PPCISelLowering.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPCMachineFunctionInfo.h"
17#include "PPCPerfectShuffle.h"
18#include "PPCTargetMachine.h"
19#include "PPCTargetObjectFile.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringSwitch.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/raw_ostream.h"
38#include "llvm/Target/TargetOptions.h"
39using namespace llvm;
40
41static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
42cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
43
44static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
45cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
46
47static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
48cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
49
50// FIXME: Remove this once the bug has been fixed!
51extern cl::opt<bool> ANDIGlueBug;
52
53static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
54  if (TM.getSubtargetImpl()->isDarwin())
55    return new TargetLoweringObjectFileMachO();
56
57  if (TM.getSubtargetImpl()->isSVR4ABI())
58    return new PPC64LinuxTargetObjectFile();
59
60  return new TargetLoweringObjectFileELF();
61}
62
63PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
64  : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
65  const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
66
67  setPow2DivIsCheap();
68
69  // Use _setjmp/_longjmp instead of setjmp/longjmp.
70  setUseUnderscoreSetJmp(true);
71  setUseUnderscoreLongJmp(true);
72
73  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
74  // arguments are at least 4/8 bytes aligned.
75  bool isPPC64 = Subtarget->isPPC64();
76  setMinStackArgumentAlignment(isPPC64 ? 8:4);
77
78  // Set up the register classes.
79  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
80  addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
81  addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
82
83  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
84  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
85  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
86
87  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
88
89  // PowerPC has pre-inc load and store's.
90  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
91  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
92  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
93  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
94  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
95  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
96  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
97  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
98  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
99  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
100
101  if (Subtarget->useCRBits()) {
102    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
103
104    if (isPPC64 || Subtarget->hasFPCVT()) {
105      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
106      AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
107                         isPPC64 ? MVT::i64 : MVT::i32);
108      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
109      AddPromotedToType (ISD::UINT_TO_FP, MVT::i1,
110                         isPPC64 ? MVT::i64 : MVT::i32);
111    } else {
112      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
113      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
114    }
115
116    // PowerPC does not support direct load / store of condition registers
117    setOperationAction(ISD::LOAD, MVT::i1, Custom);
118    setOperationAction(ISD::STORE, MVT::i1, Custom);
119
120    // FIXME: Remove this once the ANDI glue bug is fixed:
121    if (ANDIGlueBug)
122      setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
123
124    setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
125    setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
126    setTruncStoreAction(MVT::i64, MVT::i1, Expand);
127    setTruncStoreAction(MVT::i32, MVT::i1, Expand);
128    setTruncStoreAction(MVT::i16, MVT::i1, Expand);
129    setTruncStoreAction(MVT::i8, MVT::i1, Expand);
130
131    addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
132  }
133
134  // This is used in the ppcf128->int sequence.  Note it has different semantics
135  // from FP_ROUND:  that rounds to nearest, this rounds to zero.
136  setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
137
138  // We do not currently implement these libm ops for PowerPC.
139  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
140  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
141  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
142  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
143  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
144  setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
145
146  // PowerPC has no SREM/UREM instructions
147  setOperationAction(ISD::SREM, MVT::i32, Expand);
148  setOperationAction(ISD::UREM, MVT::i32, Expand);
149  setOperationAction(ISD::SREM, MVT::i64, Expand);
150  setOperationAction(ISD::UREM, MVT::i64, Expand);
151
152  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
153  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
154  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
155  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
156  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
157  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
158  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
159  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
160  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
161
162  // We don't support sin/cos/sqrt/fmod/pow
163  setOperationAction(ISD::FSIN , MVT::f64, Expand);
164  setOperationAction(ISD::FCOS , MVT::f64, Expand);
165  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
166  setOperationAction(ISD::FREM , MVT::f64, Expand);
167  setOperationAction(ISD::FPOW , MVT::f64, Expand);
168  setOperationAction(ISD::FMA  , MVT::f64, Legal);
169  setOperationAction(ISD::FSIN , MVT::f32, Expand);
170  setOperationAction(ISD::FCOS , MVT::f32, Expand);
171  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
172  setOperationAction(ISD::FREM , MVT::f32, Expand);
173  setOperationAction(ISD::FPOW , MVT::f32, Expand);
174  setOperationAction(ISD::FMA  , MVT::f32, Legal);
175
176  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
177
178  // If we're enabling GP optimizations, use hardware square root
179  if (!Subtarget->hasFSQRT() &&
180      !(TM.Options.UnsafeFPMath &&
181        Subtarget->hasFRSQRTE() && Subtarget->hasFRE()))
182    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
183
184  if (!Subtarget->hasFSQRT() &&
185      !(TM.Options.UnsafeFPMath &&
186        Subtarget->hasFRSQRTES() && Subtarget->hasFRES()))
187    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
188
189  if (Subtarget->hasFCPSGN()) {
190    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
191    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
192  } else {
193    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
194    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
195  }
196
197  if (Subtarget->hasFPRND()) {
198    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
199    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
200    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
201    setOperationAction(ISD::FROUND, MVT::f64, Legal);
202
203    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
204    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
205    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
206    setOperationAction(ISD::FROUND, MVT::f32, Legal);
207  }
208
209  // PowerPC does not have BSWAP, CTPOP or CTTZ
210  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
211  setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
212  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
213  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
214  setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
215  setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
216  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
217  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
218
219  if (Subtarget->hasPOPCNTD()) {
220    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
221    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
222  } else {
223    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
224    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
225  }
226
227  // PowerPC does not have ROTR
228  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
229  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
230
231  if (!Subtarget->useCRBits()) {
232    // PowerPC does not have Select
233    setOperationAction(ISD::SELECT, MVT::i32, Expand);
234    setOperationAction(ISD::SELECT, MVT::i64, Expand);
235    setOperationAction(ISD::SELECT, MVT::f32, Expand);
236    setOperationAction(ISD::SELECT, MVT::f64, Expand);
237  }
238
239  // PowerPC wants to turn select_cc of FP into fsel when possible.
240  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
241  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
242
243  // PowerPC wants to optimize integer setcc a bit
244  if (!Subtarget->useCRBits())
245    setOperationAction(ISD::SETCC, MVT::i32, Custom);
246
247  // PowerPC does not have BRCOND which requires SetCC
248  if (!Subtarget->useCRBits())
249    setOperationAction(ISD::BRCOND, MVT::Other, Expand);
250
251  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
252
253  // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
254  setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
255
256  // PowerPC does not have [U|S]INT_TO_FP
257  setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
258  setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
259
260  setOperationAction(ISD::BITCAST, MVT::f32, Expand);
261  setOperationAction(ISD::BITCAST, MVT::i32, Expand);
262  setOperationAction(ISD::BITCAST, MVT::i64, Expand);
263  setOperationAction(ISD::BITCAST, MVT::f64, Expand);
264
265  // We cannot sextinreg(i1).  Expand to shifts.
266  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
267
268  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
269  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
270  // support continuation, user-level threading, and etc.. As a result, no
271  // other SjLj exception interfaces are implemented and please don't build
272  // your own exception handling based on them.
273  // LLVM/Clang supports zero-cost DWARF exception handling.
274  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
275  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
276
277  // We want to legalize GlobalAddress and ConstantPool nodes into the
278  // appropriate instructions to materialize the address.
279  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
280  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
281  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
282  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
283  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
284  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
285  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
286  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
287  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
288  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
289
290  // TRAP is legal.
291  setOperationAction(ISD::TRAP, MVT::Other, Legal);
292
293  // TRAMPOLINE is custom lowered.
294  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
295  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
296
297  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
298  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
299
300  if (Subtarget->isSVR4ABI()) {
301    if (isPPC64) {
302      // VAARG always uses double-word chunks, so promote anything smaller.
303      setOperationAction(ISD::VAARG, MVT::i1, Promote);
304      AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
305      setOperationAction(ISD::VAARG, MVT::i8, Promote);
306      AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
307      setOperationAction(ISD::VAARG, MVT::i16, Promote);
308      AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
309      setOperationAction(ISD::VAARG, MVT::i32, Promote);
310      AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
311      setOperationAction(ISD::VAARG, MVT::Other, Expand);
312    } else {
313      // VAARG is custom lowered with the 32-bit SVR4 ABI.
314      setOperationAction(ISD::VAARG, MVT::Other, Custom);
315      setOperationAction(ISD::VAARG, MVT::i64, Custom);
316    }
317  } else
318    setOperationAction(ISD::VAARG, MVT::Other, Expand);
319
320  if (Subtarget->isSVR4ABI() && !isPPC64)
321    // VACOPY is custom lowered with the 32-bit SVR4 ABI.
322    setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
323  else
324    setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
325
326  // Use the default implementation.
327  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
328  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
329  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
330  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
331  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
332
333  // We want to custom lower some of our intrinsics.
334  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
335
336  // To handle counter-based loop conditions.
337  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
338
339  // Comparisons that require checking two conditions.
340  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
341  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
342  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
343  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
344  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
345  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
346  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
347  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
348  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
349  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
350  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
351  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
352
353  if (Subtarget->has64BitSupport()) {
354    // They also have instructions for converting between i64 and fp.
355    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
356    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
357    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
358    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
359    // This is just the low 32 bits of a (signed) fp->i64 conversion.
360    // We cannot do this with Promote because i64 is not a legal type.
361    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
362
363    if (PPCSubTarget.hasLFIWAX() || Subtarget->isPPC64())
364      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
365  } else {
366    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
367    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
368  }
369
370  // With the instructions enabled under FPCVT, we can do everything.
371  if (PPCSubTarget.hasFPCVT()) {
372    if (Subtarget->has64BitSupport()) {
373      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
374      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
375      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
376      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
377    }
378
379    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
380    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
381    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
382    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
383  }
384
385  if (Subtarget->use64BitRegs()) {
386    // 64-bit PowerPC implementations can support i64 types directly
387    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
388    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
389    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
390    // 64-bit PowerPC wants to expand i128 shifts itself.
391    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
392    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
393    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
394  } else {
395    // 32-bit PowerPC wants to expand i64 shifts itself.
396    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
397    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
398    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
399  }
400
401  if (Subtarget->hasAltivec()) {
402    // First set operation action for all vector types to expand. Then we
403    // will selectively turn on ones that can be effectively codegen'd.
404    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
405         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
406      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
407
408      // add/sub are legal for all supported vector VT's.
409      setOperationAction(ISD::ADD , VT, Legal);
410      setOperationAction(ISD::SUB , VT, Legal);
411
412      // We promote all shuffles to v16i8.
413      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
414      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
415
416      // We promote all non-typed operations to v4i32.
417      setOperationAction(ISD::AND   , VT, Promote);
418      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
419      setOperationAction(ISD::OR    , VT, Promote);
420      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
421      setOperationAction(ISD::XOR   , VT, Promote);
422      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
423      setOperationAction(ISD::LOAD  , VT, Promote);
424      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
425      setOperationAction(ISD::SELECT, VT, Promote);
426      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
427      setOperationAction(ISD::STORE, VT, Promote);
428      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
429
430      // No other operations are legal.
431      setOperationAction(ISD::MUL , VT, Expand);
432      setOperationAction(ISD::SDIV, VT, Expand);
433      setOperationAction(ISD::SREM, VT, Expand);
434      setOperationAction(ISD::UDIV, VT, Expand);
435      setOperationAction(ISD::UREM, VT, Expand);
436      setOperationAction(ISD::FDIV, VT, Expand);
437      setOperationAction(ISD::FREM, VT, Expand);
438      setOperationAction(ISD::FNEG, VT, Expand);
439      setOperationAction(ISD::FSQRT, VT, Expand);
440      setOperationAction(ISD::FLOG, VT, Expand);
441      setOperationAction(ISD::FLOG10, VT, Expand);
442      setOperationAction(ISD::FLOG2, VT, Expand);
443      setOperationAction(ISD::FEXP, VT, Expand);
444      setOperationAction(ISD::FEXP2, VT, Expand);
445      setOperationAction(ISD::FSIN, VT, Expand);
446      setOperationAction(ISD::FCOS, VT, Expand);
447      setOperationAction(ISD::FABS, VT, Expand);
448      setOperationAction(ISD::FPOWI, VT, Expand);
449      setOperationAction(ISD::FFLOOR, VT, Expand);
450      setOperationAction(ISD::FCEIL,  VT, Expand);
451      setOperationAction(ISD::FTRUNC, VT, Expand);
452      setOperationAction(ISD::FRINT,  VT, Expand);
453      setOperationAction(ISD::FNEARBYINT, VT, Expand);
454      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
455      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
456      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
457      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
458      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
459      setOperationAction(ISD::UDIVREM, VT, Expand);
460      setOperationAction(ISD::SDIVREM, VT, Expand);
461      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
462      setOperationAction(ISD::FPOW, VT, Expand);
463      setOperationAction(ISD::BSWAP, VT, Expand);
464      setOperationAction(ISD::CTPOP, VT, Expand);
465      setOperationAction(ISD::CTLZ, VT, Expand);
466      setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
467      setOperationAction(ISD::CTTZ, VT, Expand);
468      setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
469      setOperationAction(ISD::VSELECT, VT, Expand);
470      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
471
472      for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
473           j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
474        MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
475        setTruncStoreAction(VT, InnerVT, Expand);
476      }
477      setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
478      setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
479      setLoadExtAction(ISD::EXTLOAD, VT, Expand);
480    }
481
482    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
483    // with merges, splats, etc.
484    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
485
486    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
487    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
488    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
489    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
490    setOperationAction(ISD::SELECT, MVT::v4i32,
491                       Subtarget->useCRBits() ? Legal : Expand);
492    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
493    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
494    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
495    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
496    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
497    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
498    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
499    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
500    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
501
502    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
503    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
504    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
505    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
506
507    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
508    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
509
510    if (TM.Options.UnsafeFPMath || Subtarget->hasVSX()) {
511      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
512      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
513    }
514
515    setOperationAction(ISD::MUL, MVT::v4i32, Custom);
516    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
517    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
518
519    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
520    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
521
522    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
523    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
524    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
525    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
526
527    // Altivec does not contain unordered floating-point compare instructions
528    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
529    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
530    setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
531    setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
532    setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
533    setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
534
535    setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
536    setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
537
538    if (Subtarget->hasVSX()) {
539      setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
540      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
541
542      setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
543      setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
544      setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
545      setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
546      setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
547
548      setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
549
550      setOperationAction(ISD::MUL, MVT::v2f64, Legal);
551      setOperationAction(ISD::FMA, MVT::v2f64, Legal);
552
553      setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
554      setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
555
556      setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
557      setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
558      setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
559      setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
560      setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
561
562      // Share the Altivec comparison restrictions.
563      setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
564      setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
565      setCondCodeAction(ISD::SETUGT, MVT::v2f64, Expand);
566      setCondCodeAction(ISD::SETUGE, MVT::v2f64, Expand);
567      setCondCodeAction(ISD::SETULT, MVT::v2f64, Expand);
568      setCondCodeAction(ISD::SETULE, MVT::v2f64, Expand);
569
570      setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
571      setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
572
573      setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
574      setOperationAction(ISD::STORE, MVT::v2f64, Legal);
575
576      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
577
578      addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
579
580      addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
581      addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
582
583      // VSX v2i64 only supports non-arithmetic operations.
584      setOperationAction(ISD::ADD, MVT::v2i64, Expand);
585      setOperationAction(ISD::SUB, MVT::v2i64, Expand);
586
587      setOperationAction(ISD::SHL, MVT::v2i64, Expand);
588      setOperationAction(ISD::SRA, MVT::v2i64, Expand);
589      setOperationAction(ISD::SRL, MVT::v2i64, Expand);
590
591      setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
592
593      setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
594      AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
595      setOperationAction(ISD::STORE, MVT::v2i64, Promote);
596      AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
597
598      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
599
600      setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
601      setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
602      setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
603      setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
604
605      // Vector operation legalization checks the result type of
606      // SIGN_EXTEND_INREG, overall legalization checks the inner type.
607      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
608      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
609      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
610      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
611
612      addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
613    }
614  }
615
616  if (Subtarget->has64BitSupport()) {
617    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
618    setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
619  }
620
621  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
622  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
623  setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
624  setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
625
626  setBooleanContents(ZeroOrOneBooleanContent);
627  // Altivec instructions set fields to all zeros or all ones.
628  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
629
630  if (isPPC64) {
631    setStackPointerRegisterToSaveRestore(PPC::X1);
632    setExceptionPointerRegister(PPC::X3);
633    setExceptionSelectorRegister(PPC::X4);
634  } else {
635    setStackPointerRegisterToSaveRestore(PPC::R1);
636    setExceptionPointerRegister(PPC::R3);
637    setExceptionSelectorRegister(PPC::R4);
638  }
639
640  // We have target-specific dag combine patterns for the following nodes:
641  setTargetDAGCombine(ISD::SINT_TO_FP);
642  setTargetDAGCombine(ISD::LOAD);
643  setTargetDAGCombine(ISD::STORE);
644  setTargetDAGCombine(ISD::BR_CC);
645  if (Subtarget->useCRBits())
646    setTargetDAGCombine(ISD::BRCOND);
647  setTargetDAGCombine(ISD::BSWAP);
648  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
649
650  setTargetDAGCombine(ISD::SIGN_EXTEND);
651  setTargetDAGCombine(ISD::ZERO_EXTEND);
652  setTargetDAGCombine(ISD::ANY_EXTEND);
653
654  if (Subtarget->useCRBits()) {
655    setTargetDAGCombine(ISD::TRUNCATE);
656    setTargetDAGCombine(ISD::SETCC);
657    setTargetDAGCombine(ISD::SELECT_CC);
658  }
659
660  // Use reciprocal estimates.
661  if (TM.Options.UnsafeFPMath) {
662    setTargetDAGCombine(ISD::FDIV);
663    setTargetDAGCombine(ISD::FSQRT);
664  }
665
666  // Darwin long double math library functions have $LDBL128 appended.
667  if (Subtarget->isDarwin()) {
668    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
669    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
670    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
671    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
672    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
673    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
674    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
675    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
676    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
677    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
678  }
679
680  // With 32 condition bits, we don't need to sink (and duplicate) compares
681  // aggressively in CodeGenPrep.
682  if (Subtarget->useCRBits())
683    setHasMultipleConditionRegisters();
684
685  setMinFunctionAlignment(2);
686  if (PPCSubTarget.isDarwin())
687    setPrefFunctionAlignment(4);
688
689  if (isPPC64 && Subtarget->isJITCodeModel())
690    // Temporary workaround for the inability of PPC64 JIT to handle jump
691    // tables.
692    setSupportJumpTables(false);
693
694  setInsertFencesForAtomic(true);
695
696  if (Subtarget->enableMachineScheduler())
697    setSchedulingPreference(Sched::Source);
698  else
699    setSchedulingPreference(Sched::Hybrid);
700
701  computeRegisterProperties();
702
703  // The Freescale cores does better with aggressive inlining of memcpy and
704  // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
705  if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
706      Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
707    MaxStoresPerMemset = 32;
708    MaxStoresPerMemsetOptSize = 16;
709    MaxStoresPerMemcpy = 32;
710    MaxStoresPerMemcpyOptSize = 8;
711    MaxStoresPerMemmove = 32;
712    MaxStoresPerMemmoveOptSize = 8;
713
714    setPrefFunctionAlignment(4);
715  }
716}
717
718/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
719/// the desired ByVal argument alignment.
720static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
721                             unsigned MaxMaxAlign) {
722  if (MaxAlign == MaxMaxAlign)
723    return;
724  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
725    if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
726      MaxAlign = 32;
727    else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
728      MaxAlign = 16;
729  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
730    unsigned EltAlign = 0;
731    getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
732    if (EltAlign > MaxAlign)
733      MaxAlign = EltAlign;
734  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
735    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
736      unsigned EltAlign = 0;
737      getMaxByValAlign(STy->getElementType(i), EltAlign, MaxMaxAlign);
738      if (EltAlign > MaxAlign)
739        MaxAlign = EltAlign;
740      if (MaxAlign == MaxMaxAlign)
741        break;
742    }
743  }
744}
745
746/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
747/// function arguments in the caller parameter area.
748unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
749  // Darwin passes everything on 4 byte boundary.
750  if (PPCSubTarget.isDarwin())
751    return 4;
752
753  // 16byte and wider vectors are passed on 16byte boundary.
754  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
755  unsigned Align = PPCSubTarget.isPPC64() ? 8 : 4;
756  if (PPCSubTarget.hasAltivec() || PPCSubTarget.hasQPX())
757    getMaxByValAlign(Ty, Align, PPCSubTarget.hasQPX() ? 32 : 16);
758  return Align;
759}
760
761const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
762  switch (Opcode) {
763  default: return nullptr;
764  case PPCISD::FSEL:            return "PPCISD::FSEL";
765  case PPCISD::FCFID:           return "PPCISD::FCFID";
766  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
767  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
768  case PPCISD::FRE:             return "PPCISD::FRE";
769  case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
770  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
771  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
772  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
773  case PPCISD::VPERM:           return "PPCISD::VPERM";
774  case PPCISD::Hi:              return "PPCISD::Hi";
775  case PPCISD::Lo:              return "PPCISD::Lo";
776  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
777  case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
778  case PPCISD::LOAD:            return "PPCISD::LOAD";
779  case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
780  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
781  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
782  case PPCISD::SRL:             return "PPCISD::SRL";
783  case PPCISD::SRA:             return "PPCISD::SRA";
784  case PPCISD::SHL:             return "PPCISD::SHL";
785  case PPCISD::CALL:            return "PPCISD::CALL";
786  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
787  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
788  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
789  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
790  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
791  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
792  case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
793  case PPCISD::VCMP:            return "PPCISD::VCMP";
794  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
795  case PPCISD::LBRX:            return "PPCISD::LBRX";
796  case PPCISD::STBRX:           return "PPCISD::STBRX";
797  case PPCISD::LARX:            return "PPCISD::LARX";
798  case PPCISD::STCX:            return "PPCISD::STCX";
799  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
800  case PPCISD::BDNZ:            return "PPCISD::BDNZ";
801  case PPCISD::BDZ:             return "PPCISD::BDZ";
802  case PPCISD::MFFS:            return "PPCISD::MFFS";
803  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
804  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
805  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
806  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
807  case PPCISD::ADDIS_TOC_HA:    return "PPCISD::ADDIS_TOC_HA";
808  case PPCISD::LD_TOC_L:        return "PPCISD::LD_TOC_L";
809  case PPCISD::ADDI_TOC_L:      return "PPCISD::ADDI_TOC_L";
810  case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
811  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
812  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
813  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
814  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
815  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
816  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
817  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
818  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
819  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
820  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
821  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
822  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
823  case PPCISD::SC:              return "PPCISD::SC";
824  }
825}
826
827EVT PPCTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
828  if (!VT.isVector())
829    return PPCSubTarget.useCRBits() ? MVT::i1 : MVT::i32;
830  return VT.changeVectorElementTypeToInteger();
831}
832
833//===----------------------------------------------------------------------===//
834// Node matching predicates, for use by the tblgen matching code.
835//===----------------------------------------------------------------------===//
836
837/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
838static bool isFloatingPointZero(SDValue Op) {
839  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
840    return CFP->getValueAPF().isZero();
841  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
842    // Maybe this has already been legalized into the constant pool?
843    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
844      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
845        return CFP->getValueAPF().isZero();
846  }
847  return false;
848}
849
850/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
851/// true if Op is undef or if it matches the specified value.
852static bool isConstantOrUndef(int Op, int Val) {
853  return Op < 0 || Op == Val;
854}
855
856/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
857/// VPKUHUM instruction.
858bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
859  if (!isUnary) {
860    for (unsigned i = 0; i != 16; ++i)
861      if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
862        return false;
863  } else {
864    for (unsigned i = 0; i != 8; ++i)
865      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
866          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
867        return false;
868  }
869  return true;
870}
871
872/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
873/// VPKUWUM instruction.
874bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
875  if (!isUnary) {
876    for (unsigned i = 0; i != 16; i += 2)
877      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
878          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
879        return false;
880  } else {
881    for (unsigned i = 0; i != 8; i += 2)
882      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
883          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
884          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
885          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
886        return false;
887  }
888  return true;
889}
890
891/// isVMerge - Common function, used to match vmrg* shuffles.
892///
893static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
894                     unsigned LHSStart, unsigned RHSStart) {
895  if (N->getValueType(0) != MVT::v16i8)
896    return false;
897  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
898         "Unsupported merge size!");
899
900  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
901    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
902      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
903                             LHSStart+j+i*UnitSize) ||
904          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
905                             RHSStart+j+i*UnitSize))
906        return false;
907    }
908  return true;
909}
910
911/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
912/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
913bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
914                             bool isUnary) {
915  if (!isUnary)
916    return isVMerge(N, UnitSize, 8, 24);
917  return isVMerge(N, UnitSize, 8, 8);
918}
919
920/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
921/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
922bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
923                             bool isUnary) {
924  if (!isUnary)
925    return isVMerge(N, UnitSize, 0, 16);
926  return isVMerge(N, UnitSize, 0, 0);
927}
928
929
930/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
931/// amount, otherwise return -1.
932int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
933  if (N->getValueType(0) != MVT::v16i8)
934    return -1;
935
936  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
937
938  // Find the first non-undef value in the shuffle mask.
939  unsigned i;
940  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
941    /*search*/;
942
943  if (i == 16) return -1;  // all undef.
944
945  // Otherwise, check to see if the rest of the elements are consecutively
946  // numbered from this value.
947  unsigned ShiftAmt = SVOp->getMaskElt(i);
948  if (ShiftAmt < i) return -1;
949  ShiftAmt -= i;
950
951  if (!isUnary) {
952    // Check the rest of the elements to see if they are consecutive.
953    for (++i; i != 16; ++i)
954      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
955        return -1;
956  } else {
957    // Check the rest of the elements to see if they are consecutive.
958    for (++i; i != 16; ++i)
959      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
960        return -1;
961  }
962  return ShiftAmt;
963}
964
965/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
966/// specifies a splat of a single element that is suitable for input to
967/// VSPLTB/VSPLTH/VSPLTW.
968bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
969  assert(N->getValueType(0) == MVT::v16i8 &&
970         (EltSize == 1 || EltSize == 2 || EltSize == 4));
971
972  // This is a splat operation if each element of the permute is the same, and
973  // if the value doesn't reference the second vector.
974  unsigned ElementBase = N->getMaskElt(0);
975
976  // FIXME: Handle UNDEF elements too!
977  if (ElementBase >= 16)
978    return false;
979
980  // Check that the indices are consecutive, in the case of a multi-byte element
981  // splatted with a v16i8 mask.
982  for (unsigned i = 1; i != EltSize; ++i)
983    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
984      return false;
985
986  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
987    if (N->getMaskElt(i) < 0) continue;
988    for (unsigned j = 0; j != EltSize; ++j)
989      if (N->getMaskElt(i+j) != N->getMaskElt(j))
990        return false;
991  }
992  return true;
993}
994
995/// isAllNegativeZeroVector - Returns true if all elements of build_vector
996/// are -0.0.
997bool PPC::isAllNegativeZeroVector(SDNode *N) {
998  BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
999
1000  APInt APVal, APUndef;
1001  unsigned BitSize;
1002  bool HasAnyUndefs;
1003
1004  if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
1005    if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
1006      return CFP->getValueAPF().isNegZero();
1007
1008  return false;
1009}
1010
1011/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
1012/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
1013unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
1014  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1015  assert(isSplatShuffleMask(SVOp, EltSize));
1016  return SVOp->getMaskElt(0) / EltSize;
1017}
1018
1019/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
1020/// by using a vspltis[bhw] instruction of the specified element size, return
1021/// the constant being splatted.  The ByteSize field indicates the number of
1022/// bytes of each element [124] -> [bhw].
1023SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
1024  SDValue OpVal(nullptr, 0);
1025
1026  // If ByteSize of the splat is bigger than the element size of the
1027  // build_vector, then we have a case where we are checking for a splat where
1028  // multiple elements of the buildvector are folded together into a single
1029  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
1030  unsigned EltSize = 16/N->getNumOperands();
1031  if (EltSize < ByteSize) {
1032    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
1033    SDValue UniquedVals[4];
1034    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
1035
1036    // See if all of the elements in the buildvector agree across.
1037    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1038      if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1039      // If the element isn't a constant, bail fully out.
1040      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
1041
1042
1043      if (!UniquedVals[i&(Multiple-1)].getNode())
1044        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
1045      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
1046        return SDValue();  // no match.
1047    }
1048
1049    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
1050    // either constant or undef values that are identical for each chunk.  See
1051    // if these chunks can form into a larger vspltis*.
1052
1053    // Check to see if all of the leading entries are either 0 or -1.  If
1054    // neither, then this won't fit into the immediate field.
1055    bool LeadingZero = true;
1056    bool LeadingOnes = true;
1057    for (unsigned i = 0; i != Multiple-1; ++i) {
1058      if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
1059
1060      LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
1061      LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
1062    }
1063    // Finally, check the least significant entry.
1064    if (LeadingZero) {
1065      if (!UniquedVals[Multiple-1].getNode())
1066        return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
1067      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
1068      if (Val < 16)
1069        return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
1070    }
1071    if (LeadingOnes) {
1072      if (!UniquedVals[Multiple-1].getNode())
1073        return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
1074      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
1075      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
1076        return DAG.getTargetConstant(Val, MVT::i32);
1077    }
1078
1079    return SDValue();
1080  }
1081
1082  // Check to see if this buildvec has a single non-undef value in its elements.
1083  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1084    if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1085    if (!OpVal.getNode())
1086      OpVal = N->getOperand(i);
1087    else if (OpVal != N->getOperand(i))
1088      return SDValue();
1089  }
1090
1091  if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
1092
1093  unsigned ValSizeInBytes = EltSize;
1094  uint64_t Value = 0;
1095  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1096    Value = CN->getZExtValue();
1097  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1098    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
1099    Value = FloatToBits(CN->getValueAPF().convertToFloat());
1100  }
1101
1102  // If the splat value is larger than the element value, then we can never do
1103  // this splat.  The only case that we could fit the replicated bits into our
1104  // immediate field for would be zero, and we prefer to use vxor for it.
1105  if (ValSizeInBytes < ByteSize) return SDValue();
1106
1107  // If the element value is larger than the splat value, cut it in half and
1108  // check to see if the two halves are equal.  Continue doing this until we
1109  // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
1110  while (ValSizeInBytes > ByteSize) {
1111    ValSizeInBytes >>= 1;
1112
1113    // If the top half equals the bottom half, we're still ok.
1114    if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
1115         (Value                        & ((1 << (8*ValSizeInBytes))-1)))
1116      return SDValue();
1117  }
1118
1119  // Properly sign extend the value.
1120  int MaskVal = SignExtend32(Value, ByteSize * 8);
1121
1122  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
1123  if (MaskVal == 0) return SDValue();
1124
1125  // Finally, if this value fits in a 5 bit sext field, return it
1126  if (SignExtend32<5>(MaskVal) == MaskVal)
1127    return DAG.getTargetConstant(MaskVal, MVT::i32);
1128  return SDValue();
1129}
1130
1131//===----------------------------------------------------------------------===//
1132//  Addressing Mode Selection
1133//===----------------------------------------------------------------------===//
1134
1135/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
1136/// or 64-bit immediate, and if the value can be accurately represented as a
1137/// sign extension from a 16-bit value.  If so, this returns true and the
1138/// immediate.
1139static bool isIntS16Immediate(SDNode *N, short &Imm) {
1140  if (!isa<ConstantSDNode>(N))
1141    return false;
1142
1143  Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
1144  if (N->getValueType(0) == MVT::i32)
1145    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
1146  else
1147    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
1148}
1149static bool isIntS16Immediate(SDValue Op, short &Imm) {
1150  return isIntS16Immediate(Op.getNode(), Imm);
1151}
1152
1153
1154/// SelectAddressRegReg - Given the specified addressed, check to see if it
1155/// can be represented as an indexed [r+r] operation.  Returns false if it
1156/// can be more efficiently represented with [r+imm].
1157bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
1158                                            SDValue &Index,
1159                                            SelectionDAG &DAG) const {
1160  short imm = 0;
1161  if (N.getOpcode() == ISD::ADD) {
1162    if (isIntS16Immediate(N.getOperand(1), imm))
1163      return false;    // r+i
1164    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
1165      return false;    // r+i
1166
1167    Base = N.getOperand(0);
1168    Index = N.getOperand(1);
1169    return true;
1170  } else if (N.getOpcode() == ISD::OR) {
1171    if (isIntS16Immediate(N.getOperand(1), imm))
1172      return false;    // r+i can fold it if we can.
1173
1174    // If this is an or of disjoint bitfields, we can codegen this as an add
1175    // (for better address arithmetic) if the LHS and RHS of the OR are provably
1176    // disjoint.
1177    APInt LHSKnownZero, LHSKnownOne;
1178    APInt RHSKnownZero, RHSKnownOne;
1179    DAG.computeKnownBits(N.getOperand(0),
1180                         LHSKnownZero, LHSKnownOne);
1181
1182    if (LHSKnownZero.getBoolValue()) {
1183      DAG.computeKnownBits(N.getOperand(1),
1184                           RHSKnownZero, RHSKnownOne);
1185      // If all of the bits are known zero on the LHS or RHS, the add won't
1186      // carry.
1187      if (~(LHSKnownZero | RHSKnownZero) == 0) {
1188        Base = N.getOperand(0);
1189        Index = N.getOperand(1);
1190        return true;
1191      }
1192    }
1193  }
1194
1195  return false;
1196}
1197
1198// If we happen to be doing an i64 load or store into a stack slot that has
1199// less than a 4-byte alignment, then the frame-index elimination may need to
1200// use an indexed load or store instruction (because the offset may not be a
1201// multiple of 4). The extra register needed to hold the offset comes from the
1202// register scavenger, and it is possible that the scavenger will need to use
1203// an emergency spill slot. As a result, we need to make sure that a spill slot
1204// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
1205// stack slot.
1206static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
1207  // FIXME: This does not handle the LWA case.
1208  if (VT != MVT::i64)
1209    return;
1210
1211  // NOTE: We'll exclude negative FIs here, which come from argument
1212  // lowering, because there are no known test cases triggering this problem
1213  // using packed structures (or similar). We can remove this exclusion if
1214  // we find such a test case. The reason why this is so test-case driven is
1215  // because this entire 'fixup' is only to prevent crashes (from the
1216  // register scavenger) on not-really-valid inputs. For example, if we have:
1217  //   %a = alloca i1
1218  //   %b = bitcast i1* %a to i64*
1219  //   store i64* a, i64 b
1220  // then the store should really be marked as 'align 1', but is not. If it
1221  // were marked as 'align 1' then the indexed form would have been
1222  // instruction-selected initially, and the problem this 'fixup' is preventing
1223  // won't happen regardless.
1224  if (FrameIdx < 0)
1225    return;
1226
1227  MachineFunction &MF = DAG.getMachineFunction();
1228  MachineFrameInfo *MFI = MF.getFrameInfo();
1229
1230  unsigned Align = MFI->getObjectAlignment(FrameIdx);
1231  if (Align >= 4)
1232    return;
1233
1234  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1235  FuncInfo->setHasNonRISpills();
1236}
1237
1238/// Returns true if the address N can be represented by a base register plus
1239/// a signed 16-bit displacement [r+imm], and if it is not better
1240/// represented as reg+reg.  If Aligned is true, only accept displacements
1241/// suitable for STD and friends, i.e. multiples of 4.
1242bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1243                                            SDValue &Base,
1244                                            SelectionDAG &DAG,
1245                                            bool Aligned) const {
1246  // FIXME dl should come from parent load or store, not from address
1247  SDLoc dl(N);
1248  // If this can be more profitably realized as r+r, fail.
