PPCISelLowering.h revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that PPC uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
16#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
17
18#include "PPC.h"
19#include "PPCInstrInfo.h"
20#include "PPCRegisterInfo.h"
21#include "llvm/CodeGen/CallingConvLower.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/Target/TargetLowering.h"
24
25namespace llvm {
26  namespace PPCISD {
27    enum NodeType {
28      // Start the numbering where the builtin ops and target ops leave off.
29      FIRST_NUMBER = ISD::BUILTIN_OP_END,
30
31      /// FSEL - Traditional three-operand fsel node.
32      ///
33      FSEL,
34
35      /// FCFID - The FCFID instruction, taking an f64 operand and producing
36      /// and f64 value containing the FP representation of the integer that
37      /// was temporarily in the f64 operand.
38      FCFID,
39
40      /// Newer FCFID[US] integer-to-floating-point conversion instructions for
41      /// unsigned integers and single-precision outputs.
42      FCFIDU, FCFIDS, FCFIDUS,
43
44      /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
45      /// operand, producing an f64 value containing the integer representation
46      /// of that FP value.
47      FCTIDZ, FCTIWZ,
48
49      /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
50      /// unsigned integers.
51      FCTIDUZ, FCTIWUZ,
52
53      /// Reciprocal estimate instructions (unary FP ops).
54      FRE, FRSQRTE,
55
56      // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
57      // three v4f32 operands and producing a v4f32 result.
58      VMADDFP, VNMSUBFP,
59
60      /// VPERM - The PPC VPERM Instruction.
61      ///
62      VPERM,
63
64      /// Hi/Lo - These represent the high and low 16-bit parts of a global
65      /// address respectively.  These nodes have two operands, the first of
66      /// which must be a TargetGlobalAddress, and the second of which must be a
67      /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
68      /// though these are usually folded into other nodes.
69      Hi, Lo,
70
71      TOC_ENTRY,
72
73      /// The following two target-specific nodes are used for calls through
74      /// function pointers in the 64-bit SVR4 ABI.
75
76      /// Like a regular LOAD but additionally taking/producing a flag.
77      LOAD,
78
79      /// Like LOAD (taking/producing a flag), but using r2 as hard-coded
80      /// destination.
81      LOAD_TOC,
82
83      /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
84      /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
85      /// compute an allocation on the stack.
86      DYNALLOC,
87
88      /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
89      /// at function entry, used for PIC code.
90      GlobalBaseReg,
91
92      /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
93      /// shift amounts.  These nodes are generated by the multi-precision shift
94      /// code.
95      SRL, SRA, SHL,
96
97      /// CALL - A direct function call.
98      /// CALL_NOP is a call with the special NOP which follows 64-bit
99      /// SVR4 calls.
100      CALL, CALL_NOP,
101
102      /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
103      /// MTCTR instruction.
104      MTCTR,
105
106      /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
107      /// BCTRL instruction.
108      BCTRL,
109
110      /// Return with a flag operand, matched by 'blr'
111      RET_FLAG,
112
113      /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
114      /// This copies the bits corresponding to the specified CRREG into the
115      /// resultant GPR.  Bits corresponding to other CR regs are undefined.
116      MFOCRF,
117
118      // FIXME: Remove these once the ANDI glue bug is fixed:
119      /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
120      /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
121      /// implement truncation of i32 or i64 to i1.
122      ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
123
124      // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
125      EH_SJLJ_SETJMP,
126
127      // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
128      EH_SJLJ_LONGJMP,
129
130      /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
131      /// instructions.  For lack of better number, we use the opcode number
132      /// encoding for the OPC field to identify the compare.  For example, 838
133      /// is VCMPGTSH.
134      VCMP,
135
136      /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
137      /// altivec VCMP*o instructions.  For lack of better number, we use the
138      /// opcode number encoding for the OPC field to identify the compare.  For
139      /// example, 838 is VCMPGTSH.
