1//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the PowerPC implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCInstrInfo.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPC.h"
17#include "PPCHazardRecognizers.h"
18#include "PPCInstrBuilder.h"
19#include "PPCMachineFunctionInfo.h"
20#include "PPCTargetMachine.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/LiveIntervalAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/CodeGen/ScheduleDAG.h"
31#include "llvm/CodeGen/SlotIndexes.h"
32#include "llvm/MC/MCAsmInfo.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/TargetRegistry.h"
37#include "llvm/Support/raw_ostream.h"
38
39using namespace llvm;
40
41#define DEBUG_TYPE "ppc-instr-info"
42
43#define GET_INSTRMAP_INFO
44#define GET_INSTRINFO_CTOR_DTOR
45#include "PPCGenInstrInfo.inc"
46
47static cl::
48opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
49            cl::desc("Disable analysis for CTR loops"));
50
51static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
52cl::desc("Disable compare instruction optimization"), cl::Hidden);
53
54static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation",
55cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden);
56
57static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
58cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
59cl::Hidden);
60
61// Pin the vtable to this file.
62void PPCInstrInfo::anchor() {}
63
64PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
65    : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
66      Subtarget(STI), RI(STI) {}
67
68/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
69/// this target when scheduling the DAG.
70ScheduleHazardRecognizer *
71PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
72                                           const ScheduleDAG *DAG) const {
73  unsigned Directive =
74      static_cast<const PPCSubtarget *>(STI)->getDarwinDirective();
75  if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
76      Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
77    const InstrItineraryData *II =
78        &static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
79    return new ScoreboardHazardRecognizer(II, DAG);
80  }
81
82  return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
83}
84
85/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
86/// to use for this target when scheduling the DAG.
87ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer(
88  const InstrItineraryData *II,
89  const ScheduleDAG *DAG) const {
90  unsigned Directive =
91      DAG->TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
92
93  if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
94    return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
95
96  // Most subtargets use a PPC970 recognizer.
97  if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
98      Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
99    assert(DAG->TII && "No InstrInfo?");
100
101    return new PPCHazardRecognizer970(*DAG);
102  }
103
104  return new ScoreboardHazardRecognizer(II, DAG);
105}
106
107
108int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
109                                    const MachineInstr *DefMI, unsigned DefIdx,
110                                    const MachineInstr *UseMI,
111                                    unsigned UseIdx) const {
112  int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
113                                                   UseMI, UseIdx);
114
115  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
116  unsigned Reg = DefMO.getReg();
117
118  const TargetRegisterInfo *TRI = &getRegisterInfo();
119  bool IsRegCR;
120  if (TRI->isVirtualRegister(Reg)) {
121    const MachineRegisterInfo *MRI =
122      &DefMI->getParent()->getParent()->getRegInfo();
123    IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
124              MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
125  } else {
126    IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
127              PPC::CRBITRCRegClass.contains(Reg);
128  }
129
130  if (UseMI->isBranch() && IsRegCR) {
131    if (Latency < 0)
132      Latency = getInstrLatency(ItinData, DefMI);
133
134    // On some cores, there is an additional delay between writing to a condition
135    // register, and using it from a branch.
136    unsigned Directive = Subtarget.getDarwinDirective();
137    switch (Directive) {
138    default: break;
139    case PPC::DIR_7400:
140    case PPC::DIR_750:
141    case PPC::DIR_970:
142    case PPC::DIR_E5500:
143    case PPC::DIR_PWR4:
144    case PPC::DIR_PWR5:
145    case PPC::DIR_PWR5X:
146    case PPC::DIR_PWR6:
147    case PPC::DIR_PWR6X:
148    case PPC::DIR_PWR7:
149    case PPC::DIR_PWR8:
150      Latency += 2;
151      break;
152    }
153  }
154
155  return Latency;
156}
157
158// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
159bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
160                                         unsigned &SrcReg, unsigned &DstReg,
161                                         unsigned &SubIdx) const {
162  switch (MI.getOpcode()) {
163  default: return false;
164  case PPC::EXTSW:
165  case PPC::EXTSW_32_64:
166    SrcReg = MI.getOperand(1).getReg();
167    DstReg = MI.getOperand(0).getReg();
168    SubIdx = PPC::sub_32;
169    return true;
170  }
171}
172
173unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
174                                           int &FrameIndex) const {
175  // Note: This list must be kept consistent with LoadRegFromStackSlot.
176  switch (MI->getOpcode()) {
177  default: break;
178  case PPC::LD:
179  case PPC::LWZ:
180  case PPC::LFS:
181  case PPC::LFD:
182  case PPC::RESTORE_CR:
183  case PPC::RESTORE_CRBIT:
184  case PPC::LVX:
185  case PPC::LXVD2X:
186  case PPC::RESTORE_VRSAVE:
187    // Check for the operands added by addFrameReference (the immediate is the
188    // offset which defaults to 0).
189    if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
190        MI->getOperand(2).isFI()) {
191      FrameIndex = MI->getOperand(2).getIndex();
192      return MI->getOperand(0).getReg();
193    }
194    break;
195  }
196  return 0;
197}
198
199unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
200                                          int &FrameIndex) const {
201  // Note: This list must be kept consistent with StoreRegToStackSlot.