1249  if (SelectAddressRegReg(N, Disp, Base, DAG))
1250    return false;
1251
1252  if (N.getOpcode() == ISD::ADD) {
1253    short imm = 0;
1254    if (isIntS16Immediate(N.getOperand(1), imm) &&
1255        (!Aligned || (imm & 3) == 0)) {
1256      Disp = DAG.getTargetConstant(imm, N.getValueType());
1257      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1258        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1259        fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1260      } else {
1261        Base = N.getOperand(0);
1262      }
1263      return true; // [r+i]
1264    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1265      // Match LOAD (ADD (X, Lo(G))).
1266      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1267             && "Cannot handle constant offsets yet!");
1268      Disp = N.getOperand(1).getOperand(0);  // The global address.
1269      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1270             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1271             Disp.getOpcode() == ISD::TargetConstantPool ||
1272             Disp.getOpcode() == ISD::TargetJumpTable);
1273      Base = N.getOperand(0);
1274      return true;  // [&g+r]
1275    }
1276  } else if (N.getOpcode() == ISD::OR) {
1277    short imm = 0;
1278    if (isIntS16Immediate(N.getOperand(1), imm) &&
1279        (!Aligned || (imm & 3) == 0)) {
1280      // If this is an or of disjoint bitfields, we can codegen this as an add
1281      // (for better address arithmetic) if the LHS and RHS of the OR are
1282      // provably disjoint.
1283      APInt LHSKnownZero, LHSKnownOne;
1284      DAG.computeKnownBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1285
1286      if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1287        // If all of the bits are known zero on the LHS or RHS, the add won't
1288        // carry.
1289        Base = N.getOperand(0);
1290        Disp = DAG.getTargetConstant(imm, N.getValueType());
1291        return true;
1292      }
1293    }
1294  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1295    // Loading from a constant address.
1296
1297    // If this address fits entirely in a 16-bit sext immediate field, codegen
1298    // this as "d, 0"
1299    short Imm;
1300    if (isIntS16Immediate(CN, Imm) && (!Aligned || (Imm & 3) == 0)) {
1301      Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1302      Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1303                             CN->getValueType(0));
1304      return true;
1305    }
1306
1307    // Handle 32-bit sext immediates with LIS + addr mode.
1308    if ((CN->getValueType(0) == MVT::i32 ||
1309         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
1310        (!Aligned || (CN->getZExtValue() & 3) == 0)) {
1311      int Addr = (int)CN->getZExtValue();
1312
1313      // Otherwise, break this down into an LIS + disp.
1314      Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1315
1316      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1317      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1318      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1319      return true;
1320    }
1321  }
1322
1323  Disp = DAG.getTargetConstant(0, getPointerTy());
1324  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
1325    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1326    fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
1327  } else
1328    Base = N;
1329  return true;      // [r+0]
1330}
1331
1332/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1333/// represented as an indexed [r+r] operation.
1334bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1335                                                SDValue &Index,
1336                                                SelectionDAG &DAG) const {
1337  // Check to see if we can easily represent this as an [r+r] address.  This
1338  // will fail if it thinks that the address is more profitably represented as
1339  // reg+imm, e.g. where imm = 0.
1340  if (SelectAddressRegReg(N, Base, Index, DAG))
1341    return true;
1342
1343  // If the operand is an addition, always emit this as [r+r], since this is
1344  // better (for code size, and execution, as the memop does the add for free)
1345  // than emitting an explicit add.
1346  if (N.getOpcode() == ISD::ADD) {
1347    Base = N.getOperand(0);
1348    Index = N.getOperand(1);
1349    return true;
1350  }
1351
1352  // Otherwise, do it the hard way, using R0 as the base register.
1353  Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1354                         N.getValueType());
1355  Index = N;
1356  return true;
1357}
1358
1359/// getPreIndexedAddressParts - returns true by value, base pointer and
1360/// offset pointer and addressing mode by reference if the node's address
1361/// can be legally represented as pre-indexed load / store address.
1362bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1363                                                  SDValue &Offset,
1364                                                  ISD::MemIndexedMode &AM,
1365                                                  SelectionDAG &DAG) const {
1366  if (DisablePPCPreinc) return false;
1367
1368  bool isLoad = true;
1369  SDValue Ptr;
1370  EVT VT;
1371  unsigned Alignment;
1372  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1373    Ptr = LD->getBasePtr();
1374    VT = LD->getMemoryVT();
1375    Alignment = LD->getAlignment();
1376  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1377    Ptr = ST->getBasePtr();
1378    VT  = ST->getMemoryVT();
1379    Alignment = ST->getAlignment();
1380    isLoad = false;
1381  } else
1382    return false;
1383
1384  // PowerPC doesn't have preinc load/store instructions for vectors.
1385  if (VT.isVector())
1386    return false;
1387
1388  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1389
1390    // Common code will reject creating a pre-inc form if the base pointer
1391    // is a frame index, or if N is a store and the base pointer is either
1392    // the same as or a predecessor of the value being stored.  Check for
1393    // those situations here, and try with swapped Base/Offset instead.
1394    bool Swap = false;
1395
1396    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1397      Swap = true;
1398    else if (!isLoad) {
1399      SDValue Val = cast<StoreSDNode>(N)->getValue();
1400      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1401        Swap = true;
1402    }
1403
1404    if (Swap)
1405      std::swap(Base, Offset);
1406
1407    AM = ISD::PRE_INC;
1408    return true;
1409  }
1410
1411  // LDU/STU can only handle immediates that are a multiple of 4.
1412  if (VT != MVT::i64) {
1413    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, false))
1414      return false;
1415  } else {
1416    // LDU/STU need an address with at least 4-byte alignment.
1417    if (Alignment < 4)
1418      return false;
1419
1420    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, true))
1421      return false;
1422  }
1423
1424  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1425    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1426    // sext i32 to i64 when addr mode is r+i.
1427    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1428        LD->getExtensionType() == ISD::SEXTLOAD &&
1429        isa<ConstantSDNode>(Offset))
1430      return false;
1431  }
1432
1433  AM = ISD::PRE_INC;
1434  return true;
1435}
1436
1437//===----------------------------------------------------------------------===//
1438//  LowerOperation implementation
1439//===----------------------------------------------------------------------===//
1440
1441/// GetLabelAccessInfo - Return true if we should reference labels using a
1442/// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1443static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1444                               unsigned &LoOpFlags,
1445                               const GlobalValue *GV = nullptr) {
1446  HiOpFlags = PPCII::MO_HA;
1447  LoOpFlags = PPCII::MO_LO;
1448
1449  // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1450  // non-darwin platform.  We don't support PIC on other platforms yet.
1451  bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1452               TM.getSubtarget<PPCSubtarget>().isDarwin();
1453  if (isPIC) {
1454    HiOpFlags |= PPCII::MO_PIC_FLAG;
1455    LoOpFlags |= PPCII::MO_PIC_FLAG;
1456  }
1457
1458  // If this is a reference to a global value that requires a non-lazy-ptr, make
1459  // sure that instruction lowering adds it.
1460  if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1461    HiOpFlags |= PPCII::MO_NLP_FLAG;
1462    LoOpFlags |= PPCII::MO_NLP_FLAG;
1463
1464    if (GV->hasHiddenVisibility()) {
1465      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1466      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1467    }
1468  }
1469
1470  return isPIC;
1471}
1472
1473static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1474                             SelectionDAG &DAG) {
1475  EVT PtrVT = HiPart.getValueType();
1476  SDValue Zero = DAG.getConstant(0, PtrVT);
1477  SDLoc DL(HiPart);
1478
1479  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1480  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1481
1482  // With PIC, the first instruction is actually "GR+hi(&G)".
1483  if (isPIC)
1484    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1485                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1486
1487  // Generate non-pic code that has direct accesses to the constant pool.
1488  // The address of the global is just (hi(&g)+lo(&g)).
1489  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1490}
1491
1492SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1493                                             SelectionDAG &DAG) const {
1494  EVT PtrVT = Op.getValueType();
1495  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1496  const Constant *C = CP->getConstVal();
1497
1498  // 64-bit SVR4 ABI code is always position-independent.
1499  // The actual address of the GlobalValue is stored in the TOC.
1500  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1501    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1502    return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(CP), MVT::i64, GA,
1503                       DAG.getRegister(PPC::X2, MVT::i64));
1504  }
1505
1506  unsigned MOHiFlag, MOLoFlag;
1507  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1508  SDValue CPIHi =
1509    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1510  SDValue CPILo =
1511    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1512  return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1513}
1514
1515SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1516  EVT PtrVT = Op.getValueType();
1517  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1518
1519  // 64-bit SVR4 ABI code is always position-independent.
1520  // The actual address of the GlobalValue is stored in the TOC.
1521  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1522    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1523    return DAG.getNode(PPCISD::TOC_ENTRY, SDLoc(JT), MVT::i64, GA,
1524                       DAG.getRegister(PPC::X2, MVT::i64));
1525  }
1526
1527  unsigned MOHiFlag, MOLoFlag;
1528  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1529  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1530  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1531  return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1532}
1533
1534SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1535                                             SelectionDAG &DAG) const {
1536  EVT PtrVT = Op.getValueType();
1537
1538  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1539
1540  unsigned MOHiFlag, MOLoFlag;
1541  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1542  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1543  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1544  return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1545}
1546
1547SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1548                                              SelectionDAG &DAG) const {
1549
1550  // FIXME: TLS addresses currently use medium model code sequences,
1551  // which is the most useful form.  Eventually support for small and
1552  // large models could be added if users need it, at the cost of
1553  // additional complexity.
1554  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1555  SDLoc dl(GA);
1556  const GlobalValue *GV = GA->getGlobal();
1557  EVT PtrVT = getPointerTy();
1558  bool is64bit = PPCSubTarget.isPPC64();
1559
1560  TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1561
1562  if (Model == TLSModel::LocalExec) {
1563    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1564                                               PPCII::MO_TPREL_HA);
1565    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1566                                               PPCII::MO_TPREL_LO);
1567    SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1568                                     is64bit ? MVT::i64 : MVT::i32);
1569    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1570    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1571  }
1572
1573  if (Model == TLSModel::InitialExec) {
1574    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1575    SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1576                                                PPCII::MO_TLS);
1577    SDValue GOTPtr;
1578    if (is64bit) {
1579      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1580      GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1581                           PtrVT, GOTReg, TGA);
1582    } else
1583      GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
1584    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1585                                   PtrVT, TGA, GOTPtr);
1586    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
1587  }
1588
1589  if (Model == TLSModel::GeneralDynamic) {
1590    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1591    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1592    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1593                                     GOTReg, TGA);
1594    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1595                                   GOTEntryHi, TGA);
1596
1597    // We need a chain node, and don't have one handy.  The underlying
1598    // call has no side effects, so using the function entry node
1599    // suffices.
1600    SDValue Chain = DAG.getEntryNode();
1601    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1602    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1603    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1604                                  PtrVT, ParmReg, TGA);
1605    // The return value from GET_TLS_ADDR really is in X3 already, but
1606    // some hacks are needed here to tie everything together.  The extra
1607    // copies dissolve during subsequent transforms.
1608    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1609    return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1610  }
1611
1612  if (Model == TLSModel::LocalDynamic) {
1613    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1614    SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1615    SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1616                                     GOTReg, TGA);
1617    SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1618                                   GOTEntryHi, TGA);
1619
1620    // We need a chain node, and don't have one handy.  The underlying
1621    // call has no side effects, so using the function entry node
1622    // suffices.
1623    SDValue Chain = DAG.getEntryNode();
1624    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1625    SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1626    SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1627                                  PtrVT, ParmReg, TGA);
1628    // The return value from GET_TLSLD_ADDR really is in X3 already, but
1629    // some hacks are needed here to tie everything together.  The extra
1630    // copies dissolve during subsequent transforms.
1631    Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1632    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1633                                      Chain, ParmReg, TGA);
1634    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1635  }
1636
1637  llvm_unreachable("Unknown TLS model!");
1638}
1639
1640SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1641                                              SelectionDAG &DAG) const {
1642  EVT PtrVT = Op.getValueType();
1643  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1644  SDLoc DL(GSDN);
1645  const GlobalValue *GV = GSDN->getGlobal();
1646
1647  // 64-bit SVR4 ABI code is always position-independent.
1648  // The actual address of the GlobalValue is stored in the TOC.
1649  if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1650    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1651    return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1652                       DAG.getRegister(PPC::X2, MVT::i64));
1653  }
1654
1655  unsigned MOHiFlag, MOLoFlag;
1656  bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1657
1658  SDValue GAHi =
1659    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1660  SDValue GALo =
1661    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1662
1663  SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1664
1665  // If the global reference is actually to a non-lazy-pointer, we have to do an
1666  // extra load to get the address of the global.
1667  if (MOHiFlag & PPCII::MO_NLP_FLAG)
1668    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1669                      false, false, false, 0);
1670  return Ptr;
1671}
1672
1673SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1674  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1675  SDLoc dl(Op);
1676
1677  if (Op.getValueType() == MVT::v2i64) {
1678    // When the operands themselves are v2i64 values, we need to do something
1679    // special because VSX has no underlying comparison operations for these.
1680    if (Op.getOperand(0).getValueType() == MVT::v2i64) {
1681      // Equality can be handled by casting to the legal type for Altivec
1682      // comparisons, everything else needs to be expanded.
1683      if (CC == ISD::SETEQ || CC == ISD::SETNE) {
1684        return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
1685                 DAG.getSetCC(dl, MVT::v4i32,
1686                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
1687                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
1688                   CC));
1689      }
1690
1691      return SDValue();
1692    }
1693
1694    // We handle most of these in the usual way.
1695    return Op;
1696  }
1697
1698  // If we're comparing for equality to zero, expose the fact that this is
1699  // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1700  // fold the new nodes.
1701  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1702    if (C->isNullValue() && CC == ISD::SETEQ) {
1703      EVT VT = Op.getOperand(0).getValueType();
1704      SDValue Zext = Op.getOperand(0);
1705      if (VT.bitsLT(MVT::i32)) {
1706        VT = MVT::i32;
1707        Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1708      }
1709      unsigned Log2b = Log2_32(VT.getSizeInBits());
1710      SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1711      SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1712                                DAG.getConstant(Log2b, MVT::i32));
1713      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1714    }
1715    // Leave comparisons against 0 and -1 alone for now, since they're usually
1716    // optimized.  FIXME: revisit this when we can custom lower all setcc
1717    // optimizations.
1718    if (C->isAllOnesValue() || C->isNullValue())
1719      return SDValue();
1720  }
1721
1722  // If we have an integer seteq/setne, turn it into a compare against zero
1723  // by xor'ing the rhs with the lhs, which is faster than setting a
1724  // condition register, reading it back out, and masking the correct bit.  The
1725  // normal approach here uses sub to do this instead of xor.  Using xor exposes
1726  // the result to other bit-twiddling opportunities.
1727  EVT LHSVT = Op.getOperand(0).getValueType();
1728  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1729    EVT VT = Op.getValueType();
1730    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1731                                Op.getOperand(1));
1732    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1733  }
1734  return SDValue();
1735}
1736
1737SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1738                                      const PPCSubtarget &Subtarget) const {
1739  SDNode *Node = Op.getNode();
1740  EVT VT = Node->getValueType(0);
1741  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1742  SDValue InChain = Node->getOperand(0);
1743  SDValue VAListPtr = Node->getOperand(1);
1744  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1745  SDLoc dl(Node);
1746
1747  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1748
1749  // gpr_index
1750  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1751                                    VAListPtr, MachinePointerInfo(SV), MVT::i8,
1752                                    false, false, 0);
1753  InChain = GprIndex.getValue(1);
1754
1755  if (VT == MVT::i64) {
1756    // Check if GprIndex is even
1757    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1758                                 DAG.getConstant(1, MVT::i32));
1759    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1760                                DAG.getConstant(0, MVT::i32), ISD::SETNE);
1761    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1762                                          DAG.getConstant(1, MVT::i32));
1763    // Align GprIndex to be even if it isn't
1764    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1765                           GprIndex);
1766  }
1767
1768  // fpr index is 1 byte after gpr
1769  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1770                               DAG.getConstant(1, MVT::i32));
1771
1772  // fpr
1773  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1774                                    FprPtr, MachinePointerInfo(SV), MVT::i8,
1775                                    false, false, 0);
1776  InChain = FprIndex.getValue(1);
1777
1778  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1779                                       DAG.getConstant(8, MVT::i32));
1780
1781  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1782                                        DAG.getConstant(4, MVT::i32));
1783
1784  // areas
1785  SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1786                                     MachinePointerInfo(), false, false,
1787                                     false, 0);
1788  InChain = OverflowArea.getValue(1);
1789
1790  SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1791                                    MachinePointerInfo(), false, false,
1792                                    false, 0);
1793  InChain = RegSaveArea.getValue(1);
1794
1795  // select overflow_area if index > 8
1796  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1797                            DAG.getConstant(8, MVT::i32), ISD::SETLT);
1798
1799  // adjustment constant gpr_index * 4/8
1800  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1801                                    VT.isInteger() ? GprIndex : FprIndex,
1802                                    DAG.getConstant(VT.isInteger() ? 4 : 8,
1803                                                    MVT::i32));
1804
1805  // OurReg = RegSaveArea + RegConstant
1806  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1807                               RegConstant);
1808
1809  // Floating types are 32 bytes into RegSaveArea
1810  if (VT.isFloatingPoint())
1811    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1812                         DAG.getConstant(32, MVT::i32));
1813
1814  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1815  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1816                                   VT.isInteger() ? GprIndex : FprIndex,
1817                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1818                                                   MVT::i32));
1819
1820  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1821                              VT.isInteger() ? VAListPtr : FprPtr,
1822                              MachinePointerInfo(SV),
1823                              MVT::i8, false, false, 0);
1824
1825  // determine if we should load from reg_save_area or overflow_area
1826  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1827
1828  // increase overflow_area by 4/8 if gpr/fpr > 8
1829  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1830                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
1831                                          MVT::i32));
1832
1833  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1834                             OverflowAreaPlusN);
1835
1836  InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1837                              OverflowAreaPtr,
1838                              MachinePointerInfo(),
1839                              MVT::i32, false, false, 0);
1840
1841  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1842                     false, false, false, 0);
1843}
1844
1845SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG,
1846                                       const PPCSubtarget &Subtarget) const {
1847  assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
1848
1849  // We have to copy the entire va_list struct:
1850  // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
1851  return DAG.getMemcpy(Op.getOperand(0), Op,
1852                       Op.getOperand(1), Op.getOperand(2),
1853                       DAG.getConstant(12, MVT::i32), 8, false, true,
1854                       MachinePointerInfo(), MachinePointerInfo());
1855}
1856
1857SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1858                                                  SelectionDAG &DAG) const {
1859  return Op.getOperand(0);
1860}
1861
1862SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1863                                                SelectionDAG &DAG) const {
1864  SDValue Chain = Op.getOperand(0);
1865  SDValue Trmp = Op.getOperand(1); // trampoline
1866  SDValue FPtr = Op.getOperand(2); // nested function
1867  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1868  SDLoc dl(Op);
1869
1870  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1871  bool isPPC64 = (PtrVT == MVT::i64);
1872  Type *IntPtrTy =
1873    DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1874                                                             *DAG.getContext());
1875
1876  TargetLowering::ArgListTy Args;
1877  TargetLowering::ArgListEntry Entry;
1878
1879  Entry.Ty = IntPtrTy;
1880  Entry.Node = Trmp; Args.push_back(Entry);
1881
1882  // TrampSize == (isPPC64 ? 48 : 40);
1883  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1884                               isPPC64 ? MVT::i64 : MVT::i32);
1885  Args.push_back(Entry);
1886
1887  Entry.Node = FPtr; Args.push_back(Entry);
1888  Entry.Node = Nest; Args.push_back(Entry);
1889
1890  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1891  TargetLowering::CallLoweringInfo CLI(DAG);
1892  CLI.setDebugLoc(dl).setChain(Chain)
1893    .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
1894               DAG.getExternalSymbol("__trampoline_setup", PtrVT), &Args, 0);
1895
1896  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1897  return CallResult.second;
1898}
1899
1900SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1901                                        const PPCSubtarget &Subtarget) const {
1902  MachineFunction &MF = DAG.getMachineFunction();
1903  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1904
1905  SDLoc dl(Op);
1906
1907  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1908    // vastart just stores the address of the VarArgsFrameIndex slot into the
1909    // memory location argument.
1910    EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1911    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1912    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1913    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1914                        MachinePointerInfo(SV),
1915                        false, false, 0);
1916  }
1917
1918  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1919  // We suppose the given va_list is already allocated.
1920  //
1921  // typedef struct {
1922  //  char gpr;     /* index into the array of 8 GPRs
1923  //                 * stored in the register save area
1924  //                 * gpr=0 corresponds to r3,
1925  //                 * gpr=1 to r4, etc.
1926  //                 */
1927  //  char fpr;     /* index into the array of 8 FPRs
1928  //                 * stored in the register save area
1929  //                 * fpr=0 corresponds to f1,
1930  //                 * fpr=1 to f2, etc.
1931  //                 */
1932  //  char *overflow_arg_area;
1933  //                /* location on stack that holds
1934  //                 * the next overflow argument
1935  //                 */
1936  //  char *reg_save_area;
1937  //               /* where r3:r10 and f1:f8 (if saved)
1938  //                * are stored
1939  //                */
1940  // } va_list[1];
1941
1942
1943  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1944  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1945
1946
1947  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1948
1949  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1950                                            PtrVT);
1951  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1952                                 PtrVT);
1953
1954  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1955  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1956
1957  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1958  SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1959
1960  uint64_t FPROffset = 1;
1961  SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1962
1963  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1964
1965  // Store first byte : number of int regs
1966  SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1967                                         Op.getOperand(1),
1968                                         MachinePointerInfo(SV),
1969                                         MVT::i8, false, false, 0);
1970  uint64_t nextOffset = FPROffset;
1971  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1972                                  ConstFPROffset);
1973
1974  // Store second byte : number of float regs
1975  SDValue secondStore =
1976    DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1977                      MachinePointerInfo(SV, nextOffset), MVT::i8,
1978                      false, false, 0);
1979  nextOffset += StackOffset;
1980  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1981
1982  // Store second word : arguments given on stack
1983  SDValue thirdStore =
1984    DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1985                 MachinePointerInfo(SV, nextOffset),
1986                 false, false, 0);
1987  nextOffset += FrameOffset;
1988  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1989
1990  // Store third word : arguments given in registers
1991  return DAG.getStore(thirdStore, dl, FR, nextPtr,
1992                      MachinePointerInfo(SV, nextOffset),
1993                      false, false, 0);
1994
1995}
1996
1997#include "PPCGenCallingConv.inc"
1998
1999// Function whose sole purpose is to kill compiler warnings
2000// stemming from unused functions included from PPCGenCallingConv.inc.
2001CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
2002  return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
2003}
2004
2005bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
2006                                      CCValAssign::LocInfo &LocInfo,
2007                                      ISD::ArgFlagsTy &ArgFlags,
2008                                      CCState &State) {
2009  return true;
2010}
2011
2012bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
2013                                             MVT &LocVT,
2014                                             CCValAssign::LocInfo &LocInfo,
2015                                             ISD::ArgFlagsTy &ArgFlags,
2016                                             CCState &State) {
2017  static const MCPhysReg ArgRegs[] = {
2018    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2019    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2020  };
2021  const unsigned NumArgRegs = array_lengthof(ArgRegs);
2022
2023  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
2024
2025  // Skip one register if the first unallocated register has an even register
2026  // number and there are still argument registers available which have not been
2027  // allocated yet. RegNum is actually an index into ArgRegs, which means we
2028  // need to skip a register if RegNum is odd.
2029  if (RegNum != NumArgRegs && RegNum % 2 == 1) {
2030    State.AllocateReg(ArgRegs[RegNum]);
2031  }
2032
2033  // Always return false here, as this function only makes sure that the first
2034  // unallocated register has an odd register number and does not actually
2035  // allocate a register for the current argument.
2036  return false;
2037}
2038
2039bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
2040                                               MVT &LocVT,
2041                                               CCValAssign::LocInfo &LocInfo,
2042                                               ISD::ArgFlagsTy &ArgFlags,
2043                                               CCState &State) {
2044  static const MCPhysReg ArgRegs[] = {
2045    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2046    PPC::F8
2047  };
2048
2049  const unsigned NumArgRegs = array_lengthof(ArgRegs);
2050
2051  unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
2052
2053  // If there is only one Floating-point register left we need to put both f64
2054  // values of a split ppc_fp128 value on the stack.
2055  if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
2056    State.AllocateReg(ArgRegs[RegNum]);
2057  }
2058
2059  // Always return false here, as this function only makes sure that the two f64
2060  // values a ppc_fp128 value is split into are both passed in registers or both
2061  // passed on the stack and does not actually allocate a register for the
2062  // current argument.
2063  return false;
2064}
2065
2066/// GetFPR - Get the set of FP registers that should be allocated for arguments,
2067/// on Darwin.
2068static const MCPhysReg *GetFPR() {
2069  static const MCPhysReg FPR[] = {
2070    PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2071    PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
2072  };
2073
2074  return FPR;
2075}
2076
2077/// CalculateStackSlotSize - Calculates the size reserved for this argument on
2078/// the stack.
2079static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
2080                                       unsigned PtrByteSize) {
2081  unsigned ArgSize = ArgVT.getStoreSize();
2082  if (Flags.isByVal())
2083    ArgSize = Flags.getByValSize();
2084  ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2085
2086  return ArgSize;
2087}
2088
2089SDValue
2090PPCTargetLowering::LowerFormalArguments(SDValue Chain,
2091                                        CallingConv::ID CallConv, bool isVarArg,
2092                                        const SmallVectorImpl<ISD::InputArg>
2093                                          &Ins,
2094                                        SDLoc dl, SelectionDAG &DAG,
2095                                        SmallVectorImpl<SDValue> &InVals)
2096                                          const {
2097  if (PPCSubTarget.isSVR4ABI()) {
2098    if (PPCSubTarget.isPPC64())
2099      return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
2100                                         dl, DAG, InVals);
2101    else
2102      return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
2103                                         dl, DAG, InVals);
2104  } else {
2105    return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
2106                                       dl, DAG, InVals);
2107  }
2108}
2109
2110SDValue
2111PPCTargetLowering::LowerFormalArguments_32SVR4(
2112                                      SDValue Chain,
2113                                      CallingConv::ID CallConv, bool isVarArg,
2114                                      const SmallVectorImpl<ISD::InputArg>
2115                                        &Ins,
2116                                      SDLoc dl, SelectionDAG &DAG,
2117                                      SmallVectorImpl<SDValue> &InVals) const {
2118
2119  // 32-bit SVR4 ABI Stack Frame Layout:
2120  //              +-----------------------------------+
2121  //        +-->  |            Back chain             |
2122  //        |     +-----------------------------------+
2123  //        |     | Floating-point register save area |
2124  //        |     +-----------------------------------+
2125  //        |     |    General register save area     |
2126  //        |     +-----------------------------------+
2127  //        |     |          CR save word             |
2128  //        |     +-----------------------------------+
2129  //        |     |         VRSAVE save word          |
2130  //        |     +-----------------------------------+
2131  //        |     |         Alignment padding         |
2132  //        |     +-----------------------------------+
2133  //        |     |     Vector register save area     |
2134  //        |     +-----------------------------------+
2135  //        |     |       Local variable space        |
2136  //        |     +-----------------------------------+
2137  //        |     |        Parameter list area        |
2138  //        |     +-----------------------------------+
2139  //        |     |           LR save word            |
2140  //        |     +-----------------------------------+
2141  // SP-->  +---  |            Back chain             |
2142  //              +-----------------------------------+
2143  //
2144  // Specifications:
2145  //   System V Application Binary Interface PowerPC Processor Supplement
2146  //   AltiVec Technology Programming Interface Manual
2147
2148  MachineFunction &MF = DAG.getMachineFunction();
2149  MachineFrameInfo *MFI = MF.getFrameInfo();
2150  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2151
2152  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2153  // Potential tail calls could cause overwriting of argument stack slots.
2154  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2155                       (CallConv == CallingConv::Fast));
2156  unsigned PtrByteSize = 4;
2157
2158  // Assign locations to all of the incoming arguments.
2159  SmallVector<CCValAssign, 16> ArgLocs;
2160  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2161                 getTargetMachine(), ArgLocs, *DAG.getContext());
2162
2163  // Reserve space for the linkage area on the stack.
2164  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2165
2166  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
2167
2168  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2169    CCValAssign &VA = ArgLocs[i];
2170
2171    // Arguments stored in registers.
2172    if (VA.isRegLoc()) {
2173      const TargetRegisterClass *RC;
2174      EVT ValVT = VA.getValVT();
2175
2176      switch (ValVT.getSimpleVT().SimpleTy) {
2177        default:
2178          llvm_unreachable("ValVT not supported by formal arguments Lowering");
2179        case MVT::i1:
2180        case MVT::i32:
2181          RC = &PPC::GPRCRegClass;
2182          break;
2183        case MVT::f32:
2184          RC = &PPC::F4RCRegClass;
2185          break;
2186        case MVT::f64:
2187          if (PPCSubTarget.hasVSX())
2188            RC = &PPC::VSFRCRegClass;
2189          else
2190            RC = &PPC::F8RCRegClass;
2191          break;
2192        case MVT::v16i8:
2193        case MVT::v8i16:
2194        case MVT::v4i32:
2195        case MVT::v4f32:
2196          RC = &PPC::VRRCRegClass;
2197          break;
2198        case MVT::v2f64:
2199        case MVT::v2i64:
2200          RC = &PPC::VSHRCRegClass;
2201          break;
2202      }
2203
2204      // Transform the arguments stored in physical registers into virtual ones.
2205      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2206      SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
2207                                            ValVT == MVT::i1 ? MVT::i32 : ValVT);
2208
2209      if (ValVT == MVT::i1)
2210        ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
2211
2212      InVals.push_back(ArgValue);
2213    } else {
2214      // Argument stored in memory.
2215      assert(VA.isMemLoc());
2216
2217      unsigned ArgSize = VA.getLocVT().getStoreSize();
2218      int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2219                                      isImmutable);
2220
2221      // Create load nodes to retrieve arguments from the stack.
2222      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2223      InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2224                                   MachinePointerInfo(),
2225                                   false, false, false, 0));
2226    }
2227  }
2228
2229  // Assign locations to all of the incoming aggregate by value arguments.
2230  // Aggregates passed by value are stored in the local variable space of the
2231  // caller's stack frame, right above the parameter list area.
2232  SmallVector<CCValAssign, 16> ByValArgLocs;
2233  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2234                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
2235
2236  // Reserve stack space for the allocations in CCInfo.
2237  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2238
2239  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2240
2241  // Area that is at least reserved in the caller of this function.
2242  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2243
2244  // Set the size that is at least reserved in caller of this function.  Tail
2245  // call optimized function's reserved stack space needs to be aligned so that
2246  // taking the difference between two stack areas will result in an aligned
2247  // stack.
2248  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2249
2250  MinReservedArea =
2251    std::max(MinReservedArea,
2252             PPCFrameLowering::getMinCallFrameSize(false, false));
2253
2254  unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2255    getStackAlignment();
2256  unsigned AlignMask = TargetAlign-1;
2257  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2258
2259  FI->setMinReservedArea(MinReservedArea);
2260
2261  SmallVector<SDValue, 8> MemOps;
2262
2263  // If the function takes variable number of arguments, make a frame index for
2264  // the start of the first vararg value... for expansion of llvm.va_start.
2265  if (isVarArg) {
2266    static const MCPhysReg GPArgRegs[] = {
2267      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2268      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2269    };
2270    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2271
2272    static const MCPhysReg FPArgRegs[] = {
2273      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2274      PPC::F8
2275    };
2276    const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2277
2278    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2279                                                          NumGPArgRegs));
2280    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2281                                                          NumFPArgRegs));
2282
2283    // Make room for NumGPArgRegs and NumFPArgRegs.
2284    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2285                NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2286
2287    FuncInfo->setVarArgsStackOffset(
2288      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2289                             CCInfo.getNextStackOffset(), true));
2290
2291    FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2292    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2293
2294    // The fixed integer arguments of a variadic function are stored to the
2295    // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2296    // the result of va_next.
2297    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2298      // Get an existing live-in vreg, or add a new one.
2299      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2300      if (!VReg)
2301        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2302
2303      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2304      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2305                                   MachinePointerInfo(), false, false, 0);
2306      MemOps.push_back(Store);
2307      // Increment the address by four for the next argument to store
2308      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2309      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2310    }
2311
2312    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2313    // is set.
2314    // The double arguments are stored to the VarArgsFrameIndex
2315    // on the stack.
2316    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2317      // Get an existing live-in vreg, or add a new one.
2318      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2319      if (!VReg)
2320        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2321
2322      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2323      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2324                                   MachinePointerInfo(), false, false, 0);
2325      MemOps.push_back(Store);
2326      // Increment the address by eight for the next argument to store
2327      SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2328                                         PtrVT);
2329      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2330    }
2331  }
2332
2333  if (!MemOps.empty())
2334    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2335
2336  return Chain;
2337}
2338
2339// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2340// value to MVT::i64 and then truncate to the correct register size.
2341SDValue
2342PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2343                                     SelectionDAG &DAG, SDValue ArgVal,
2344                                     SDLoc dl) const {
2345  if (Flags.isSExt())
2346    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2347                         DAG.getValueType(ObjectVT));
2348  else if (Flags.isZExt())
2349    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2350                         DAG.getValueType(ObjectVT));
2351
2352  return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
2353}
2354
2355// Set the size that is at least reserved in caller of this function.  Tail
2356// call optimized functions' reserved stack space needs to be aligned so that
2357// taking the difference between two stack areas will result in an aligned
2358// stack.
2359void
2360PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2361                                      unsigned nAltivecParamsAtEnd,
2362                                      unsigned MinReservedArea,
2363                                      bool isPPC64) const {
2364  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2365  // Add the Altivec parameters at the end, if needed.
2366  if (nAltivecParamsAtEnd) {
2367    MinReservedArea = ((MinReservedArea+15)/16)*16;
2368    MinReservedArea += 16*nAltivecParamsAtEnd;
2369  }
2370  MinReservedArea =
2371    std::max(MinReservedArea,
2372             PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2373  unsigned TargetAlign
2374    = DAG.getMachineFunction().getTarget().getFrameLowering()->
2375        getStackAlignment();
2376  unsigned AlignMask = TargetAlign-1;
2377  MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2378  FI->setMinReservedArea(MinReservedArea);
2379}
2380
2381SDValue
2382PPCTargetLowering::LowerFormalArguments_64SVR4(
2383                                      SDValue Chain,
2384                                      CallingConv::ID CallConv, bool isVarArg,
2385                                      const SmallVectorImpl<ISD::InputArg>
2386                                        &Ins,
2387                                      SDLoc dl, SelectionDAG &DAG,
2388                                      SmallVectorImpl<SDValue> &InVals) const {
2389  // TODO: add description of PPC stack frame format, or at least some docs.
2390  //
2391  MachineFunction &MF = DAG.getMachineFunction();
2392  MachineFrameInfo *MFI = MF.getFrameInfo();
2393  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2394
2395  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2396  // Potential tail calls could cause overwriting of argument stack slots.
2397  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2398                       (CallConv == CallingConv::Fast));
2399  unsigned PtrByteSize = 8;
2400
2401  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2402  // Area that is at least reserved in caller of this function.
2403  unsigned MinReservedArea = ArgOffset;
2404
2405  static const MCPhysReg GPR[] = {
2406    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2407    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2408  };
2409
2410  static const MCPhysReg *FPR = GetFPR();
2411
2412  static const MCPhysReg VR[] = {
2413    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2414    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2415  };
2416  static const MCPhysReg VSRH[] = {
2417    PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
2418    PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
2419  };
2420
2421  const unsigned Num_GPR_Regs = array_lengthof(GPR);
2422  const unsigned Num_FPR_Regs = 13;
2423  const unsigned Num_VR_Regs  = array_lengthof(VR);
2424
2425  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2426
2427  // Add DAG nodes to load the arguments or copy them out of registers.  On
2428  // entry to a function on PPC, the arguments start after the linkage area,
2429  // although the first ones are often in registers.