140      VCMPo,
141
142      /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
143      /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
144      /// condition register to branch on, OPC is the branch opcode to use (e.g.
145      /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
146      /// an optional input flag argument.
147      COND_BRANCH,
148
149      /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
150      /// loops.
151      BDNZ, BDZ,
152
153      /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
154      /// towards zero.  Used only as part of the long double-to-int
155      /// conversion sequence.
156      FADDRTZ,
157
158      /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
159      MFFS,
160
161      /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
162      /// reserve indexed. This is used to implement atomic operations.
163      LARX,
164
165      /// STCX = This corresponds to PPC stcx. instrcution: store conditional
166      /// indexed. This is used to implement atomic operations.
167      STCX,
168
169      /// TC_RETURN - A tail call return.
170      ///   operand #0 chain
171      ///   operand #1 callee (register or absolute)
172      ///   operand #2 stack adjustment
173      ///   operand #3 optional in flag
174      TC_RETURN,
175
176      /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
177      CR6SET,
178      CR6UNSET,
179
180      /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
181      /// on PPC32.
182      PPC32_GOT,
183
184      /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
185      /// TLS model, produces an ADDIS8 instruction that adds the GOT
186      /// base to sym\@got\@tprel\@ha.
187      ADDIS_GOT_TPREL_HA,
188
189      /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
190      /// TLS model, produces a LD instruction with base register G8RReg
191      /// and offset sym\@got\@tprel\@l.  This completes the addition that
192      /// finds the offset of "sym" relative to the thread pointer.
193      LD_GOT_TPREL_L,
194
195      /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
196      /// model, produces an ADD instruction that adds the contents of
197      /// G8RReg to the thread pointer.  Symbol contains a relocation
198      /// sym\@tls which is to be replaced by the thread pointer and
199      /// identifies to the linker that the instruction is part of a
200      /// TLS sequence.
201      ADD_TLS,
202
203      /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
204      /// model, produces an ADDIS8 instruction that adds the GOT base
205      /// register to sym\@got\@tlsgd\@ha.
206      ADDIS_TLSGD_HA,
207
208      /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
209      /// model, produces an ADDI8 instruction that adds G8RReg to
210      /// sym\@got\@tlsgd\@l.
211      ADDI_TLSGD_L,
212
213      /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
214      /// model, produces a call to __tls_get_addr(sym\@tlsgd).
215      GET_TLS_ADDR,
216
217      /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
218      /// model, produces an ADDIS8 instruction that adds the GOT base
219      /// register to sym\@got\@tlsld\@ha.
220      ADDIS_TLSLD_HA,
221
222      /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
223      /// model, produces an ADDI8 instruction that adds G8RReg to
224      /// sym\@got\@tlsld\@l.
225      ADDI_TLSLD_L,
226
227      /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
228      /// model, produces a call to __tls_get_addr(sym\@tlsld).
229      GET_TLSLD_ADDR,
230
231      /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
232      /// local-dynamic TLS model, produces an ADDIS8 instruction
233      /// that adds X3 to sym\@dtprel\@ha. The Chain operand is needed
234      /// to tie this in place following a copy to %X3 from the result
235      /// of a GET_TLSLD_ADDR.
236      ADDIS_DTPREL_HA,
237
238      /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
239      /// model, produces an ADDI8 instruction that adds G8RReg to
240      /// sym\@got\@dtprel\@l.
241      ADDI_DTPREL_L,
242
243      /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
244      /// during instruction selection to optimize a BUILD_VECTOR into
245      /// operations on splats.  This is necessary to avoid losing these
246      /// optimizations due to constant folding.
247      VADD_SPLAT,
248
249      /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
250      /// operand identifies the operating system entry point.
251      SC,
252
253      /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
254      /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
255      /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
256      /// i32.
257      STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
258
259      /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
260      /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
261      /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
262      /// or i32.
