &&
6920           "Reciprocal estimates require UnsafeFPMath");
6921
6922    if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
6923      SDValue RV =
6924        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
6925      if (RV.getNode() != 0) {
6926        DCI.AddToWorklist(RV.getNode());
6927        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6928                           N->getOperand(0), RV);
6929      }
6930    } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
6931               N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
6932      SDValue RV =
6933        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
6934                                 DCI);
6935      if (RV.getNode() != 0) {
6936        DCI.AddToWorklist(RV.getNode());
6937        RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
6938                         N->getValueType(0), RV);
6939        DCI.AddToWorklist(RV.getNode());
6940        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6941                           N->getOperand(0), RV);
6942      }
6943    } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
6944               N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
6945      SDValue RV =
6946        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
6947                                 DCI);
6948      if (RV.getNode() != 0) {
6949        DCI.AddToWorklist(RV.getNode());
6950        RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
6951                         N->getValueType(0), RV,
6952                         N->getOperand(1).getOperand(1));
6953        DCI.AddToWorklist(RV.getNode());
6954        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6955                           N->getOperand(0), RV);
6956      }
6957    }
6958
6959    SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
6960    if (RV.getNode() != 0) {
6961      DCI.AddToWorklist(RV.getNode());
6962      return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
6963                         N->getOperand(0), RV);
6964    }
6965
6966    }
6967    break;
6968  case ISD::FSQRT: {
6969    assert(TM.Options.UnsafeFPMath &&
6970           "Reciprocal estimates require UnsafeFPMath");
6971
6972    // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
6973    // reciprocal sqrt.
6974    SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
6975    if (RV.getNode() != 0) {
6976      DCI.AddToWorklist(RV.getNode());
6977      RV = DAGCombineFastRecip(RV, DCI);
6978      if (RV.getNode() != 0)
6979        return RV;
6980    }
6981
6982    }
6983    break;
6984  case ISD::SINT_TO_FP:
6985    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
6986      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
6987        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
6988        // We allow the src/dst to be either f32/f64, but the intermediate
6989        // type must be i64.
6990        if (N->getOperand(0).getValueType() == MVT::i64 &&
6991            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
6992          SDValue Val = N->getOperand(0).getOperand(0);
6993          if (Val.getValueType() == MVT::f32) {
6994            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6995            DCI.AddToWorklist(Val.getNode());
6996          }
6997
6998          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
6999          DCI.AddToWorklist(Val.getNode());
7000          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
7001          DCI.AddToWorklist(Val.getNode());
7002          if (N->getValueType(0) == MVT::f32) {
7003            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
7004                              DAG.getIntPtrConstant(0));
7005            DCI.AddToWorklist(Val.getNode());
7006          }
7007          return Val;
7008        } else if (N->getOperand(0).getValueType() == MVT::i32) {
7009          // If the intermediate type is i32, we can avoid the load/store here
7010          // too.
7011        }
7012      }
7013    }
7014    break;
7015  case ISD::STORE:
7016    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
7017    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
7018        !cast<StoreSDNode>(N)->isTruncatingStore() &&
7019        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
7020        N->getOperand(1).getValueType() == MVT::i32 &&
7021        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
7022      SDValue Val = N->getOperand(1).getOperand(0);
7023      if (Val.getValueType() == MVT::f32) {
7024        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
7025        DCI.AddToWorklist(Val.getNode());
7026      }
7027      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
7028      DCI.AddToWorklist(Val.getNode());
7029
7030      SDValue Ops[] = {
7031        N->getOperand(0), Val, N->getOperand(2),
7032        DAG.getValueType(N->getOperand(1).getValueType())
7033      };
7034
7035      Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7036              DAG.getVTList(MVT::Other), Ops, array_lengthof(Ops),
7037              cast<StoreSDNode>(N)->getMemoryVT(),
7038              cast<StoreSDNode>(N)->getMemOperand());
7039      DCI.AddToWorklist(Val.getNode());
7040      return Val;
7041    }
7042
7043    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
7044    if (cast<StoreSDNode>(N)->isUnindexed() &&
7045        N->getOperand(1).getOpcode() == ISD::BSWAP &&
7046        N->getOperand(1).getNode()->hasOneUse() &&
7047        (N->getOperand(1).getValueType() == MVT::i32 ||
7048         N->getOperand(1).getValueType() == MVT::i16 ||
7049         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
7050          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
7051          N->getOperand(1).getValueType() == MVT::i64))) {
7052      SDValue BSwapOp = N->getOperand(1).getOperand(0);
7053      // Do an any-extend to 32-bits if this is a half-word input.