2430
2431  SmallVector<SDValue, 8> MemOps;
2432  unsigned nAltivecParamsAtEnd = 0;
2433  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2434  unsigned CurArgIdx = 0;
2435  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2436    SDValue ArgVal;
2437    bool needsLoad = false;
2438    EVT ObjectVT = Ins[ArgNo].VT;
2439    unsigned ObjSize = ObjectVT.getStoreSize();
2440    unsigned ArgSize = ObjSize;
2441    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2442    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2443    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2444
2445    unsigned CurArgOffset = ArgOffset;
2446
2447    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2448    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2449        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8 ||
2450        ObjectVT==MVT::v2f64 || ObjectVT==MVT::v2i64) {
2451      if (isVarArg) {
2452        MinReservedArea = ((MinReservedArea+15)/16)*16;
2453        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2454                                                  Flags,
2455                                                  PtrByteSize);
2456      } else
2457        nAltivecParamsAtEnd++;
2458    } else
2459      // Calculate min reserved area.
2460      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2461                                                Flags,
2462                                                PtrByteSize);
2463
2464    // FIXME the codegen can be much improved in some cases.
2465    // We do not have to keep everything in memory.
2466    if (Flags.isByVal()) {
2467      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2468      ObjSize = Flags.getByValSize();
2469      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2470      // Empty aggregate parameters do not take up registers.  Examples:
2471      //   struct { } a;
2472      //   union  { } b;
2473      //   int c[0];
2474      // etc.  However, we have to provide a place-holder in InVals, so
2475      // pretend we have an 8-byte item at the current address for that
2476      // purpose.
2477      if (!ObjSize) {
2478        int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2479        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2480        InVals.push_back(FIN);
2481        continue;
2482      }
2483
2484      unsigned BVAlign = Flags.getByValAlign();
2485      if (BVAlign > 8) {
2486        ArgOffset = ((ArgOffset+BVAlign-1)/BVAlign)*BVAlign;
2487        CurArgOffset = ArgOffset;
2488      }
2489
2490      // All aggregates smaller than 8 bytes must be passed right-justified.
2491      if (ObjSize < PtrByteSize)
2492        CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2493      // The value of the object is its address.
2494      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2495      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2496      InVals.push_back(FIN);
2497
2498      if (ObjSize < 8) {
2499        if (GPR_idx != Num_GPR_Regs) {
2500          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2501          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2502          SDValue Store;
2503
2504          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2505            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2506                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
2507            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2508                                      MachinePointerInfo(FuncArg),
2509                                      ObjType, false, false, 0);
2510          } else {
2511            // For sizes that don't fit a truncating store (3, 5, 6, 7),
2512            // store the whole register as-is to the parameter save area
2513            // slot.  The address of the parameter was already calculated
2514            // above (InVals.push_back(FIN)) to be the right-justified
2515            // offset within the slot.  For this store, we need a new
2516            // frame index that points at the beginning of the slot.
2517            int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2518            SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2519            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2520                                 MachinePointerInfo(FuncArg),
2521                                 false, false, 0);
2522          }
2523
2524          MemOps.push_back(Store);
2525          ++GPR_idx;
2526        }
2527        // Whether we copied from a register or not, advance the offset
2528        // into the parameter save area by a full doubleword.
2529        ArgOffset += PtrByteSize;
2530        continue;
2531      }
2532
2533      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2534        // Store whatever pieces of the object are in registers
2535        // to memory.  ArgOffset will be the address of the beginning
2536        // of the object.
2537        if (GPR_idx != Num_GPR_Regs) {
2538          unsigned VReg;
2539          VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2540          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2541          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2542          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2543          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2544                                       MachinePointerInfo(FuncArg, j),
2545                                       false, false, 0);
2546          MemOps.push_back(Store);
2547          ++GPR_idx;
2548          ArgOffset += PtrByteSize;
2549        } else {
2550          ArgOffset += ArgSize - j;
2551          break;
2552        }
2553      }
2554      continue;
2555    }
2556
2557    switch (ObjectVT.getSimpleVT().SimpleTy) {
2558    default: llvm_unreachable("Unhandled argument type!");
2559    case MVT::i1:
2560    case MVT::i32:
2561    case MVT::i64:
2562      if (GPR_idx != Num_GPR_Regs) {
2563        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2564        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2565
2566        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
2567          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2568          // value to MVT::i64 and then truncate to the correct register size.
2569          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2570
2571        ++GPR_idx;
2572      } else {
2573        needsLoad = true;
2574        ArgSize = PtrByteSize;
2575      }
2576      ArgOffset += 8;
2577      break;
2578
2579    case MVT::f32:
2580    case MVT::f64:
2581      // Every 8 bytes of argument space consumes one of the GPRs available for
2582      // argument passing.
2583      if (GPR_idx != Num_GPR_Regs) {
2584        ++GPR_idx;
2585      }
2586      if (FPR_idx != Num_FPR_Regs) {
2587        unsigned VReg;
2588
2589        if (ObjectVT == MVT::f32)
2590          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2591        else
2592          VReg = MF.addLiveIn(FPR[FPR_idx], PPCSubTarget.hasVSX() ?
2593                                            &PPC::VSFRCRegClass :
2594                                            &PPC::F8RCRegClass);
2595
2596        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2597        ++FPR_idx;
2598      } else {
2599        needsLoad = true;
2600        ArgSize = PtrByteSize;
2601      }
2602
2603      ArgOffset += 8;
2604      break;
2605    case MVT::v4f32:
2606    case MVT::v4i32:
2607    case MVT::v8i16:
2608    case MVT::v16i8:
2609    case MVT::v2f64:
2610    case MVT::v2i64:
2611      // Note that vector arguments in registers don't reserve stack space,
2612      // except in varargs functions.
2613      if (VR_idx != Num_VR_Regs) {
2614        unsigned VReg = (ObjectVT == MVT::v2f64 || ObjectVT == MVT::v2i64) ?
2615                        MF.addLiveIn(VSRH[VR_idx], &PPC::VSHRCRegClass) :
2616                        MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2617        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2618        if (isVarArg) {
2619          while ((ArgOffset % 16) != 0) {
2620            ArgOffset += PtrByteSize;
2621            if (GPR_idx != Num_GPR_Regs)
2622              GPR_idx++;
2623          }
2624          ArgOffset += 16;
2625          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2626        }
2627        ++VR_idx;
2628      } else {
2629        // Vectors are aligned.
2630        ArgOffset = ((ArgOffset+15)/16)*16;
2631        CurArgOffset = ArgOffset;
2632        ArgOffset += 16;
2633        needsLoad = true;
2634      }
2635      break;
2636    }
2637
2638    // We need to load the argument to a virtual register if we determined
2639    // above that we ran out of physical registers of the appropriate type.
2640    if (needsLoad) {
2641      int FI = MFI->CreateFixedObject(ObjSize,
2642                                      CurArgOffset + (ArgSize - ObjSize),
2643                                      isImmutable);
2644      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2645      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2646                           false, false, false, 0);
2647    }
2648
2649    InVals.push_back(ArgVal);
2650  }
2651
2652  // Set the size that is at least reserved in caller of this function.  Tail
2653  // call optimized functions' reserved stack space needs to be aligned so that
2654  // taking the difference between two stack areas will result in an aligned
2655  // stack.
2656  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2657
2658  // If the function takes variable number of arguments, make a frame index for
2659  // the start of the first vararg value... for expansion of llvm.va_start.
2660  if (isVarArg) {
2661    int Depth = ArgOffset;
2662
2663    FuncInfo->setVarArgsFrameIndex(
2664      MFI->CreateFixedObject(PtrByteSize, Depth, true));
2665    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2666
2667    // If this function is vararg, store any remaining integer argument regs
2668    // to their spots on the stack so that they may be loaded by deferencing the
2669    // result of va_next.
2670    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2671      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2672      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2673      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2674                                   MachinePointerInfo(), false, false, 0);
2675      MemOps.push_back(Store);
2676      // Increment the address by four for the next argument to store
2677      SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2678      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2679    }
2680  }
2681
2682  if (!MemOps.empty())
2683    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
2684
2685  return Chain;
2686}
2687
2688SDValue
2689PPCTargetLowering::LowerFormalArguments_Darwin(
2690                                      SDValue Chain,
2691                                      CallingConv::ID CallConv, bool isVarArg,
2692                                      const SmallVectorImpl<ISD::InputArg>
2693                                        &Ins,
2694                                      SDLoc dl, SelectionDAG &DAG,
2695                                      SmallVectorImpl<SDValue> &InVals) const {
2696  // TODO: add description of PPC stack frame format, or at least some docs.
2697  //
2698  MachineFunction &MF = DAG.getMachineFunction();
2699  MachineFrameInfo *MFI = MF.getFrameInfo();
2700  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2701
2702  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2703  bool isPPC64 = PtrVT == MVT::i64;
2704  // Potential tail calls could cause overwriting of argument stack slots.
2705  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2706                       (CallConv == CallingConv::Fast));
2707  unsigned PtrByteSize = isPPC64 ? 8 : 4;
2708
2709  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2710  // Area that is at least reserved in caller of this function.
2711  unsigned MinReservedArea = ArgOffset;
2712
2713  static const MCPhysReg GPR_32[] = {           // 32-bit registers.
2714    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2715    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2716  };
2717  static const MCPhysReg GPR_64[] = {           // 64-bit registers.
2718    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2719    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2720  };
2721
2722  static const MCPhysReg *FPR = GetFPR();
2723
2724  static const MCPhysReg VR[] = {
2725    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2726    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2727  };
2728
2729  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2730  const unsigned Num_FPR_Regs = 13;
2731  const unsigned Num_VR_Regs  = array_lengthof( VR);
2732
2733  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2734
2735  const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
2736
2737  // In 32-bit non-varargs functions, the stack space for vectors is after the
2738  // stack space for non-vectors.  We do not use this space unless we have
2739  // too many vectors to fit in registers, something that only occurs in
2740  // constructed examples:), but we have to walk the arglist to figure
2741  // that out...for the pathological case, compute VecArgOffset as the
2742  // start of the vector parameter area.  Computing VecArgOffset is the
2743  // entire point of the following loop.
2744  unsigned VecArgOffset = ArgOffset;
2745  if (!isVarArg && !isPPC64) {
2746    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2747         ++ArgNo) {
2748      EVT ObjectVT = Ins[ArgNo].VT;
2749      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2750
2751      if (Flags.isByVal()) {
2752        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2753        unsigned ObjSize = Flags.getByValSize();
2754        unsigned ArgSize =
2755                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2756        VecArgOffset += ArgSize;
2757        continue;
2758      }
2759
2760      switch(ObjectVT.getSimpleVT().SimpleTy) {
2761      default: llvm_unreachable("Unhandled argument type!");
2762      case MVT::i1:
2763      case MVT::i32:
2764      case MVT::f32:
2765        VecArgOffset += 4;
2766        break;
2767      case MVT::i64:  // PPC64
2768      case MVT::f64:
2769        // FIXME: We are guaranteed to be !isPPC64 at this point.
2770        // Does MVT::i64 apply?
2771        VecArgOffset += 8;
2772        break;
2773      case MVT::v4f32:
2774      case MVT::v4i32:
2775      case MVT::v8i16:
2776      case MVT::v16i8:
2777        // Nothing to do, we're only looking at Nonvector args here.
2778        break;
2779      }
2780    }
2781  }
2782  // We've found where the vector parameter area in memory is.  Skip the
2783  // first 12 parameters; these don't use that memory.
2784  VecArgOffset = ((VecArgOffset+15)/16)*16;
2785  VecArgOffset += 12*16;
2786
2787  // Add DAG nodes to load the arguments or copy them out of registers.  On
2788  // entry to a function on PPC, the arguments start after the linkage area,
2789  // although the first ones are often in registers.
2790
2791  SmallVector<SDValue, 8> MemOps;
2792  unsigned nAltivecParamsAtEnd = 0;
2793  Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2794  unsigned CurArgIdx = 0;
2795  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2796    SDValue ArgVal;
2797    bool needsLoad = false;
2798    EVT ObjectVT = Ins[ArgNo].VT;
2799    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2800    unsigned ArgSize = ObjSize;
2801    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2802    std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2803    CurArgIdx = Ins[ArgNo].OrigArgIndex;
2804
2805    unsigned CurArgOffset = ArgOffset;
2806
2807    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2808    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2809        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2810      if (isVarArg || isPPC64) {
2811        MinReservedArea = ((MinReservedArea+15)/16)*16;
2812        MinReservedArea += CalculateStackSlotSize(ObjectVT,
2813                                                  Flags,
2814                                                  PtrByteSize);
2815      } else  nAltivecParamsAtEnd++;
2816    } else
2817      // Calculate min reserved area.
2818      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2819                                                Flags,
2820                                                PtrByteSize);
2821
2822    // FIXME the codegen can be much improved in some cases.
2823    // We do not have to keep everything in memory.
2824    if (Flags.isByVal()) {
2825      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2826      ObjSize = Flags.getByValSize();
2827      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2828      // Objects of size 1 and 2 are right justified, everything else is
2829      // left justified.  This means the memory address is adjusted forwards.
2830      if (ObjSize==1 || ObjSize==2) {
2831        CurArgOffset = CurArgOffset + (4 - ObjSize);
2832      }
2833      // The value of the object is its address.
2834      int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2835      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2836      InVals.push_back(FIN);
2837      if (ObjSize==1 || ObjSize==2) {
2838        if (GPR_idx != Num_GPR_Regs) {
2839          unsigned VReg;
2840          if (isPPC64)
2841            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2842          else
2843            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2844          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2845          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2846          SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2847                                            MachinePointerInfo(FuncArg),
2848                                            ObjType, false, false, 0);
2849          MemOps.push_back(Store);
2850          ++GPR_idx;
2851        }
2852
2853        ArgOffset += PtrByteSize;
2854
2855        continue;
2856      }
2857      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2858        // Store whatever pieces of the object are in registers
2859        // to memory.  ArgOffset will be the address of the beginning
2860        // of the object.
2861        if (GPR_idx != Num_GPR_Regs) {
2862          unsigned VReg;
2863          if (isPPC64)
2864            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2865          else
2866            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2867          int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2868          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2869          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2870          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2871                                       MachinePointerInfo(FuncArg, j),
2872                                       false, false, 0);
2873          MemOps.push_back(Store);
2874          ++GPR_idx;
2875          ArgOffset += PtrByteSize;
2876        } else {
2877          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2878          break;
2879        }
2880      }
2881      continue;
2882    }
2883
2884    switch (ObjectVT.getSimpleVT().SimpleTy) {
2885    default: llvm_unreachable("Unhandled argument type!");
2886    case MVT::i1:
2887    case MVT::i32:
2888      if (!isPPC64) {
2889        if (GPR_idx != Num_GPR_Regs) {
2890          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2891          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2892
2893          if (ObjectVT == MVT::i1)
2894            ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
2895
2896          ++GPR_idx;
2897        } else {
2898          needsLoad = true;
2899          ArgSize = PtrByteSize;
2900        }
2901        // All int arguments reserve stack space in the Darwin ABI.
2902        ArgOffset += PtrByteSize;
2903        break;
2904      }
2905      // FALLTHROUGH
2906    case MVT::i64:  // PPC64
2907      if (GPR_idx != Num_GPR_Regs) {
2908        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2909        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2910
2911        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
2912          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2913          // value to MVT::i64 and then truncate to the correct register size.
2914          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2915
2916        ++GPR_idx;
2917      } else {
2918        needsLoad = true;
2919        ArgSize = PtrByteSize;
2920      }
2921      // All int arguments reserve stack space in the Darwin ABI.
2922      ArgOffset += 8;
2923      break;
2924
2925    case MVT::f32:
2926    case MVT::f64:
2927      // Every 4 bytes of argument space consumes one of the GPRs available for
2928      // argument passing.
2929      if (GPR_idx != Num_GPR_Regs) {
2930        ++GPR_idx;
2931        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2932          ++GPR_idx;
2933      }
2934      if (FPR_idx != Num_FPR_Regs) {
2935        unsigned VReg;
2936
2937        if (ObjectVT == MVT::f32)
2938          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2939        else
2940          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2941
2942        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2943        ++FPR_idx;
2944      } else {
2945        needsLoad = true;
2946      }
2947
2948      // All FP arguments reserve stack space in the Darwin ABI.
2949      ArgOffset += isPPC64 ? 8 : ObjSize;
2950      break;
2951    case MVT::v4f32:
2952    case MVT::v4i32:
2953    case MVT::v8i16:
2954    case MVT::v16i8:
2955      // Note that vector arguments in registers don't reserve stack space,
2956      // except in varargs functions.
2957      if (VR_idx != Num_VR_Regs) {
2958        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2959        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2960        if (isVarArg) {
2961          while ((ArgOffset % 16) != 0) {
2962            ArgOffset += PtrByteSize;
2963            if (GPR_idx != Num_GPR_Regs)
2964              GPR_idx++;
2965          }
2966          ArgOffset += 16;
2967          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2968        }
2969        ++VR_idx;
2970      } else {
2971        if (!isVarArg && !isPPC64) {
2972          // Vectors go after all the nonvectors.
2973          CurArgOffset = VecArgOffset;
2974          VecArgOffset += 16;
2975        } else {
2976          // Vectors are aligned.
2977          ArgOffset = ((ArgOffset+15)/16)*16;
2978          CurArgOffset = ArgOffset;
2979          ArgOffset += 16;
2980        }
2981        needsLoad = true;
2982      }
2983      break;
2984    }
2985
2986    // We need to load the argument to a virtual register if we determined above
2987    // that we ran out of physical registers of the appropriate type.
2988    if (needsLoad) {
2989      int FI = MFI->CreateFixedObject(ObjSize,
2990                                      CurArgOffset + (ArgSize - ObjSize),
2991                                      isImmutable);
2992      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2993      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2994                           false, false, false, 0);
2995    }
2996
2997    InVals.push_back(ArgVal);
2998  }
2999
3000  // Set the size that is at least reserved in caller of this function.  Tail
3001  // call optimized functions' reserved stack space needs to be aligned so that
3002  // taking the difference between two stack areas will result in an aligned
3003  // stack.
3004  setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
3005
3006  // If the function takes variable number of arguments, make a frame index for
3007  // the start of the first vararg value... for expansion of llvm.va_start.
3008  if (isVarArg) {
3009    int Depth = ArgOffset;
3010
3011    FuncInfo->setVarArgsFrameIndex(
3012      MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
3013                             Depth, true));
3014    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3015
3016    // If this function is vararg, store any remaining integer argument regs
3017    // to their spots on the stack so that they may be loaded by deferencing the
3018    // result of va_next.
3019    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
3020      unsigned VReg;
3021
3022      if (isPPC64)
3023        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3024      else
3025        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
3026
3027      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3028      SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3029                                   MachinePointerInfo(), false, false, 0);
3030      MemOps.push_back(Store);
3031      // Increment the address by four for the next argument to store
3032      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
3033      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3034    }
3035  }
3036
3037  if (!MemOps.empty())
3038    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3039
3040  return Chain;
3041}
3042
3043/// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
3044/// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
3045static unsigned
3046CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
3047                                     bool isPPC64,
3048                                     bool isVarArg,
3049                                     unsigned CC,
3050                                     const SmallVectorImpl<ISD::OutputArg>
3051                                       &Outs,
3052                                     const SmallVectorImpl<SDValue> &OutVals,
3053                                     unsigned &nAltivecParamsAtEnd) {
3054  // Count how many bytes are to be pushed on the stack, including the linkage
3055  // area, and parameter passing area.  We start with 24/48 bytes, which is
3056  // prereserved space for [SP][CR][LR][3 x unused].
3057  unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
3058  unsigned NumOps = Outs.size();
3059  unsigned PtrByteSize = isPPC64 ? 8 : 4;
3060
3061  // Add up all the space actually used.
3062  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
3063  // they all go in registers, but we must reserve stack space for them for
3064  // possible use by the caller.  In varargs or 64-bit calls, parameters are
3065  // assigned stack space in order, with padding so Altivec parameters are
3066  // 16-byte aligned.
3067  nAltivecParamsAtEnd = 0;
3068  for (unsigned i = 0; i != NumOps; ++i) {
3069    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3070    EVT ArgVT = Outs[i].VT;
3071    // Varargs Altivec parameters are padded to a 16 byte boundary.
3072    if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
3073        ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8 ||
3074        ArgVT==MVT::v2f64 || ArgVT==MVT::v2i64) {
3075      if (!isVarArg && !isPPC64) {
3076        // Non-varargs Altivec parameters go after all the non-Altivec
3077        // parameters; handle those later so we know how much padding we need.
3078        nAltivecParamsAtEnd++;
3079        continue;
3080      }
3081      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
3082      NumBytes = ((NumBytes+15)/16)*16;
3083    }
3084    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3085  }
3086
3087   // Allow for Altivec parameters at the end, if needed.
3088  if (nAltivecParamsAtEnd) {
3089    NumBytes = ((NumBytes+15)/16)*16;
3090    NumBytes += 16*nAltivecParamsAtEnd;
3091  }
3092
3093  // The prolog code of the callee may store up to 8 GPR argument registers to
3094  // the stack, allowing va_start to index over them in memory if its varargs.
3095  // Because we cannot tell if this is needed on the caller side, we have to
3096  // conservatively assume that it is needed.  As such, make sure we have at
3097  // least enough stack space for the caller to store the 8 GPRs.
3098  NumBytes = std::max(NumBytes,
3099                      PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
3100
3101  // Tail call needs the stack to be aligned.
3102  if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
3103    unsigned TargetAlign = DAG.getMachineFunction().getTarget().
3104      getFrameLowering()->getStackAlignment();
3105    unsigned AlignMask = TargetAlign-1;
3106    NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3107  }
3108
3109  return NumBytes;
3110}
3111
3112/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
3113/// adjusted to accommodate the arguments for the tailcall.
3114static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
3115                                   unsigned ParamSize) {
3116
3117  if (!isTailCall) return 0;
3118
3119  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
3120  unsigned CallerMinReservedArea = FI->getMinReservedArea();
3121  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
3122  // Remember only if the new adjustement is bigger.
3123  if (SPDiff < FI->getTailCallSPDelta())
3124    FI->setTailCallSPDelta(SPDiff);
3125
3126  return SPDiff;
3127}
3128
3129/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3130/// for tail call optimization. Targets which want to do tail call
3131/// optimization should implement this function.
3132bool
3133PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
3134                                                     CallingConv::ID CalleeCC,
3135                                                     bool isVarArg,
3136                                      const SmallVectorImpl<ISD::InputArg> &Ins,
3137                                                     SelectionDAG& DAG) const {
3138  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
3139    return false;
3140
3141  // Variable argument functions are not supported.
3142  if (isVarArg)
3143    return false;
3144
3145  MachineFunction &MF = DAG.getMachineFunction();
3146  CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
3147  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
3148    // Functions containing by val parameters are not supported.
3149    for (unsigned i = 0; i != Ins.size(); i++) {
3150       ISD::ArgFlagsTy Flags = Ins[i].Flags;
3151       if (Flags.isByVal()) return false;
3152    }
3153
3154    // Non-PIC/GOT tail calls are supported.
3155    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
3156      return true;
3157
3158    // At the moment we can only do local tail calls (in same module, hidden
3159    // or protected) if we are generating PIC.
3160    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3161      return G->getGlobal()->hasHiddenVisibility()
3162          || G->getGlobal()->hasProtectedVisibility();
3163  }
3164
3165  return false;
3166}
3167
3168/// isCallCompatibleAddress - Return the immediate to use if the specified
3169/// 32-bit value is representable in the immediate field of a BxA instruction.
3170static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
3171  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3172  if (!C) return nullptr;
3173
3174  int Addr = C->getZExtValue();
3175  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
3176      SignExtend32<26>(Addr) != Addr)
3177    return nullptr;  // Top 6 bits have to be sext of immediate.
3178
3179  return DAG.getConstant((int)C->getZExtValue() >> 2,
3180                         DAG.getTargetLoweringInfo().getPointerTy()).getNode();
3181}
3182
3183namespace {
3184
3185struct TailCallArgumentInfo {
3186  SDValue Arg;
3187  SDValue FrameIdxOp;
3188  int       FrameIdx;
3189
3190  TailCallArgumentInfo() : FrameIdx(0) {}
3191};
3192
3193}
3194
3195/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
3196static void
3197StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
3198                                           SDValue Chain,
3199                   const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
3200                   SmallVectorImpl<SDValue> &MemOpChains,
3201                   SDLoc dl) {
3202  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
3203    SDValue Arg = TailCallArgs[i].Arg;
3204    SDValue FIN = TailCallArgs[i].FrameIdxOp;
3205    int FI = TailCallArgs[i].FrameIdx;
3206    // Store relative to framepointer.
3207    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
3208                                       MachinePointerInfo::getFixedStack(FI),
3209                                       false, false, 0));
3210  }
3211}
3212
3213/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
3214/// the appropriate stack slot for the tail call optimized function call.
3215static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
3216                                               MachineFunction &MF,
3217                                               SDValue Chain,
3218                                               SDValue OldRetAddr,
3219                                               SDValue OldFP,
3220                                               int SPDiff,
3221                                               bool isPPC64,
3222                                               bool isDarwinABI,
3223                                               SDLoc dl) {
3224  if (SPDiff) {
3225    // Calculate the new stack slot for the return address.
3226    int SlotSize = isPPC64 ? 8 : 4;
3227    int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
3228                                                                   isDarwinABI);
3229    int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3230                                                          NewRetAddrLoc, true);
3231    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3232    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3233    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3234                         MachinePointerInfo::getFixedStack(NewRetAddr),
3235                         false, false, 0);
3236
3237    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3238    // slot as the FP is never overwritten.
3239    if (isDarwinABI) {
3240      int NewFPLoc =
3241        SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
3242      int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3243                                                          true);
3244      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3245      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
3246                           MachinePointerInfo::getFixedStack(NewFPIdx),
3247                           false, false, 0);
3248    }
3249  }
3250  return Chain;
3251}
3252
3253/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3254/// the position of the argument.
3255static void
3256CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3257                         SDValue Arg, int SPDiff, unsigned ArgOffset,
3258                     SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
3259  int Offset = ArgOffset + SPDiff;
3260  uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3261  int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3262  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3263  SDValue FIN = DAG.getFrameIndex(FI, VT);
3264  TailCallArgumentInfo Info;
3265  Info.Arg = Arg;
3266  Info.FrameIdxOp = FIN;
3267  Info.FrameIdx = FI;
3268  TailCallArguments.push_back(Info);
3269}
3270
3271/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3272/// stack slot. Returns the chain as result and the loaded frame pointers in
3273/// LROpOut/FPOpout. Used when tail calling.
3274SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3275                                                        int SPDiff,
3276                                                        SDValue Chain,
3277                                                        SDValue &LROpOut,
3278                                                        SDValue &FPOpOut,
3279                                                        bool isDarwinABI,
3280                                                        SDLoc dl) const {
3281  if (SPDiff) {
3282    // Load the LR and FP stack slot for later adjusting.
3283    EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
3284    LROpOut = getReturnAddrFrameIndex(DAG);
3285    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3286                          false, false, false, 0);
3287    Chain = SDValue(LROpOut.getNode(), 1);
3288
3289    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3290    // slot as the FP is never overwritten.
3291    if (isDarwinABI) {
3292      FPOpOut = getFramePointerFrameIndex(DAG);
3293      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3294                            false, false, false, 0);
3295      Chain = SDValue(FPOpOut.getNode(), 1);
3296    }
3297  }
3298  return Chain;
3299}
3300
3301/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3302/// by "Src" to address "Dst" of size "Size".  Alignment information is
3303/// specified by the specific parameter attribute. The copy will be passed as
3304/// a byval function parameter.
3305/// Sometimes what we are copying is the end of a larger object, the part that
3306/// does not fit in registers.
3307static SDValue
3308CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3309                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3310                          SDLoc dl) {
3311  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3312  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3313                       false, false, MachinePointerInfo(),
3314                       MachinePointerInfo());
3315}
3316
3317/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3318/// tail calls.
3319static void
3320LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3321                 SDValue Arg, SDValue PtrOff, int SPDiff,
3322                 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3323                 bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
3324                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments,
3325                 SDLoc dl) {
3326  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3327  if (!isTailCall) {
3328    if (isVector) {
3329      SDValue StackPtr;
3330      if (isPPC64)
3331        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3332      else
3333        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3334      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3335                           DAG.getConstant(ArgOffset, PtrVT));
3336    }
3337    MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3338                                       MachinePointerInfo(), false, false, 0));
3339  // Calculate and remember argument location.
3340  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3341                                  TailCallArguments);
3342}
3343
3344static
3345void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3346                     SDLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3347                     SDValue LROp, SDValue FPOp, bool isDarwinABI,
3348                     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
3349  MachineFunction &MF = DAG.getMachineFunction();
3350
3351  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3352  // might overwrite each other in case of tail call optimization.
3353  SmallVector<SDValue, 8> MemOpChains2;
3354  // Do not flag preceding copytoreg stuff together with the following stuff.
3355  InFlag = SDValue();
3356  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3357                                    MemOpChains2, dl);
3358  if (!MemOpChains2.empty())
3359    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
3360
3361  // Store the return address to the appropriate stack slot.
3362  Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3363                                        isPPC64, isDarwinABI, dl);
3364
3365  // Emit callseq_end just before tailcall node.
3366  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3367                             DAG.getIntPtrConstant(0, true), InFlag, dl);
3368  InFlag = Chain.getValue(1);
3369}
3370
3371static
3372unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3373                     SDValue &Chain, SDLoc dl, int SPDiff, bool isTailCall,
3374                     SmallVectorImpl<std::pair<unsigned, SDValue> > &RegsToPass,
3375                     SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
3376                     const PPCSubtarget &PPCSubTarget) {
3377
3378  bool isPPC64 = PPCSubTarget.isPPC64();
3379  bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3380
3381  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3382  NodeTys.push_back(MVT::Other);   // Returns a chain
3383  NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
3384
3385  unsigned CallOpc = PPCISD::CALL;
3386
3387  bool needIndirectCall = true;
3388  if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3389    // If this is an absolute destination address, use the munged value.
3390    Callee = SDValue(Dest, 0);
3391    needIndirectCall = false;
3392  }
3393
3394  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3395    // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3396    // Use indirect calls for ALL functions calls in JIT mode, since the
3397    // far-call stubs may be outside relocation limits for a BL instruction.
3398    if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3399      unsigned OpFlags = 0;
3400      if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3401          (PPCSubTarget.getTargetTriple().isMacOSX() &&
3402           PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3403          (G->getGlobal()->isDeclaration() ||
3404           G->getGlobal()->isWeakForLinker())) {
3405        // PC-relative references to external symbols should go through $stub,
3406        // unless we're building with the leopard linker or later, which
3407        // automatically synthesizes these stubs.
3408        OpFlags = PPCII::MO_DARWIN_STUB;
3409      }
3410
3411      // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3412      // every direct call is) turn it into a TargetGlobalAddress /
3413      // TargetExternalSymbol node so that legalize doesn't hack it.
3414      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3415                                          Callee.getValueType(),
3416                                          0, OpFlags);
3417      needIndirectCall = false;
3418    }
3419  }
3420
3421  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3422    unsigned char OpFlags = 0;
3423
3424    if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3425        (PPCSubTarget.getTargetTriple().isMacOSX() &&
3426         PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3427      // PC-relative references to external symbols should go through $stub,
3428      // unless we're building with the leopard linker or later, which
3429      // automatically synthesizes these stubs.
3430      OpFlags = PPCII::MO_DARWIN_STUB;
3431    }
3432
3433    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3434                                         OpFlags);
3435    needIndirectCall = false;
3436  }
3437
3438  if (needIndirectCall) {
3439    // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
3440    // to do the call, we can't use PPCISD::CALL.
3441    SDValue MTCTROps[] = {Chain, Callee, InFlag};
3442
3443    if (isSVR4ABI && isPPC64) {
3444      // Function pointers in the 64-bit SVR4 ABI do not point to the function
3445      // entry point, but to the function descriptor (the function entry point
3446      // address is part of the function descriptor though).
3447      // The function descriptor is a three doubleword structure with the
3448      // following fields: function entry point, TOC base address and
3449      // environment pointer.
3450      // Thus for a call through a function pointer, the following actions need
3451      // to be performed:
3452      //   1. Save the TOC of the caller in the TOC save area of its stack
3453      //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3454      //   2. Load the address of the function entry point from the function
3455      //      descriptor.
3456      //   3. Load the TOC of the callee from the function descriptor into r2.
3457      //   4. Load the environment pointer from the function descriptor into
3458      //      r11.
3459      //   5. Branch to the function entry point address.
3460      //   6. On return of the callee, the TOC of the caller needs to be
3461      //      restored (this is done in FinishCall()).
3462      //
3463      // All those operations are flagged together to ensure that no other
3464      // operations can be scheduled in between. E.g. without flagging the
3465      // operations together, a TOC access in the caller could be scheduled
3466      // between the load of the callee TOC and the branch to the callee, which
3467      // results in the TOC access going through the TOC of the callee instead
3468      // of going through the TOC of the caller, which leads to incorrect code.
3469
3470      // Load the address of the function entry point from the function
3471      // descriptor.
3472      SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3473      SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs,
3474                              makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
3475      Chain = LoadFuncPtr.getValue(1);
3476      InFlag = LoadFuncPtr.getValue(2);
3477
3478      // Load environment pointer into r11.
3479      // Offset of the environment pointer within the function descriptor.
3480      SDValue PtrOff = DAG.getIntPtrConstant(16);
3481
3482      SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3483      SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3484                                       InFlag);
3485      Chain = LoadEnvPtr.getValue(1);
3486      InFlag = LoadEnvPtr.getValue(2);
3487
3488      SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3489                                        InFlag);
3490      Chain = EnvVal.getValue(0);
3491      InFlag = EnvVal.getValue(1);
3492
3493      // Load TOC of the callee into r2. We are using a target-specific load
3494      // with r2 hard coded, because the result of a target-independent load
3495      // would never go directly into r2, since r2 is a reserved register (which
3496      // prevents the register allocator from allocating it), resulting in an
3497      // additional register being allocated and an unnecessary move instruction
3498      // being generated.
3499      VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3500      SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3501                                       Callee, InFlag);
3502      Chain = LoadTOCPtr.getValue(0);
3503      InFlag = LoadTOCPtr.getValue(1);
3504
3505      MTCTROps[0] = Chain;
3506      MTCTROps[1] = LoadFuncPtr;
3507      MTCTROps[2] = InFlag;
3508    }
3509
3510    Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
3511                        makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
3512    InFlag = Chain.getValue(1);
3513
3514    NodeTys.clear();
3515    NodeTys.push_back(MVT::Other);
3516    NodeTys.push_back(MVT::Glue);
3517    Ops.push_back(Chain);
3518    CallOpc = PPCISD::BCTRL;
3519    Callee.setNode(nullptr);
3520    // Add use of X11 (holding environment pointer)
3521    if (isSVR4ABI && isPPC64)
3522      Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
3523    // Add CTR register as callee so a bctr can be emitted later.
3524    if (isTailCall)
3525      Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3526  }
3527
3528  // If this is a direct call, pass the chain and the callee.
3529  if (Callee.getNode()) {
3530    Ops.push_back(Chain);
3531    Ops.push_back(Callee);
3532  }
3533  // If this is a tail call add stack pointer delta.
3534  if (isTailCall)
3535    Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3536
3537  // Add argument registers to the end of the list so that they are known live
3538  // into the call.