263      LBRX,
264
265      /// STFIWX - The STFIWX instruction.  The first operand is an input token
266      /// chain, then an f64 value to store, then an address to store it to.
267      STFIWX,
268
269      /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
270      /// load which sign-extends from a 32-bit integer value into the
271      /// destination 64-bit register.
272      LFIWAX,
273
274      /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
275      /// load which zero-extends from a 32-bit integer value into the
276      /// destination 64-bit register.
277      LFIWZX,
278
279      /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
280      /// produces an ADDIS8 instruction that adds the TOC base register to
281      /// sym\@toc\@ha.
282      ADDIS_TOC_HA,
283
284      /// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
285      /// produces a LD instruction with base register G8RReg and offset
286      /// sym\@toc\@l. Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
287      LD_TOC_L,
288
289      /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
290      /// an ADDI8 instruction that adds G8RReg to sym\@toc\@l.
291      /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
292      ADDI_TOC_L
293    };
294  }
295
296  /// Define some predicates that are used for node matching.
297  namespace PPC {
298    /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
299    /// VPKUHUM instruction.
300    bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary,
301                              SelectionDAG &DAG);
302
303    /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
304    /// VPKUWUM instruction.
305    bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary,
306                              SelectionDAG &DAG);
307
308    /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
309    /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
310    bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
311                            bool isUnary, SelectionDAG &DAG);
312
313    /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
314    /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
315    bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
316                            bool isUnary, SelectionDAG &DAG);
317
318    /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
319    /// amount, otherwise return -1.
320    int isVSLDOIShuffleMask(SDNode *N, bool isUnary, SelectionDAG &DAG);
321
322    /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
323    /// specifies a splat of a single element that is suitable for input to
324    /// VSPLTB/VSPLTH/VSPLTW.
325    bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
326
327    /// isAllNegativeZeroVector - Returns true if all elements of build_vector
328    /// are -0.0.
329    bool isAllNegativeZeroVector(SDNode *N);
330
331    /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
332    /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
333    unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
334
335    /// get_VSPLTI_elt - If this is a build_vector of constants which can be
336    /// formed by using a vspltis[bhw] instruction of the specified element
337    /// size, return the constant being splatted.  The ByteSize field indicates
338    /// the number of bytes of each element [124] -> [bhw].
339    SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
340  }
341
342  class PPCSubtarget;
343  class PPCTargetLowering : public TargetLowering {
344    const PPCSubtarget &Subtarget;
345
346  public:
347    explicit PPCTargetLowering(PPCTargetMachine &TM);
348
349    /// getTargetNodeName() - This method returns the name of a target specific
350    /// DAG node.
351    const char *getTargetNodeName(unsigned Opcode) const override;
352
353    MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i32; }
354
355    /// getSetCCResultType - Return the ISD::SETCC ValueType
356    EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
357
358    /// getPreIndexedAddressParts - returns true by value, base pointer and
359    /// offset pointer and addressing mode by reference if the node's address
360    /// can be legally represented as pre-indexed load / store address.
361    bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
362                                   SDValue &Offset,
363                                   ISD::MemIndexedMode &AM,
364                                   SelectionDAG &DAG) const override;
365
366    /// SelectAddressRegReg - Given the specified addressed, check to see if it
367    /// can be represented as an indexed [r+r] operation.  Returns false if it
368    /// can be more efficiently represented with [r+imm].
369    bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
370                             SelectionDAG &DAG) const;
371
372    /// SelectAddressRegImm - Returns true if the address N can be represented
373    /// by a base register plus a signed 16-bit displacement [r+imm], and if it
374    /// is not better represented as reg+reg.  If Aligned is true, only accept
375    /// displacements suitable for STD and friends, i.e. multiples of 4.
376    bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
377                             SelectionDAG &DAG, bool Aligned) const;
378
379    /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
380    /// represented as an indexed [r+r] operation.
