PPCISelLowering.h revision 53b0b0e75480121e4e01a7a76e17909e92b1762a
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18#include "PPC.h"
19#include "PPCSubtarget.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/Target/TargetLowering.h"
22
23namespace llvm {
24  namespace PPCISD {
25    enum NodeType {
26      // Start the numbering where the builtin ops and target ops leave off.
27      FIRST_NUMBER = ISD::BUILTIN_OP_END,
28
29      /// FSEL - Traditional three-operand fsel node.
30      ///
31      FSEL,
32
33      /// FCFID - The FCFID instruction, taking an f64 operand and producing
34      /// and f64 value containing the FP representation of the integer that
35      /// was temporarily in the f64 operand.
36      FCFID,
37
38      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
39      /// operand, producing an f64 value containing the integer representation
40      /// of that FP value.
41      FCTIDZ, FCTIWZ,
42
43      /// STFIWX - The STFIWX instruction.  The first operand is an input token
44      /// chain, then an f64 value to store, then an address to store it to.
45      STFIWX,
46
47      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
48      // three v4f32 operands and producing a v4f32 result.
49      VMADDFP, VNMSUBFP,
50
51      /// VPERM - The PPC VPERM Instruction.
52      ///
53      VPERM,
54
55      /// Hi/Lo - These represent the high and low 16-bit parts of a global
56      /// address respectively.  These nodes have two operands, the first of
57      /// which must be a TargetGlobalAddress, and the second of which must be a
58      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
59      /// though these are usually folded into other nodes.
60      Hi, Lo,
61
62      TOC_ENTRY,
63
64      /// The following three target-specific nodes are used for calls through
65      /// function pointers in the 64-bit SVR4 ABI.
66
67      /// Restore the TOC from the TOC save area of the current stack frame.
68      /// This is basically a hard coded load instruction which additionally
69      /// takes/produces a flag.
70      TOC_RESTORE,
71
72      /// Like a regular LOAD but additionally taking/producing a flag.
73      LOAD,
74
75      /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
76      /// a hard coded load instruction.
77      LOAD_TOC,
78
79      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
80      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
81      /// compute an allocation on the stack.
82      DYNALLOC,
83
84      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
85      /// at function entry, used for PIC code.
86      GlobalBaseReg,
87
88      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
89      /// shift amounts.  These nodes are generated by the multi-precision shift
90      /// code.
91      SRL, SRA, SHL,
92
93      /// EXTSW_32 - This is the EXTSW instruction for use with "32-bit"
94      /// registers.
95      EXTSW_32,
96
97      /// CALL - A direct function call.
98      /// CALL_NOP_SVR4 is a call with the special  NOP which follows 64-bit
99      /// SVR4 calls.
100      CALL_Darwin, CALL_SVR4, CALL_NOP_SVR4,
101
102      /// NOP - Special NOP which follows 64-bit SVR4 calls.
103      NOP,
104
105      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
106      /// MTCTR instruction.
107      MTCTR,
108
109      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
110      /// BCTRL instruction.
111      BCTRL_Darwin, BCTRL_SVR4,
112
113      /// Return with a flag operand, matched by 'blr'
114      RET_FLAG,
115
116      /// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
117      /// instructions.  This copies the bits corresponding to the specified
118      /// CRREG into the resultant GPR.  Bits corresponding to other CR regs
119      /// are undefined.
120      MFCR,
121
122      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
123      /// instructions.  For lack of better number, we use the opcode number
124      /// encoding for the OPC field to identify the compare.  For example, 838
125      /// is VCMPGTSH.
126      VCMP,
127
128      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
129      /// altivec VCMP*o instructions.  For lack of better number, we use the
130      /// opcode number encoding for the OPC field to identify the compare.  For
131      /// example, 838 is VCMPGTSH.
132      VCMPo,
133
134      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
135      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
136      /// condition register to branch on, OPC is the branch opcode to use (e.g.
137      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
138      /// an optional input flag argument.
139      COND_BRANCH,
140
141      // The following 5 instructions are used only as part of the
142      // long double-to-int conversion sequence.