3539  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3540    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3541                                  RegsToPass[i].second.getValueType()));
3542
3543  return CallOpc;
3544}
3545
3546static
3547bool isLocalCall(const SDValue &Callee)
3548{
3549  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3550    return !G->getGlobal()->isDeclaration() &&
3551           !G->getGlobal()->isWeakForLinker();
3552  return false;
3553}
3554
3555SDValue
3556PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3557                                   CallingConv::ID CallConv, bool isVarArg,
3558                                   const SmallVectorImpl<ISD::InputArg> &Ins,
3559                                   SDLoc dl, SelectionDAG &DAG,
3560                                   SmallVectorImpl<SDValue> &InVals) const {
3561
3562  SmallVector<CCValAssign, 16> RVLocs;
3563  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3564                    getTargetMachine(), RVLocs, *DAG.getContext());
3565  CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3566
3567  // Copy all of the result registers out of their specified physreg.
3568  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3569    CCValAssign &VA = RVLocs[i];
3570    assert(VA.isRegLoc() && "Can only return in registers!");
3571
3572    SDValue Val = DAG.getCopyFromReg(Chain, dl,
3573                                     VA.getLocReg(), VA.getLocVT(), InFlag);
3574    Chain = Val.getValue(1);
3575    InFlag = Val.getValue(2);
3576
3577    switch (VA.getLocInfo()) {
3578    default: llvm_unreachable("Unknown loc info!");
3579    case CCValAssign::Full: break;
3580    case CCValAssign::AExt:
3581      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3582      break;
3583    case CCValAssign::ZExt:
3584      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3585                        DAG.getValueType(VA.getValVT()));
3586      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3587      break;
3588    case CCValAssign::SExt:
3589      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3590                        DAG.getValueType(VA.getValVT()));
3591      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3592      break;
3593    }
3594
3595    InVals.push_back(Val);
3596  }
3597
3598  return Chain;
3599}
3600
3601SDValue
3602PPCTargetLowering::FinishCall(CallingConv::ID CallConv, SDLoc dl,
3603                              bool isTailCall, bool isVarArg,
3604                              SelectionDAG &DAG,
3605                              SmallVector<std::pair<unsigned, SDValue>, 8>
3606                                &RegsToPass,
3607                              SDValue InFlag, SDValue Chain,
3608                              SDValue &Callee,
3609                              int SPDiff, unsigned NumBytes,
3610                              const SmallVectorImpl<ISD::InputArg> &Ins,
3611                              SmallVectorImpl<SDValue> &InVals) const {
3612  std::vector<EVT> NodeTys;
3613  SmallVector<SDValue, 8> Ops;
3614  unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3615                                 isTailCall, RegsToPass, Ops, NodeTys,
3616                                 PPCSubTarget);
3617
3618  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3619  if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3620    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3621
3622  // When performing tail call optimization the callee pops its arguments off
3623  // the stack. Account for this here so these bytes can be pushed back on in
3624  // PPCFrameLowering::eliminateCallFramePseudoInstr.
3625  int BytesCalleePops =
3626    (CallConv == CallingConv::Fast &&
3627     getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3628
3629  // Add a register mask operand representing the call-preserved registers.
3630  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3631  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3632  assert(Mask && "Missing call preserved mask for calling convention");
3633  Ops.push_back(DAG.getRegisterMask(Mask));
3634
3635  if (InFlag.getNode())
3636    Ops.push_back(InFlag);
3637
3638  // Emit tail call.
3639  if (isTailCall) {
3640    assert(((Callee.getOpcode() == ISD::Register &&
3641             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3642            Callee.getOpcode() == ISD::TargetExternalSymbol ||
3643            Callee.getOpcode() == ISD::TargetGlobalAddress ||
3644            isa<ConstantSDNode>(Callee)) &&
3645    "Expecting an global address, external symbol, absolute value or register");
3646
3647    return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
3648  }
3649
3650  // Add a NOP immediately after the branch instruction when using the 64-bit
3651  // SVR4 ABI. At link time, if caller and callee are in a different module and
3652  // thus have a different TOC, the call will be replaced with a call to a stub
3653  // function which saves the current TOC, loads the TOC of the callee and
3654  // branches to the callee. The NOP will be replaced with a load instruction
3655  // which restores the TOC of the caller from the TOC save slot of the current
3656  // stack frame. If caller and callee belong to the same module (and have the
3657  // same TOC), the NOP will remain unchanged.
3658
3659  bool needsTOCRestore = false;
3660  if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3661    if (CallOpc == PPCISD::BCTRL) {
3662      // This is a call through a function pointer.
3663      // Restore the caller TOC from the save area into R2.
3664      // See PrepareCall() for more information about calls through function
3665      // pointers in the 64-bit SVR4 ABI.
3666      // We are using a target-specific load with r2 hard coded, because the
3667      // result of a target-independent load would never go directly into r2,
3668      // since r2 is a reserved register (which prevents the register allocator
3669      // from allocating it), resulting in an additional register being
3670      // allocated and an unnecessary move instruction being generated.
3671      needsTOCRestore = true;
3672    } else if ((CallOpc == PPCISD::CALL) &&
3673               (!isLocalCall(Callee) ||
3674                DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
3675      // Otherwise insert NOP for non-local calls.
3676      CallOpc = PPCISD::CALL_NOP;
3677    }
3678  }
3679
3680  Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
3681  InFlag = Chain.getValue(1);
3682
3683  if (needsTOCRestore) {
3684    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3685    Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3686    InFlag = Chain.getValue(1);
3687  }
3688
3689  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3690                             DAG.getIntPtrConstant(BytesCalleePops, true),
3691                             InFlag, dl);
3692  if (!Ins.empty())
3693    InFlag = Chain.getValue(1);
3694
3695  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3696                         Ins, dl, DAG, InVals);
3697}
3698
3699SDValue
3700PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3701                             SmallVectorImpl<SDValue> &InVals) const {
3702  SelectionDAG &DAG                     = CLI.DAG;
3703  SDLoc &dl                             = CLI.DL;
3704  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3705  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
3706  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
3707  SDValue Chain                         = CLI.Chain;
3708  SDValue Callee                        = CLI.Callee;
3709  bool &isTailCall                      = CLI.IsTailCall;
3710  CallingConv::ID CallConv              = CLI.CallConv;
3711  bool isVarArg                         = CLI.IsVarArg;
3712
3713  if (isTailCall)
3714    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3715                                                   Ins, DAG);
3716
3717  if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
3718    report_fatal_error("failed to perform tail call elimination on a call "
3719                       "site marked musttail");
3720
3721  if (PPCSubTarget.isSVR4ABI()) {
3722    if (PPCSubTarget.isPPC64())
3723      return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3724                              isTailCall, Outs, OutVals, Ins,
3725                              dl, DAG, InVals);
3726    else
3727      return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3728                              isTailCall, Outs, OutVals, Ins,
3729                              dl, DAG, InVals);
3730  }
3731
3732  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3733                          isTailCall, Outs, OutVals, Ins,
3734                          dl, DAG, InVals);
3735}
3736
3737SDValue
3738PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3739                                    CallingConv::ID CallConv, bool isVarArg,
3740                                    bool isTailCall,
3741                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3742                                    const SmallVectorImpl<SDValue> &OutVals,
3743                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3744                                    SDLoc dl, SelectionDAG &DAG,
3745                                    SmallVectorImpl<SDValue> &InVals) const {
3746  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3747  // of the 32-bit SVR4 ABI stack frame layout.
3748
3749  assert((CallConv == CallingConv::C ||
3750          CallConv == CallingConv::Fast) && "Unknown calling convention!");
3751
3752  unsigned PtrByteSize = 4;
3753
3754  MachineFunction &MF = DAG.getMachineFunction();
3755
3756  // Mark this function as potentially containing a function that contains a
3757  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3758  // and restoring the callers stack pointer in this functions epilog. This is
3759  // done because by tail calling the called function might overwrite the value
3760  // in this function's (MF) stack pointer stack slot 0(SP).
3761  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3762      CallConv == CallingConv::Fast)
3763    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3764
3765  // Count how many bytes are to be pushed on the stack, including the linkage
3766  // area, parameter list area and the part of the local variable space which
3767  // contains copies of aggregates which are passed by value.
3768
3769  // Assign locations to all of the outgoing arguments.
3770  SmallVector<CCValAssign, 16> ArgLocs;
3771  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3772                 getTargetMachine(), ArgLocs, *DAG.getContext());
3773
3774  // Reserve space for the linkage area on the stack.
3775  CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3776
3777  if (isVarArg) {
3778    // Handle fixed and variable vector arguments differently.
3779    // Fixed vector arguments go into registers as long as registers are
3780    // available. Variable vector arguments always go into memory.
3781    unsigned NumArgs = Outs.size();
3782
3783    for (unsigned i = 0; i != NumArgs; ++i) {
3784      MVT ArgVT = Outs[i].VT;
3785      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3786      bool Result;
3787
3788      if (Outs[i].IsFixed) {
3789        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3790                               CCInfo);
3791      } else {
3792        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3793                                      ArgFlags, CCInfo);
3794      }
3795
3796      if (Result) {
3797#ifndef NDEBUG
3798        errs() << "Call operand #" << i << " has unhandled type "
3799             << EVT(ArgVT).getEVTString() << "\n";
3800#endif
3801        llvm_unreachable(nullptr);
3802      }
3803    }
3804  } else {
3805    // All arguments are treated the same.
3806    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3807  }
3808
3809  // Assign locations to all of the outgoing aggregate by value arguments.
3810  SmallVector<CCValAssign, 16> ByValArgLocs;
3811  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3812                      getTargetMachine(), ByValArgLocs, *DAG.getContext());
3813
3814  // Reserve stack space for the allocations in CCInfo.
3815  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3816
3817  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3818
3819  // Size of the linkage area, parameter list area and the part of the local
3820  // space variable where copies of aggregates which are passed by value are
3821  // stored.
3822  unsigned NumBytes = CCByValInfo.getNextStackOffset();
3823
3824  // Calculate by how many bytes the stack has to be adjusted in case of tail
3825  // call optimization.
3826  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3827
3828  // Adjust the stack pointer for the new arguments...
3829  // These operations are automatically eliminated by the prolog/epilog pass
3830  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
3831                               dl);
3832  SDValue CallSeqStart = Chain;
3833
3834  // Load the return address and frame pointer so it can be moved somewhere else
3835  // later.
3836  SDValue LROp, FPOp;
3837  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3838                                       dl);
3839
3840  // Set up a copy of the stack pointer for use loading and storing any
3841  // arguments that may not fit in the registers available for argument
3842  // passing.
3843  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3844
3845  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3846  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3847  SmallVector<SDValue, 8> MemOpChains;
3848
3849  bool seenFloatArg = false;
3850  // Walk the register/memloc assignments, inserting copies/loads.
3851  for (unsigned i = 0, j = 0, e = ArgLocs.size();
3852       i != e;
3853       ++i) {
3854    CCValAssign &VA = ArgLocs[i];
3855    SDValue Arg = OutVals[i];
3856    ISD::ArgFlagsTy Flags = Outs[i].Flags;
3857
3858    if (Flags.isByVal()) {
3859      // Argument is an aggregate which is passed by value, thus we need to
3860      // create a copy of it in the local variable space of the current stack
3861      // frame (which is the stack frame of the caller) and pass the address of
3862      // this copy to the callee.
3863      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3864      CCValAssign &ByValVA = ByValArgLocs[j++];
3865      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3866
3867      // Memory reserved in the local variable space of the callers stack frame.
3868      unsigned LocMemOffset = ByValVA.getLocMemOffset();
3869
3870      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3871      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3872
3873      // Create a copy of the argument in the local area of the current
3874      // stack frame.
3875      SDValue MemcpyCall =
3876        CreateCopyOfByValArgument(Arg, PtrOff,
3877                                  CallSeqStart.getNode()->getOperand(0),
3878                                  Flags, DAG, dl);
3879
3880      // This must go outside the CALLSEQ_START..END.
3881      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3882                           CallSeqStart.getNode()->getOperand(1),
3883                           SDLoc(MemcpyCall));
3884      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3885                             NewCallSeqStart.getNode());
3886      Chain = CallSeqStart = NewCallSeqStart;
3887
3888      // Pass the address of the aggregate copy on the stack either in a
3889      // physical register or in the parameter list area of the current stack
3890      // frame to the callee.
3891      Arg = PtrOff;
3892    }
3893
3894    if (VA.isRegLoc()) {
3895      if (Arg.getValueType() == MVT::i1)
3896        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
3897
3898      seenFloatArg |= VA.getLocVT().isFloatingPoint();
3899      // Put argument in a physical register.
3900      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3901    } else {
3902      // Put argument in the parameter list area of the current stack frame.
3903      assert(VA.isMemLoc());
3904      unsigned LocMemOffset = VA.getLocMemOffset();
3905
3906      if (!isTailCall) {
3907        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3908        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3909
3910        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3911                                           MachinePointerInfo(),
3912                                           false, false, 0));
3913      } else {
3914        // Calculate and remember argument location.
3915        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3916                                 TailCallArguments);
3917      }
3918    }
3919  }
3920
3921  if (!MemOpChains.empty())
3922    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
3923
3924  // Build a sequence of copy-to-reg nodes chained together with token chain
3925  // and flag operands which copy the outgoing args into the appropriate regs.
3926  SDValue InFlag;
3927  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3928    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3929                             RegsToPass[i].second, InFlag);
3930    InFlag = Chain.getValue(1);
3931  }
3932
3933  // Set CR bit 6 to true if this is a vararg call with floating args passed in
3934  // registers.
3935  if (isVarArg) {
3936    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3937    SDValue Ops[] = { Chain, InFlag };
3938
3939    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3940                        dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
3941
3942    InFlag = Chain.getValue(1);
3943  }
3944
3945  if (isTailCall)
3946    PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3947                    false, TailCallArguments);
3948
3949  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3950                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3951                    Ins, InVals);
3952}
3953
3954// Copy an argument into memory, being careful to do this outside the
3955// call sequence for the call to which the argument belongs.
3956SDValue
3957PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3958                                              SDValue CallSeqStart,
3959                                              ISD::ArgFlagsTy Flags,
3960                                              SelectionDAG &DAG,
3961                                              SDLoc dl) const {
3962  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3963                        CallSeqStart.getNode()->getOperand(0),
3964                        Flags, DAG, dl);
3965  // The MEMCPY must go outside the CALLSEQ_START..END.
3966  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3967                             CallSeqStart.getNode()->getOperand(1),
3968                             SDLoc(MemcpyCall));
3969  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3970                         NewCallSeqStart.getNode());
3971  return NewCallSeqStart;
3972}
3973
3974SDValue
3975PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3976                                    CallingConv::ID CallConv, bool isVarArg,
3977                                    bool isTailCall,
3978                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
3979                                    const SmallVectorImpl<SDValue> &OutVals,
3980                                    const SmallVectorImpl<ISD::InputArg> &Ins,
3981                                    SDLoc dl, SelectionDAG &DAG,
3982                                    SmallVectorImpl<SDValue> &InVals) const {
3983
3984  unsigned NumOps = Outs.size();
3985
3986  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3987  unsigned PtrByteSize = 8;
3988
3989  MachineFunction &MF = DAG.getMachineFunction();
3990
3991  // Mark this function as potentially containing a function that contains a
3992  // tail call. As a consequence the frame pointer will be used for dynamicalloc
3993  // and restoring the callers stack pointer in this functions epilog. This is
3994  // done because by tail calling the called function might overwrite the value
3995  // in this function's (MF) stack pointer stack slot 0(SP).
3996  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3997      CallConv == CallingConv::Fast)
3998    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3999
4000  unsigned nAltivecParamsAtEnd = 0;
4001
4002  // Count how many bytes are to be pushed on the stack, including the linkage
4003  // area, and parameter passing area.  We start with at least 48 bytes, which
4004  // is reserved space for [SP][CR][LR][3 x unused].
4005  // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
4006  // of this call.
4007  unsigned NumBytes =
4008    CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
4009                                         Outs, OutVals, nAltivecParamsAtEnd);
4010
4011  // Calculate by how many bytes the stack has to be adjusted in case of tail
4012  // call optimization.
4013  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4014
4015  // To protect arguments on the stack from being clobbered in a tail call,
4016  // force all the loads to happen before doing any other lowering.
4017  if (isTailCall)
4018    Chain = DAG.getStackArgumentTokenFactor(Chain);
4019
4020  // Adjust the stack pointer for the new arguments...
4021  // These operations are automatically eliminated by the prolog/epilog pass
4022  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
4023                               dl);
4024  SDValue CallSeqStart = Chain;
4025
4026  // Load the return address and frame pointer so it can be move somewhere else
4027  // later.
4028  SDValue LROp, FPOp;
4029  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4030                                       dl);
4031
4032  // Set up a copy of the stack pointer for use loading and storing any
4033  // arguments that may not fit in the registers available for argument
4034  // passing.
4035  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4036
4037  // Figure out which arguments are going to go in registers, and which in
4038  // memory.  Also, if this is a vararg function, floating point operations
4039  // must be stored to our stack, and loaded into integer regs as well, if
4040  // any integer regs are available for argument passing.
4041  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
4042  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4043
4044  static const MCPhysReg GPR[] = {
4045    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4046    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4047  };
4048  static const MCPhysReg *FPR = GetFPR();
4049
4050  static const MCPhysReg VR[] = {
4051    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4052    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4053  };
4054  static const MCPhysReg VSRH[] = {
4055    PPC::VSH2, PPC::VSH3, PPC::VSH4, PPC::VSH5, PPC::VSH6, PPC::VSH7, PPC::VSH8,
4056    PPC::VSH9, PPC::VSH10, PPC::VSH11, PPC::VSH12, PPC::VSH13
4057  };
4058
4059  const unsigned NumGPRs = array_lengthof(GPR);
4060  const unsigned NumFPRs = 13;
4061  const unsigned NumVRs  = array_lengthof(VR);
4062
4063  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4064  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4065
4066  SmallVector<SDValue, 8> MemOpChains;
4067  for (unsigned i = 0; i != NumOps; ++i) {
4068    SDValue Arg = OutVals[i];
4069    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4070
4071    // PtrOff will be used to store the current argument to the stack if a
4072    // register cannot be found for it.
4073    SDValue PtrOff;
4074
4075    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4076
4077    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4078
4079    // Promote integers to 64-bit values.
4080    if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
4081      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4082      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4083      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4084    }
4085
4086    // FIXME memcpy is used way more than necessary.  Correctness first.
4087    // Note: "by value" is code for passing a structure by value, not
4088    // basic types.
4089    if (Flags.isByVal()) {
4090      // Note: Size includes alignment padding, so
4091      //   struct x { short a; char b; }
4092      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
4093      // These are the proper values we need for right-justifying the
4094      // aggregate in a parameter register.
4095      unsigned Size = Flags.getByValSize();
4096
4097      // An empty aggregate parameter takes up no storage and no
4098      // registers.
4099      if (Size == 0)
4100        continue;
4101
4102      unsigned BVAlign = Flags.getByValAlign();
4103      if (BVAlign > 8) {
4104        if (BVAlign % PtrByteSize != 0)
4105          llvm_unreachable(
4106            "ByVal alignment is not a multiple of the pointer size");
4107
4108        ArgOffset = ((ArgOffset+BVAlign-1)/BVAlign)*BVAlign;
4109      }
4110
4111      // All aggregates smaller than 8 bytes must be passed right-justified.
4112      if (Size==1 || Size==2 || Size==4) {
4113        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
4114        if (GPR_idx != NumGPRs) {
4115          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4116                                        MachinePointerInfo(), VT,
4117                                        false, false, 0);
4118          MemOpChains.push_back(Load.getValue(1));
4119          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4120
4121          ArgOffset += PtrByteSize;
4122          continue;
4123        }
4124      }
4125
4126      if (GPR_idx == NumGPRs && Size < 8) {
4127        SDValue Const = DAG.getConstant(PtrByteSize - Size,
4128                                        PtrOff.getValueType());
4129        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4130        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4131                                                          CallSeqStart,
4132                                                          Flags, DAG, dl);
4133        ArgOffset += PtrByteSize;
4134        continue;
4135      }
4136      // Copy entire object into memory.  There are cases where gcc-generated
4137      // code assumes it is there, even if it could be put entirely into
4138      // registers.  (This is not what the doc says.)
4139
4140      // FIXME: The above statement is likely due to a misunderstanding of the
4141      // documents.  All arguments must be copied into the parameter area BY
4142      // THE CALLEE in the event that the callee takes the address of any
4143      // formal argument.  That has not yet been implemented.  However, it is
4144      // reasonable to use the stack area as a staging area for the register
4145      // load.
4146
4147      // Skip this for small aggregates, as we will use the same slot for a
4148      // right-justified copy, below.
4149      if (Size >= 8)
4150        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4151                                                          CallSeqStart,
4152                                                          Flags, DAG, dl);
4153
4154      // When a register is available, pass a small aggregate right-justified.
4155      if (Size < 8 && GPR_idx != NumGPRs) {
4156        // The easiest way to get this right-justified in a register
4157        // is to copy the structure into the rightmost portion of a
4158        // local variable slot, then load the whole slot into the
4159        // register.
4160        // FIXME: The memcpy seems to produce pretty awful code for
4161        // small aggregates, particularly for packed ones.
4162        // FIXME: It would be preferable to use the slot in the
4163        // parameter save area instead of a new local variable.
4164        SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
4165        SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4166        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4167                                                          CallSeqStart,
4168                                                          Flags, DAG, dl);
4169
4170        // Load the slot into the register.
4171        SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
4172                                   MachinePointerInfo(),
4173                                   false, false, false, 0);
4174        MemOpChains.push_back(Load.getValue(1));
4175        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4176
4177        // Done with this argument.
4178        ArgOffset += PtrByteSize;
4179        continue;
4180      }
4181
4182      // For aggregates larger than PtrByteSize, copy the pieces of the
4183      // object that fit into registers from the parameter save area.
4184      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4185        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4186        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4187        if (GPR_idx != NumGPRs) {
4188          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4189                                     MachinePointerInfo(),
4190                                     false, false, false, 0);
4191          MemOpChains.push_back(Load.getValue(1));
4192          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4193          ArgOffset += PtrByteSize;
4194        } else {
4195          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4196          break;
4197        }
4198      }
4199      continue;
4200    }
4201
4202    switch (Arg.getSimpleValueType().SimpleTy) {
4203    default: llvm_unreachable("Unexpected ValueType for argument!");
4204    case MVT::i1:
4205    case MVT::i32:
4206    case MVT::i64:
4207      if (GPR_idx != NumGPRs) {
4208        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4209      } else {
4210        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4211                         true, isTailCall, false, MemOpChains,
4212                         TailCallArguments, dl);
4213      }
4214      ArgOffset += PtrByteSize;
4215      break;
4216    case MVT::f32:
4217    case MVT::f64:
4218      if (FPR_idx != NumFPRs) {
4219        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4220
4221        if (isVarArg) {
4222          // A single float or an aggregate containing only a single float
4223          // must be passed right-justified in the stack doubleword, and
4224          // in the GPR, if one is available.
4225          SDValue StoreOff;
4226          if (Arg.getSimpleValueType().SimpleTy == MVT::f32) {
4227            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4228            StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4229          } else
4230            StoreOff = PtrOff;
4231
4232          SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
4233                                       MachinePointerInfo(), false, false, 0);
4234          MemOpChains.push_back(Store);
4235
4236          // Float varargs are always shadowed in available integer registers
4237          if (GPR_idx != NumGPRs) {
4238            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4239                                       MachinePointerInfo(), false, false,
4240                                       false, 0);
4241            MemOpChains.push_back(Load.getValue(1));
4242            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4243          }
4244        } else if (GPR_idx != NumGPRs)
4245          // If we have any FPRs remaining, we may also have GPRs remaining.
4246          ++GPR_idx;
4247      } else {
4248        // Single-precision floating-point values are mapped to the
4249        // second (rightmost) word of the stack doubleword.
4250        if (Arg.getValueType() == MVT::f32) {
4251          SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4252          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4253        }
4254
4255        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4256                         true, isTailCall, false, MemOpChains,
4257                         TailCallArguments, dl);
4258      }
4259      ArgOffset += 8;
4260      break;
4261    case MVT::v4f32:
4262    case MVT::v4i32:
4263    case MVT::v8i16:
4264    case MVT::v16i8:
4265    case MVT::v2f64:
4266    case MVT::v2i64:
4267      if (isVarArg) {
4268        // These go aligned on the stack, or in the corresponding R registers
4269        // when within range.  The Darwin PPC ABI doc claims they also go in
4270        // V registers; in fact gcc does this only for arguments that are
4271        // prototyped, not for those that match the ...  We do it for all
4272        // arguments, seems to work.
4273        while (ArgOffset % 16 !=0) {
4274          ArgOffset += PtrByteSize;
4275          if (GPR_idx != NumGPRs)
4276            GPR_idx++;
4277        }
4278        // We could elide this store in the case where the object fits
4279        // entirely in R registers.  Maybe later.
4280        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4281                            DAG.getConstant(ArgOffset, PtrVT));
4282        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4283                                     MachinePointerInfo(), false, false, 0);
4284        MemOpChains.push_back(Store);
4285        if (VR_idx != NumVRs) {
4286          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4287                                     MachinePointerInfo(),
4288                                     false, false, false, 0);
4289          MemOpChains.push_back(Load.getValue(1));
4290
4291          unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
4292                           Arg.getSimpleValueType() == MVT::v2i64) ?
4293                          VSRH[VR_idx] : VR[VR_idx];
4294          ++VR_idx;
4295
4296          RegsToPass.push_back(std::make_pair(VReg, Load));
4297        }
4298        ArgOffset += 16;
4299        for (unsigned i=0; i<16; i+=PtrByteSize) {
4300          if (GPR_idx == NumGPRs)
4301            break;
4302          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4303                                  DAG.getConstant(i, PtrVT));
4304          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4305                                     false, false, false, 0);
4306          MemOpChains.push_back(Load.getValue(1));
4307          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4308        }
4309        break;
4310      }
4311
4312      // Non-varargs Altivec params generally go in registers, but have
4313      // stack space allocated at the end.
4314      if (VR_idx != NumVRs) {
4315        // Doesn't have GPR space allocated.
4316        unsigned VReg = (Arg.getSimpleValueType() == MVT::v2f64 ||
4317                         Arg.getSimpleValueType() == MVT::v2i64) ?
4318                        VSRH[VR_idx] : VR[VR_idx];
4319        ++VR_idx;
4320
4321        RegsToPass.push_back(std::make_pair(VReg, Arg));
4322      } else {
4323        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4324                         true, isTailCall, true, MemOpChains,
4325                         TailCallArguments, dl);
4326        ArgOffset += 16;
4327      }
4328      break;
4329    }
4330  }
4331
4332  if (!MemOpChains.empty())
4333    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4334
4335  // Check if this is an indirect call (MTCTR/BCTRL).
4336  // See PrepareCall() for more information about calls through function
4337  // pointers in the 64-bit SVR4 ABI.
4338  if (!isTailCall &&
4339      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4340      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4341      !isBLACompatibleAddress(Callee, DAG)) {
4342    // Load r2 into a virtual register and store it to the TOC save area.
4343    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4344    // TOC save area offset.
4345    SDValue PtrOff = DAG.getIntPtrConstant(40);
4346    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4347    Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4348                         false, false, 0);
4349    // R12 must contain the address of an indirect callee.  This does not
4350    // mean the MTCTR instruction must use R12; it's easier to model this
4351    // as an extra parameter, so do that.
4352    RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4353  }
4354
4355  // Build a sequence of copy-to-reg nodes chained together with token chain
4356  // and flag operands which copy the outgoing args into the appropriate regs.
4357  SDValue InFlag;
4358  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4359    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4360                             RegsToPass[i].second, InFlag);
4361    InFlag = Chain.getValue(1);
4362  }
4363
4364  if (isTailCall)
4365    PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4366                    FPOp, true, TailCallArguments);
4367
4368  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4369                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4370                    Ins, InVals);
4371}
4372
4373SDValue
4374PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4375                                    CallingConv::ID CallConv, bool isVarArg,
4376                                    bool isTailCall,
4377                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4378                                    const SmallVectorImpl<SDValue> &OutVals,
4379                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4380                                    SDLoc dl, SelectionDAG &DAG,
4381                                    SmallVectorImpl<SDValue> &InVals) const {
4382
4383  unsigned NumOps = Outs.size();
4384
4385  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4386  bool isPPC64 = PtrVT == MVT::i64;
4387  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4388
4389  MachineFunction &MF = DAG.getMachineFunction();
4390
4391  // Mark this function as potentially containing a function that contains a
4392  // tail call. As a consequence the frame pointer will be used for dynamicalloc
4393  // and restoring the callers stack pointer in this functions epilog. This is
4394  // done because by tail calling the called function might overwrite the value
4395  // in this function's (MF) stack pointer stack slot 0(SP).
4396  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4397      CallConv == CallingConv::Fast)
4398    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4399
4400  unsigned nAltivecParamsAtEnd = 0;
4401
4402  // Count how many bytes are to be pushed on the stack, including the linkage
4403  // area, and parameter passing area.  We start with 24/48 bytes, which is
4404  // prereserved space for [SP][CR][LR][3 x unused].
4405  unsigned NumBytes =
4406    CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4407                                         Outs, OutVals,
4408                                         nAltivecParamsAtEnd);
4409
4410  // Calculate by how many bytes the stack has to be adjusted in case of tail
4411  // call optimization.
4412  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4413
4414  // To protect arguments on the stack from being clobbered in a tail call,
4415  // force all the loads to happen before doing any other lowering.
4416  if (isTailCall)
4417    Chain = DAG.getStackArgumentTokenFactor(Chain);
4418
4419  // Adjust the stack pointer for the new arguments...
4420  // These operations are automatically eliminated by the prolog/epilog pass
4421  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
4422                               dl);
4423  SDValue CallSeqStart = Chain;
4424
4425  // Load the return address and frame pointer so it can be move somewhere else
4426  // later.
4427  SDValue LROp, FPOp;
4428  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4429                                       dl);
4430
4431  // Set up a copy of the stack pointer for use loading and storing any
4432  // arguments that may not fit in the registers available for argument
4433  // passing.
4434  SDValue StackPtr;
4435  if (isPPC64)
4436    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4437  else
4438    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4439
4440  // Figure out which arguments are going to go in registers, and which in
4441  // memory.  Also, if this is a vararg function, floating point operations
4442  // must be stored to our stack, and loaded into integer regs as well, if
4443  // any integer regs are available for argument passing.
4444  unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4445  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4446
4447  static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4448    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4449    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4450  };
4451  static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4452    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4453    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4454  };
4455  static const MCPhysReg *FPR = GetFPR();
4456
4457  static const MCPhysReg VR[] = {
4458    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4459    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4460  };
4461  const unsigned NumGPRs = array_lengthof(GPR_32);
4462  const unsigned NumFPRs = 13;
4463  const unsigned NumVRs  = array_lengthof(VR);
4464
4465  const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4466
4467  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4468  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4469
4470  SmallVector<SDValue, 8> MemOpChains;
4471  for (unsigned i = 0; i != NumOps; ++i) {
4472    SDValue Arg = OutVals[i];
4473    ISD::ArgFlagsTy Flags = Outs[i].Flags;
4474
4475    // PtrOff will be used to store the current argument to the stack if a
4476    // register cannot be found for it.
4477    SDValue PtrOff;
4478
4479    PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4480
4481    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4482
4483    // On PPC64, promote integers to 64-bit values.
4484    if (isPPC64 && Arg.getValueType() == MVT::i32) {
4485      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4486      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4487      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4488    }
4489
4490    // FIXME memcpy is used way more than necessary.  Correctness first.
4491    // Note: "by value" is code for passing a structure by value, not
4492    // basic types.
4493    if (Flags.isByVal()) {
4494      unsigned Size = Flags.getByValSize();
4495      // Very small objects are passed right-justified.  Everything else is
4496      // passed left-justified.
4497      if (Size==1 || Size==2) {
4498        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4499        if (GPR_idx != NumGPRs) {
4500          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4501                                        MachinePointerInfo(), VT,
4502                                        false, false, 0);
4503          MemOpChains.push_back(Load.getValue(1));
4504          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4505
4506          ArgOffset += PtrByteSize;
4507        } else {
4508          SDValue Const = DAG.getConstant(PtrByteSize - Size,
4509                                          PtrOff.getValueType());
4510          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4511          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4512                                                            CallSeqStart,
4513                                                            Flags, DAG, dl);
4514          ArgOffset += PtrByteSize;
4515        }
4516        continue;
4517      }
4518      // Copy entire object into memory.  There are cases where gcc-generated
4519      // code assumes it is there, even if it could be put entirely into
4520      // registers.  (This is not what the doc says.)
4521      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4522                                                        CallSeqStart,
4523                                                        Flags, DAG, dl);
4524
4525      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4526      // copy the pieces of the object that fit into registers from the
4527      // parameter save area.
4528      for (unsigned j=0; j<Size; j+=PtrByteSize) {
4529        SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4530        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4531        if (GPR_idx != NumGPRs) {
4532          SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4533                                     MachinePointerInfo(),
4534                                     false, false, false, 0);
4535          MemOpChains.push_back(Load.getValue(1));
4536          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4537          ArgOffset += PtrByteSize;
4538        } else {
4539          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4540          break;
4541        }
4542      }
4543      continue;
4544    }
4545
4546    switch (Arg.getSimpleValueType().SimpleTy) {
4547    default: llvm_unreachable("Unexpected ValueType for argument!");
4548    case MVT::i1:
4549    case MVT::i32:
4550    case MVT::i64:
4551      if (GPR_idx != NumGPRs) {
4552        if (Arg.getValueType() == MVT::i1)
4553          Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
4554
4555        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4556      } else {
4557        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4558                         isPPC64, isTailCall, false, MemOpChains,
4559                         TailCallArguments, dl);
4560      }
4561      ArgOffset += PtrByteSize;
4562      break;
4563    case MVT::f32:
4564    case MVT::f64:
4565      if (FPR_idx != NumFPRs) {
4566        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4567
4568        if (isVarArg) {
4569          SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4570                                       MachinePointerInfo(), false, false, 0);
4571          MemOpChains.push_back(Store);
4572
4573          // Float varargs are always shadowed in available integer registers
4574          if (GPR_idx != NumGPRs) {
4575            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4576                                       MachinePointerInfo(), false, false,
4577                                       false, 0);
4578            MemOpChains.push_back(Load.getValue(1));
4579            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4580          }
4581          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4582            SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4583            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4584            SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4585                                       MachinePointerInfo(),
4586                                       false, false, false, 0);
4587            MemOpChains.push_back(Load.getValue(1));
4588            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4589          }
4590        } else {
4591          // If we have any FPRs remaining, we may also have GPRs remaining.
4592          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4593          // GPRs.
4594          if (GPR_idx != NumGPRs)
4595            ++GPR_idx;
4596          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4597              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
4598            ++GPR_idx;
4599        }
4600      } else
4601        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4602                         isPPC64, isTailCall, false, MemOpChains,
4603                         TailCallArguments, dl);
4604      if (isPPC64)
4605        ArgOffset += 8;
4606      else
4607        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4608      break;
4609    case MVT::v4f32:
4610    case MVT::v4i32:
4611    case MVT::v8i16:
4612    case MVT::v16i8:
4613      if (isVarArg) {
4614        // These go aligned on the stack, or in the corresponding R registers
4615        // when within range.  The Darwin PPC ABI doc claims they also go in
4616        // V registers; in fact gcc does this only for arguments that are
4617        // prototyped, not for those that match the ...  We do it for all
4618        // arguments, seems to work.
4619        while (ArgOffset % 16 !=0) {
4620          ArgOffset += PtrByteSize;
4621          if (GPR_idx != NumGPRs)
4622            GPR_idx++;
4623        }
4624        // We could elide this store in the case where the object fits
4625        // entirely in R registers.  Maybe later.