381    bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
382                                 SelectionDAG &DAG) const;
383
384    Sched::Preference getSchedulingPreference(SDNode *N) const override;
385
386    /// LowerOperation - Provide custom lowering hooks for some operations.
387    ///
388    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
389
390    /// ReplaceNodeResults - Replace the results of node with an illegal result
391    /// type with new values built out of custom code.
392    ///
393    void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
394                            SelectionDAG &DAG) const override;
395
396    SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
397
398    unsigned getRegisterByName(const char* RegName, EVT VT) const override;
399
400    void computeKnownBitsForTargetNode(const SDValue Op,
401                                       APInt &KnownZero,
402                                       APInt &KnownOne,
403                                       const SelectionDAG &DAG,
404                                       unsigned Depth = 0) const override;
405
406    MachineBasicBlock *
407      EmitInstrWithCustomInserter(MachineInstr *MI,
408                                  MachineBasicBlock *MBB) const override;
409    MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
410                                        MachineBasicBlock *MBB, bool is64Bit,
411                                        unsigned BinOpcode) const;
412    MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
413                                                MachineBasicBlock *MBB,
414                                            bool is8bit, unsigned Opcode) const;
415
416    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
417                                        MachineBasicBlock *MBB) const;
418
419    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
420                                         MachineBasicBlock *MBB) const;
421
422    ConstraintType
423    getConstraintType(const std::string &Constraint) const override;
424
425    /// Examine constraint string and operand type and determine a weight value.
426    /// The operand object must already have been set up with the operand type.
427    ConstraintWeight getSingleConstraintMatchWeight(
428      AsmOperandInfo &info, const char *constraint) const override;
429
430    std::pair<unsigned, const TargetRegisterClass*>
431      getRegForInlineAsmConstraint(const std::string &Constraint,
432                                   MVT VT) const override;
433
434    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
435    /// function arguments in the caller parameter area.  This is the actual
436    /// alignment, not its logarithm.
437    unsigned getByValTypeAlignment(Type *Ty) const override;
438
439    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
440    /// vector.  If it is invalid, don't add anything to Ops.
441    void LowerAsmOperandForConstraint(SDValue Op,
442                                      std::string &Constraint,
443                                      std::vector<SDValue> &Ops,
444                                      SelectionDAG &DAG) const override;
445
446    /// isLegalAddressingMode - Return true if the addressing mode represented
447    /// by AM is legal for this target, for a load/store of the specified type.
448    bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
449
450    /// isLegalICmpImmediate - Return true if the specified immediate is legal
451    /// icmp immediate, that is the target has icmp instructions which can
452    /// compare a register against the immediate without having to materialize
453    /// the immediate into a register.
454    bool isLegalICmpImmediate(int64_t Imm) const override;
455
456    /// isLegalAddImmediate - Return true if the specified immediate is legal
457    /// add immediate, that is the target has add instructions which can
458    /// add a register and the immediate without having to materialize
459    /// the immediate into a register.
460    bool isLegalAddImmediate(int64_t Imm) const override;
461
462    /// isTruncateFree - Return true if it's free to truncate a value of
463    /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
464    /// register X1 to i32 by referencing its sub-register R1.
465    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
466    bool isTruncateFree(EVT VT1, EVT VT2) const override;
467
468    /// \brief Returns true if it is beneficial to convert a load of a constant
469    /// to just the constant itself.
470    bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
471                                           Type *Ty) const override;
472
473    bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
474
475    /// getOptimalMemOpType - Returns the target specific optimal type for load
476    /// and store operations as a result of memset, memcpy, and memmove
477    /// lowering. If DstAlign is zero that means it's safe to destination
478    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
479    /// means there isn't a need to check it against alignment requirement,
480    /// probably because the source does not need to be loaded. If 'IsMemset' is
481    /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
482    /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
483    /// source is constant so it does not need to be loaded.
484    /// It returns EVT::Other if the type should be determined using generic
485    /// target-independent logic.