143
144      /// OUTFLAG = MFFS F8RC - This moves the FPSCR (not modelled) into the
145      /// register.
146      MFFS,
147
148      /// OUTFLAG = MTFSB0 INFLAG - This clears a bit in the FPSCR.
149      MTFSB0,
150
151      /// OUTFLAG = MTFSB1 INFLAG - This sets a bit in the FPSCR.
152      MTFSB1,
153
154      /// F8RC, OUTFLAG = FADDRTZ F8RC, F8RC, INFLAG - This is an FADD done with
155      /// rounding towards zero.  It has flags added so it won't move past the
156      /// FPSCR-setting instructions.
157      FADDRTZ,
158
159      /// MTFSF = F8RC, INFLAG - This moves the register into the FPSCR.
160      MTFSF,
161
162      /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
163      /// reserve indexed. This is used to implement atomic operations.
164      LARX,
165
166      /// STCX = This corresponds to PPC stcx. instrcution: store conditional
167      /// indexed. This is used to implement atomic operations.
168      STCX,
169
170      /// TC_RETURN - A tail call return.
171      ///   operand #0 chain
172      ///   operand #1 callee (register or absolute)
173      ///   operand #2 stack adjustment
174      ///   operand #3 optional in flag
175      TC_RETURN,
176
177      /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
178      CR6SET,
179      CR6UNSET,
180
181      /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
182      /// TLS model, produces an ADDIS8 instruction that adds the GOT
183      /// base to sym@got@tprel@ha.
184      ADDIS_GOT_TPREL_HA,
185
186      /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
187      /// TLS model, produces a LD instruction with base register G8RReg
188      /// and offset sym@got@tprel@l.  This completes the addition that
189      /// finds the offset of "sym" relative to the thread pointer.
190      LD_GOT_TPREL_L,
191
192      /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
193      /// model, produces an ADD instruction that adds the contents of
194      /// G8RReg to the thread pointer.  Symbol contains a relocation
195      /// sym@tls which is to be replaced by the thread pointer and
196      /// identifies to the linker that the instruction is part of a
197      /// TLS sequence.
198      ADD_TLS,
199
200      /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
201      /// model, produces an ADDIS8 instruction that adds the GOT base
202      /// register to sym@got@tlsgd@ha.
203      ADDIS_TLSGD_HA,
204
205      /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
206      /// model, produces an ADDI8 instruction that adds G8RReg to
207      /// sym@got@tlsgd@l.
208      ADDI_TLSGD_L,
209
210      /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
211      /// model, produces a call to __tls_get_addr(sym@tlsgd).
212      GET_TLS_ADDR,
213
214      /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
215      /// model, produces an ADDIS8 instruction that adds the GOT base
216      /// register to sym@got@tlsld@ha.
217      ADDIS_TLSLD_HA,
218
219      /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
220      /// model, produces an ADDI8 instruction that adds G8RReg to
221      /// sym@got@tlsld@l.
222      ADDI_TLSLD_L,
223
224      /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
225      /// model, produces a call to __tls_get_addr(sym@tlsld).
226      GET_TLSLD_ADDR,
227
228      /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
229      /// local-dynamic TLS model, produces an ADDIS8 instruction
230      /// that adds X3 to sym@dtprel@ha.  The Chain operand is needed
231      /// to tie this in place following a copy to %X3 from the result
232      /// of a GET_TLSLD_ADDR.
233      ADDIS_DTPREL_HA,
234
235      /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
236      /// model, produces an ADDI8 instruction that adds G8RReg to
237      /// sym@got@dtprel@l.
238      ADDI_DTPREL_L,
239
240      /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
241      /// during instruction selection to optimize a BUILD_VECTOR into
242      /// operations on splats.  This is necessary to avoid losing these
243      /// optimizations due to constant folding.
244      VADD_SPLAT,
245
246      /// STD_32 - This is the STD instruction for use with "32-bit" registers.
247      STD_32 = ISD::FIRST_TARGET_MEMORY_OPCODE,
248
249      /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
250      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
251      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
252      /// i32.
253      STBRX,
254
255      /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
256      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
257      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
258      /// or i32.