4626        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4627                            DAG.getConstant(ArgOffset, PtrVT));
4628        SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4629                                     MachinePointerInfo(), false, false, 0);
4630        MemOpChains.push_back(Store);
4631        if (VR_idx != NumVRs) {
4632          SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4633                                     MachinePointerInfo(),
4634                                     false, false, false, 0);
4635          MemOpChains.push_back(Load.getValue(1));
4636          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4637        }
4638        ArgOffset += 16;
4639        for (unsigned i=0; i<16; i+=PtrByteSize) {
4640          if (GPR_idx == NumGPRs)
4641            break;
4642          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4643                                  DAG.getConstant(i, PtrVT));
4644          SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4645                                     false, false, false, 0);
4646          MemOpChains.push_back(Load.getValue(1));
4647          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4648        }
4649        break;
4650      }
4651
4652      // Non-varargs Altivec params generally go in registers, but have
4653      // stack space allocated at the end.
4654      if (VR_idx != NumVRs) {
4655        // Doesn't have GPR space allocated.
4656        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4657      } else if (nAltivecParamsAtEnd==0) {
4658        // We are emitting Altivec params in order.
4659        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4660                         isPPC64, isTailCall, true, MemOpChains,
4661                         TailCallArguments, dl);
4662        ArgOffset += 16;
4663      }
4664      break;
4665    }
4666  }
4667  // If all Altivec parameters fit in registers, as they usually do,
4668  // they get stack space following the non-Altivec parameters.  We
4669  // don't track this here because nobody below needs it.
4670  // If there are more Altivec parameters than fit in registers emit
4671  // the stores here.
4672  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4673    unsigned j = 0;
4674    // Offset is aligned; skip 1st 12 params which go in V registers.
4675    ArgOffset = ((ArgOffset+15)/16)*16;
4676    ArgOffset += 12*16;
4677    for (unsigned i = 0; i != NumOps; ++i) {
4678      SDValue Arg = OutVals[i];
4679      EVT ArgType = Outs[i].VT;
4680      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4681          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4682        if (++j > NumVRs) {
4683          SDValue PtrOff;
4684          // We are emitting Altivec params in order.
4685          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4686                           isPPC64, isTailCall, true, MemOpChains,
4687                           TailCallArguments, dl);
4688          ArgOffset += 16;
4689        }
4690      }
4691    }
4692  }
4693
4694  if (!MemOpChains.empty())
4695    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
4696
4697  // On Darwin, R12 must contain the address of an indirect callee.  This does
4698  // not mean the MTCTR instruction must use R12; it's easier to model this as
4699  // an extra parameter, so do that.
4700  if (!isTailCall &&
4701      !dyn_cast<GlobalAddressSDNode>(Callee) &&
4702      !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4703      !isBLACompatibleAddress(Callee, DAG))
4704    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4705                                                   PPC::R12), Callee));
4706
4707  // Build a sequence of copy-to-reg nodes chained together with token chain
4708  // and flag operands which copy the outgoing args into the appropriate regs.
4709  SDValue InFlag;
4710  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4711    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4712                             RegsToPass[i].second, InFlag);
4713    InFlag = Chain.getValue(1);
4714  }
4715
4716  if (isTailCall)
4717    PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4718                    FPOp, true, TailCallArguments);
4719
4720  return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4721                    RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4722                    Ins, InVals);
4723}
4724
4725bool
4726PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4727                                  MachineFunction &MF, bool isVarArg,
4728                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
4729                                  LLVMContext &Context) const {
4730  SmallVector<CCValAssign, 16> RVLocs;
4731  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4732                 RVLocs, Context);
4733  return CCInfo.CheckReturn(Outs, RetCC_PPC);
4734}
4735
4736SDValue
4737PPCTargetLowering::LowerReturn(SDValue Chain,
4738                               CallingConv::ID CallConv, bool isVarArg,
4739                               const SmallVectorImpl<ISD::OutputArg> &Outs,
4740                               const SmallVectorImpl<SDValue> &OutVals,
4741                               SDLoc dl, SelectionDAG &DAG) const {
4742
4743  SmallVector<CCValAssign, 16> RVLocs;
4744  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4745                 getTargetMachine(), RVLocs, *DAG.getContext());
4746  CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4747
4748  SDValue Flag;
4749  SmallVector<SDValue, 4> RetOps(1, Chain);
4750
4751  // Copy the result values into the output registers.
4752  for (unsigned i = 0; i != RVLocs.size(); ++i) {
4753    CCValAssign &VA = RVLocs[i];
4754    assert(VA.isRegLoc() && "Can only return in registers!");
4755
4756    SDValue Arg = OutVals[i];
4757
4758    switch (VA.getLocInfo()) {
4759    default: llvm_unreachable("Unknown loc info!");
4760    case CCValAssign::Full: break;
4761    case CCValAssign::AExt:
4762      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4763      break;
4764    case CCValAssign::ZExt:
4765      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4766      break;
4767    case CCValAssign::SExt:
4768      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4769      break;
4770    }
4771
4772    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4773    Flag = Chain.getValue(1);
4774    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4775  }
4776
4777  RetOps[0] = Chain;  // Update chain.
4778
4779  // Add the flag if we have it.
4780  if (Flag.getNode())
4781    RetOps.push_back(Flag);
4782
4783  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
4784}
4785
4786SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4787                                   const PPCSubtarget &Subtarget) const {
4788  // When we pop the dynamic allocation we need to restore the SP link.
4789  SDLoc dl(Op);
4790
4791  // Get the corect type for pointers.
4792  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4793
4794  // Construct the stack pointer operand.
4795  bool isPPC64 = Subtarget.isPPC64();
4796  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4797  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4798
4799  // Get the operands for the STACKRESTORE.
4800  SDValue Chain = Op.getOperand(0);
4801  SDValue SaveSP = Op.getOperand(1);
4802
4803  // Load the old link SP.
4804  SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4805                                   MachinePointerInfo(),
4806                                   false, false, false, 0);
4807
4808  // Restore the stack pointer.
4809  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4810
4811  // Store the old link SP.
4812  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4813                      false, false, 0);
4814}
4815
4816
4817
4818SDValue
4819PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4820  MachineFunction &MF = DAG.getMachineFunction();
4821  bool isPPC64 = PPCSubTarget.isPPC64();
4822  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4823  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4824
4825  // Get current frame pointer save index.  The users of this index will be
4826  // primarily DYNALLOC instructions.
4827  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4828  int RASI = FI->getReturnAddrSaveIndex();
4829
4830  // If the frame pointer save index hasn't been defined yet.
4831  if (!RASI) {
4832    // Find out what the fix offset of the frame pointer save area.
4833    int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4834    // Allocate the frame index for frame pointer save area.
4835    RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4836    // Save the result.
4837    FI->setReturnAddrSaveIndex(RASI);
4838  }
4839  return DAG.getFrameIndex(RASI, PtrVT);
4840}
4841
4842SDValue
4843PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4844  MachineFunction &MF = DAG.getMachineFunction();
4845  bool isPPC64 = PPCSubTarget.isPPC64();
4846  bool isDarwinABI = PPCSubTarget.isDarwinABI();
4847  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4848
4849  // Get current frame pointer save index.  The users of this index will be
4850  // primarily DYNALLOC instructions.
4851  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4852  int FPSI = FI->getFramePointerSaveIndex();
4853
4854  // If the frame pointer save index hasn't been defined yet.
4855  if (!FPSI) {
4856    // Find out what the fix offset of the frame pointer save area.
4857    int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4858                                                           isDarwinABI);
4859
4860    // Allocate the frame index for frame pointer save area.
4861    FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4862    // Save the result.
4863    FI->setFramePointerSaveIndex(FPSI);
4864  }
4865  return DAG.getFrameIndex(FPSI, PtrVT);
4866}
4867
4868SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4869                                         SelectionDAG &DAG,
4870                                         const PPCSubtarget &Subtarget) const {
4871  // Get the inputs.
4872  SDValue Chain = Op.getOperand(0);
4873  SDValue Size  = Op.getOperand(1);
4874  SDLoc dl(Op);
4875
4876  // Get the corect type for pointers.
4877  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4878  // Negate the size.
4879  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4880                                  DAG.getConstant(0, PtrVT), Size);
4881  // Construct a node for the frame pointer save index.
4882  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4883  // Build a DYNALLOC node.
4884  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4885  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4886  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
4887}
4888
4889SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
4890                                               SelectionDAG &DAG) const {
4891  SDLoc DL(Op);
4892  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
4893                     DAG.getVTList(MVT::i32, MVT::Other),
4894                     Op.getOperand(0), Op.getOperand(1));
4895}
4896
4897SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
4898                                                SelectionDAG &DAG) const {
4899  SDLoc DL(Op);
4900  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
4901                     Op.getOperand(0), Op.getOperand(1));
4902}
4903
4904SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
4905  assert(Op.getValueType() == MVT::i1 &&
4906         "Custom lowering only for i1 loads");
4907
4908  // First, load 8 bits into 32 bits, then truncate to 1 bit.
4909
4910  SDLoc dl(Op);
4911  LoadSDNode *LD = cast<LoadSDNode>(Op);
4912
4913  SDValue Chain = LD->getChain();
4914  SDValue BasePtr = LD->getBasePtr();
4915  MachineMemOperand *MMO = LD->getMemOperand();
4916
4917  SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(), Chain,
4918                                 BasePtr, MVT::i8, MMO);
4919  SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
4920
4921  SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
4922  return DAG.getMergeValues(Ops, dl);
4923}
4924
4925SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
4926  assert(Op.getOperand(1).getValueType() == MVT::i1 &&
4927         "Custom lowering only for i1 stores");
4928
4929  // First, zero extend to 32 bits, then use a truncating store to 8 bits.
4930
4931  SDLoc dl(Op);
4932  StoreSDNode *ST = cast<StoreSDNode>(Op);
4933
4934  SDValue Chain = ST->getChain();
4935  SDValue BasePtr = ST->getBasePtr();
4936  SDValue Value = ST->getValue();
4937  MachineMemOperand *MMO = ST->getMemOperand();
4938
4939  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(), Value);
4940  return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
4941}
4942
4943// FIXME: Remove this once the ANDI glue bug is fixed:
4944SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
4945  assert(Op.getValueType() == MVT::i1 &&
4946         "Custom lowering only for i1 results");
4947
4948  SDLoc DL(Op);
4949  return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
4950                     Op.getOperand(0));
4951}
4952
4953/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4954/// possible.
4955SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4956  // Not FP? Not a fsel.
4957  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4958      !Op.getOperand(2).getValueType().isFloatingPoint())
4959    return Op;
4960
4961  // We might be able to do better than this under some circumstances, but in
4962  // general, fsel-based lowering of select is a finite-math-only optimization.
4963  // For more information, see section F.3 of the 2.06 ISA specification.
4964  if (!DAG.getTarget().Options.NoInfsFPMath ||
4965      !DAG.getTarget().Options.NoNaNsFPMath)
4966    return Op;
4967
4968  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4969
4970  EVT ResVT = Op.getValueType();
4971  EVT CmpVT = Op.getOperand(0).getValueType();
4972  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4973  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
4974  SDLoc dl(Op);
4975
4976  // If the RHS of the comparison is a 0.0, we don't need to do the
4977  // subtraction at all.
4978  SDValue Sel1;
4979  if (isFloatingPointZero(RHS))
4980    switch (CC) {
4981    default: break;       // SETUO etc aren't handled by fsel.
4982    case ISD::SETNE:
4983      std::swap(TV, FV);
4984    case ISD::SETEQ:
4985      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4986        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4987      Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4988      if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
4989        Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
4990      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4991                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
4992    case ISD::SETULT:
4993    case ISD::SETLT:
4994      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
4995    case ISD::SETOGE:
4996    case ISD::SETGE:
4997      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
4998        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4999      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
5000    case ISD::SETUGT:
5001    case ISD::SETGT:
5002      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
5003    case ISD::SETOLE:
5004    case ISD::SETLE:
5005      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
5006        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
5007      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
5008                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
5009    }
5010
5011  SDValue Cmp;
5012  switch (CC) {
5013  default: break;       // SETUO etc aren't handled by fsel.
5014  case ISD::SETNE:
5015    std::swap(TV, FV);
5016  case ISD::SETEQ:
5017    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
5018    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5019      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5020    Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
5021    if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
5022      Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
5023    return DAG.getNode(PPCISD::FSEL, dl, ResVT,
5024                       DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
5025  case ISD::SETULT:
5026  case ISD::SETLT:
5027    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
5028    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5029      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5030    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
5031  case ISD::SETOGE:
5032  case ISD::SETGE:
5033    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
5034    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5035      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5036    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
5037  case ISD::SETUGT:
5038  case ISD::SETGT:
5039    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
5040    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5041      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5042    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
5043  case ISD::SETOLE:
5044  case ISD::SETLE:
5045    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
5046    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
5047      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
5048    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
5049  }
5050  return Op;
5051}
5052
5053// FIXME: Split this code up when LegalizeDAGTypes lands.
5054SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
5055                                           SDLoc dl) const {
5056  assert(Op.getOperand(0).getValueType().isFloatingPoint());
5057  SDValue Src = Op.getOperand(0);
5058  if (Src.getValueType() == MVT::f32)
5059    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
5060
5061  SDValue Tmp;
5062  switch (Op.getSimpleValueType().SimpleTy) {
5063  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
5064  case MVT::i32:
5065    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
5066                        (PPCSubTarget.hasFPCVT() ? PPCISD::FCTIWUZ :
5067                                                   PPCISD::FCTIDZ),
5068                      dl, MVT::f64, Src);
5069    break;
5070  case MVT::i64:
5071    assert((Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT()) &&
5072           "i64 FP_TO_UINT is supported only with FPCVT");
5073    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
5074                                                        PPCISD::FCTIDUZ,
5075                      dl, MVT::f64, Src);
5076    break;
5077  }
5078
5079  // Convert the FP value to an int value through memory.
5080  bool i32Stack = Op.getValueType() == MVT::i32 && PPCSubTarget.hasSTFIWX() &&
5081    (Op.getOpcode() == ISD::FP_TO_SINT || PPCSubTarget.hasFPCVT());
5082  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
5083  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
5084  MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(FI);
5085
5086  // Emit a store to the stack slot.
5087  SDValue Chain;
5088  if (i32Stack) {
5089    MachineFunction &MF = DAG.getMachineFunction();
5090    MachineMemOperand *MMO =
5091      MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
5092    SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
5093    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
5094              DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
5095  } else
5096    Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
5097                         MPI, false, false, 0);
5098
5099  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
5100  // add in a bias.
5101  if (Op.getValueType() == MVT::i32 && !i32Stack) {
5102    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
5103                        DAG.getConstant(4, FIPtr.getValueType()));
5104    MPI = MachinePointerInfo();
5105  }
5106
5107  return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MPI,
5108                     false, false, false, 0);
5109}
5110
5111SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
5112                                           SelectionDAG &DAG) const {
5113  SDLoc dl(Op);
5114  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
5115  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
5116    return SDValue();
5117
5118  if (Op.getOperand(0).getValueType() == MVT::i1)
5119    return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
5120                       DAG.getConstantFP(1.0, Op.getValueType()),
5121                       DAG.getConstantFP(0.0, Op.getValueType()));
5122
5123  assert((Op.getOpcode() == ISD::SINT_TO_FP || PPCSubTarget.hasFPCVT()) &&
5124         "UINT_TO_FP is supported only with FPCVT");
5125
5126  // If we have FCFIDS, then use it when converting to single-precision.
5127  // Otherwise, convert to double-precision and then round.
5128  unsigned FCFOp = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
5129                   (Op.getOpcode() == ISD::UINT_TO_FP ?
5130                    PPCISD::FCFIDUS : PPCISD::FCFIDS) :
5131                   (Op.getOpcode() == ISD::UINT_TO_FP ?
5132                    PPCISD::FCFIDU : PPCISD::FCFID);
5133  MVT      FCFTy = (PPCSubTarget.hasFPCVT() && Op.getValueType() == MVT::f32) ?
5134                   MVT::f32 : MVT::f64;
5135
5136  if (Op.getOperand(0).getValueType() == MVT::i64) {
5137    SDValue SINT = Op.getOperand(0);
5138    // When converting to single-precision, we actually need to convert
5139    // to double-precision first and then round to single-precision.
5140    // To avoid double-rounding effects during that operation, we have
5141    // to prepare the input operand.  Bits that might be truncated when
5142    // converting to double-precision are replaced by a bit that won't
5143    // be lost at this stage, but is below the single-precision rounding
5144    // position.
5145    //
5146    // However, if -enable-unsafe-fp-math is in effect, accept double
5147    // rounding to avoid the extra overhead.
5148    if (Op.getValueType() == MVT::f32 &&
5149        !PPCSubTarget.hasFPCVT() &&
5150        !DAG.getTarget().Options.UnsafeFPMath) {
5151
5152      // Twiddle input to make sure the low 11 bits are zero.  (If this
5153      // is the case, we are guaranteed the value will fit into the 53 bit
5154      // mantissa of an IEEE double-precision value without rounding.)
5155      // If any of those low 11 bits were not zero originally, make sure
5156      // bit 12 (value 2048) is set instead, so that the final rounding
5157      // to single-precision gets the correct result.
5158      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
5159                                  SINT, DAG.getConstant(2047, MVT::i64));
5160      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
5161                          Round, DAG.getConstant(2047, MVT::i64));
5162      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
5163      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
5164                          Round, DAG.getConstant(-2048, MVT::i64));
5165
5166      // However, we cannot use that value unconditionally: if the magnitude
5167      // of the input value is small, the bit-twiddling we did above might
5168      // end up visibly changing the output.  Fortunately, in that case, we
5169      // don't need to twiddle bits since the original input will convert
5170      // exactly to double-precision floating-point already.  Therefore,
5171      // construct a conditional to use the original value if the top 11
5172      // bits are all sign-bit copies, and use the rounded value computed
5173      // above otherwise.
5174      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
5175                                 SINT, DAG.getConstant(53, MVT::i32));
5176      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
5177                         Cond, DAG.getConstant(1, MVT::i64));
5178      Cond = DAG.getSetCC(dl, MVT::i32,
5179                          Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
5180
5181      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
5182    }
5183
5184    SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
5185    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
5186
5187    if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
5188      FP = DAG.getNode(ISD::FP_ROUND, dl,
5189                       MVT::f32, FP, DAG.getIntPtrConstant(0));
5190    return FP;
5191  }
5192
5193  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
5194         "Unhandled INT_TO_FP type in custom expander!");
5195  // Since we only generate this in 64-bit mode, we can take advantage of
5196  // 64-bit registers.  In particular, sign extend the input value into the
5197  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
5198  // then lfd it and fcfid it.
5199  MachineFunction &MF = DAG.getMachineFunction();
5200  MachineFrameInfo *FrameInfo = MF.getFrameInfo();
5201  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5202
5203  SDValue Ld;
5204  if (PPCSubTarget.hasLFIWAX() || PPCSubTarget.hasFPCVT()) {
5205    int FrameIdx = FrameInfo->CreateStackObject(4, 4, false);
5206    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5207
5208    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
5209                                 MachinePointerInfo::getFixedStack(FrameIdx),
5210                                 false, false, 0);
5211
5212    assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
5213           "Expected an i32 store");
5214    MachineMemOperand *MMO =
5215      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
5216                              MachineMemOperand::MOLoad, 4, 4);
5217    SDValue Ops[] = { Store, FIdx };
5218    Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
5219                                   PPCISD::LFIWZX : PPCISD::LFIWAX,
5220                                 dl, DAG.getVTList(MVT::f64, MVT::Other),
5221                                 Ops, MVT::i32, MMO);
5222  } else {
5223    assert(PPCSubTarget.isPPC64() &&
5224           "i32->FP without LFIWAX supported only on PPC64");
5225
5226    int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
5227    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5228
5229    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
5230                                Op.getOperand(0));
5231
5232    // STD the extended value into the stack slot.
5233    SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Ext64, FIdx,
5234                                 MachinePointerInfo::getFixedStack(FrameIdx),
5235                                 false, false, 0);
5236
5237    // Load the value as a double.
5238    Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx,
5239                     MachinePointerInfo::getFixedStack(FrameIdx),
5240                     false, false, false, 0);
5241  }
5242
5243  // FCFID it and return it.
5244  SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
5245  if (Op.getValueType() == MVT::f32 && !PPCSubTarget.hasFPCVT())
5246    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
5247  return FP;
5248}
5249
5250SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5251                                            SelectionDAG &DAG) const {
5252  SDLoc dl(Op);
5253  /*
5254   The rounding mode is in bits 30:31 of FPSR, and has the following
5255   settings:
5256     00 Round to nearest
5257     01 Round to 0
5258     10 Round to +inf
5259     11 Round to -inf
5260
5261  FLT_ROUNDS, on the other hand, expects the following:
5262    -1 Undefined
5263     0 Round to 0
5264     1 Round to nearest
5265     2 Round to +inf
5266     3 Round to -inf
5267
5268  To perform the conversion, we do:
5269    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
5270  */
5271
5272  MachineFunction &MF = DAG.getMachineFunction();
5273  EVT VT = Op.getValueType();
5274  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5275
5276  // Save FP Control Word to register
5277  EVT NodeTys[] = {
5278    MVT::f64,    // return register
5279    MVT::Glue    // unused in this context
5280  };
5281  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
5282
5283  // Save FP register to stack slot
5284  int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5285  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
5286  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
5287                               StackSlot, MachinePointerInfo(), false, false,0);
5288
5289  // Load FP Control Word from low 32 bits of stack slot.
5290  SDValue Four = DAG.getConstant(4, PtrVT);
5291  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
5292  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
5293                            false, false, false, 0);
5294
5295  // Transform as necessary
5296  SDValue CWD1 =
5297    DAG.getNode(ISD::AND, dl, MVT::i32,
5298                CWD, DAG.getConstant(3, MVT::i32));
5299  SDValue CWD2 =
5300    DAG.getNode(ISD::SRL, dl, MVT::i32,
5301                DAG.getNode(ISD::AND, dl, MVT::i32,
5302                            DAG.getNode(ISD::XOR, dl, MVT::i32,
5303                                        CWD, DAG.getConstant(3, MVT::i32)),
5304                            DAG.getConstant(3, MVT::i32)),
5305                DAG.getConstant(1, MVT::i32));
5306
5307  SDValue RetVal =
5308    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
5309
5310  return DAG.getNode((VT.getSizeInBits() < 16 ?
5311                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
5312}
5313
5314SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
5315  EVT VT = Op.getValueType();
5316  unsigned BitWidth = VT.getSizeInBits();
5317  SDLoc dl(Op);
5318  assert(Op.getNumOperands() == 3 &&
5319         VT == Op.getOperand(1).getValueType() &&
5320         "Unexpected SHL!");
5321
5322  // Expand into a bunch of logical ops.  Note that these ops
5323  // depend on the PPC behavior for oversized shift amounts.
5324  SDValue Lo = Op.getOperand(0);
5325  SDValue Hi = Op.getOperand(1);
5326  SDValue Amt = Op.getOperand(2);
5327  EVT AmtVT = Amt.getValueType();
5328
5329  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5330                             DAG.getConstant(BitWidth, AmtVT), Amt);
5331  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
5332  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
5333  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
5334  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5335                             DAG.getConstant(-BitWidth, AmtVT));
5336  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
5337  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5338  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
5339  SDValue OutOps[] = { OutLo, OutHi };
5340  return DAG.getMergeValues(OutOps, dl);
5341}
5342
5343SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
5344  EVT VT = Op.getValueType();
5345  SDLoc dl(Op);
5346  unsigned BitWidth = VT.getSizeInBits();
5347  assert(Op.getNumOperands() == 3 &&
5348         VT == Op.getOperand(1).getValueType() &&
5349         "Unexpected SRL!");
5350
5351  // Expand into a bunch of logical ops.  Note that these ops
5352  // depend on the PPC behavior for oversized shift amounts.
5353  SDValue Lo = Op.getOperand(0);
5354  SDValue Hi = Op.getOperand(1);
5355  SDValue Amt = Op.getOperand(2);
5356  EVT AmtVT = Amt.getValueType();
5357
5358  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5359                             DAG.getConstant(BitWidth, AmtVT), Amt);
5360  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5361  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5362  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5363  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5364                             DAG.getConstant(-BitWidth, AmtVT));
5365  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
5366  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
5367  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
5368  SDValue OutOps[] = { OutLo, OutHi };
5369  return DAG.getMergeValues(OutOps, dl);
5370}
5371
5372SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
5373  SDLoc dl(Op);
5374  EVT VT = Op.getValueType();
5375  unsigned BitWidth = VT.getSizeInBits();
5376  assert(Op.getNumOperands() == 3 &&
5377         VT == Op.getOperand(1).getValueType() &&
5378         "Unexpected SRA!");
5379
5380  // Expand into a bunch of logical ops, followed by a select_cc.
5381  SDValue Lo = Op.getOperand(0);
5382  SDValue Hi = Op.getOperand(1);
5383  SDValue Amt = Op.getOperand(2);
5384  EVT AmtVT = Amt.getValueType();
5385
5386  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
5387                             DAG.getConstant(BitWidth, AmtVT), Amt);
5388  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
5389  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
5390  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
5391  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
5392                             DAG.getConstant(-BitWidth, AmtVT));
5393  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
5394  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
5395  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
5396                                  Tmp4, Tmp6, ISD::SETLE);
5397  SDValue OutOps[] = { OutLo, OutHi };
5398  return DAG.getMergeValues(OutOps, dl);
5399}
5400
5401//===----------------------------------------------------------------------===//
5402// Vector related lowering.
5403//
5404
5405/// BuildSplatI - Build a canonical splati of Val with an element size of
5406/// SplatSize.  Cast the result to VT.
5407static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
5408                             SelectionDAG &DAG, SDLoc dl) {
5409  assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
5410
5411  static const EVT VTys[] = { // canonical VT to use for each size.
5412    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
5413  };
5414
5415  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
5416
5417  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
5418  if (Val == -1)
5419    SplatSize = 1;
5420
5421  EVT CanonicalVT = VTys[SplatSize-1];
5422
5423  // Build a canonical splat for this value.
5424  SDValue Elt = DAG.getConstant(Val, MVT::i32);
5425  SmallVector<SDValue, 8> Ops;
5426  Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
5427  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, Ops);
5428  return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
5429}
5430
5431/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
5432/// specified intrinsic ID.
5433static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op,
5434                                SelectionDAG &DAG, SDLoc dl,
5435                                EVT DestVT = MVT::Other) {
5436  if (DestVT == MVT::Other) DestVT = Op.getValueType();
5437  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5438                     DAG.getConstant(IID, MVT::i32), Op);
5439}
5440
5441/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
5442/// specified intrinsic ID.
5443static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
5444                                SelectionDAG &DAG, SDLoc dl,
5445                                EVT DestVT = MVT::Other) {
5446  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
5447  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5448                     DAG.getConstant(IID, MVT::i32), LHS, RHS);
5449}
5450
5451/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
5452/// specified intrinsic ID.
5453static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
5454                                SDValue Op2, SelectionDAG &DAG,
5455                                SDLoc dl, EVT DestVT = MVT::Other) {
5456  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
5457  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5458                     DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
5459}
5460
5461
5462/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
5463/// amount.  The result has the specified value type.
5464static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
5465                             EVT VT, SelectionDAG &DAG, SDLoc dl) {
5466  // Force LHS/RHS to be the right type.
5467  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
5468  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
5469
5470  int Ops[16];
5471  for (unsigned i = 0; i != 16; ++i)
5472    Ops[i] = i + Amt;
5473  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
5474  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5475}
5476
5477// If this is a case we can't handle, return null and let the default
5478// expansion code take care of it.  If we CAN select this case, and if it
5479// selects to a single instruction, return Op.  Otherwise, if we can codegen
5480// this case more efficiently than a constant pool load, lower it to the
5481// sequence of ops that should be used.
5482SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
5483                                             SelectionDAG &DAG) const {
5484  SDLoc dl(Op);
5485  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5486  assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
5487
5488  // Check if this is a splat of a constant value.
5489  APInt APSplatBits, APSplatUndef;
5490  unsigned SplatBitSize;
5491  bool HasAnyUndefs;
5492  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
5493                             HasAnyUndefs, 0, true) || SplatBitSize > 32)
5494    return SDValue();
5495
5496  unsigned SplatBits = APSplatBits.getZExtValue();
5497  unsigned SplatUndef = APSplatUndef.getZExtValue();
5498  unsigned SplatSize = SplatBitSize / 8;
5499
5500  // First, handle single instruction cases.
5501
5502  // All zeros?
5503  if (SplatBits == 0) {
5504    // Canonicalize all zero vectors to be v4i32.
5505    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5506      SDValue Z = DAG.getConstant(0, MVT::i32);
5507      Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5508      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5509    }
5510    return Op;
5511  }
5512
5513  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5514  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5515                    (32-SplatBitSize));
5516  if (SextVal >= -16 && SextVal <= 15)
5517    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5518
5519
5520  // Two instruction sequences.
5521
5522  // If this value is in the range [-32,30] and is even, use:
5523  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5524  // If this value is in the range [17,31] and is odd, use:
5525  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5526  // If this value is in the range [-31,-17] and is odd, use:
5527  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5528  // Note the last two are three-instruction sequences.
5529  if (SextVal >= -32 && SextVal <= 31) {
5530    // To avoid having these optimizations undone by constant folding,
5531    // we convert to a pseudo that will be expanded later into one of
5532    // the above forms.
5533    SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5534    EVT VT = (SplatSize == 1 ? MVT::v16i8 :
5535              (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
5536    SDValue EltSize = DAG.getConstant(SplatSize, MVT::i32);
5537    SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5538    if (VT == Op.getValueType())
5539      return RetVal;
5540    else
5541      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
5542  }
5543
5544  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
5545  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
5546  // for fneg/fabs.
5547  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5548    // Make -1 and vspltisw -1:
5549    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5550
5551    // Make the VSLW intrinsic, computing 0x8000_0000.
5552    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5553                                   OnesV, DAG, dl);
5554
5555    // xor by OnesV to invert it.
5556    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5557    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5558  }
5559
5560  // Check to see if this is a wide variety of vsplti*, binop self cases.
5561  static const signed char SplatCsts[] = {
5562    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5563    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5564  };
5565
5566  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5567    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5568    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
5569    int i = SplatCsts[idx];
5570
5571    // Figure out what shift amount will be used by altivec if shifted by i in
5572    // this splat size.
5573    unsigned TypeShiftAmt = i & (SplatBitSize-1);
5574
5575    // vsplti + shl self.
5576    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5577      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5578      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5579        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5580        Intrinsic::ppc_altivec_vslw
5581      };
5582      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5583      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5584    }
5585
5586    // vsplti + srl self.
5587    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5588      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5589      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5590        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5591        Intrinsic::ppc_altivec_vsrw
5592      };
5593      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5594      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5595    }
5596
5597    // vsplti + sra self.
5598    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5599      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5600      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5601        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5602        Intrinsic::ppc_altivec_vsraw
5603      };
5604      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5605      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5606    }
5607
5608    // vsplti + rol self.
5609    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5610                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5611      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5612      static const unsigned IIDs[] = { // Intrinsic to use for each size.
5613        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5614        Intrinsic::ppc_altivec_vrlw
5615      };
5616      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5617      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5618    }
5619
5620    // t = vsplti c, result = vsldoi t, t, 1
5621    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5622      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5623      return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5624    }
5625    // t = vsplti c, result = vsldoi t, t, 2
5626    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5627      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5628      return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5629    }
5630    // t = vsplti c, result = vsldoi t, t, 3
5631    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5632      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5633      return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5634    }
5635  }
5636
5637  return SDValue();
5638}
5639
5640/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5641/// the specified operations to build the shuffle.
5642static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5643                                      SDValue RHS, SelectionDAG &DAG,
5644                                      SDLoc dl) {
5645  unsigned OpNum = (PFEntry >> 26) & 0x0F;
5646  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5647  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
5648
5649  enum {
5650    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5651    OP_VMRGHW,
5652    OP_VMRGLW,
5653    OP_VSPLTISW0,
5654    OP_VSPLTISW1,
5655    OP_VSPLTISW2,
5656    OP_VSPLTISW3,
5657    OP_VSLDOI4,
5658    OP_VSLDOI8,
5659    OP_VSLDOI12
5660  };
5661
5662  if (OpNum == OP_COPY) {
5663    if (LHSID == (1*9+2)*9+3) return LHS;
5664    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5665    return RHS;
5666  }
5667
5668  SDValue OpLHS, OpRHS;
5669  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5670  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5671
5672  int ShufIdxs[16];
5673  switch (OpNum) {
5674  default: llvm_unreachable("Unknown i32 permute!");
5675  case OP_VMRGHW:
5676    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
5677    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5678    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
5679    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5680    break;
5681  case OP_VMRGLW:
5682    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5683    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5684    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5685    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5686    break;
5687  case OP_VSPLTISW0:
5688    for (unsigned i = 0; i != 16; ++i)
5689      ShufIdxs[i] = (i&3)+0;
5690    break;
5691  case OP_VSPLTISW1:
5692    for (unsigned i = 0; i != 16; ++i)
5693      ShufIdxs[i] = (i&3)+4;
5694    break;
5695  case OP_VSPLTISW2:
5696    for (unsigned i = 0; i != 16; ++i)
5697      ShufIdxs[i] = (i&3)+8;
5698    break;
5699  case OP_VSPLTISW3:
5700    for (unsigned i = 0; i != 16; ++i)
5701      ShufIdxs[i] = (i&3)+12;
5702    break;
5703  case OP_VSLDOI4:
5704    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5705  case OP_VSLDOI8:
5706    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5707  case OP_VSLDOI12:
5708    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5709  }
5710  EVT VT = OpLHS.getValueType();
5711  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5712  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5713  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5714  return DAG.getNode(ISD::BITCAST, dl, VT, T);
5715}
5716
5717/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
5718/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
5719/// return the code it can be lowered into.  Worst case, it can always be
5720/// lowered into a vperm.
5721SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5722                                               SelectionDAG &DAG) const {
5723  SDLoc dl(Op);
5724  SDValue V1 = Op.getOperand(0);
5725  SDValue V2 = Op.getOperand(1);
5726  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5727  EVT VT = Op.getValueType();
5728
5729  // Cases that are handled by instructions that take permute immediates
5730  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5731  // selected by the instruction selector.
5732  if (V2.getOpcode() == ISD::UNDEF) {
5733    if (PPC::isSplatShuffleMask(SVOp, 1) ||
5734        PPC::isSplatShuffleMask(SVOp, 2) ||
5735        PPC::isSplatShuffleMask(SVOp, 4) ||
5736        PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5737        PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5738        PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5739        PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5740        PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5741        PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5742        PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5743        PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5744        PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5745      return Op;
5746    }
5747  }
5748
5749  // Altivec has a variety of "shuffle immediates" that take two vector inputs
5750  // and produce a fixed permutation.  If any of these match, do not lower to
5751  // VPERM.
5752  if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5753      PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5754      PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5755      PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5756      PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5757      PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5758      PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5759      PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5760      PPC::isVMRGHShuffleMask(SVOp, 4, false))
5761    return Op;
5762
5763  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
5764  // perfect shuffle table to emit an optimal matching sequence.
5765  ArrayRef<int> PermMask = SVOp->getMask();
5766
5767  unsigned PFIndexes[4];
5768  bool isFourElementShuffle = true;
5769  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5770    unsigned EltNo = 8;   // Start out undef.
5771    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
5772      if (PermMask[i*4+j] < 0)
5773        continue;   // Undef, ignore it.
5774
5775      unsigned ByteSource = PermMask[i*4+j];
5776      if ((ByteSource & 3) != j) {
5777        isFourElementShuffle = false;
5778        break;
5779      }
5780
5781      if (EltNo == 8) {
5782        EltNo = ByteSource/4;
5783      } else if (EltNo != ByteSource/4) {
5784        isFourElementShuffle = false;
5785        break;
5786      }
5787    }
5788    PFIndexes[i] = EltNo;
5789  }
5790
5791  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5792  // perfect shuffle vector to determine if it is cost effective to do this as
5793  // discrete instructions, or whether we should use a vperm.