7054      if (BSwapOp.getValueType() == MVT::i16)
7055        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
7056
7057      SDValue Ops[] = {
7058        N->getOperand(0), BSwapOp, N->getOperand(2),
7059        DAG.getValueType(N->getOperand(1).getValueType())
7060      };
7061      return
7062        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
7063                                Ops, array_lengthof(Ops),
7064                                cast<StoreSDNode>(N)->getMemoryVT(),
7065                                cast<StoreSDNode>(N)->getMemOperand());
7066    }
7067    break;
7068  case ISD::LOAD: {
7069    LoadSDNode *LD = cast<LoadSDNode>(N);
7070    EVT VT = LD->getValueType(0);
7071    Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
7072    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
7073    if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
7074        TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
7075        DCI.getDAGCombineLevel() == AfterLegalizeTypes &&
7076        LD->getAlignment() < ABIAlignment) {
7077      // This is a type-legal unaligned Altivec load.
7078      SDValue Chain = LD->getChain();
7079      SDValue Ptr = LD->getBasePtr();
7080
7081      // This implements the loading of unaligned vectors as described in
7082      // the venerable Apple Velocity Engine overview. Specifically:
7083      // https://developer.apple.com/hardwaredrivers/ve/alignment.html
7084      // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
7085      //
7086      // The general idea is to expand a sequence of one or more unaligned
7087      // loads into a alignment-based permutation-control instruction (lvsl),
7088      // a series of regular vector loads (which always truncate their
7089      // input address to an aligned address), and a series of permutations.
7090      // The results of these permutations are the requested loaded values.
7091      // The trick is that the last "extra" load is not taken from the address
7092      // you might suspect (sizeof(vector) bytes after the last requested
7093      // load), but rather sizeof(vector) - 1 bytes after the last
7094      // requested vector. The point of this is to avoid a page fault if the
7095      // base address happend to be aligned. This works because if the base
7096      // address is aligned, then adding less than a full vector length will
7097      // cause the last vector in the sequence to be (re)loaded. Otherwise,
7098      // the next vector will be fetched as you might suspect was necessary.
7099
7100      // We might be able to reuse the permutation generation from
7101      // a different base address offset from this one by an aligned amount.
7102      // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
7103      // optimization later.
7104      SDValue PermCntl = BuildIntrinsicOp(Intrinsic::ppc_altivec_lvsl, Ptr,
7105                                          DAG, dl, MVT::v16i8);
7106
7107      // Refine the alignment of the original load (a "new" load created here
7108      // which was identical to the first except for the alignment would be
7109      // merged with the existing node regardless).
7110      MachineFunction &MF = DAG.getMachineFunction();
7111      MachineMemOperand *MMO =
7112        MF.getMachineMemOperand(LD->getPointerInfo(),
7113                                LD->getMemOperand()->getFlags(),
7114                                LD->getMemoryVT().getStoreSize(),
7115                                ABIAlignment);
7116      LD->refineAlignment(MMO);
7117      SDValue BaseLoad = SDValue(LD, 0);
7118
7119      // Note that the value of IncOffset (which is provided to the next
7120      // load's pointer info offset value, and thus used to calculate the
7121      // alignment), and the value of IncValue (which is actually used to
7122      // increment the pointer value) are different! This is because we
7123      // require the next load to appear to be aligned, even though it
7124      // is actually offset from the base pointer by a lesser amount.