259      LBRX,
260
261      /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
262      /// produces an ADDIS8 instruction that adds the TOC base register to
263      /// sym@toc@ha.
264      ADDIS_TOC_HA,
265
266      /// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
267      /// produces a LD instruction with base register G8RReg and offset
268      /// sym@toc@l.  Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
269      LD_TOC_L,
270
271      /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
272      /// an ADDI8 instruction that adds G8RReg to sym@toc@l.
273      /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
274      ADDI_TOC_L
275    };
276  }
277
278  /// Define some predicates that are used for node matching.
279  namespace PPC {
280    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
281    /// VPKUHUM instruction.
282    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
283
284    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
285    /// VPKUWUM instruction.
286    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
287
288    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
289    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
290    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
291                            bool isUnary);
292
293    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
294    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
295    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
296                            bool isUnary);
297
298    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
299    /// amount, otherwise return -1.
300    int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
301
302    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
303    /// specifies a splat of a single element that is suitable for input to
304    /// VSPLTB/VSPLTH/VSPLTW.
305    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
306
307    /// isAllNegativeZeroVector - Returns true if all elements of build_vector
308    /// are -0.0.
309    bool isAllNegativeZeroVector(SDNode *N);
310
311    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
312    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
313    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
314
315    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
316    /// formed by using a vspltis[bhw] instruction of the specified element
317    /// size, return the constant being splatted.  The ByteSize field indicates
318    /// the number of bytes of each element [124] -> [bhw].
319    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
320  }
321
322  class PPCTargetLowering : public TargetLowering {
323    const PPCSubtarget &PPCSubTarget;
324
325  public:
326    explicit PPCTargetLowering(PPCTargetMachine &TM);
327
328    /// getTargetNodeName() - This method returns the name of a target specific
329    /// DAG node.
330    virtual const char *getTargetNodeName(unsigned Opcode) const;
331
332    virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
333
334    /// getSetCCResultType - Return the ISD::SETCC ValueType
335    virtual EVT getSetCCResultType(EVT VT) const;
336
337    /// getPreIndexedAddressParts - returns true by value, base pointer and
338    /// offset pointer and addressing mode by reference if the node's address
339    /// can be legally represented as pre-indexed load / store address.
340    virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
341                                           SDValue &Offset,
342                                           ISD::MemIndexedMode &AM,
343                                           SelectionDAG &DAG) const;
344
345    /// SelectAddressRegReg - Given the specified addressed, check to see if it
346    /// can be represented as an indexed [r+r] operation.  Returns false if it
347    /// can be more efficiently represented with [r+imm].
348    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
349                             SelectionDAG &DAG) const;
350
351    /// SelectAddressRegImm - Returns true if the address N can be represented
352    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
353    /// is not better represented as reg+reg.
354    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
355                             SelectionDAG &DAG) const;
356
357    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
358    /// represented as an indexed [r+r] operation.
359    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
360                                 SelectionDAG &DAG) const;
361
362    /// SelectAddressRegImmShift - Returns true if the address N can be
363    /// represented by a base register plus a signed 14-bit displacement
364    /// [r+imm*4].  Suitable for use by STD and friends.
365    bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
366                                  SelectionDAG &DAG) const;
367
368    Sched::Preference getSchedulingPreference(SDNode *N) const;
369
370    /// LowerOperation - Provide custom lowering hooks for some operations.
371    ///
372    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
373
374    /// ReplaceNodeResults - Replace the results of node with an illegal result
375    /// type with new values built out of custom code.
376    ///
377    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
378                                    SelectionDAG &DAG) const;
379
380    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
381
382    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
383                                                APInt &KnownZero,
384                                                APInt &KnownOne,
385                                                const SelectionDAG &DAG,
386                                                unsigned Depth = 0) const;
387
388    virtual MachineBasicBlock *
389      EmitInstrWithCustomInserter(MachineInstr *MI,
390                                  MachineBasicBlock *MBB) const;
391    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
392                                        MachineBasicBlock *MBB, bool is64Bit,
393                                        unsigned BinOpcode) const;
394    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
395                                                MachineBasicBlock *MBB,
396                                            bool is8bit, unsigned Opcode) const;
397
398    ConstraintType getConstraintType(const std::string &Constraint) const;
399
400    /// Examine constraint string and operand type and determine a weight value.