5794  if (isFourElementShuffle) {
5795    // Compute the index in the perfect shuffle table.
5796    unsigned PFTableIndex =
5797      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5798
5799    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5800    unsigned Cost  = (PFEntry >> 30);
5801
5802    // Determining when to avoid vperm is tricky.  Many things affect the cost
5803    // of vperm, particularly how many times the perm mask needs to be computed.
5804    // For example, if the perm mask can be hoisted out of a loop or is already
5805    // used (perhaps because there are multiple permutes with the same shuffle
5806    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
5807    // the loop requires an extra register.
5808    //
5809    // As a compromise, we only emit discrete instructions if the shuffle can be
5810    // generated in 3 or fewer operations.  When we have loop information
5811    // available, if this block is within a loop, we should avoid using vperm
5812    // for 3-operation perms and use a constant pool load instead.
5813    if (Cost < 3)
5814      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5815  }
5816
5817  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5818  // vector that will get spilled to the constant pool.
5819  if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5820
5821  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5822  // that it is in input element units, not in bytes.  Convert now.
5823  EVT EltVT = V1.getValueType().getVectorElementType();
5824  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5825
5826  SmallVector<SDValue, 16> ResultMask;
5827  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5828    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5829
5830    for (unsigned j = 0; j != BytesPerElement; ++j)
5831      ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5832                                           MVT::i32));
5833  }
5834
5835  SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5836                                  ResultMask);
5837  return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5838}
5839
5840/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5841/// altivec comparison.  If it is, return true and fill in Opc/isDot with
5842/// information about the intrinsic.
5843static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5844                                  bool &isDot) {
5845  unsigned IntrinsicID =
5846    cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5847  CompareOpc = -1;
5848  isDot = false;
5849  switch (IntrinsicID) {
5850  default: return false;
5851    // Comparison predicates.
5852  case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
5853  case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5854  case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
5855  case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
5856  case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5857  case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5858  case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5859  case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5860  case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5861  case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5862  case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5863  case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5864  case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5865
5866    // Normal Comparisons.
5867  case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
5868  case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
5869  case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
5870  case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
5871  case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
5872  case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
5873  case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
5874  case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
5875  case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
5876  case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
5877  case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
5878  case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
5879  case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
5880  }
5881  return true;
5882}
5883
5884/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5885/// lower, do it, otherwise return null.
5886SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5887                                                   SelectionDAG &DAG) const {
5888  // If this is a lowered altivec predicate compare, CompareOpc is set to the
5889  // opcode number of the comparison.
5890  SDLoc dl(Op);
5891  int CompareOpc;
5892  bool isDot;
5893  if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5894    return SDValue();    // Don't custom lower most intrinsics.
5895
5896  // If this is a non-dot comparison, make the VCMP node and we are done.
5897  if (!isDot) {
5898    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5899                              Op.getOperand(1), Op.getOperand(2),
5900                              DAG.getConstant(CompareOpc, MVT::i32));
5901    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5902  }
5903
5904  // Create the PPCISD altivec 'dot' comparison node.
5905  SDValue Ops[] = {
5906    Op.getOperand(2),  // LHS
5907    Op.getOperand(3),  // RHS
5908    DAG.getConstant(CompareOpc, MVT::i32)
5909  };
5910  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
5911  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
5912
5913  // Now that we have the comparison, emit a copy from the CR to a GPR.
5914  // This is flagged to the above dot comparison.
5915  SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
5916                                DAG.getRegister(PPC::CR6, MVT::i32),
5917                                CompNode.getValue(1));
5918
5919  // Unpack the result based on how the target uses it.
5920  unsigned BitNo;   // Bit # of CR6.
5921  bool InvertBit;   // Invert result?
5922  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5923  default:  // Can't happen, don't crash on invalid number though.
5924  case 0:   // Return the value of the EQ bit of CR6.
5925    BitNo = 0; InvertBit = false;
5926    break;
5927  case 1:   // Return the inverted value of the EQ bit of CR6.
5928    BitNo = 0; InvertBit = true;
5929    break;
5930  case 2:   // Return the value of the LT bit of CR6.
5931    BitNo = 2; InvertBit = false;
5932    break;
5933  case 3:   // Return the inverted value of the LT bit of CR6.
5934    BitNo = 2; InvertBit = true;
5935    break;
5936  }
5937
5938  // Shift the bit into the low position.
5939  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5940                      DAG.getConstant(8-(3-BitNo), MVT::i32));
5941  // Isolate the bit.
5942  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5943                      DAG.getConstant(1, MVT::i32));
5944
5945  // If we are supposed to, toggle the bit.
5946  if (InvertBit)
5947    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5948                        DAG.getConstant(1, MVT::i32));
5949  return Flags;
5950}
5951
5952SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
5953                                                  SelectionDAG &DAG) const {
5954  SDLoc dl(Op);
5955  // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
5956  // instructions), but for smaller types, we need to first extend up to v2i32
5957  // before doing going farther.
5958  if (Op.getValueType() == MVT::v2i64) {
5959    EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
5960    if (ExtVT != MVT::v2i32) {
5961      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
5962      Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
5963                       DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
5964                                        ExtVT.getVectorElementType(), 4)));
5965      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
5966      Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
5967                       DAG.getValueType(MVT::v2i32));
5968    }
5969
5970    return Op;
5971  }
5972
5973  return SDValue();
5974}
5975
5976SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5977                                                   SelectionDAG &DAG) const {
5978  SDLoc dl(Op);
5979  // Create a stack slot that is 16-byte aligned.
5980  MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5981  int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5982  EVT PtrVT = getPointerTy();
5983  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5984
5985  // Store the input value into Value#0 of the stack slot.
5986  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5987                               Op.getOperand(0), FIdx, MachinePointerInfo(),
5988                               false, false, 0);
5989  // Load it out.
5990  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5991                     false, false, false, 0);
5992}
5993
5994SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5995  SDLoc dl(Op);
5996  if (Op.getValueType() == MVT::v4i32) {
5997    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5998
5999    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
6000    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
6001
6002    SDValue RHSSwap =   // = vrlw RHS, 16
6003      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
6004
6005    // Shrinkify inputs to v8i16.
6006    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
6007    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
6008    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
6009
6010    // Low parts multiplied together, generating 32-bit results (we ignore the
6011    // top parts).
6012    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
6013                                        LHS, RHS, DAG, dl, MVT::v4i32);
6014
6015    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
6016                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
6017    // Shift the high parts up 16 bits.
6018    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
6019                              Neg16, DAG, dl);
6020    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
6021  } else if (Op.getValueType() == MVT::v8i16) {
6022    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6023
6024    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
6025
6026    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
6027                            LHS, RHS, Zero, DAG, dl);
6028  } else if (Op.getValueType() == MVT::v16i8) {
6029    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6030
6031    // Multiply the even 8-bit parts, producing 16-bit sums.
6032    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
6033                                           LHS, RHS, DAG, dl, MVT::v8i16);
6034    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
6035
6036    // Multiply the odd 8-bit parts, producing 16-bit sums.
6037    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
6038                                          LHS, RHS, DAG, dl, MVT::v8i16);
6039    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
6040
6041    // Merge the results together.
6042    int Ops[16];
6043    for (unsigned i = 0; i != 8; ++i) {
6044      Ops[i*2  ] = 2*i+1;
6045      Ops[i*2+1] = 2*i+1+16;
6046    }
6047    return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
6048  } else {
6049    llvm_unreachable("Unknown mul to lower!");
6050  }
6051}
6052
6053/// LowerOperation - Provide custom lowering hooks for some operations.
6054///
6055SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6056  switch (Op.getOpcode()) {
6057  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
6058  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6059  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
6060  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6061  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6062  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6063  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6064  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
6065  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
6066  case ISD::VASTART:
6067    return LowerVASTART(Op, DAG, PPCSubTarget);
6068
6069  case ISD::VAARG:
6070    return LowerVAARG(Op, DAG, PPCSubTarget);
6071
6072  case ISD::VACOPY:
6073    return LowerVACOPY(Op, DAG, PPCSubTarget);
6074
6075  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
6076  case ISD::DYNAMIC_STACKALLOC:
6077    return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
6078
6079  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
6080  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
6081
6082  case ISD::LOAD:               return LowerLOAD(Op, DAG);
6083  case ISD::STORE:              return LowerSTORE(Op, DAG);
6084  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
6085  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
6086  case ISD::FP_TO_UINT:
6087  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
6088                                                       SDLoc(Op));
6089  case ISD::UINT_TO_FP:
6090  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
6091  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6092
6093  // Lower 64-bit shifts.
6094  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
6095  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
6096  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
6097
6098  // Vector-related lowering.
6099  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6100  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6101  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6102  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6103  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op, DAG);
6104  case ISD::MUL:                return LowerMUL(Op, DAG);
6105
6106  // For counter-based loop handling.
6107  case ISD::INTRINSIC_W_CHAIN:  return SDValue();
6108
6109  // Frame & Return address.
6110  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6111  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6112  }
6113}
6114
6115void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
6116                                           SmallVectorImpl<SDValue>&Results,
6117                                           SelectionDAG &DAG) const {
6118  const TargetMachine &TM = getTargetMachine();
6119  SDLoc dl(N);
6120  switch (N->getOpcode()) {
6121  default:
6122    llvm_unreachable("Do not know how to custom type legalize this operation!");
6123  case ISD::INTRINSIC_W_CHAIN: {
6124    if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
6125        Intrinsic::ppc_is_decremented_ctr_nonzero)
6126      break;
6127
6128    assert(N->getValueType(0) == MVT::i1 &&
6129           "Unexpected result type for CTR decrement intrinsic");
6130    EVT SVT = getSetCCResultType(*DAG.getContext(), N->getValueType(0));
6131    SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
6132    SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
6133                                 N->getOperand(1));
6134
6135    Results.push_back(NewInt);
6136    Results.push_back(NewInt.getValue(1));
6137    break;
6138  }
6139  case ISD::VAARG: {
6140    if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
6141        || TM.getSubtarget<PPCSubtarget>().isPPC64())
6142      return;
6143
6144    EVT VT = N->getValueType(0);
6145
6146    if (VT == MVT::i64) {
6147      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
6148
6149      Results.push_back(NewNode);
6150      Results.push_back(NewNode.getValue(1));
6151    }
6152    return;
6153  }
6154  case ISD::FP_ROUND_INREG: {
6155    assert(N->getValueType(0) == MVT::ppcf128);
6156    assert(N->getOperand(0).getValueType() == MVT::ppcf128);
6157    SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
6158                             MVT::f64, N->getOperand(0),
6159                             DAG.getIntPtrConstant(0));
6160    SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
6161                             MVT::f64, N->getOperand(0),
6162                             DAG.getIntPtrConstant(1));
6163
6164    // Add the two halves of the long double in round-to-zero mode.
6165    SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
6166
6167    // We know the low half is about to be thrown away, so just use something
6168    // convenient.
6169    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
6170                                FPreg, FPreg));
6171    return;
6172  }
6173  case ISD::FP_TO_SINT:
6174    // LowerFP_TO_INT() can only handle f32 and f64.
6175    if (N->getOperand(0).getValueType() == MVT::ppcf128)
6176      return;
6177    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
6178    return;
6179  }
6180}
6181
6182
6183//===----------------------------------------------------------------------===//
6184//  Other Lowering Code
6185//===----------------------------------------------------------------------===//
6186
6187MachineBasicBlock *
6188PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
6189                                    bool is64bit, unsigned BinOpcode) const {
6190  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
6191  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6192
6193  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6194  MachineFunction *F = BB->getParent();
6195  MachineFunction::iterator It = BB;
6196  ++It;
6197
6198  unsigned dest = MI->getOperand(0).getReg();
6199  unsigned ptrA = MI->getOperand(1).getReg();
6200  unsigned ptrB = MI->getOperand(2).getReg();
6201  unsigned incr = MI->getOperand(3).getReg();
6202  DebugLoc dl = MI->getDebugLoc();
6203
6204  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
6205  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6206  F->insert(It, loopMBB);
6207  F->insert(It, exitMBB);
6208  exitMBB->splice(exitMBB->begin(), BB,
6209                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
6210  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6211
6212  MachineRegisterInfo &RegInfo = F->getRegInfo();
6213  unsigned TmpReg = (!BinOpcode) ? incr :
6214    RegInfo.createVirtualRegister(
6215       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6216                 (const TargetRegisterClass *) &PPC::GPRCRegClass);
6217
6218  //  thisMBB:
6219  //   ...
6220  //   fallthrough --> loopMBB
6221  BB->addSuccessor(loopMBB);
6222
6223  //  loopMBB:
6224  //   l[wd]arx dest, ptr
6225  //   add r0, dest, incr
6226  //   st[wd]cx. r0, ptr
6227  //   bne- loopMBB
6228  //   fallthrough --> exitMBB
6229  BB = loopMBB;
6230  BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6231    .addReg(ptrA).addReg(ptrB);
6232  if (BinOpcode)
6233    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
6234  BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6235    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
6236  BuildMI(BB, dl, TII->get(PPC::BCC))
6237    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
6238  BB->addSuccessor(loopMBB);
6239  BB->addSuccessor(exitMBB);
6240
6241  //  exitMBB:
6242  //   ...
6243  BB = exitMBB;
6244  return BB;
6245}
6246
6247MachineBasicBlock *
6248PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
6249                                            MachineBasicBlock *BB,
6250                                            bool is8bit,    // operation
6251                                            unsigned BinOpcode) const {
6252  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
6253  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6254  // In 64 bit mode we have to use 64 bits for addresses, even though the
6255  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
6256  // registers without caring whether they're 32 or 64, but here we're
6257  // doing actual arithmetic on the addresses.
6258  bool is64bit = PPCSubTarget.isPPC64();
6259  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6260
6261  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6262  MachineFunction *F = BB->getParent();
6263  MachineFunction::iterator It = BB;
6264  ++It;
6265
6266  unsigned dest = MI->getOperand(0).getReg();
6267  unsigned ptrA = MI->getOperand(1).getReg();
6268  unsigned ptrB = MI->getOperand(2).getReg();
6269  unsigned incr = MI->getOperand(3).getReg();
6270  DebugLoc dl = MI->getDebugLoc();
6271
6272  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
6273  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6274  F->insert(It, loopMBB);
6275  F->insert(It, exitMBB);
6276  exitMBB->splice(exitMBB->begin(), BB,
6277                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
6278  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6279
6280  MachineRegisterInfo &RegInfo = F->getRegInfo();
6281  const TargetRegisterClass *RC =
6282    is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6283              (const TargetRegisterClass *) &PPC::GPRCRegClass;
6284  unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6285  unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6286  unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6287  unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
6288  unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6289  unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6290  unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6291  unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6292  unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
6293  unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6294  unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6295  unsigned Ptr1Reg;
6296  unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
6297
6298  //  thisMBB:
6299  //   ...
6300  //   fallthrough --> loopMBB
6301  BB->addSuccessor(loopMBB);
6302
6303  // The 4-byte load must be aligned, while a char or short may be
6304  // anywhere in the word.  Hence all this nasty bookkeeping code.
6305  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6306  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6307  //   xori shift, shift1, 24 [16]
6308  //   rlwinm ptr, ptr1, 0, 0, 29
6309  //   slw incr2, incr, shift
6310  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6311  //   slw mask, mask2, shift
6312  //  loopMBB:
6313  //   lwarx tmpDest, ptr
6314  //   add tmp, tmpDest, incr2
6315  //   andc tmp2, tmpDest, mask
6316  //   and tmp3, tmp, mask
6317  //   or tmp4, tmp3, tmp2
6318  //   stwcx. tmp4, ptr
6319  //   bne- loopMBB
6320  //   fallthrough --> exitMBB
6321  //   srw dest, tmpDest, shift
6322  if (ptrA != ZeroReg) {
6323    Ptr1Reg = RegInfo.createVirtualRegister(RC);
6324    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6325      .addReg(ptrA).addReg(ptrB);
6326  } else {
6327    Ptr1Reg = ptrB;
6328  }
6329  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6330      .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6331  BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6332      .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6333  if (is64bit)
6334    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6335      .addReg(Ptr1Reg).addImm(0).addImm(61);
6336  else
6337    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6338      .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6339  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
6340      .addReg(incr).addReg(ShiftReg);
6341  if (is8bit)
6342    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6343  else {
6344    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6345    BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
6346  }
6347  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6348      .addReg(Mask2Reg).addReg(ShiftReg);
6349
6350  BB = loopMBB;
6351  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6352    .addReg(ZeroReg).addReg(PtrReg);
6353  if (BinOpcode)
6354    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
6355      .addReg(Incr2Reg).addReg(TmpDestReg);
6356  BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
6357    .addReg(TmpDestReg).addReg(MaskReg);
6358  BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
6359    .addReg(TmpReg).addReg(MaskReg);
6360  BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
6361    .addReg(Tmp3Reg).addReg(Tmp2Reg);
6362  BuildMI(BB, dl, TII->get(PPC::STWCX))
6363    .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
6364  BuildMI(BB, dl, TII->get(PPC::BCC))
6365    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
6366  BB->addSuccessor(loopMBB);
6367  BB->addSuccessor(exitMBB);
6368
6369  //  exitMBB:
6370  //   ...
6371  BB = exitMBB;
6372  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
6373    .addReg(ShiftReg);
6374  return BB;
6375}
6376
6377llvm::MachineBasicBlock*
6378PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
6379                                    MachineBasicBlock *MBB) const {
6380  DebugLoc DL = MI->getDebugLoc();
6381  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6382
6383  MachineFunction *MF = MBB->getParent();
6384  MachineRegisterInfo &MRI = MF->getRegInfo();
6385
6386  const BasicBlock *BB = MBB->getBasicBlock();
6387  MachineFunction::iterator I = MBB;
6388  ++I;
6389
6390  // Memory Reference
6391  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6392  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6393
6394  unsigned DstReg = MI->getOperand(0).getReg();
6395  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
6396  assert(RC->hasType(MVT::i32) && "Invalid destination!");
6397  unsigned mainDstReg = MRI.createVirtualRegister(RC);
6398  unsigned restoreDstReg = MRI.createVirtualRegister(RC);
6399
6400  MVT PVT = getPointerTy();
6401  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6402         "Invalid Pointer Size!");
6403  // For v = setjmp(buf), we generate
6404  //
6405  // thisMBB:
6406  //  SjLjSetup mainMBB
6407  //  bl mainMBB
6408  //  v_restore = 1
6409  //  b sinkMBB
6410  //
6411  // mainMBB:
6412  //  buf[LabelOffset] = LR
6413  //  v_main = 0
6414  //
6415  // sinkMBB:
6416  //  v = phi(main, restore)
6417  //
6418
6419  MachineBasicBlock *thisMBB = MBB;
6420  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
6421  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
6422  MF->insert(I, mainMBB);
6423  MF->insert(I, sinkMBB);
6424
6425  MachineInstrBuilder MIB;
6426
6427  // Transfer the remainder of BB and its successor edges to sinkMBB.
6428  sinkMBB->splice(sinkMBB->begin(), MBB,
6429                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6430  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
6431
6432  // Note that the structure of the jmp_buf used here is not compatible
6433  // with that used by libc, and is not designed to be. Specifically, it
6434  // stores only those 'reserved' registers that LLVM does not otherwise
6435  // understand how to spill. Also, by convention, by the time this
6436  // intrinsic is called, Clang has already stored the frame address in the
6437  // first slot of the buffer and stack address in the third. Following the
6438  // X86 target code, we'll store the jump address in the second slot. We also
6439  // need to save the TOC pointer (R2) to handle jumps between shared
6440  // libraries, and that will be stored in the fourth slot. The thread
6441  // identifier (R13) is not affected.
6442
6443  // thisMBB:
6444  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6445  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6446  const int64_t BPOffset    = 4 * PVT.getStoreSize();
6447
6448  // Prepare IP either in reg.
6449  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
6450  unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
6451  unsigned BufReg = MI->getOperand(1).getReg();
6452
6453  if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
6454    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
6455            .addReg(PPC::X2)
6456            .addImm(TOCOffset)
6457            .addReg(BufReg);
6458    MIB.setMemRefs(MMOBegin, MMOEnd);
6459  }
6460
6461  // Naked functions never have a base pointer, and so we use r1. For all
6462  // other functions, this decision must be delayed until during PEI.
6463  unsigned BaseReg;
6464  if (MF->getFunction()->getAttributes().hasAttribute(
6465          AttributeSet::FunctionIndex, Attribute::Naked))
6466    BaseReg = PPCSubTarget.isPPC64() ? PPC::X1 : PPC::R1;
6467  else
6468    BaseReg = PPCSubTarget.isPPC64() ? PPC::BP8 : PPC::BP;
6469
6470  MIB = BuildMI(*thisMBB, MI, DL,
6471                TII->get(PPCSubTarget.isPPC64() ? PPC::STD : PPC::STW))
6472          .addReg(BaseReg)
6473          .addImm(BPOffset)
6474          .addReg(BufReg);
6475  MIB.setMemRefs(MMOBegin, MMOEnd);
6476
6477  // Setup
6478  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
6479  const PPCRegisterInfo *TRI =
6480    static_cast<const PPCRegisterInfo*>(getTargetMachine().getRegisterInfo());
6481  MIB.addRegMask(TRI->getNoPreservedMask());
6482
6483  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
6484
6485  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
6486          .addMBB(mainMBB);
6487  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
6488
6489  thisMBB->addSuccessor(mainMBB, /* weight */ 0);
6490  thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
6491
6492  // mainMBB:
6493  //  mainDstReg = 0
6494  MIB = BuildMI(mainMBB, DL,
6495    TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
6496
6497  // Store IP
6498  if (PPCSubTarget.isPPC64()) {
6499    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
6500            .addReg(LabelReg)
6501            .addImm(LabelOffset)
6502            .addReg(BufReg);
6503  } else {
6504    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
6505            .addReg(LabelReg)
6506            .addImm(LabelOffset)
6507            .addReg(BufReg);
6508  }
6509
6510  MIB.setMemRefs(MMOBegin, MMOEnd);
6511
6512  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
6513  mainMBB->addSuccessor(sinkMBB);
6514
6515  // sinkMBB:
6516  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
6517          TII->get(PPC::PHI), DstReg)
6518    .addReg(mainDstReg).addMBB(mainMBB)
6519    .addReg(restoreDstReg).addMBB(thisMBB);
6520
6521  MI->eraseFromParent();
6522  return sinkMBB;
6523}
6524
6525MachineBasicBlock *
6526PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
6527                                     MachineBasicBlock *MBB) const {
6528  DebugLoc DL = MI->getDebugLoc();
6529  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6530
6531  MachineFunction *MF = MBB->getParent();
6532  MachineRegisterInfo &MRI = MF->getRegInfo();
6533
6534  // Memory Reference
6535  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6536  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6537
6538  MVT PVT = getPointerTy();
6539  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6540         "Invalid Pointer Size!");
6541
6542  const TargetRegisterClass *RC =
6543    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6544  unsigned Tmp = MRI.createVirtualRegister(RC);
6545  // Since FP is only updated here but NOT referenced, it's treated as GPR.
6546  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
6547  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
6548  unsigned BP  = (PVT == MVT::i64) ? PPC::X30 : PPC::R30;
6549
6550  MachineInstrBuilder MIB;
6551
6552  const int64_t LabelOffset = 1 * PVT.getStoreSize();
6553  const int64_t SPOffset    = 2 * PVT.getStoreSize();
6554  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
6555  const int64_t BPOffset    = 4 * PVT.getStoreSize();
6556
6557  unsigned BufReg = MI->getOperand(0).getReg();
6558
6559  // Reload FP (the jumped-to function may not have had a
6560  // frame pointer, and if so, then its r31 will be restored
6561  // as necessary).
6562  if (PVT == MVT::i64) {
6563    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
6564            .addImm(0)
6565            .addReg(BufReg);
6566  } else {
6567    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
6568            .addImm(0)
6569            .addReg(BufReg);
6570  }
6571  MIB.setMemRefs(MMOBegin, MMOEnd);
6572
6573  // Reload IP
6574  if (PVT == MVT::i64) {
6575    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
6576            .addImm(LabelOffset)
6577            .addReg(BufReg);
6578  } else {
6579    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
6580            .addImm(LabelOffset)
6581            .addReg(BufReg);
6582  }
6583  MIB.setMemRefs(MMOBegin, MMOEnd);
6584
6585  // Reload SP
6586  if (PVT == MVT::i64) {
6587    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
6588            .addImm(SPOffset)
6589            .addReg(BufReg);
6590  } else {
6591    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
6592            .addImm(SPOffset)
6593            .addReg(BufReg);
6594  }
6595  MIB.setMemRefs(MMOBegin, MMOEnd);
6596
6597  // Reload BP
6598  if (PVT == MVT::i64) {
6599    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
6600            .addImm(BPOffset)
6601            .addReg(BufReg);
6602  } else {
6603    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
6604            .addImm(BPOffset)
6605            .addReg(BufReg);
6606  }
6607  MIB.setMemRefs(MMOBegin, MMOEnd);
6608
6609  // Reload TOC
6610  if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
6611    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
6612            .addImm(TOCOffset)
6613            .addReg(BufReg);
6614
6615    MIB.setMemRefs(MMOBegin, MMOEnd);
6616  }
6617
6618  // Jump
6619  BuildMI(*MBB, MI, DL,
6620          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
6621  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
6622
6623  MI->eraseFromParent();
6624  return MBB;
6625}
6626
6627MachineBasicBlock *
6628PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6629                                               MachineBasicBlock *BB) const {
6630  if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
6631      MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
6632    return emitEHSjLjSetJmp(MI, BB);
6633  } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
6634             MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
6635    return emitEHSjLjLongJmp(MI, BB);
6636  }
6637
6638  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6639
6640  // To "insert" these instructions we actually have to insert their
6641  // control-flow patterns.
6642  const BasicBlock *LLVM_BB = BB->getBasicBlock();
6643  MachineFunction::iterator It = BB;
6644  ++It;
6645
6646  MachineFunction *F = BB->getParent();
6647
6648  if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6649                                 MI->getOpcode() == PPC::SELECT_CC_I8 ||
6650                                 MI->getOpcode() == PPC::SELECT_I4 ||
6651                                 MI->getOpcode() == PPC::SELECT_I8)) {
6652    SmallVector<MachineOperand, 2> Cond;
6653    if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6654        MI->getOpcode() == PPC::SELECT_CC_I8)
6655      Cond.push_back(MI->getOperand(4));
6656    else
6657      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
6658    Cond.push_back(MI->getOperand(1));
6659
6660    DebugLoc dl = MI->getDebugLoc();
6661    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6662    TII->insertSelect(*BB, MI, dl, MI->getOperand(0).getReg(),
6663                      Cond, MI->getOperand(2).getReg(),
6664                      MI->getOperand(3).getReg());
6665  } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6666             MI->getOpcode() == PPC::SELECT_CC_I8 ||
6667             MI->getOpcode() == PPC::SELECT_CC_F4 ||
6668             MI->getOpcode() == PPC::SELECT_CC_F8 ||
6669             MI->getOpcode() == PPC::SELECT_CC_VRRC ||
6670             MI->getOpcode() == PPC::SELECT_I4 ||
6671             MI->getOpcode() == PPC::SELECT_I8 ||
6672             MI->getOpcode() == PPC::SELECT_F4 ||
6673             MI->getOpcode() == PPC::SELECT_F8 ||
6674             MI->getOpcode() == PPC::SELECT_VRRC) {
6675    // The incoming instruction knows the destination vreg to set, the
6676    // condition code register to branch on, the true/false values to
6677    // select between, and a branch opcode to use.
6678
6679    //  thisMBB:
6680    //  ...
6681    //   TrueVal = ...
6682    //   cmpTY ccX, r1, r2
6683    //   bCC copy1MBB
6684    //   fallthrough --> copy0MBB
6685    MachineBasicBlock *thisMBB = BB;
6686    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6687    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6688    DebugLoc dl = MI->getDebugLoc();
6689    F->insert(It, copy0MBB);
6690    F->insert(It, sinkMBB);
6691
6692    // Transfer the remainder of BB and its successor edges to sinkMBB.
6693    sinkMBB->splice(sinkMBB->begin(), BB,
6694                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
6695    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6696
6697    // Next, add the true and fallthrough blocks as its successors.
6698    BB->addSuccessor(copy0MBB);
6699    BB->addSuccessor(sinkMBB);
6700
6701    if (MI->getOpcode() == PPC::SELECT_I4 ||
6702        MI->getOpcode() == PPC::SELECT_I8 ||
6703        MI->getOpcode() == PPC::SELECT_F4 ||
6704        MI->getOpcode() == PPC::SELECT_F8 ||
6705        MI->getOpcode() == PPC::SELECT_VRRC) {
6706      BuildMI(BB, dl, TII->get(PPC::BC))
6707        .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6708    } else {
6709      unsigned SelectPred = MI->getOperand(4).getImm();
6710      BuildMI(BB, dl, TII->get(PPC::BCC))
6711        .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6712    }
6713
6714    //  copy0MBB:
6715    //   %FalseValue = ...
6716    //   # fallthrough to sinkMBB
6717    BB = copy0MBB;
6718
6719    // Update machine-CFG edges
6720    BB->addSuccessor(sinkMBB);
6721
6722    //  sinkMBB:
6723    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6724    //  ...
6725    BB = sinkMBB;
6726    BuildMI(*BB, BB->begin(), dl,
6727            TII->get(PPC::PHI), MI->getOperand(0).getReg())
6728      .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
6729      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6730  }
6731  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
6732    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
6733  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
6734    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
6735  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
6736    BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
6737  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
6738    BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
6739
6740  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
6741    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
6742  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
6743    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
6744  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
6745    BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
6746  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
6747    BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
6748
6749  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
6750    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
6751  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
6752    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
6753  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
6754    BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
6755  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
6756    BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
6757
6758  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
6759    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
6760  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
6761    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
6762  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
6763    BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6764  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6765    BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6766
6767  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6768    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6769  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6770    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6771  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6772    BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6773  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6774    BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6775
6776  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6777    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6778  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6779    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6780  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6781    BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6782  else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6783    BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6784
6785  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6786    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6787  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6788    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6789  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6790    BB = EmitAtomicBinary(MI, BB, false, 0);
6791  else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6792    BB = EmitAtomicBinary(MI, BB, true, 0);
6793
6794  else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6795           MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6796    bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6797
6798    unsigned dest   = MI->getOperand(0).getReg();
6799    unsigned ptrA   = MI->getOperand(1).getReg();
6800    unsigned ptrB   = MI->getOperand(2).getReg();
6801    unsigned oldval = MI->getOperand(3).getReg();
6802    unsigned newval = MI->getOperand(4).getReg();
6803    DebugLoc dl     = MI->getDebugLoc();
6804
6805    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6806    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6807    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6808    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6809    F->insert(It, loop1MBB);
6810    F->insert(It, loop2MBB);
6811    F->insert(It, midMBB);
6812    F->insert(It, exitMBB);
6813    exitMBB->splice(exitMBB->begin(), BB,
6814                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
6815    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6816
6817    //  thisMBB:
6818    //   ...
6819    //   fallthrough --> loopMBB
6820    BB->addSuccessor(loop1MBB);
6821
6822    // loop1MBB:
6823    //   l[wd]arx dest, ptr
6824    //   cmp[wd] dest, oldval
6825    //   bne- midMBB
6826    // loop2MBB:
6827    //   st[wd]cx. newval, ptr
6828    //   bne- loopMBB
6829    //   b exitBB
6830    // midMBB:
6831    //   st[wd]cx. dest, ptr
6832    // exitBB:
6833    BB = loop1MBB;
6834    BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6835      .addReg(ptrA).addReg(ptrB);
6836    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6837      .addReg(oldval).addReg(dest);
6838    BuildMI(BB, dl, TII->get(PPC::BCC))
6839      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6840    BB->addSuccessor(loop2MBB);
6841    BB->addSuccessor(midMBB);
6842
6843    BB = loop2MBB;
6844    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6845      .addReg(newval).addReg(ptrA).addReg(ptrB);
6846    BuildMI(BB, dl, TII->get(PPC::BCC))
6847      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6848    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6849    BB->addSuccessor(loop1MBB);
6850    BB->addSuccessor(exitMBB);
6851
6852    BB = midMBB;
6853    BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6854      .addReg(dest).addReg(ptrA).addReg(ptrB);
6855    BB->addSuccessor(exitMBB);
6856
6857    //  exitMBB:
6858    //   ...
6859    BB = exitMBB;
6860  } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6861             MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6862    // We must use 64-bit registers for addresses when targeting 64-bit,
6863    // since we're actually doing arithmetic on them.  Other registers
6864    // can be 32-bit.
6865    bool is64bit = PPCSubTarget.isPPC64();
6866    bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6867
6868    unsigned dest   = MI->getOperand(0).getReg();
6869    unsigned ptrA   = MI->getOperand(1).getReg();
6870    unsigned ptrB   = MI->getOperand(2).getReg();
6871    unsigned oldval = MI->getOperand(3).getReg();
6872    unsigned newval = MI->getOperand(4).getReg();
6873    DebugLoc dl     = MI->getDebugLoc();
6874
6875    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6876    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6877    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6878    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6879    F->insert(It, loop1MBB);
6880    F->insert(It, loop2MBB);
6881    F->insert(It, midMBB);
6882    F->insert(It, exitMBB);
6883    exitMBB->splice(exitMBB->begin(), BB,
6884                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
6885    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6886
6887    MachineRegisterInfo &RegInfo = F->getRegInfo();
6888    const TargetRegisterClass *RC =
6889      is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6890                (const TargetRegisterClass *) &PPC::GPRCRegClass;
6891    unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6892    unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6893    unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6894    unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6895    unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6896    unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6897    unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6898    unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6899    unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6900    unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6901    unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6902    unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6903    unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6904    unsigned Ptr1Reg;
6905    unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6906    unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6907    //  thisMBB:
6908    //   ...
6909    //   fallthrough --> loopMBB
6910    BB->addSuccessor(loop1MBB);
6911
6912    // The 4-byte load must be aligned, while a char or short may be
6913    // anywhere in the word.  Hence all this nasty bookkeeping code.