486    EVT
487    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
488                        bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
489                        MachineFunction &MF) const override;
490
491    /// Is unaligned memory access allowed for the given type, and is it fast
492    /// relative to software emulation.
493    bool allowsUnalignedMemoryAccesses(EVT VT,
494                                       unsigned AddrSpace,
495                                       bool *Fast = nullptr) const override;
496
497    /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
498    /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
499    /// expanded to FMAs when this method returns true, otherwise fmuladd is
500    /// expanded to fmul + fadd.
501    bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
502
503    // Should we expand the build vector with shuffles?
504    bool
505    shouldExpandBuildVectorWithShuffles(EVT VT,
506                                        unsigned DefinedValues) const override;
507
508    /// createFastISel - This method returns a target-specific FastISel object,
509    /// or null if the target does not support "fast" instruction selection.
510    FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
511                             const TargetLibraryInfo *LibInfo) const override;
512
513  private:
514    SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
515    SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
516
517    bool
518    IsEligibleForTailCallOptimization(SDValue Callee,
519                                      CallingConv::ID CalleeCC,
520                                      bool isVarArg,
521                                      const SmallVectorImpl<ISD::InputArg> &Ins,
522                                      SelectionDAG& DAG) const;
523
524    SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
525                                         int SPDiff,
526                                         SDValue Chain,
527                                         SDValue &LROpOut,
528                                         SDValue &FPOpOut,
529                                         bool isDarwinABI,
530                                         SDLoc dl) const;
531
532    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
533    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
534    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
535    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
536    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
537    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
538    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
539    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
540    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
541    SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
542    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
543                         const PPCSubtarget &Subtarget) const;
544    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
545                       const PPCSubtarget &Subtarget) const;
546    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG,
547                        const PPCSubtarget &Subtarget) const;
548    SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
549                                const PPCSubtarget &Subtarget) const;
550    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
551                                      const PPCSubtarget &Subtarget) const;
552    SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
553    SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
554    SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
555    SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
556    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const;
557    SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
558    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
559    SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
560    SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
561    SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
562    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
563    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
564    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
565    SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
566    SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
567    SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
568
569    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
570                            CallingConv::ID CallConv, bool isVarArg,
571                            const SmallVectorImpl<ISD::InputArg> &Ins,
572                            SDLoc dl, SelectionDAG &DAG,
573                            SmallVectorImpl<SDValue> &InVals) const;
574    SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall,
575                       bool isVarArg,
576                       SelectionDAG &DAG,
577                       SmallVector<std::pair<unsigned, SDValue>, 8>
578                         &RegsToPass,
579                       SDValue InFlag, SDValue Chain,
580                       SDValue &Callee,
581                       int SPDiff, unsigned NumBytes,
582                       const SmallVectorImpl<ISD::InputArg> &Ins,
583                       SmallVectorImpl<SDValue> &InVals) const;
584
585    SDValue
586      LowerFormalArguments(SDValue Chain,
587                           CallingConv::ID CallConv, bool isVarArg,