401    /// The operand object must already have been set up with the operand type.
402    ConstraintWeight getSingleConstraintMatchWeight(
403      AsmOperandInfo &info, const char *constraint) const;
404
405    std::pair<unsigned, const TargetRegisterClass*>
406      getRegForInlineAsmConstraint(const std::string &Constraint,
407                                   EVT VT) const;
408
409    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
410    /// function arguments in the caller parameter area.  This is the actual
411    /// alignment, not its logarithm.
412    unsigned getByValTypeAlignment(Type *Ty) const;
413
414    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
415    /// vector.  If it is invalid, don't add anything to Ops.
416    virtual void LowerAsmOperandForConstraint(SDValue Op,
417                                              std::string &Constraint,
418                                              std::vector<SDValue> &Ops,
419                                              SelectionDAG &DAG) const;
420
421    /// isLegalAddressingMode - Return true if the addressing mode represented
422    /// by AM is legal for this target, for a load/store of the specified type.
423    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
424
425    /// isLegalAddressImmediate - Return true if the integer value can be used
426    /// as the offset of the target addressing mode for load / store of the
427    /// given type.
428    virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const;
429
430    /// isLegalAddressImmediate - Return true if the GlobalValue can be used as
431    /// the offset of the target addressing mode.
432    virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
433
434    virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
435
436    /// getOptimalMemOpType - Returns the target specific optimal type for load
437    /// and store operations as a result of memset, memcpy, and memmove
438    /// lowering. If DstAlign is zero that means it's safe to destination
439    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
440    /// means there isn't a need to check it against alignment requirement,
441    /// probably because the source does not need to be loaded. If 'IsMemset' is
442    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
443    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
444    /// source is constant so it does not need to be loaded.
445    /// It returns EVT::Other if the type should be determined using generic
446    /// target-independent logic.
447    virtual EVT
448    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
449                        bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
450                        MachineFunction &MF) const;
451
452    /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
453    /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
454    /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
455    /// is expanded to mul + add.
456    virtual bool isFMAFasterThanMulAndAdd(EVT VT) const;
457
458  private:
459    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
460    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
461
462    bool
463    IsEligibleForTailCallOptimization(SDValue Callee,
464                                      CallingConv::ID CalleeCC,
465                                      bool isVarArg,
466                                      const SmallVectorImpl<ISD::InputArg> &Ins,
467                                      SelectionDAG& DAG) const;
468
469    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
470                                         int SPDiff,
471                                         SDValue Chain,
472                                         SDValue &LROpOut,
473                                         SDValue &FPOpOut,
474                                         bool isDarwinABI,
475                                         DebugLoc dl) const;
476
477    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
478    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
479    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
480    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
481    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
482    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
483    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
484    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
485    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
486    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
487    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
488                         const PPCSubtarget &Subtarget) const;
489    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
490                       const PPCSubtarget &Subtarget) const;
491    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
492                                const PPCSubtarget &Subtarget) const;
493    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
494                                      const PPCSubtarget &Subtarget) const;
495    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
496    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
497    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
498    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
499    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
500    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
501    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