6914    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
6915    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6916    //   xori shift, shift1, 24 [16]
6917    //   rlwinm ptr, ptr1, 0, 0, 29
6918    //   slw newval2, newval, shift
6919    //   slw oldval2, oldval,shift
6920    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6921    //   slw mask, mask2, shift
6922    //   and newval3, newval2, mask
6923    //   and oldval3, oldval2, mask
6924    // loop1MBB:
6925    //   lwarx tmpDest, ptr
6926    //   and tmp, tmpDest, mask
6927    //   cmpw tmp, oldval3
6928    //   bne- midMBB
6929    // loop2MBB:
6930    //   andc tmp2, tmpDest, mask
6931    //   or tmp4, tmp2, newval3
6932    //   stwcx. tmp4, ptr
6933    //   bne- loop1MBB
6934    //   b exitBB
6935    // midMBB:
6936    //   stwcx. tmpDest, ptr
6937    // exitBB:
6938    //   srw dest, tmpDest, shift
6939    if (ptrA != ZeroReg) {
6940      Ptr1Reg = RegInfo.createVirtualRegister(RC);
6941      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6942        .addReg(ptrA).addReg(ptrB);
6943    } else {
6944      Ptr1Reg = ptrB;
6945    }
6946    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6947        .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6948    BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6949        .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6950    if (is64bit)
6951      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6952        .addReg(Ptr1Reg).addImm(0).addImm(61);
6953    else
6954      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6955        .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6956    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6957        .addReg(newval).addReg(ShiftReg);
6958    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6959        .addReg(oldval).addReg(ShiftReg);
6960    if (is8bit)
6961      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6962    else {
6963      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6964      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6965        .addReg(Mask3Reg).addImm(65535);
6966    }
6967    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6968        .addReg(Mask2Reg).addReg(ShiftReg);
6969    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6970        .addReg(NewVal2Reg).addReg(MaskReg);
6971    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6972        .addReg(OldVal2Reg).addReg(MaskReg);
6973
6974    BB = loop1MBB;
6975    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6976        .addReg(ZeroReg).addReg(PtrReg);
6977    BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6978        .addReg(TmpDestReg).addReg(MaskReg);
6979    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6980        .addReg(TmpReg).addReg(OldVal3Reg);
6981    BuildMI(BB, dl, TII->get(PPC::BCC))
6982        .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6983    BB->addSuccessor(loop2MBB);
6984    BB->addSuccessor(midMBB);
6985
6986    BB = loop2MBB;
6987    BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6988        .addReg(TmpDestReg).addReg(MaskReg);
6989    BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6990        .addReg(Tmp2Reg).addReg(NewVal3Reg);
6991    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6992        .addReg(ZeroReg).addReg(PtrReg);
6993    BuildMI(BB, dl, TII->get(PPC::BCC))
6994      .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6995    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6996    BB->addSuccessor(loop1MBB);
6997    BB->addSuccessor(exitMBB);
6998
6999    BB = midMBB;
7000    BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
7001      .addReg(ZeroReg).addReg(PtrReg);
7002    BB->addSuccessor(exitMBB);
7003
7004    //  exitMBB:
7005    //   ...
7006    BB = exitMBB;
7007    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
7008      .addReg(ShiftReg);
7009  } else if (MI->getOpcode() == PPC::FADDrtz) {
7010    // This pseudo performs an FADD with rounding mode temporarily forced
7011    // to round-to-zero.  We emit this via custom inserter since the FPSCR
7012    // is not modeled at the SelectionDAG level.
7013    unsigned Dest = MI->getOperand(0).getReg();
7014    unsigned Src1 = MI->getOperand(1).getReg();
7015    unsigned Src2 = MI->getOperand(2).getReg();
7016    DebugLoc dl   = MI->getDebugLoc();
7017
7018    MachineRegisterInfo &RegInfo = F->getRegInfo();
7019    unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
7020
7021    // Save FPSCR value.
7022    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
7023
7024    // Set rounding mode to round-to-zero.
7025    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
7026    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
7027
7028    // Perform addition.
7029    BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
7030
7031    // Restore FPSCR value.
7032    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
7033  } else if (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
7034             MI->getOpcode() == PPC::ANDIo_1_GT_BIT ||
7035             MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
7036             MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) {
7037    unsigned Opcode = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
7038                       MI->getOpcode() == PPC::ANDIo_1_GT_BIT8) ?
7039                      PPC::ANDIo8 : PPC::ANDIo;
7040    bool isEQ = (MI->getOpcode() == PPC::ANDIo_1_EQ_BIT ||
7041                 MI->getOpcode() == PPC::ANDIo_1_EQ_BIT8);
7042
7043    MachineRegisterInfo &RegInfo = F->getRegInfo();
7044    unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
7045                                                  &PPC::GPRCRegClass :
7046                                                  &PPC::G8RCRegClass);
7047
7048    DebugLoc dl   = MI->getDebugLoc();
7049    BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
7050      .addReg(MI->getOperand(1).getReg()).addImm(1);
7051    BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
7052            MI->getOperand(0).getReg())
7053      .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
7054  } else {
7055    llvm_unreachable("Unexpected instr type to insert");
7056  }
7057
7058  MI->eraseFromParent();   // The pseudo instruction is gone now.
7059  return BB;
7060}
7061
7062//===----------------------------------------------------------------------===//
7063// Target Optimization Hooks
7064//===----------------------------------------------------------------------===//
7065
7066SDValue PPCTargetLowering::DAGCombineFastRecip(SDValue Op,
7067                                               DAGCombinerInfo &DCI) const {
7068  if (DCI.isAfterLegalizeVectorOps())
7069    return SDValue();
7070
7071  EVT VT = Op.getValueType();
7072
7073  if ((VT == MVT::f32 && PPCSubTarget.hasFRES()) ||
7074      (VT == MVT::f64 && PPCSubTarget.hasFRE())  ||
7075      (VT == MVT::v4f32 && PPCSubTarget.hasAltivec()) ||
7076      (VT == MVT::v2f64 && PPCSubTarget.hasVSX())) {
7077
7078    // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
7079    // For the reciprocal, we need to find the zero of the function:
7080    //   F(X) = A X - 1 [which has a zero at X = 1/A]
7081    //     =>
7082    //   X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
7083    //     does not require additional intermediate precision]
7084
7085    // Convergence is quadratic, so we essentially double the number of digits
7086    // correct after every iteration. The minimum architected relative
7087    // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
7088    // 23 digits and double has 52 digits.
7089    int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
7090    if (VT.getScalarType() == MVT::f64)
7091      ++Iterations;
7092
7093    SelectionDAG &DAG = DCI.DAG;
7094    SDLoc dl(Op);
7095
7096    SDValue FPOne =
7097      DAG.getConstantFP(1.0, VT.getScalarType());
7098    if (VT.isVector()) {
7099      assert(VT.getVectorNumElements() == 4 &&
7100             "Unknown vector type");
7101      FPOne = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
7102                          FPOne, FPOne, FPOne, FPOne);
7103    }
7104
7105    SDValue Est = DAG.getNode(PPCISD::FRE, dl, VT, Op);
7106    DCI.AddToWorklist(Est.getNode());
7107
7108    // Newton iterations: Est = Est + Est (1 - Arg * Est)
7109    for (int i = 0; i < Iterations; ++i) {
7110      SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Op, Est);
7111      DCI.AddToWorklist(NewEst.getNode());
7112
7113      NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPOne, NewEst);
7114      DCI.AddToWorklist(NewEst.getNode());
7115
7116      NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
7117      DCI.AddToWorklist(NewEst.getNode());
7118
7119      Est = DAG.getNode(ISD::FADD, dl, VT, Est, NewEst);
7120      DCI.AddToWorklist(Est.getNode());
7121    }
7122
7123    return Est;
7124  }
7125
7126  return SDValue();
7127}
7128
7129SDValue PPCTargetLowering::DAGCombineFastRecipFSQRT(SDValue Op,
7130                                             DAGCombinerInfo &DCI) const {
7131  if (DCI.isAfterLegalizeVectorOps())
7132    return SDValue();
7133
7134  EVT VT = Op.getValueType();
7135
7136  if ((VT == MVT::f32 && PPCSubTarget.hasFRSQRTES()) ||
7137      (VT == MVT::f64 && PPCSubTarget.hasFRSQRTE())  ||
7138      (VT == MVT::v4f32 && PPCSubTarget.hasAltivec()) ||
7139      (VT == MVT::v2f64 && PPCSubTarget.hasVSX())) {
7140
7141    // Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
7142    // For the reciprocal sqrt, we need to find the zero of the function:
7143    //   F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
7144    //     =>
7145    //   X_{i+1} = X_i (1.5 - A X_i^2 / 2)
7146    // As a result, we precompute A/2 prior to the iteration loop.
7147
7148    // Convergence is quadratic, so we essentially double the number of digits
7149    // correct after every iteration. The minimum architected relative
7150    // accuracy is 2^-5. When hasRecipPrec(), this is 2^-14. IEEE float has
7151    // 23 digits and double has 52 digits.
7152    int Iterations = PPCSubTarget.hasRecipPrec() ? 1 : 3;
7153    if (VT.getScalarType() == MVT::f64)
7154      ++Iterations;
7155
7156    SelectionDAG &DAG = DCI.DAG;
7157    SDLoc dl(Op);
7158
7159    SDValue FPThreeHalves =
7160      DAG.getConstantFP(1.5, VT.getScalarType());
7161    if (VT.isVector()) {
7162      assert(VT.getVectorNumElements() == 4 &&
7163             "Unknown vector type");
7164      FPThreeHalves = DAG.getNode(ISD::BUILD_VECTOR, dl, VT,
7165                                  FPThreeHalves, FPThreeHalves,
7166                                  FPThreeHalves, FPThreeHalves);
7167    }
7168
7169    SDValue Est = DAG.getNode(PPCISD::FRSQRTE, dl, VT, Op);
7170    DCI.AddToWorklist(Est.getNode());
7171
7172    // We now need 0.5*Arg which we can write as (1.5*Arg - Arg) so that
7173    // this entire sequence requires only one FP constant.
7174    SDValue HalfArg = DAG.getNode(ISD::FMUL, dl, VT, FPThreeHalves, Op);
7175    DCI.AddToWorklist(HalfArg.getNode());
7176
7177    HalfArg = DAG.getNode(ISD::FSUB, dl, VT, HalfArg, Op);
7178    DCI.AddToWorklist(HalfArg.getNode());
7179
7180    // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
7181    for (int i = 0; i < Iterations; ++i) {
7182      SDValue NewEst = DAG.getNode(ISD::FMUL, dl, VT, Est, Est);
7183      DCI.AddToWorklist(NewEst.getNode());
7184
7185      NewEst = DAG.getNode(ISD::FMUL, dl, VT, HalfArg, NewEst);
7186      DCI.AddToWorklist(NewEst.getNode());
7187
7188      NewEst = DAG.getNode(ISD::FSUB, dl, VT, FPThreeHalves, NewEst);
7189      DCI.AddToWorklist(NewEst.getNode());
7190
7191      Est = DAG.getNode(ISD::FMUL, dl, VT, Est, NewEst);
7192      DCI.AddToWorklist(Est.getNode());
7193    }
7194
7195    return Est;
7196  }
7197
7198  return SDValue();
7199}
7200
7201// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
7202// not enforce equality of the chain operands.
7203static bool isConsecutiveLS(LSBaseSDNode *LS, LSBaseSDNode *Base,
7204                            unsigned Bytes, int Dist,
7205                            SelectionDAG &DAG) {
7206  EVT VT = LS->getMemoryVT();
7207  if (VT.getSizeInBits() / 8 != Bytes)
7208    return false;
7209
7210  SDValue Loc = LS->getBasePtr();
7211  SDValue BaseLoc = Base->getBasePtr();
7212  if (Loc.getOpcode() == ISD::FrameIndex) {
7213    if (BaseLoc.getOpcode() != ISD::FrameIndex)
7214      return false;
7215    const MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7216    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
7217    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
7218    int FS  = MFI->getObjectSize(FI);
7219    int BFS = MFI->getObjectSize(BFI);
7220    if (FS != BFS || FS != (int)Bytes) return false;
7221    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
7222  }
7223
7224  // Handle X+C
7225  if (DAG.isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
7226      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
7227    return true;
7228
7229  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7230  const GlobalValue *GV1 = nullptr;
7231  const GlobalValue *GV2 = nullptr;
7232  int64_t Offset1 = 0;
7233  int64_t Offset2 = 0;
7234  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
7235  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
7236  if (isGA1 && isGA2 && GV1 == GV2)
7237    return Offset1 == (Offset2 + Dist*Bytes);
7238  return false;
7239}
7240
7241// Return true is there is a nearyby consecutive load to the one provided
7242// (regardless of alignment). We search up and down the chain, looking though
7243// token factors and other loads (but nothing else). As a result, a true
7244// results indicates that it is safe to create a new consecutive load adjacent
7245// to the load provided.
7246static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
7247  SDValue Chain = LD->getChain();
7248  EVT VT = LD->getMemoryVT();
7249
7250  SmallSet<SDNode *, 16> LoadRoots;
7251  SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
7252  SmallSet<SDNode *, 16> Visited;
7253
7254  // First, search up the chain, branching to follow all token-factor operands.
7255  // If we find a consecutive load, then we're done, otherwise, record all
7256  // nodes just above the top-level loads and token factors.
7257  while (!Queue.empty()) {
7258    SDNode *ChainNext = Queue.pop_back_val();
7259    if (!Visited.insert(ChainNext))
7260      continue;
7261
7262    if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(ChainNext)) {
7263      if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
7264        return true;
7265
7266      if (!Visited.count(ChainLD->getChain().getNode()))
7267        Queue.push_back(ChainLD->getChain().getNode());
7268    } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
7269      for (SDNode::op_iterator O = ChainNext->op_begin(),
7270           OE = ChainNext->op_end(); O != OE; ++O)
7271        if (!Visited.count(O->getNode()))
7272          Queue.push_back(O->getNode());
7273    } else
7274      LoadRoots.insert(ChainNext);
7275  }
7276
7277  // Second, search down the chain, starting from the top-level nodes recorded
7278  // in the first phase. These top-level nodes are the nodes just above all
7279  // loads and token factors. Starting with their uses, recursively look though
7280  // all loads (just the chain uses) and token factors to find a consecutive
7281  // load.
7282  Visited.clear();
7283  Queue.clear();
7284
7285  for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
7286       IE = LoadRoots.end(); I != IE; ++I) {
7287    Queue.push_back(*I);
7288
7289    while (!Queue.empty()) {
7290      SDNode *LoadRoot = Queue.pop_back_val();
7291      if (!Visited.insert(LoadRoot))
7292        continue;
7293
7294      if (LoadSDNode *ChainLD = dyn_cast<LoadSDNode>(LoadRoot))
7295        if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
7296          return true;
7297
7298      for (SDNode::use_iterator UI = LoadRoot->use_begin(),
7299           UE = LoadRoot->use_end(); UI != UE; ++UI)
7300        if (((isa<LoadSDNode>(*UI) &&
7301            cast<LoadSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
7302            UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
7303          Queue.push_back(*UI);
7304    }
7305  }
7306
7307  return false;
7308}
7309
7310SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
7311                                                  DAGCombinerInfo &DCI) const {
7312  SelectionDAG &DAG = DCI.DAG;
7313  SDLoc dl(N);
7314
7315  assert(PPCSubTarget.useCRBits() &&
7316         "Expecting to be tracking CR bits");
7317  // If we're tracking CR bits, we need to be careful that we don't have:
7318  //   trunc(binary-ops(zext(x), zext(y)))
7319  // or
7320  //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
7321  // such that we're unnecessarily moving things into GPRs when it would be
7322  // better to keep them in CR bits.
7323
7324  // Note that trunc here can be an actual i1 trunc, or can be the effective
7325  // truncation that comes from a setcc or select_cc.
7326  if (N->getOpcode() == ISD::TRUNCATE &&
7327      N->getValueType(0) != MVT::i1)
7328    return SDValue();
7329
7330  if (N->getOperand(0).getValueType() != MVT::i32 &&
7331      N->getOperand(0).getValueType() != MVT::i64)
7332    return SDValue();
7333
7334  if (N->getOpcode() == ISD::SETCC ||
7335      N->getOpcode() == ISD::SELECT_CC) {
7336    // If we're looking at a comparison, then we need to make sure that the
7337    // high bits (all except for the first) don't matter the result.
7338    ISD::CondCode CC =
7339      cast<CondCodeSDNode>(N->getOperand(
7340        N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
7341    unsigned OpBits = N->getOperand(0).getValueSizeInBits();
7342
7343    if (ISD::isSignedIntSetCC(CC)) {
7344      if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
7345          DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
7346        return SDValue();
7347    } else if (ISD::isUnsignedIntSetCC(CC)) {
7348      if (!DAG.MaskedValueIsZero(N->getOperand(0),
7349                                 APInt::getHighBitsSet(OpBits, OpBits-1)) ||
7350          !DAG.MaskedValueIsZero(N->getOperand(1),
7351                                 APInt::getHighBitsSet(OpBits, OpBits-1)))
7352        return SDValue();
7353    } else {
7354      // This is neither a signed nor an unsigned comparison, just make sure
7355      // that the high bits are equal.
7356      APInt Op1Zero, Op1One;
7357      APInt Op2Zero, Op2One;
7358      DAG.computeKnownBits(N->getOperand(0), Op1Zero, Op1One);
7359      DAG.computeKnownBits(N->getOperand(1), Op2Zero, Op2One);
7360
7361      // We don't really care about what is known about the first bit (if
7362      // anything), so clear it in all masks prior to comparing them.
7363      Op1Zero.clearBit(0); Op1One.clearBit(0);
7364      Op2Zero.clearBit(0); Op2One.clearBit(0);
7365
7366      if (Op1Zero != Op2Zero || Op1One != Op2One)
7367        return SDValue();
7368    }
7369  }
7370
7371  // We now know that the higher-order bits are irrelevant, we just need to
7372  // make sure that all of the intermediate operations are bit operations, and
7373  // all inputs are extensions.
7374  if (N->getOperand(0).getOpcode() != ISD::AND &&
7375      N->getOperand(0).getOpcode() != ISD::OR  &&
7376      N->getOperand(0).getOpcode() != ISD::XOR &&
7377      N->getOperand(0).getOpcode() != ISD::SELECT &&
7378      N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
7379      N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
7380      N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
7381      N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
7382      N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
7383    return SDValue();
7384
7385  if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
7386      N->getOperand(1).getOpcode() != ISD::AND &&
7387      N->getOperand(1).getOpcode() != ISD::OR  &&
7388      N->getOperand(1).getOpcode() != ISD::XOR &&
7389      N->getOperand(1).getOpcode() != ISD::SELECT &&
7390      N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
7391      N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
7392      N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
7393      N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
7394      N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
7395    return SDValue();
7396
7397  SmallVector<SDValue, 4> Inputs;
7398  SmallVector<SDValue, 8> BinOps, PromOps;
7399  SmallPtrSet<SDNode *, 16> Visited;
7400
7401  for (unsigned i = 0; i < 2; ++i) {
7402    if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
7403          N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
7404          N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
7405          N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
7406        isa<ConstantSDNode>(N->getOperand(i)))
7407      Inputs.push_back(N->getOperand(i));
7408    else
7409      BinOps.push_back(N->getOperand(i));
7410
7411    if (N->getOpcode() == ISD::TRUNCATE)
7412      break;
7413  }
7414
7415  // Visit all inputs, collect all binary operations (and, or, xor and
7416  // select) that are all fed by extensions.
7417  while (!BinOps.empty()) {
7418    SDValue BinOp = BinOps.back();
7419    BinOps.pop_back();
7420
7421    if (!Visited.insert(BinOp.getNode()))
7422      continue;
7423
7424    PromOps.push_back(BinOp);
7425
7426    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
7427      // The condition of the select is not promoted.
7428      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
7429        continue;
7430      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
7431        continue;
7432
7433      if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
7434            BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
7435            BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
7436           BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
7437          isa<ConstantSDNode>(BinOp.getOperand(i))) {
7438        Inputs.push_back(BinOp.getOperand(i));
7439      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
7440                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
7441                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
7442                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
7443                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
7444                 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
7445                 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
7446                 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
7447                 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
7448        BinOps.push_back(BinOp.getOperand(i));
7449      } else {
7450        // We have an input that is not an extension or another binary
7451        // operation; we'll abort this transformation.
7452        return SDValue();
7453      }
7454    }
7455  }
7456
7457  // Make sure that this is a self-contained cluster of operations (which
7458  // is not quite the same thing as saying that everything has only one
7459  // use).
7460  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7461    if (isa<ConstantSDNode>(Inputs[i]))
7462      continue;
7463
7464    for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
7465                              UE = Inputs[i].getNode()->use_end();
7466         UI != UE; ++UI) {
7467      SDNode *User = *UI;
7468      if (User != N && !Visited.count(User))
7469        return SDValue();
7470
7471      // Make sure that we're not going to promote the non-output-value
7472      // operand(s) or SELECT or SELECT_CC.
7473      // FIXME: Although we could sometimes handle this, and it does occur in
7474      // practice that one of the condition inputs to the select is also one of
7475      // the outputs, we currently can't deal with this.
7476      if (User->getOpcode() == ISD::SELECT) {
7477        if (User->getOperand(0) == Inputs[i])
7478          return SDValue();
7479      } else if (User->getOpcode() == ISD::SELECT_CC) {
7480        if (User->getOperand(0) == Inputs[i] ||
7481            User->getOperand(1) == Inputs[i])
7482          return SDValue();
7483      }
7484    }
7485  }
7486
7487  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
7488    for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
7489                              UE = PromOps[i].getNode()->use_end();
7490         UI != UE; ++UI) {
7491      SDNode *User = *UI;
7492      if (User != N && !Visited.count(User))
7493        return SDValue();
7494
7495      // Make sure that we're not going to promote the non-output-value
7496      // operand(s) or SELECT or SELECT_CC.
7497      // FIXME: Although we could sometimes handle this, and it does occur in
7498      // practice that one of the condition inputs to the select is also one of
7499      // the outputs, we currently can't deal with this.
7500      if (User->getOpcode() == ISD::SELECT) {
7501        if (User->getOperand(0) == PromOps[i])
7502          return SDValue();
7503      } else if (User->getOpcode() == ISD::SELECT_CC) {
7504        if (User->getOperand(0) == PromOps[i] ||
7505            User->getOperand(1) == PromOps[i])
7506          return SDValue();
7507      }
7508    }
7509  }
7510
7511  // Replace all inputs with the extension operand.
7512  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7513    // Constants may have users outside the cluster of to-be-promoted nodes,
7514    // and so we need to replace those as we do the promotions.
7515    if (isa<ConstantSDNode>(Inputs[i]))
7516      continue;
7517    else
7518      DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
7519  }
7520
7521  // Replace all operations (these are all the same, but have a different
7522  // (i1) return type). DAG.getNode will validate that the types of
7523  // a binary operator match, so go through the list in reverse so that
7524  // we've likely promoted both operands first. Any intermediate truncations or
7525  // extensions disappear.
7526  while (!PromOps.empty()) {
7527    SDValue PromOp = PromOps.back();
7528    PromOps.pop_back();
7529
7530    if (PromOp.getOpcode() == ISD::TRUNCATE ||
7531        PromOp.getOpcode() == ISD::SIGN_EXTEND ||
7532        PromOp.getOpcode() == ISD::ZERO_EXTEND ||
7533        PromOp.getOpcode() == ISD::ANY_EXTEND) {
7534      if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
7535          PromOp.getOperand(0).getValueType() != MVT::i1) {
7536        // The operand is not yet ready (see comment below).
7537        PromOps.insert(PromOps.begin(), PromOp);
7538        continue;
7539      }
7540
7541      SDValue RepValue = PromOp.getOperand(0);
7542      if (isa<ConstantSDNode>(RepValue))
7543        RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
7544
7545      DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
7546      continue;
7547    }
7548
7549    unsigned C;
7550    switch (PromOp.getOpcode()) {
7551    default:             C = 0; break;
7552    case ISD::SELECT:    C = 1; break;
7553    case ISD::SELECT_CC: C = 2; break;
7554    }
7555
7556    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
7557         PromOp.getOperand(C).getValueType() != MVT::i1) ||
7558        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
7559         PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
7560      // The to-be-promoted operands of this node have not yet been
7561      // promoted (this should be rare because we're going through the
7562      // list backward, but if one of the operands has several users in
7563      // this cluster of to-be-promoted nodes, it is possible).
7564      PromOps.insert(PromOps.begin(), PromOp);
7565      continue;
7566    }
7567
7568    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
7569                                PromOp.getNode()->op_end());
7570
7571    // If there are any constant inputs, make sure they're replaced now.
7572    for (unsigned i = 0; i < 2; ++i)
7573      if (isa<ConstantSDNode>(Ops[C+i]))
7574        Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
7575
7576    DAG.ReplaceAllUsesOfValueWith(PromOp,
7577      DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
7578  }
7579
7580  // Now we're left with the initial truncation itself.
7581  if (N->getOpcode() == ISD::TRUNCATE)
7582    return N->getOperand(0);
7583
7584  // Otherwise, this is a comparison. The operands to be compared have just
7585  // changed type (to i1), but everything else is the same.
7586  return SDValue(N, 0);
7587}
7588
7589SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
7590                                                  DAGCombinerInfo &DCI) const {
7591  SelectionDAG &DAG = DCI.DAG;
7592  SDLoc dl(N);
7593
7594  // If we're tracking CR bits, we need to be careful that we don't have:
7595  //   zext(binary-ops(trunc(x), trunc(y)))
7596  // or
7597  //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
7598  // such that we're unnecessarily moving things into CR bits that can more
7599  // efficiently stay in GPRs. Note that if we're not certain that the high
7600  // bits are set as required by the final extension, we still may need to do
7601  // some masking to get the proper behavior.
7602
7603  // This same functionality is important on PPC64 when dealing with
7604  // 32-to-64-bit extensions; these occur often when 32-bit values are used as
7605  // the return values of functions. Because it is so similar, it is handled
7606  // here as well.
7607
7608  if (N->getValueType(0) != MVT::i32 &&
7609      N->getValueType(0) != MVT::i64)
7610    return SDValue();
7611
7612  if (!((N->getOperand(0).getValueType() == MVT::i1 &&
7613        PPCSubTarget.useCRBits()) ||
7614       (N->getOperand(0).getValueType() == MVT::i32 &&
7615        PPCSubTarget.isPPC64())))
7616    return SDValue();
7617
7618  if (N->getOperand(0).getOpcode() != ISD::AND &&
7619      N->getOperand(0).getOpcode() != ISD::OR  &&
7620      N->getOperand(0).getOpcode() != ISD::XOR &&
7621      N->getOperand(0).getOpcode() != ISD::SELECT &&
7622      N->getOperand(0).getOpcode() != ISD::SELECT_CC)
7623    return SDValue();
7624
7625  SmallVector<SDValue, 4> Inputs;
7626  SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
7627  SmallPtrSet<SDNode *, 16> Visited;
7628
7629  // Visit all inputs, collect all binary operations (and, or, xor and
7630  // select) that are all fed by truncations.
7631  while (!BinOps.empty()) {
7632    SDValue BinOp = BinOps.back();
7633    BinOps.pop_back();
7634
7635    if (!Visited.insert(BinOp.getNode()))
7636      continue;
7637
7638    PromOps.push_back(BinOp);
7639
7640    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
7641      // The condition of the select is not promoted.
7642      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
7643        continue;
7644      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
7645        continue;
7646
7647      if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
7648          isa<ConstantSDNode>(BinOp.getOperand(i))) {
7649        Inputs.push_back(BinOp.getOperand(i));
7650      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
7651                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
7652                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
7653                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
7654                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
7655        BinOps.push_back(BinOp.getOperand(i));
7656      } else {
7657        // We have an input that is not a truncation or another binary
7658        // operation; we'll abort this transformation.
7659        return SDValue();
7660      }
7661    }
7662  }
7663
7664  // Make sure that this is a self-contained cluster of operations (which
7665  // is not quite the same thing as saying that everything has only one
7666  // use).
7667  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7668    if (isa<ConstantSDNode>(Inputs[i]))
7669      continue;
7670
7671    for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
7672                              UE = Inputs[i].getNode()->use_end();
7673         UI != UE; ++UI) {
7674      SDNode *User = *UI;
7675      if (User != N && !Visited.count(User))
7676        return SDValue();
7677
7678      // Make sure that we're not going to promote the non-output-value
7679      // operand(s) or SELECT or SELECT_CC.
7680      // FIXME: Although we could sometimes handle this, and it does occur in
7681      // practice that one of the condition inputs to the select is also one of
7682      // the outputs, we currently can't deal with this.
7683      if (User->getOpcode() == ISD::SELECT) {
7684        if (User->getOperand(0) == Inputs[i])
7685          return SDValue();
7686      } else if (User->getOpcode() == ISD::SELECT_CC) {
7687        if (User->getOperand(0) == Inputs[i] ||
7688            User->getOperand(1) == Inputs[i])
7689          return SDValue();
7690      }
7691    }
7692  }
7693
7694  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
7695    for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
7696                              UE = PromOps[i].getNode()->use_end();
7697         UI != UE; ++UI) {
7698      SDNode *User = *UI;
7699      if (User != N && !Visited.count(User))
7700        return SDValue();
7701
7702      // Make sure that we're not going to promote the non-output-value
7703      // operand(s) or SELECT or SELECT_CC.
7704      // FIXME: Although we could sometimes handle this, and it does occur in
7705      // practice that one of the condition inputs to the select is also one of
7706      // the outputs, we currently can't deal with this.
7707      if (User->getOpcode() == ISD::SELECT) {
7708        if (User->getOperand(0) == PromOps[i])
7709          return SDValue();
7710      } else if (User->getOpcode() == ISD::SELECT_CC) {
7711        if (User->getOperand(0) == PromOps[i] ||
7712            User->getOperand(1) == PromOps[i])
7713          return SDValue();
7714      }
7715    }
7716  }
7717
7718  unsigned PromBits = N->getOperand(0).getValueSizeInBits();
7719  bool ReallyNeedsExt = false;
7720  if (N->getOpcode() != ISD::ANY_EXTEND) {
7721    // If all of the inputs are not already sign/zero extended, then
7722    // we'll still need to do that at the end.
7723    for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7724      if (isa<ConstantSDNode>(Inputs[i]))
7725        continue;
7726
7727      unsigned OpBits =
7728        Inputs[i].getOperand(0).getValueSizeInBits();
7729      assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
7730
7731      if ((N->getOpcode() == ISD::ZERO_EXTEND &&
7732           !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
7733                                  APInt::getHighBitsSet(OpBits,
7734                                                        OpBits-PromBits))) ||
7735          (N->getOpcode() == ISD::SIGN_EXTEND &&
7736           DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
7737             (OpBits-(PromBits-1)))) {
7738        ReallyNeedsExt = true;
7739        break;
7740      }
7741    }
7742  }
7743
7744  // Replace all inputs, either with the truncation operand, or a
7745  // truncation or extension to the final output type.
7746  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
7747    // Constant inputs need to be replaced with the to-be-promoted nodes that
7748    // use them because they might have users outside of the cluster of
7749    // promoted nodes.
7750    if (isa<ConstantSDNode>(Inputs[i]))
7751      continue;
7752
7753    SDValue InSrc = Inputs[i].getOperand(0);
7754    if (Inputs[i].getValueType() == N->getValueType(0))
7755      DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
7756    else if (N->getOpcode() == ISD::SIGN_EXTEND)
7757      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
7758        DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
7759    else if (N->getOpcode() == ISD::ZERO_EXTEND)
7760      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
7761        DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
7762    else
7763      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
7764        DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
7765  }
7766
7767  // Replace all operations (these are all the same, but have a different
7768  // (promoted) return type). DAG.getNode will validate that the types of
7769  // a binary operator match, so go through the list in reverse so that
7770  // we've likely promoted both operands first.
7771  while (!PromOps.empty()) {
7772    SDValue PromOp = PromOps.back();
7773    PromOps.pop_back();
7774
7775    unsigned C;
7776    switch (PromOp.getOpcode()) {
7777    default:             C = 0; break;
7778    case ISD::SELECT:    C = 1; break;
7779    case ISD::SELECT_CC: C = 2; break;
7780    }
7781
7782    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
7783         PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
7784        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
7785         PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
7786      // The to-be-promoted operands of this node have not yet been
7787      // promoted (this should be rare because we're going through the
7788      // list backward, but if one of the operands has several users in
7789      // this cluster of to-be-promoted nodes, it is possible).
7790      PromOps.insert(PromOps.begin(), PromOp);
7791      continue;
7792    }
7793
7794    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
7795                                PromOp.getNode()->op_end());
7796
7797    // If this node has constant inputs, then they'll need to be promoted here.
7798    for (unsigned i = 0; i < 2; ++i) {
7799      if (!isa<ConstantSDNode>(Ops[C+i]))
7800        continue;
7801      if (Ops[C+i].getValueType() == N->getValueType(0))
7802        continue;
7803
7804      if (N->getOpcode() == ISD::SIGN_EXTEND)
7805        Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
7806      else if (N->getOpcode() == ISD::ZERO_EXTEND)
7807        Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
7808      else
7809        Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
7810    }
7811
7812    DAG.ReplaceAllUsesOfValueWith(PromOp,
7813      DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
7814  }
7815
7816  // Now we're left with the initial extension itself.
7817  if (!ReallyNeedsExt)
7818    return N->getOperand(0);
7819
7820  // To zero extend, just mask off everything except for the first bit (in the
7821  // i1 case).
7822  if (N->getOpcode() == ISD::ZERO_EXTEND)
7823    return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
7824                       DAG.getConstant(APInt::getLowBitsSet(
7825                                         N->getValueSizeInBits(0), PromBits),
7826                                       N->getValueType(0)));
7827
7828  assert(N->getOpcode() == ISD::SIGN_EXTEND &&
7829         "Invalid extension type");
7830  EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0));
7831  SDValue ShiftCst =
7832    DAG.getConstant(N->getValueSizeInBits(0)-PromBits, ShiftAmountTy);
7833  return DAG.getNode(ISD::SRA, dl, N->getValueType(0),
7834                     DAG.getNode(ISD::SHL, dl, N->getValueType(0),
7835                                 N->getOperand(0), ShiftCst), ShiftCst);
7836}
7837
7838SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
7839                                             DAGCombinerInfo &DCI) const {
7840  const TargetMachine &TM = getTargetMachine();
7841  SelectionDAG &DAG = DCI.DAG;
7842  SDLoc dl(N);
7843  switch (N->getOpcode()) {
7844  default: break;
7845  case PPCISD::SHL:
7846    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7847      if (C->isNullValue())   // 0 << V -> 0.
7848        return N->getOperand(0);
7849    }
7850    break;
7851  case PPCISD::SRL:
7852    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7853      if (C->isNullValue())   // 0 >>u V -> 0.
7854        return N->getOperand(0);
7855    }
7856    break;
7857  case PPCISD::SRA:
7858    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
7859      if (C->isNullValue() ||   //  0 >>s V -> 0.
7860          C->isAllOnesValue())    // -1 >>s V -> -1.
7861        return N->getOperand(0);
7862    }
7863    break;
7864  case ISD::SIGN_EXTEND:
7865  case ISD::ZERO_EXTEND:
7866  case ISD::ANY_EXTEND:
7867    return DAGCombineExtBoolTrunc(N, DCI);
7868  case ISD::TRUNCATE:
7869  case ISD::SETCC:
7870  case ISD::SELECT_CC:
7871    return DAGCombineTruncBoolExt(N, DCI);
7872  case ISD::FDIV: {
7873    assert(TM.Options.UnsafeFPMath &&
7874           "Reciprocal estimates require UnsafeFPMath");
7875
7876    if (N->getOperand(1).getOpcode() == ISD::FSQRT) {
7877      SDValue RV =
7878        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0), DCI);
7879      if (RV.getNode()) {
7880        DCI.AddToWorklist(RV.getNode());
7881        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7882                           N->getOperand(0), RV);
7883      }
7884    } else if (N->getOperand(1).getOpcode() == ISD::FP_EXTEND &&
7885               N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
7886      SDValue RV =
7887        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
7888                                 DCI);
7889      if (RV.getNode()) {
7890        DCI.AddToWorklist(RV.getNode());
7891        RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N->getOperand(1)),
7892                         N->getValueType(0), RV);
7893        DCI.AddToWorklist(RV.getNode());
7894        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7895                           N->getOperand(0), RV);
7896      }
7897    } else if (N->getOperand(1).getOpcode() == ISD::FP_ROUND &&
7898               N->getOperand(1).getOperand(0).getOpcode() == ISD::FSQRT) {
7899      SDValue RV =
7900        DAGCombineFastRecipFSQRT(N->getOperand(1).getOperand(0).getOperand(0),
7901                                 DCI);
7902      if (RV.getNode()) {
7903        DCI.AddToWorklist(RV.getNode());
7904        RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N->getOperand(1)),
7905                         N->getValueType(0), RV,
7906                         N->getOperand(1).getOperand(1));
7907        DCI.AddToWorklist(RV.getNode());
7908        return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7909                           N->getOperand(0), RV);
7910      }
7911    }
7912
7913    SDValue RV = DAGCombineFastRecip(N->getOperand(1), DCI);
7914    if (RV.getNode()) {
7915      DCI.AddToWorklist(RV.getNode());
7916      return DAG.getNode(ISD::FMUL, dl, N->getValueType(0),
7917                         N->getOperand(0), RV);
7918    }
7919
7920    }
7921    break;
7922  case ISD::FSQRT: {
7923    assert(TM.Options.UnsafeFPMath &&
7924           "Reciprocal estimates require UnsafeFPMath");
7925
7926    // Compute this as 1/(1/sqrt(X)), which is the reciprocal of the
7927    // reciprocal sqrt.