588                           const SmallVectorImpl<ISD::InputArg> &Ins,
589                           SDLoc dl, SelectionDAG &DAG,
590                           SmallVectorImpl<SDValue> &InVals) const override;
591
592    SDValue
593      LowerCall(TargetLowering::CallLoweringInfo &CLI,
594                SmallVectorImpl<SDValue> &InVals) const override;
595
596    bool
597      CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
598                   bool isVarArg,
599                   const SmallVectorImpl<ISD::OutputArg> &Outs,
600                   LLVMContext &Context) const override;
601
602    SDValue
603      LowerReturn(SDValue Chain,
604                  CallingConv::ID CallConv, bool isVarArg,
605                  const SmallVectorImpl<ISD::OutputArg> &Outs,
606                  const SmallVectorImpl<SDValue> &OutVals,
607                  SDLoc dl, SelectionDAG &DAG) const override;
608
609    SDValue
610      extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
611                        SDValue ArgVal, SDLoc dl) const;
612
613    SDValue
614      LowerFormalArguments_Darwin(SDValue Chain,
615                                  CallingConv::ID CallConv, bool isVarArg,
616                                  const SmallVectorImpl<ISD::InputArg> &Ins,
617                                  SDLoc dl, SelectionDAG &DAG,
618                                  SmallVectorImpl<SDValue> &InVals) const;
619    SDValue
620      LowerFormalArguments_64SVR4(SDValue Chain,
621                                  CallingConv::ID CallConv, bool isVarArg,
622                                  const SmallVectorImpl<ISD::InputArg> &Ins,
623                                  SDLoc dl, SelectionDAG &DAG,
624                                  SmallVectorImpl<SDValue> &InVals) const;
625    SDValue
626      LowerFormalArguments_32SVR4(SDValue Chain,
627                                  CallingConv::ID CallConv, bool isVarArg,
628                                  const SmallVectorImpl<ISD::InputArg> &Ins,
629                                  SDLoc dl, SelectionDAG &DAG,
630                                  SmallVectorImpl<SDValue> &InVals) const;
631
632    SDValue
633      createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
634                                 SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
635                                 SelectionDAG &DAG, SDLoc dl) const;
636
637    SDValue
638      LowerCall_Darwin(SDValue Chain, SDValue Callee,
639                       CallingConv::ID CallConv,
640                       bool isVarArg, bool isTailCall,
641                       const SmallVectorImpl<ISD::OutputArg> &Outs,
642                       const SmallVectorImpl<SDValue> &OutVals,
643                       const SmallVectorImpl<ISD::InputArg> &Ins,
644                       SDLoc dl, SelectionDAG &DAG,
645                       SmallVectorImpl<SDValue> &InVals) const;
646    SDValue
647      LowerCall_64SVR4(SDValue Chain, SDValue Callee,
648                       CallingConv::ID CallConv,
649                       bool isVarArg, bool isTailCall,
650                       const SmallVectorImpl<ISD::OutputArg> &Outs,
651                       const SmallVectorImpl<SDValue> &OutVals,
652                       const SmallVectorImpl<ISD::InputArg> &Ins,
653                       SDLoc dl, SelectionDAG &DAG,
654                       SmallVectorImpl<SDValue> &InVals) const;
655    SDValue
656    LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
657                     bool isVarArg, bool isTailCall,
658                     const SmallVectorImpl<ISD::OutputArg> &Outs,
659                     const SmallVectorImpl<SDValue> &OutVals,
660                     const SmallVectorImpl<ISD::InputArg> &Ins,
661                     SDLoc dl, SelectionDAG &DAG,
662                     SmallVectorImpl<SDValue> &InVals) const;
663
664    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
665    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
666
667    SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
668    SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
669    SDValue DAGCombineFastRecip(SDValue Op, DAGCombinerInfo &DCI) const;
670    SDValue DAGCombineFastRecipFSQRT(SDValue Op, DAGCombinerInfo &DCI) const;
671
672    CCAssignFn *useFastISelCCs(unsigned Flag) const;
673  };
674
675  namespace PPC {
676    FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
677                             const TargetLibraryInfo *LibInfo);
678  }
679
680  bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
681                                  CCValAssign::LocInfo &LocInfo,
682                                  ISD::ArgFlagsTy &ArgFlags,
683                                  CCState &State);
684
685  bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
686                                         MVT &LocVT,
687                                         CCValAssign::LocInfo &LocInfo,
688                                         ISD::ArgFlagsTy &ArgFlags,
689                                         CCState &State);
690
691  bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
692                                           MVT &LocVT,
693                                           CCValAssign::LocInfo &LocInfo,
694                                           ISD::ArgFlagsTy &ArgFlags,
695                                           CCState &State);
696}
697
698#endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
699