502    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
503    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
504    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
505    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
506    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
507
508    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
509                            CallingConv::ID CallConv, bool isVarArg,
510                            const SmallVectorImpl<ISD::InputArg> &Ins,
511                            DebugLoc dl, SelectionDAG &DAG,
512                            SmallVectorImpl<SDValue> &InVals) const;
513    SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
514                       bool isVarArg,
515                       SelectionDAG &DAG,
516                       SmallVector<std::pair<unsigned, SDValue>, 8>
517                         &RegsToPass,
518                       SDValue InFlag, SDValue Chain,
519                       SDValue &Callee,
520                       int SPDiff, unsigned NumBytes,
521                       const SmallVectorImpl<ISD::InputArg> &Ins,
522                       SmallVectorImpl<SDValue> &InVals) const;
523
524    virtual SDValue
525      LowerFormalArguments(SDValue Chain,
526                           CallingConv::ID CallConv, bool isVarArg,
527                           const SmallVectorImpl<ISD::InputArg> &Ins,
528                           DebugLoc dl, SelectionDAG &DAG,
529                           SmallVectorImpl<SDValue> &InVals) const;
530
531    virtual SDValue
532      LowerCall(TargetLowering::CallLoweringInfo &CLI,
533                SmallVectorImpl<SDValue> &InVals) const;
534
535    virtual bool
536      CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
537                   bool isVarArg,
538                   const SmallVectorImpl<ISD::OutputArg> &Outs,
539                   LLVMContext &Context) const;
540
541    virtual SDValue
542      LowerReturn(SDValue Chain,
543                  CallingConv::ID CallConv, bool isVarArg,
544                  const SmallVectorImpl<ISD::OutputArg> &Outs,
545                  const SmallVectorImpl<SDValue> &OutVals,
546                  DebugLoc dl, SelectionDAG &DAG) const;
547
548    SDValue
549      extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
550                        SDValue ArgVal, DebugLoc dl) const;
551
552    void
553      setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
554                         unsigned nAltivecParamsAtEnd,
555                         unsigned MinReservedArea, bool isPPC64) const;
556
557    SDValue
558      LowerFormalArguments_Darwin(SDValue Chain,
559                                  CallingConv::ID CallConv, bool isVarArg,
560                                  const SmallVectorImpl<ISD::InputArg> &Ins,
561                                  DebugLoc dl, SelectionDAG &DAG,
562                                  SmallVectorImpl<SDValue> &InVals) const;
563    SDValue
564      LowerFormalArguments_64SVR4(SDValue Chain,
565                                  CallingConv::ID CallConv, bool isVarArg,
566                                  const SmallVectorImpl<ISD::InputArg> &Ins,
567                                  DebugLoc dl, SelectionDAG &DAG,
568                                  SmallVectorImpl<SDValue> &InVals) const;
569    SDValue
570      LowerFormalArguments_32SVR4(SDValue Chain,
571                                  CallingConv::ID CallConv, bool isVarArg,
572                                  const SmallVectorImpl<ISD::InputArg> &Ins,
573                                  DebugLoc dl, SelectionDAG &DAG,
574                                  SmallVectorImpl<SDValue> &InVals) const;
575
576    SDValue
577      createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
578                                 SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
579                                 SelectionDAG &DAG, DebugLoc dl) const;
580
581    SDValue
582      LowerCall_Darwin(SDValue Chain, SDValue Callee,
583                       CallingConv::ID CallConv,
584                       bool isVarArg, bool isTailCall,
585                       const SmallVectorImpl<ISD::OutputArg> &Outs,
586                       const SmallVectorImpl<SDValue> &OutVals,
587                       const SmallVectorImpl<ISD::InputArg> &Ins,
588                       DebugLoc dl, SelectionDAG &DAG,
589                       SmallVectorImpl<SDValue> &InVals) const;
590    SDValue
591      LowerCall_64SVR4(SDValue Chain, SDValue Callee,
592                       CallingConv::ID CallConv,
593                       bool isVarArg, bool isTailCall,
594                       const SmallVectorImpl<ISD::OutputArg> &Outs,
595                       const SmallVectorImpl<SDValue> &OutVals,
596                       const SmallVectorImpl<ISD::InputArg> &Ins,
597                       DebugLoc dl, SelectionDAG &DAG,
598                       SmallVectorImpl<SDValue> &InVals) const;
599    SDValue
600    LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
601                     bool isVarArg, bool isTailCall,
602                     const SmallVectorImpl<ISD::OutputArg> &Outs,
603                     const SmallVectorImpl<SDValue> &OutVals,
604                     const SmallVectorImpl<ISD::InputArg> &Ins,
605                     DebugLoc dl, SelectionDAG &DAG,
606                     SmallVectorImpl<SDValue> &InVals) const;
607  };
608}
609
610#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
611