7125      int IncOffset = VT.getSizeInBits() / 8;
7126      int IncValue = IncOffset;
7127
7128      // Walk (both up and down) the chain looking for another load at the real
7129      // (aligned) offset (the alignment of the other load does not matter in
7130      // this case). If found, then do not use the offset reduction trick, as
7131      // that will prevent the loads from being later combined (as they would
7132      // otherwise be duplicates).
7133      if (!findConsecutiveLoad(LD, DAG))
7134        --IncValue;
7135
7136      SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
7137      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
7138
7139      SDValue ExtraLoad =
7140        DAG.getLoad(VT, dl, Chain, Ptr,
7141                    LD->getPointerInfo().getWithOffset(IncOffset),
7142                    LD->isVolatile(), LD->isNonTemporal(),
7143                    LD->isInvariant(), ABIAlignment);
7144
7145      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7146        BaseLoad.getValue(1), ExtraLoad.getValue(1));
7147
7148      if (BaseLoad.getValueType() != MVT::v4i32)
7149        BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
7150
7151      if (ExtraLoad.getValueType() != MVT::v4i32)
7152        ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
7153
7154      SDValue Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
7155                                      BaseLoad, ExtraLoad, PermCntl, DAG, dl);
7156
7157      if (VT != MVT::v4i32)
7158        Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
7159
7160      // Now we need to be really careful about how we update the users of the
7161      // original load. We cannot just call DCI.CombineTo (or
7162      // DAG.ReplaceAllUsesWith for that matter), because the load still has
7163      // uses created here (the permutation for example) that need to stay.
7164      SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
7165      while (UI != UE) {
7166        SDUse &Use = UI.getUse();
7167        SDNode *User = *UI;
7168        // Note: BaseLoad is checked here because it might not be N, but a
7169        // bitcast of N.
7170        if (User == Perm.getNode() || User == BaseLoad.getNode() ||
7171            User == TF.getNode() || Use.getResNo() > 1) {
7172          ++UI;
7173          continue;
7174        }
7175
7176        SDValue To = Use.getResNo() ? TF : Perm;
7177        ++UI;
7178
7179        SmallVector<SDValue, 8> Ops;
7180        for (SDNode::op_iterator O = User->op_begin(),
7181             OE = User->op_end(); O != OE; ++O) {
7182          if (*O == Use)
7183            Ops.push_back(To);
7184          else
7185            Ops.push_back(*O);
7186        }
7187
7188        DAG.UpdateNodeOperands(User, Ops.data(), Ops.size());
7189      }
7190
7191      return SDValue(N, 0);
7192    }
7193    }
7194    break;
7195  case ISD::INTRINSIC_WO_CHAIN:
7196    if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() ==
7197          Intrinsic::ppc_altivec_lvsl &&
7198        N->getOperand(1)->getOpcode() == ISD::ADD) {
7199      SDValue Add = N->getOperand(1);
7200
7201      if (DAG.MaskedValueIsZero(Add->getOperand(1),
7202            APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
7203              Add.getValueType().getScalarType().getSizeInBits()))) {
7204        SDNode *BasePtr = Add->getOperand(0).getNode();
7205        for (SDNode::use_iterator UI = BasePtr->use_begin(),
7206             UE = BasePtr->use_end(); UI != UE; ++UI) {
7207          if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
7208              cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
7209                Intrinsic::ppc_altivec_lvsl) {
7210            // We've found another LVSL, and this address if an aligned
7211            // multiple of that one. The results will be the same, so use the
7212            // one we've just found instead.