7928    SDValue RV = DAGCombineFastRecipFSQRT(N->getOperand(0), DCI);
7929    if (RV.getNode()) {
7930      DCI.AddToWorklist(RV.getNode());
7931      RV = DAGCombineFastRecip(RV, DCI);
7932      if (RV.getNode()) {
7933	// Unfortunately, RV is now NaN if the input was exactly 0. Select out
7934	// this case and force the answer to 0.
7935
7936        EVT VT = RV.getValueType();
7937
7938        SDValue Zero = DAG.getConstantFP(0.0, VT.getScalarType());
7939        if (VT.isVector()) {
7940          assert(VT.getVectorNumElements() == 4 && "Unknown vector type");
7941          Zero = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Zero, Zero, Zero, Zero);
7942        }
7943
7944        SDValue ZeroCmp =
7945          DAG.getSetCC(dl, getSetCCResultType(*DAG.getContext(), VT),
7946                       N->getOperand(0), Zero, ISD::SETEQ);
7947        DCI.AddToWorklist(ZeroCmp.getNode());
7948        DCI.AddToWorklist(RV.getNode());
7949
7950        RV = DAG.getNode(VT.isVector() ? ISD::VSELECT : ISD::SELECT, dl, VT,
7951                         ZeroCmp, Zero, RV);
7952        return RV;
7953      }
7954    }
7955
7956    }
7957    break;
7958  case ISD::SINT_TO_FP:
7959    if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
7960      if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
7961        // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
7962        // We allow the src/dst to be either f32/f64, but the intermediate
7963        // type must be i64.
7964        if (N->getOperand(0).getValueType() == MVT::i64 &&
7965            N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
7966          SDValue Val = N->getOperand(0).getOperand(0);
7967          if (Val.getValueType() == MVT::f32) {
7968            Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
7969            DCI.AddToWorklist(Val.getNode());
7970          }
7971
7972          Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
7973          DCI.AddToWorklist(Val.getNode());
7974          Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
7975          DCI.AddToWorklist(Val.getNode());
7976          if (N->getValueType(0) == MVT::f32) {
7977            Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
7978                              DAG.getIntPtrConstant(0));
7979            DCI.AddToWorklist(Val.getNode());
7980          }
7981          return Val;
7982        } else if (N->getOperand(0).getValueType() == MVT::i32) {
7983          // If the intermediate type is i32, we can avoid the load/store here
7984          // too.
7985        }
7986      }
7987    }
7988    break;
7989  case ISD::STORE:
7990    // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
7991    if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
7992        !cast<StoreSDNode>(N)->isTruncatingStore() &&
7993        N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
7994        N->getOperand(1).getValueType() == MVT::i32 &&
7995        N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
7996      SDValue Val = N->getOperand(1).getOperand(0);
7997      if (Val.getValueType() == MVT::f32) {
7998        Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
7999        DCI.AddToWorklist(Val.getNode());
8000      }
8001      Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
8002      DCI.AddToWorklist(Val.getNode());
8003
8004      SDValue Ops[] = {
8005        N->getOperand(0), Val, N->getOperand(2),
8006        DAG.getValueType(N->getOperand(1).getValueType())
8007      };
8008
8009      Val = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8010              DAG.getVTList(MVT::Other), Ops,
8011              cast<StoreSDNode>(N)->getMemoryVT(),
8012              cast<StoreSDNode>(N)->getMemOperand());
8013      DCI.AddToWorklist(Val.getNode());
8014      return Val;
8015    }
8016
8017    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
8018    if (cast<StoreSDNode>(N)->isUnindexed() &&
8019        N->getOperand(1).getOpcode() == ISD::BSWAP &&
8020        N->getOperand(1).getNode()->hasOneUse() &&
8021        (N->getOperand(1).getValueType() == MVT::i32 ||
8022         N->getOperand(1).getValueType() == MVT::i16 ||
8023         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
8024          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
8025          N->getOperand(1).getValueType() == MVT::i64))) {
8026      SDValue BSwapOp = N->getOperand(1).getOperand(0);
8027      // Do an any-extend to 32-bits if this is a half-word input.
8028      if (BSwapOp.getValueType() == MVT::i16)
8029        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
8030
8031      SDValue Ops[] = {
8032        N->getOperand(0), BSwapOp, N->getOperand(2),
8033        DAG.getValueType(N->getOperand(1).getValueType())
8034      };
8035      return
8036        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
8037                                Ops, cast<StoreSDNode>(N)->getMemoryVT(),
8038                                cast<StoreSDNode>(N)->getMemOperand());
8039    }
8040    break;
8041  case ISD::LOAD: {
8042    LoadSDNode *LD = cast<LoadSDNode>(N);
8043    EVT VT = LD->getValueType(0);
8044    Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
8045    unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty);
8046    if (ISD::isNON_EXTLoad(N) && VT.isVector() &&
8047        TM.getSubtarget<PPCSubtarget>().hasAltivec() &&
8048        (VT == MVT::v16i8 || VT == MVT::v8i16 ||
8049         VT == MVT::v4i32 || VT == MVT::v4f32) &&
8050        LD->getAlignment() < ABIAlignment) {
8051      // This is a type-legal unaligned Altivec load.
8052      SDValue Chain = LD->getChain();
8053      SDValue Ptr = LD->getBasePtr();
8054
8055      // This implements the loading of unaligned vectors as described in
8056      // the venerable Apple Velocity Engine overview. Specifically:
8057      // https://developer.apple.com/hardwaredrivers/ve/alignment.html
8058      // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
8059      //
8060      // The general idea is to expand a sequence of one or more unaligned
8061      // loads into a alignment-based permutation-control instruction (lvsl),
8062      // a series of regular vector loads (which always truncate their
8063      // input address to an aligned address), and a series of permutations.
8064      // The results of these permutations are the requested loaded values.
8065      // The trick is that the last "extra" load is not taken from the address
8066      // you might suspect (sizeof(vector) bytes after the last requested
8067      // load), but rather sizeof(vector) - 1 bytes after the last
8068      // requested vector. The point of this is to avoid a page fault if the
8069      // base address happened to be aligned. This works because if the base
8070      // address is aligned, then adding less than a full vector length will
8071      // cause the last vector in the sequence to be (re)loaded. Otherwise,
8072      // the next vector will be fetched as you might suspect was necessary.
8073
8074      // We might be able to reuse the permutation generation from
8075      // a different base address offset from this one by an aligned amount.
8076      // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
8077      // optimization later.
8078      SDValue PermCntl = BuildIntrinsicOp(Intrinsic::ppc_altivec_lvsl, Ptr,
8079                                          DAG, dl, MVT::v16i8);
8080
8081      // Refine the alignment of the original load (a "new" load created here
8082      // which was identical to the first except for the alignment would be
8083      // merged with the existing node regardless).
8084      MachineFunction &MF = DAG.getMachineFunction();
8085      MachineMemOperand *MMO =
8086        MF.getMachineMemOperand(LD->getPointerInfo(),
8087                                LD->getMemOperand()->getFlags(),
8088                                LD->getMemoryVT().getStoreSize(),
8089                                ABIAlignment);
8090      LD->refineAlignment(MMO);
8091      SDValue BaseLoad = SDValue(LD, 0);
8092
8093      // Note that the value of IncOffset (which is provided to the next
8094      // load's pointer info offset value, and thus used to calculate the
8095      // alignment), and the value of IncValue (which is actually used to
8096      // increment the pointer value) are different! This is because we
8097      // require the next load to appear to be aligned, even though it
8098      // is actually offset from the base pointer by a lesser amount.
8099      int IncOffset = VT.getSizeInBits() / 8;
8100      int IncValue = IncOffset;
8101
8102      // Walk (both up and down) the chain looking for another load at the real
8103      // (aligned) offset (the alignment of the other load does not matter in
8104      // this case). If found, then do not use the offset reduction trick, as
8105      // that will prevent the loads from being later combined (as they would
8106      // otherwise be duplicates).
8107      if (!findConsecutiveLoad(LD, DAG))
8108        --IncValue;
8109
8110      SDValue Increment = DAG.getConstant(IncValue, getPointerTy());
8111      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
8112
8113      SDValue ExtraLoad =
8114        DAG.getLoad(VT, dl, Chain, Ptr,
8115                    LD->getPointerInfo().getWithOffset(IncOffset),
8116                    LD->isVolatile(), LD->isNonTemporal(),
8117                    LD->isInvariant(), ABIAlignment);
8118
8119      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8120        BaseLoad.getValue(1), ExtraLoad.getValue(1));
8121
8122      if (BaseLoad.getValueType() != MVT::v4i32)
8123        BaseLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, BaseLoad);
8124
8125      if (ExtraLoad.getValueType() != MVT::v4i32)
8126        ExtraLoad = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, ExtraLoad);
8127
8128      SDValue Perm = BuildIntrinsicOp(Intrinsic::ppc_altivec_vperm,
8129                                      BaseLoad, ExtraLoad, PermCntl, DAG, dl);
8130
8131      if (VT != MVT::v4i32)
8132        Perm = DAG.getNode(ISD::BITCAST, dl, VT, Perm);
8133
8134      // Now we need to be really careful about how we update the users of the
8135      // original load. We cannot just call DCI.CombineTo (or
8136      // DAG.ReplaceAllUsesWith for that matter), because the load still has
8137      // uses created here (the permutation for example) that need to stay.
8138      SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
8139      while (UI != UE) {
8140        SDUse &Use = UI.getUse();
8141        SDNode *User = *UI;
8142        // Note: BaseLoad is checked here because it might not be N, but a
8143        // bitcast of N.
8144        if (User == Perm.getNode() || User == BaseLoad.getNode() ||
8145            User == TF.getNode() || Use.getResNo() > 1) {
8146          ++UI;
8147          continue;
8148        }
8149
8150        SDValue To = Use.getResNo() ? TF : Perm;
8151        ++UI;
8152
8153        SmallVector<SDValue, 8> Ops;
8154        for (SDNode::op_iterator O = User->op_begin(),
8155             OE = User->op_end(); O != OE; ++O) {
8156          if (*O == Use)
8157            Ops.push_back(To);
8158          else
8159            Ops.push_back(*O);
8160        }
8161
8162        DAG.UpdateNodeOperands(User, Ops);
8163      }
8164
8165      return SDValue(N, 0);
8166    }
8167    }
8168    break;
8169  case ISD::INTRINSIC_WO_CHAIN:
8170    if (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue() ==
8171          Intrinsic::ppc_altivec_lvsl &&
8172        N->getOperand(1)->getOpcode() == ISD::ADD) {
8173      SDValue Add = N->getOperand(1);
8174
8175      if (DAG.MaskedValueIsZero(Add->getOperand(1),
8176            APInt::getAllOnesValue(4 /* 16 byte alignment */).zext(
8177              Add.getValueType().getScalarType().getSizeInBits()))) {
8178        SDNode *BasePtr = Add->getOperand(0).getNode();
8179        for (SDNode::use_iterator UI = BasePtr->use_begin(),
8180             UE = BasePtr->use_end(); UI != UE; ++UI) {
8181          if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
8182              cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() ==
8183                Intrinsic::ppc_altivec_lvsl) {
8184            // We've found another LVSL, and this address if an aligned
8185            // multiple of that one. The results will be the same, so use the
8186            // one we've just found instead.
8187
8188            return SDValue(*UI, 0);
8189          }
8190        }
8191      }
8192    }
8193
8194    break;
8195  case ISD::BSWAP:
8196    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
8197    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
8198        N->getOperand(0).hasOneUse() &&
8199        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
8200         (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
8201          TM.getSubtarget<PPCSubtarget>().isPPC64() &&
8202          N->getValueType(0) == MVT::i64))) {
8203      SDValue Load = N->getOperand(0);
8204      LoadSDNode *LD = cast<LoadSDNode>(Load);
8205      // Create the byte-swapping load.
8206      SDValue Ops[] = {
8207        LD->getChain(),    // Chain
8208        LD->getBasePtr(),  // Ptr
8209        DAG.getValueType(N->getValueType(0)) // VT
8210      };
8211      SDValue BSLoad =
8212        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
8213                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
8214                                              MVT::i64 : MVT::i32, MVT::Other),
8215                                Ops, LD->getMemoryVT(), LD->getMemOperand());
8216
8217      // If this is an i16 load, insert the truncate.
8218      SDValue ResVal = BSLoad;
8219      if (N->getValueType(0) == MVT::i16)
8220        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
8221
8222      // First, combine the bswap away.  This makes the value produced by the
8223      // load dead.
8224      DCI.CombineTo(N, ResVal);
8225
8226      // Next, combine the load away, we give it a bogus result value but a real
8227      // chain result.  The result value is dead because the bswap is dead.
8228      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
8229
8230      // Return N so it doesn't get rechecked!
8231      return SDValue(N, 0);
8232    }
8233
8234    break;
8235  case PPCISD::VCMP: {
8236    // If a VCMPo node already exists with exactly the same operands as this
8237    // node, use its result instead of this node (VCMPo computes both a CR6 and
8238    // a normal output).
8239    //
8240    if (!N->getOperand(0).hasOneUse() &&
8241        !N->getOperand(1).hasOneUse() &&
8242        !N->getOperand(2).hasOneUse()) {
8243
8244      // Scan all of the users of the LHS, looking for VCMPo's that match.
8245      SDNode *VCMPoNode = nullptr;
8246
8247      SDNode *LHSN = N->getOperand(0).getNode();
8248      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
8249           UI != E; ++UI)
8250        if (UI->getOpcode() == PPCISD::VCMPo &&
8251            UI->getOperand(1) == N->getOperand(1) &&
8252            UI->getOperand(2) == N->getOperand(2) &&
8253            UI->getOperand(0) == N->getOperand(0)) {
8254          VCMPoNode = *UI;
8255          break;
8256        }
8257
8258      // If there is no VCMPo node, or if the flag value has a single use, don't
8259      // transform this.
8260      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
8261        break;
8262
8263      // Look at the (necessarily single) use of the flag value.  If it has a
8264      // chain, this transformation is more complex.  Note that multiple things
8265      // could use the value result, which we should ignore.
8266      SDNode *FlagUser = nullptr;
8267      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
8268           FlagUser == nullptr; ++UI) {
8269        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
8270        SDNode *User = *UI;
8271        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
8272          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
8273            FlagUser = User;
8274            break;
8275          }
8276        }
8277      }
8278
8279      // If the user is a MFOCRF instruction, we know this is safe.
8280      // Otherwise we give up for right now.
8281      if (FlagUser->getOpcode() == PPCISD::MFOCRF)
8282        return SDValue(VCMPoNode, 0);
8283    }
8284    break;
8285  }
8286  case ISD::BRCOND: {
8287    SDValue Cond = N->getOperand(1);
8288    SDValue Target = N->getOperand(2);
8289
8290    if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
8291        cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
8292          Intrinsic::ppc_is_decremented_ctr_nonzero) {
8293
8294      // We now need to make the intrinsic dead (it cannot be instruction
8295      // selected).
8296      DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
8297      assert(Cond.getNode()->hasOneUse() &&
8298             "Counter decrement has more than one use");
8299
8300      return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
8301                         N->getOperand(0), Target);
8302    }
8303  }
8304  break;
8305  case ISD::BR_CC: {
8306    // If this is a branch on an altivec predicate comparison, lower this so
8307    // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
8308    // lowering is done pre-legalize, because the legalizer lowers the predicate
8309    // compare down to code that is difficult to reassemble.
8310    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
8311    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
8312
8313    // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
8314    // value. If so, pass-through the AND to get to the intrinsic.
8315    if (LHS.getOpcode() == ISD::AND &&
8316        LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
8317        cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
8318          Intrinsic::ppc_is_decremented_ctr_nonzero &&
8319        isa<ConstantSDNode>(LHS.getOperand(1)) &&
8320        !cast<ConstantSDNode>(LHS.getOperand(1))->getConstantIntValue()->
8321          isZero())
8322      LHS = LHS.getOperand(0);
8323
8324    if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
8325        cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
8326          Intrinsic::ppc_is_decremented_ctr_nonzero &&
8327        isa<ConstantSDNode>(RHS)) {
8328      assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
8329             "Counter decrement comparison is not EQ or NE");
8330
8331      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
8332      bool isBDNZ = (CC == ISD::SETEQ && Val) ||
8333                    (CC == ISD::SETNE && !Val);
8334
8335      // We now need to make the intrinsic dead (it cannot be instruction
8336      // selected).
8337      DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
8338      assert(LHS.getNode()->hasOneUse() &&
8339             "Counter decrement has more than one use");
8340
8341      return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
8342                         N->getOperand(0), N->getOperand(4));
8343    }
8344
8345    int CompareOpc;
8346    bool isDot;
8347
8348    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
8349        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
8350        getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
8351      assert(isDot && "Can't compare against a vector result!");
8352
8353      // If this is a comparison against something other than 0/1, then we know
8354      // that the condition is never/always true.
8355      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
8356      if (Val != 0 && Val != 1) {
8357        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
8358          return N->getOperand(0);
8359        // Always !=, turn it into an unconditional branch.
8360        return DAG.getNode(ISD::BR, dl, MVT::Other,
8361                           N->getOperand(0), N->getOperand(4));
8362      }
8363
8364      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
8365
8366      // Create the PPCISD altivec 'dot' comparison node.
8367      SDValue Ops[] = {
8368        LHS.getOperand(2),  // LHS of compare
8369        LHS.getOperand(3),  // RHS of compare
8370        DAG.getConstant(CompareOpc, MVT::i32)
8371      };
8372      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
8373      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
8374
8375      // Unpack the result based on how the target uses it.
8376      PPC::Predicate CompOpc;
8377      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
8378      default:  // Can't happen, don't crash on invalid number though.
8379      case 0:   // Branch on the value of the EQ bit of CR6.
8380        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
8381        break;
8382      case 1:   // Branch on the inverted value of the EQ bit of CR6.
8383        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
8384        break;
8385      case 2:   // Branch on the value of the LT bit of CR6.
8386        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
8387        break;
8388      case 3:   // Branch on the inverted value of the LT bit of CR6.
8389        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
8390        break;
8391      }
8392
8393      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
8394                         DAG.getConstant(CompOpc, MVT::i32),
8395                         DAG.getRegister(PPC::CR6, MVT::i32),
8396                         N->getOperand(4), CompNode.getValue(1));
8397    }
8398    break;
8399  }
8400  }
8401
8402  return SDValue();
8403}
8404
8405//===----------------------------------------------------------------------===//
8406// Inline Assembly Support
8407//===----------------------------------------------------------------------===//
8408
8409void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
8410                                                      APInt &KnownZero,
8411                                                      APInt &KnownOne,
8412                                                      const SelectionDAG &DAG,
8413                                                      unsigned Depth) const {
8414  KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
8415  switch (Op.getOpcode()) {
8416  default: break;
8417  case PPCISD::LBRX: {
8418    // lhbrx is known to have the top bits cleared out.
8419    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
8420      KnownZero = 0xFFFF0000;
8421    break;
8422  }
8423  case ISD::INTRINSIC_WO_CHAIN: {
8424    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
8425    default: break;
8426    case Intrinsic::ppc_altivec_vcmpbfp_p:
8427    case Intrinsic::ppc_altivec_vcmpeqfp_p:
8428    case Intrinsic::ppc_altivec_vcmpequb_p:
8429    case Intrinsic::ppc_altivec_vcmpequh_p:
8430    case Intrinsic::ppc_altivec_vcmpequw_p:
8431    case Intrinsic::ppc_altivec_vcmpgefp_p:
8432    case Intrinsic::ppc_altivec_vcmpgtfp_p:
8433    case Intrinsic::ppc_altivec_vcmpgtsb_p:
8434    case Intrinsic::ppc_altivec_vcmpgtsh_p:
8435    case Intrinsic::ppc_altivec_vcmpgtsw_p:
8436    case Intrinsic::ppc_altivec_vcmpgtub_p:
8437    case Intrinsic::ppc_altivec_vcmpgtuh_p:
8438    case Intrinsic::ppc_altivec_vcmpgtuw_p:
8439      KnownZero = ~1U;  // All bits but the low one are known to be zero.
8440      break;
8441    }
8442  }
8443  }
8444}
8445
8446
8447/// getConstraintType - Given a constraint, return the type of
8448/// constraint it is for this target.
8449PPCTargetLowering::ConstraintType
8450PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
8451  if (Constraint.size() == 1) {
8452    switch (Constraint[0]) {
8453    default: break;
8454    case 'b':
8455    case 'r':
8456    case 'f':
8457    case 'v':
8458    case 'y':
8459      return C_RegisterClass;
8460    case 'Z':
8461      // FIXME: While Z does indicate a memory constraint, it specifically
8462      // indicates an r+r address (used in conjunction with the 'y' modifier
8463      // in the replacement string). Currently, we're forcing the base
8464      // register to be r0 in the asm printer (which is interpreted as zero)
8465      // and forming the complete address in the second register. This is
8466      // suboptimal.
8467      return C_Memory;
8468    }
8469  } else if (Constraint == "wc") { // individual CR bits.
8470    return C_RegisterClass;
8471  } else if (Constraint == "wa" || Constraint == "wd" ||
8472             Constraint == "wf" || Constraint == "ws") {
8473    return C_RegisterClass; // VSX registers.
8474  }
8475  return TargetLowering::getConstraintType(Constraint);
8476}
8477
8478/// Examine constraint type and operand type and determine a weight value.
8479/// This object must already have been set up with the operand type
8480/// and the current alternative constraint selected.
8481TargetLowering::ConstraintWeight
8482PPCTargetLowering::getSingleConstraintMatchWeight(
8483    AsmOperandInfo &info, const char *constraint) const {
8484  ConstraintWeight weight = CW_Invalid;
8485  Value *CallOperandVal = info.CallOperandVal;
8486    // If we don't have a value, we can't do a match,
8487    // but allow it at the lowest weight.
8488  if (!CallOperandVal)
8489    return CW_Default;
8490  Type *type = CallOperandVal->getType();
8491
8492  // Look at the constraint type.
8493  if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
8494    return CW_Register; // an individual CR bit.
8495  else if ((StringRef(constraint) == "wa" ||
8496            StringRef(constraint) == "wd" ||
8497            StringRef(constraint) == "wf") &&
8498           type->isVectorTy())
8499    return CW_Register;
8500  else if (StringRef(constraint) == "ws" && type->isDoubleTy())
8501    return CW_Register;
8502
8503  switch (*constraint) {
8504  default:
8505    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
8506    break;
8507  case 'b':
8508    if (type->isIntegerTy())
8509      weight = CW_Register;
8510    break;
8511  case 'f':
8512    if (type->isFloatTy())
8513      weight = CW_Register;
8514    break;
8515  case 'd':
8516    if (type->isDoubleTy())
8517      weight = CW_Register;
8518    break;
8519  case 'v':
8520    if (type->isVectorTy())
8521      weight = CW_Register;
8522    break;
8523  case 'y':
8524    weight = CW_Register;
8525    break;
8526  case 'Z':
8527    weight = CW_Memory;
8528    break;
8529  }
8530  return weight;
8531}
8532
8533std::pair<unsigned, const TargetRegisterClass*>
8534PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
8535                                                MVT VT) const {
8536  if (Constraint.size() == 1) {
8537    // GCC RS6000 Constraint Letters
8538    switch (Constraint[0]) {
8539    case 'b':   // R1-R31
8540      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
8541        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
8542      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
8543    case 'r':   // R0-R31
8544      if (VT == MVT::i64 && PPCSubTarget.isPPC64())
8545        return std::make_pair(0U, &PPC::G8RCRegClass);
8546      return std::make_pair(0U, &PPC::GPRCRegClass);
8547    case 'f':
8548      if (VT == MVT::f32 || VT == MVT::i32)
8549        return std::make_pair(0U, &PPC::F4RCRegClass);
8550      if (VT == MVT::f64 || VT == MVT::i64)
8551        return std::make_pair(0U, &PPC::F8RCRegClass);
8552      break;
8553    case 'v':
8554      return std::make_pair(0U, &PPC::VRRCRegClass);
8555    case 'y':   // crrc
8556      return std::make_pair(0U, &PPC::CRRCRegClass);
8557    }
8558  } else if (Constraint == "wc") { // an individual CR bit.
8559    return std::make_pair(0U, &PPC::CRBITRCRegClass);
8560  } else if (Constraint == "wa" || Constraint == "wd" ||
8561             Constraint == "wf") {
8562    return std::make_pair(0U, &PPC::VSRCRegClass);
8563  } else if (Constraint == "ws") {
8564    return std::make_pair(0U, &PPC::VSFRCRegClass);
8565  }
8566
8567  std::pair<unsigned, const TargetRegisterClass*> R =
8568    TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
8569
8570  // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
8571  // (which we call X[0-9]+). If a 64-bit value has been requested, and a
8572  // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
8573  // register.
8574  // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
8575  // the AsmName field from *RegisterInfo.td, then this would not be necessary.
8576  if (R.first && VT == MVT::i64 && PPCSubTarget.isPPC64() &&
8577      PPC::GPRCRegClass.contains(R.first)) {
8578    const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
8579    return std::make_pair(TRI->getMatchingSuperReg(R.first,
8580                            PPC::sub_32, &PPC::G8RCRegClass),
8581                          &PPC::G8RCRegClass);
8582  }
8583
8584  return R;
8585}
8586
8587
8588/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
8589/// vector.  If it is invalid, don't add anything to Ops.
8590void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
8591                                                     std::string &Constraint,
8592                                                     std::vector<SDValue>&Ops,
8593                                                     SelectionDAG &DAG) const {
8594  SDValue Result;
8595
8596  // Only support length 1 constraints.
8597  if (Constraint.length() > 1) return;
8598
8599  char Letter = Constraint[0];
8600  switch (Letter) {
8601  default: break;
8602  case 'I':
8603  case 'J':
8604  case 'K':
8605  case 'L':
8606  case 'M':
8607  case 'N':
8608  case 'O':
8609  case 'P': {
8610    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
8611    if (!CST) return; // Must be an immediate to match.
8612    unsigned Value = CST->getZExtValue();
8613    switch (Letter) {
8614    default: llvm_unreachable("Unknown constraint letter!");
8615    case 'I':  // "I" is a signed 16-bit constant.
8616      if ((short)Value == (int)Value)
8617        Result = DAG.getTargetConstant(Value, Op.getValueType());
8618      break;
8619    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
8620    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
8621      if ((short)Value == 0)
8622        Result = DAG.getTargetConstant(Value, Op.getValueType());
8623      break;
8624    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
8625      if ((Value >> 16) == 0)
8626        Result = DAG.getTargetConstant(Value, Op.getValueType());
8627      break;
8628    case 'M':  // "M" is a constant that is greater than 31.
8629      if (Value > 31)
8630        Result = DAG.getTargetConstant(Value, Op.getValueType());
8631      break;
8632    case 'N':  // "N" is a positive constant that is an exact power of two.
8633      if ((int)Value > 0 && isPowerOf2_32(Value))
8634        Result = DAG.getTargetConstant(Value, Op.getValueType());
8635      break;
8636    case 'O':  // "O" is the constant zero.
8637      if (Value == 0)
8638        Result = DAG.getTargetConstant(Value, Op.getValueType());
8639      break;
8640    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
8641      if ((short)-Value == (int)-Value)
8642        Result = DAG.getTargetConstant(Value, Op.getValueType());
8643      break;
8644    }
8645    break;
8646  }
8647  }
8648
8649  if (Result.getNode()) {
8650    Ops.push_back(Result);
8651    return;
8652  }
8653
8654  // Handle standard constraint letters.
8655  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
8656}
8657
8658// isLegalAddressingMode - Return true if the addressing mode represented
8659// by AM is legal for this target, for a load/store of the specified type.
8660bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
8661                                              Type *Ty) const {
8662  // FIXME: PPC does not allow r+i addressing modes for vectors!
8663
8664  // PPC allows a sign-extended 16-bit immediate field.
8665  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
8666    return false;
8667
8668  // No global is ever allowed as a base.
8669  if (AM.BaseGV)
8670    return false;
8671
8672  // PPC only support r+r,
8673  switch (AM.Scale) {
8674  case 0:  // "r+i" or just "i", depending on HasBaseReg.
8675    break;
8676  case 1:
8677    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
8678      return false;
8679    // Otherwise we have r+r or r+i.
8680    break;
8681  case 2:
8682    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
8683      return false;
8684    // Allow 2*r as r+r.
8685    break;
8686  default:
8687    // No other scales are supported.
8688    return false;
8689  }
8690
8691  return true;
8692}
8693
8694SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
8695                                           SelectionDAG &DAG) const {
8696  MachineFunction &MF = DAG.getMachineFunction();
8697  MachineFrameInfo *MFI = MF.getFrameInfo();
8698  MFI->setReturnAddressIsTaken(true);
8699
8700  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
8701    return SDValue();
8702
8703  SDLoc dl(Op);
8704  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8705
8706  // Make sure the function does not optimize away the store of the RA to
8707  // the stack.
8708  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
8709  FuncInfo->setLRStoreRequired();
8710  bool isPPC64 = PPCSubTarget.isPPC64();
8711  bool isDarwinABI = PPCSubTarget.isDarwinABI();
8712
8713  if (Depth > 0) {
8714    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8715    SDValue Offset =
8716
8717      DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
8718                      isPPC64? MVT::i64 : MVT::i32);
8719    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8720                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8721                                   FrameAddr, Offset),
8722                       MachinePointerInfo(), false, false, false, 0);
8723  }
8724
8725  // Just load the return address off the stack.
8726  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
8727  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8728                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
8729}
8730
8731SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
8732                                          SelectionDAG &DAG) const {
8733  SDLoc dl(Op);
8734  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8735
8736  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
8737  bool isPPC64 = PtrVT == MVT::i64;
8738
8739  MachineFunction &MF = DAG.getMachineFunction();
8740  MachineFrameInfo *MFI = MF.getFrameInfo();
8741  MFI->setFrameAddressIsTaken(true);
8742
8743  // Naked functions never have a frame pointer, and so we use r1. For all
8744  // other functions, this decision must be delayed until during PEI.
8745  unsigned FrameReg;
8746  if (MF.getFunction()->getAttributes().hasAttribute(
8747        AttributeSet::FunctionIndex, Attribute::Naked))
8748    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
8749  else
8750    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
8751
8752  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
8753                                         PtrVT);
8754  while (Depth--)
8755    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
8756                            FrameAddr, MachinePointerInfo(), false, false,
8757                            false, 0);
8758  return FrameAddr;
8759}
8760
8761// FIXME? Maybe this could be a TableGen attribute on some registers and
8762// this table could be generated automatically from RegInfo.
8763unsigned PPCTargetLowering::getRegisterByName(const char* RegName,
8764                                              EVT VT) const {
8765  bool isPPC64 = PPCSubTarget.isPPC64();
8766  bool isDarwinABI = PPCSubTarget.isDarwinABI();
8767
8768  if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
8769      (!isPPC64 && VT != MVT::i32))
8770    report_fatal_error("Invalid register global variable type");
8771
8772  bool is64Bit = isPPC64 && VT == MVT::i64;
8773  unsigned Reg = StringSwitch<unsigned>(RegName)
8774                   .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
8775                   .Case("r2", isDarwinABI ? 0 : (is64Bit ? PPC::X2 : PPC::R2))
8776                   .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
8777                                  (is64Bit ? PPC::X13 : PPC::R13))
8778                   .Default(0);
8779
8780  if (Reg)
8781    return Reg;
8782  report_fatal_error("Invalid register name global variable");
8783}
8784
8785bool
8786PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
8787  // The PowerPC target isn't yet aware of offsets.
8788  return false;
8789}
8790
8791/// getOptimalMemOpType - Returns the target specific optimal type for load
8792/// and store operations as a result of memset, memcpy, and memmove
8793/// lowering. If DstAlign is zero that means it's safe to destination
8794/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
8795/// means there isn't a need to check it against alignment requirement,
8796/// probably because the source does not need to be loaded. If 'IsMemset' is
8797/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
8798/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
8799/// source is constant so it does not need to be loaded.
8800/// It returns EVT::Other if the type should be determined using generic
8801/// target-independent logic.
8802EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
8803                                           unsigned DstAlign, unsigned SrcAlign,
8804                                           bool IsMemset, bool ZeroMemset,
8805                                           bool MemcpyStrSrc,
8806                                           MachineFunction &MF) const {
8807  if (this->PPCSubTarget.isPPC64()) {
8808    return MVT::i64;
8809  } else {
8810    return MVT::i32;
8811  }
8812}
8813
8814/// \brief Returns true if it is beneficial to convert a load of a constant
8815/// to just the constant itself.
8816bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
8817                                                          Type *Ty) const {
8818  assert(Ty->isIntegerTy());
8819
8820  unsigned BitSize = Ty->getPrimitiveSizeInBits();
8821  if (BitSize == 0 || BitSize > 64)
8822    return false;
8823  return true;
8824}
8825
8826bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
8827  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8828    return false;
8829  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8830  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8831  return NumBits1 == 64 && NumBits2 == 32;
8832}
8833
8834bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8835  if (!VT1.isInteger() || !VT2.isInteger())
8836    return false;
8837  unsigned NumBits1 = VT1.getSizeInBits();
8838  unsigned NumBits2 = VT2.getSizeInBits();
8839  return NumBits1 == 64 && NumBits2 == 32;
8840}
8841
8842bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
8843  return isInt<16>(Imm) || isUInt<16>(Imm);
8844}
8845
8846bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
8847  return isInt<16>(Imm) || isUInt<16>(Imm);
8848}
8849
8850bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
8851                                                      unsigned,
8852                                                      bool *Fast) const {
8853  if (DisablePPCUnaligned)
8854    return false;
8855
8856  // PowerPC supports unaligned memory access for simple non-vector types.
8857  // Although accessing unaligned addresses is not as efficient as accessing
8858  // aligned addresses, it is generally more efficient than manual expansion,
8859  // and generally only traps for software emulation when crossing page
8860  // boundaries.
8861
8862  if (!VT.isSimple())
8863    return false;
8864
8865  if (VT.getSimpleVT().isVector()) {
8866    if (PPCSubTarget.hasVSX()) {
8867      if (VT != MVT::v2f64 && VT != MVT::v2i64)
8868        return false;
8869    } else {
8870      return false;
8871    }
8872  }
8873
8874  if (VT == MVT::ppcf128)
8875    return false;
8876
8877  if (Fast)
8878    *Fast = true;
8879
8880  return true;
8881}
8882
8883bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
8884  VT = VT.getScalarType();
8885
8886  if (!VT.isSimple())
8887    return false;
8888
8889  switch (VT.getSimpleVT().SimpleTy) {
8890  case MVT::f32:
8891  case MVT::f64:
8892    return true;
8893  default:
8894    break;
8895  }
8896
8897  return false;
8898}
8899
8900bool
8901PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
8902                     EVT VT , unsigned DefinedValues) const {
8903  if (VT == MVT::v2i64)
8904    return false;
8905
8906  return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
8907}
8908
8909Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
8910  if (DisableILPPref || PPCSubTarget.enableMachineScheduler())
8911    return TargetLowering::getSchedulingPreference(N);
8912
8913  return Sched::ILP;
8914}
8915
8916// Create a fast isel object.
8917FastISel *
8918PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
8919                                  const TargetLibraryInfo *LibInfo) const {
8920  return PPC::createFastISel(FuncInfo, LibInfo);
8921}
8922