7213
7214            return SDValue(*UI, 0);
7215          }
7216        }
7217      }
7218    }
7219  case ISD::BSWAP:
7220    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
7221    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
7222        N->getOperand(0).hasOneUse() &&
7223        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
7224         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
7225          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
7226          N->getValueType(0) == MVT::i64))) {
7227      SDValue Load = N->getOperand(0);
7228      LoadSDNode *LD = cast<LoadSDNode>(Load);
7229      // Create the byte-swapping load.
7230      SDValue Ops[] = {
7231        LD->getChain(),    // Chain
7232        LD->getBasePtr(),  // Ptr
7233        DAG.getValueType(N->getValueType(0)) // VT
7234      };
7235      SDValue BSLoad =
7236        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
7237                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
7238                                              MVT::i64 : MVT::i32, MVT::Other),
7239                                Ops, 3, LD->getMemoryVT(), LD->getMemOperand());
7240
7241      // If this is an i16 load, insert the truncate.
7242      SDValue ResVal = BSLoad;
7243      if (N->getValueType(0) == MVT::i16)
7244        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
7245
7246      // First, combine the bswap away.  This makes the value produced by the
7247      // load dead.
7248      DCI.CombineTo(N, ResVal);
7249
7250      // Next, combine the load away, we give it a bogus result value but a real
7251      // chain result.  The result value is dead because the bswap is dead.
7252      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
7253
7254      // Return N so it doesn't get rechecked!
7255      return SDValue(N, 0);
7256    }
7257
7258    break;
7259  case PPCISD::VCMP: {
7260    // If a VCMPo node already exists with exactly the same operands as this
7261    // node, use its result instead of this node (VCMPo computes both a CR6 and
7262    // a normal output).
7263    //
7264    if (!N->getOperand(0).hasOneUse() &&
7265        !N->getOperand(1).hasOneUse() &&
7266        !N->getOperand(2).hasOneUse()) {
7267
7268      // Scan all of the users of the LHS, looking for VCMPo's that match.
7269      SDNode *VCMPoNode = 0;
7270
7271      SDNode *LHSN = N->getOperand(0).getNode();
7272      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
7273           UI != E; ++UI)
7274        if (UI->getOpcode() == PPCISD::VCMPo &&
7275            UI->getOperand(1) == N->getOperand(1) &&
7276            UI->getOperand(2) == N->getOperand(2) &&
7277            UI->getOperand(0) == N->getOperand(0)) {
7278          VCMPoNode = *UI;
7279          break;
7280        }
7281
7282      // If there is no VCMPo node, or if the flag value has a single use, don't
7283      // transform this.
7284      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
7285        break;
7286
7287      // Look at the (necessarily single) use of the flag value.  If it has a
7288      // chain, this transformation is more complex.  Note that multiple things
7289      // could use the value result, which we should ignore.
7290      SDNode *FlagUser = 0;
7291      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
7292           FlagUser == 0; ++UI) {
7293        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
7294        SDNode *User = *UI;
7295        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
7296          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
7297            FlagUser = User;
7298            break;
7299          }
7300        }
7301      }
7302
7303      // If the user is a MFOCRF instruction, we know this is safe.
7304      // Otherwise we give up for right now.
7305      if (FlagUser->getOpcode() == PPCISD::MFOCRF)
7306        return SDValue(VCMPoNode, 0);
7307    }
7308    break;
7309  }
7310  case ISD::BR_CC: {
7311    // If this is a branch on an altivec predicate comparison, lower this so
7312    // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
7313    // lowering is done pre-legalize, because the legalizer lowers the predicate
7314    // compare down to code that is difficult to reassemble.
7315    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
7316    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
7317
7318    // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
7319    // value. If so, pass-through the AND to get to the intrinsic.
7320    if (LHS.getOpcode() == ISD::AND &&
7321        LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
7322        cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
7323          Intrinsic::ppc_is_decremented_ctr_nonzero &&
7324        isa<ConstantSDNode>(LHS.getOperand(1)) &&
7325        !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
7326          isZero())
7327      LHS = LHS.getOperand(0);
7328
7329    if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
7330        cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
7331          Intrinsic::ppc_is_decremented_ctr_nonzero &&
7332        isa<ConstantSDNode>(RHS)) {
7333      assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
7334             "Counter decrement comparison is not EQ or NE");
7335
7336      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
7337      bool isBDNZ = (CC == ISD::SETEQ && Val) ||
7338                    (CC == ISD::SETNE && !Val);
7339
7340      // We now need to make the intrinsic dead (it cannot be instruction
7341      // selected).
7342      DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
7343      assert(LHS.getNode()->hasOneUse() &&
7344             "Counter decrement has more than one use");
7345
7346      return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
7347                         N->getOperand(0), N->getOperand(4));
7348    }
7349
7350    int CompareOpc;
7351    bool isDot;
7352
7353    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
7354        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
7355        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
7356      assert(isDot && "Can't compare against a vector result!");
7357
7358      // If this is a comparison against something other than 0/1, then we know
7359      // that the condition is never/always true.
7360      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
7361      if (Val != 0 && Val != 1) {
7362        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
7363          return N->getOperand(0);
7364        // Always !=, turn it into an unconditional branch.
7365        return DAG.getNode(ISD::BR, dl, MVT::Other,
7366                           N->getOperand(0), N->getOperand(4));
7367      }
7368
7369      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
7370
7371      // Create the PPCISD altivec 'dot' comparison node.
7372      SDValue Ops[] = {
7373        LHS.getOperand(2),  // LHS of compare
7374        LHS.getOperand(3),  // RHS of compare
7375        DAG.getConstant(CompareOpc, MVT::i32)
7376      };
7377      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
7378      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
7379
7380      // Unpack the result based on how the target uses it.
7381      PPC::Predicate CompOpc;
7382      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
7383      default:  // Can't happen, don't crash on invalid number though.
7384      case 0:   // Branch on the value of the EQ bit of CR6.
7385        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
7386        break;
7387      case 1:   // Branch on the inverted value of the EQ bit of CR6.
7388        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
7389        break;
7390      case 2:   // Branch on the value of the LT bit of CR6.
7391        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
7392        break;
7393      case 3:   // Branch on the inverted value of the LT bit of CR6.
7394        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
7395        break;
7396      }
7397
7398      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
7399                         DAG.getConstant(CompOpc, MVT::i32),
7400                         DAG.getRegister(PPC::CR6, MVT::i32),
7401                         N->getOperand(4), CompNode.getValue(1));
7402    }
7403    break;
7404  }
7405  }
7406
7407  return SDValue();
7408}
7409
7410//===----------------------------------------------------------------------===//
7411// Inline Assembly Support
7412//===----------------------------------------------------------------------===//
7413
7414void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7415                                                       APInt &KnownZero,
7416                                                       APInt &KnownOne,
7417                                                       const SelectionDAG &DAG,
7418                                                       unsigned Depth) const {
7419  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
7420  switch (Op.getOpcode()) {
7421  default: break;
7422  case PPCISD::LBRX: {
7423    // lhbrx is known to have the top bits cleared out.
7424    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
7425      KnownZero = 0xFFFF0000;
7426    break;
7427  }
7428  case ISD::INTRINSIC_WO_CHAIN: {
7429    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
7430    default: break;
7431    case Intrinsic::ppc_altivec_vcmpbfp_p:
7432    case Intrinsic::ppc_altivec_vcmpeqfp_p:
7433    case Intrinsic::ppc_altivec_vcmpequb_p:
7434    case Intrinsic::ppc_altivec_vcmpequh_p:
7435    case Intrinsic::ppc_altivec_vcmpequw_p:
7436    case Intrinsic::ppc_altivec_vcmpgefp_p:
7437    case Intrinsic::ppc_altivec_vcmpgtfp_p:
7438    case Intrinsic::ppc_altivec_vcmpgtsb_p:
7439    case Intrinsic::ppc_altivec_vcmpgtsh_p:
7440    case Intrinsic::ppc_altivec_vcmpgtsw_p:
7441    case Intrinsic::ppc_altivec_vcmpgtub_p:
7442    case Intrinsic::ppc_altivec_vcmpgtuh_p:
7443    case Intrinsic::ppc_altivec_vcmpgtuw_p:
7444      KnownZero = ~1U;  // All bits but the low one are known to be zero.
7445      break;
7446    }
7447  }
7448  }
7449}
7450
7451
7452/// getConstraintType - Given a constraint, return the type of
7453/// constraint it is for this target.
7454PPCTargetLowering::ConstraintType
7455PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
7456  if (Constraint.size() == 1) {
7457    switch (Constraint[0]) {
7458    default: break;
7459    case 'b':
7460    case 'r':
7461    case 'f':
7462    case 'v':
7463    case 'y':
7464      return C_RegisterClass;
7465    case 'Z':
7466      // FIXME: While Z does indicate a memory constraint, it specifically
7467      // indicates an r+r address (used in conjunction with the 'y' modifier
7468      // in the replacement string). Currently, we're forcing the base
7469      // register to be r0 in the asm printer (which is interpreted as zero)
7470      // and forming the complete address in the second register. This is
7471      // suboptimal.
7472      return C_Memory;
7473    }
7474  }
7475  return TargetLowering::getConstraintType(Constraint);
7476}
7477
7478/// Examine constraint type and operand type and determine a weight value.
7479/// This object must already have been set up with the operand type
7480/// and the current alternative constraint selected.
7481TargetLowering::ConstraintWeight
7482PPCTargetLowering::getSingleConstraintMatchWeight(
7483    AsmOperandInfo &info, const char *constraint) const {
7484  ConstraintWeight weight = CW_Invalid;
7485  Value *CallOperandVal = info.CallOperandVal;
7486    // If we don't have a value, we can't do a match,
7487    // but allow it at the lowest weight.
7488  if (CallOperandVal == NULL)
7489    return CW_Default;
7490  Type *type = CallOperandVal->getType();
7491  // Look at the constraint type.
7492  switch (*constraint) {
7493  default:
7494    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
7495    break;
7496  case 'b':
7497    if (type->isIntegerTy())
7498      weight = CW_Register;
7499    break;
7500  case 'f':
7501    if (type->isFloatTy())
7502      weight = CW_Register;
7503    break;
7504  case 'd':
7505    if (type->isDoubleTy())
7506      weight = CW_Register;
7507    break;
7508  case 'v':
7509    if (type->isVectorTy())
7510      weight = CW_Register;
7511    break;
7512  case 'y':
7513    weight = CW_Register;
7514    break;
7515  case 'Z':
7516    weight = CW_Memory;
7517    break;
7518  }
7519  return weight;
7520}
7521
7522std::pair<unsigned, const TargetRegisterClass*>
7523PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7524                                                MVT VT) const {
7525  if (Constraint.size() == 1) {
7526    // GCC RS6000 Constraint Letters
7527    switch (Constraint[0]) {
7528    case 'b':   // R1-R31
7529      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
7530        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
7531      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
7532    case 'r':   // R0-R31
7533      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
7534        return std::make_pair(0U, &PPC::G8RCRegClass);
7535      return std::make_pair(0U, &PPC::GPRCRegClass);
7536    case 'f':
7537      if (VT == MVT::f32 || VT == MVT::i32)
7538        return std::make_pair(0U, &PPC::F4RCRegClass);
7539      if (VT == MVT::f64 || VT == MVT::i64)
7540        return std::make_pair(0U, &PPC::F8RCRegClass);
7541      break;
7542    case 'v':
7543      return std::make_pair(0U, &PPC::VRRCRegClass);
7544    case 'y':   // crrc
7545      return std::make_pair(0U, &PPC::CRRCRegClass);
7546    }
7547  }
7548
7549  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7550}
7551
7552
7553/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7554/// vector.  If it is invalid, don't add anything to Ops.
7555void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7556                                                     std::string &Constraint,
7557                                                     std::vector<SDValue>&Ops,
7558                                                     SelectionDAG &DAG) const {
7559  SDValue Result(0,0);
7560
7561  // Only support length 1 constraints.
7562  if (Constraint.length() > 1) return;
7563
7564  char Letter = Constraint[0];
7565  switch (Letter) {
7566  default: break;
7567  case 'I':
7568  case 'J':
7569  case 'K':
7570  case 'L':
7571  case 'M':
7572  case 'N':
7573  case 'O':
7574  case 'P': {
7575    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
7576    if (!CST) return; // Must be an immediate to match.
7577    unsigned Value = CST->getZExtValue();
7578    switch (Letter) {
7579    default: llvm_unreachable("Unknown constraint letter!");
7580    case 'I':  // "I" is a signed 16-bit constant.
7581      if ((short)Value == (int)Value)
7582        Result = DAG.getTargetConstant(Value, Op.getValueType());
7583      break;
7584    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
7585    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
7586      if ((short)Value == 0)
7587        Result = DAG.getTargetConstant(Value, Op.getValueType());
7588      break;
7589    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
7590      if ((Value >> 16) == 0)
7591        Result = DAG.getTargetConstant(Value, Op.getValueType());
7592      break;
7593    case 'M':  // "M" is a constant that is greater than 31.
7594      if (Value > 31)
7595        Result = DAG.getTargetConstant(Value, Op.getValueType());
7596      break;
7597    case 'N':  // "N" is a positive constant that is an exact power of two.
7598      if ((int)Value > 0 && isPowerOf2_32(Value))
7599        Result = DAG.getTargetConstant(Value, Op.getValueType());
7600      break;
7601    case 'O':  // "O" is the constant zero.
7602      if (Value == 0)
7603        Result = DAG.getTargetConstant(Value, Op.getValueType());
7604      break;
7605    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
7606      if ((short)-Value == (int)-Value)
7607        Result = DAG.getTargetConstant(Value, Op.getValueType());
7608      break;
7609    }
7610    break;
7611  }
7612  }
7613
7614  if (Result.getNode()) {
7615    Ops.push_back(Result);
7616    return;
7617  }
7618
7619  // Handle standard constraint letters.
7620  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7621}
7622
7623// isLegalAddressingMode - Return true if the addressing mode represented
7624// by AM is legal for this target, for a load/store of the specified type.
7625bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
7626                                              Type *Ty) const {
7627  // FIXME: PPC does not allow r+i addressing modes for vectors!
7628
7629  // PPC allows a sign-extended 16-bit immediate field.
7630  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
7631    return false;
7632
7633  // No global is ever allowed as a base.
7634  if (AM.BaseGV)
7635    return false;
7636
7637  // PPC only support r+r,
7638  switch (AM.Scale) {
7639  case 0:  // "r+i" or just "i", depending on HasBaseReg.
7640    break;
7641  case 1:
7642    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
7643      return false;
7644    // Otherwise we have r+r or r+i.
7645    break;
7646  case 2:
7647    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
7648      return false;
7649    // Allow 2*r as r+r.
7650    break;
7651  default:
7652    // No other scales are supported.
7653    return false;
7654  }
7655
7656  return true;
7657}
7658
7659SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
7660                                           SelectionDAG &DAG) const {
7661  MachineFunction &MF = DAG.getMachineFunction();
7662  MachineFrameInfo *MFI = MF.getFrameInfo();
7663  MFI->setReturnAddressIsTaken(true);
7664
7665  SDLoc dl(Op);
7666  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7667
7668  // Make sure the function does not optimize away the store of the RA to
7669  // the stack.
7670  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7671  FuncInfo->setLRStoreRequired();
7672  bool isPPC64 = PPCSubTarget.isPPC64();
7673  bool isDarwinABI = PPCSubTarget.isDarwinABI();
7674
7675  if (Depth > 0) {
7676    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7677    SDValue Offset =
7678
7679      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
7680                      isPPC64? MVT::i64 : MVT::i32);
7681    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7682                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7683                                   FrameAddr, Offset),
7684                       MachinePointerInfo(), false, false, false, 0);
7685  }
7686
7687  // Just load the return address off the stack.
7688  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
7689  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7690                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
7691}
7692
7693SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
7694                                          SelectionDAG &DAG) const {
7695  SDLoc dl(Op);
7696  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7697
7698  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
7699  bool isPPC64 = PtrVT == MVT::i64;
7700
7701  MachineFunction &MF = DAG.getMachineFunction();
7702  MachineFrameInfo *MFI = MF.getFrameInfo();
7703  MFI->setFrameAddressIsTaken(true);
7704
7705  // Naked functions never have a frame pointer, and so we use r1. For all
7706  // other functions, this decision must be delayed until during PEI.
7707  unsigned FrameReg;
7708  if (MF.getFunction()->getAttributes().hasAttribute(
7709        AttributeSet::FunctionIndex, Attribute::Naked))
7710    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
7711  else
7712    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
7713
7714  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
7715                                         PtrVT);
7716  while (Depth--)
7717    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
7718                            FrameAddr, MachinePointerInfo(), false, false,
7719                            false, 0);
7720  return FrameAddr;
7721}
7722
7723bool
7724PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7725  // The PowerPC target isn't yet aware of offsets.
7726  return false;
7727}
7728
7729/// getOptimalMemOpType - Returns the target specific optimal type for load
7730/// and store operations as a result of memset, memcpy, and memmove
7731/// lowering. If DstAlign is zero that means it's safe to destination
7732/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
7733/// means there isn't a need to check it against alignment requirement,
7734/// probably because the source does not need to be loaded. If 'IsMemset' is
7735/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
7736/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
7737/// source is constant so it does not need to be loaded.
7738/// It returns EVT::Other if the type should be determined using generic
7739/// target-independent logic.
7740EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
7741                                           unsigned DstAlign, unsigned SrcAlign,
7742                                           bool IsMemset, bool ZeroMemset,
7743                                           bool MemcpyStrSrc,
7744                                           MachineFunction &MF) const {
7745  if (this->PPCSubTarget.isPPC64()) {
7746    return MVT::i64;
7747  } else {
7748    return MVT::i32;
7749  }
7750}
7751
7752bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
7753                                                      bool *Fast) const {
7754  if (DisablePPCUnaligned)
7755    return false;
7756
7757  // PowerPC supports unaligned memory access for simple non-vector types.
7758  // Although accessing unaligned addresses is not as efficient as accessing
7759  // aligned addresses, it is generally more efficient than manual expansion,
7760  // and generally only traps for software emulation when crossing page
7761  // boundaries.
7762
7763  if (!VT.isSimple())
7764    return false;
7765
7766  if (VT.getSimpleVT().isVector())
7767    return false;
7768
7769  if (VT == MVT::ppcf128)
7770    return false;
7771
7772  if (Fast)
7773    *Fast = true;
7774
7775  return true;
7776}
7777
7778/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
7779/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
7780/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
7781/// is expanded to mul + add.
7782bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
7783  if (!VT.isSimple())
7784    return false;
7785
7786  switch (VT.getSimpleVT().SimpleTy) {
7787  case MVT::f32:
7788  case MVT::f64:
7789  case MVT::v4f32:
7790    return true;
7791  default:
7792    break;
7793  }
7794
7795  return false;
7796}
7797
7798Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
7799  if (DisableILPPref)
7800    return TargetLowering::getSchedulingPreference(N);
7801
7802  return Sched::ILP;
7803}
7804
7805