202  switch (MI->getOpcode()) {
203  default: break;
204  case PPC::STD:
205  case PPC::STW:
206  case PPC::STFS:
207  case PPC::STFD:
208  case PPC::SPILL_CR:
209  case PPC::SPILL_CRBIT:
210  case PPC::STVX:
211  case PPC::STXVD2X:
212  case PPC::SPILL_VRSAVE:
213    // Check for the operands added by addFrameReference (the immediate is the
214    // offset which defaults to 0).
215    if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
216        MI->getOperand(2).isFI()) {
217      FrameIndex = MI->getOperand(2).getIndex();
218      return MI->getOperand(0).getReg();
219    }
220    break;
221  }
222  return 0;
223}
224
225// commuteInstruction - We can commute rlwimi instructions, but only if the
226// rotate amt is zero.  We also have to munge the immediates a bit.
227MachineInstr *
228PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
229  MachineFunction &MF = *MI->getParent()->getParent();
230
231  // Normal instructions can be commuted the obvious way.
232  if (MI->getOpcode() != PPC::RLWIMI &&
233      MI->getOpcode() != PPC::RLWIMIo &&
234      MI->getOpcode() != PPC::RLWIMI8 &&
235      MI->getOpcode() != PPC::RLWIMI8o)
236    return TargetInstrInfo::commuteInstruction(MI, NewMI);
237
238  // Cannot commute if it has a non-zero rotate count.
239  if (MI->getOperand(3).getImm() != 0)
240    return nullptr;
241
242  // If we have a zero rotate count, we have:
243  //   M = mask(MB,ME)
244  //   Op0 = (Op1 & ~M) | (Op2 & M)
245  // Change this to:
246  //   M = mask((ME+1)&31, (MB-1)&31)
247  //   Op0 = (Op2 & ~M) | (Op1 & M)
248
249  // Swap op1/op2
250  unsigned Reg0 = MI->getOperand(0).getReg();
251  unsigned Reg1 = MI->getOperand(1).getReg();
252  unsigned Reg2 = MI->getOperand(2).getReg();
253  unsigned SubReg1 = MI->getOperand(1).getSubReg();
254  unsigned SubReg2 = MI->getOperand(2).getSubReg();
255  bool Reg1IsKill = MI->getOperand(1).isKill();
256  bool Reg2IsKill = MI->getOperand(2).isKill();
257  bool ChangeReg0 = false;
258  // If machine instrs are no longer in two-address forms, update
259  // destination register as well.
260  if (Reg0 == Reg1) {
261    // Must be two address instruction!
262    assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
263           "Expecting a two-address instruction!");
264    assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
265    Reg2IsKill = false;
266    ChangeReg0 = true;
267  }
268
269  // Masks.
270  unsigned MB = MI->getOperand(4).getImm();
271  unsigned ME = MI->getOperand(5).getImm();
272
273  if (NewMI) {
274    // Create a new instruction.
275    unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
276    bool Reg0IsDead = MI->getOperand(0).isDead();
277    return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
278      .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
279      .addReg(Reg2, getKillRegState(Reg2IsKill))
280      .addReg(Reg1, getKillRegState(Reg1IsKill))
281      .addImm((ME+1) & 31)
282      .addImm((MB-1) & 31);
283  }
284
285  if (ChangeReg0) {
286    MI->getOperand(0).setReg(Reg2);
287    MI->getOperand(0).setSubReg(SubReg2);
288  }
289  MI->getOperand(2).setReg(Reg1);
290  MI->getOperand(1).setReg(Reg2);
291  MI->getOperand(2).setSubReg(SubReg1);
292  MI->getOperand(1).setSubReg(SubReg2);
293  MI->getOperand(2).setIsKill(Reg1IsKill);
294  MI->getOperand(1).setIsKill(Reg2IsKill);
295
296  // Swap the mask around.
297  MI->getOperand(4).setImm((ME+1) & 31);
298  MI->getOperand(5).setImm((MB-1) & 31);
299  return MI;
300}
301
302bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
303                                         unsigned &SrcOpIdx2) const {
304  // For VSX A-Type FMA instructions, it is the first two operands that can be
305  // commuted, however, because the non-encoded tied input operand is listed
306  // first, the operands to swap are actually the second and third.
307
308  int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
309  if (AltOpc == -1)
310    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
311
312  SrcOpIdx1 = 2;
313  SrcOpIdx2 = 3;
314  return true;
315}
316
317void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
318                              MachineBasicBlock::iterator MI) const {
319  // This function is used for scheduling, and the nop wanted here is the type
320  // that terminates dispatch groups on the POWER cores.
321  unsigned Directive = Subtarget.getDarwinDirective();
322  unsigned Opcode;
323  switch (Directive) {
324  default:            Opcode = PPC::NOP; break;
325  case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
326  case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
327  case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
328  }
329
330  DebugLoc DL;
331  BuildMI(MBB, MI, DL, get(Opcode));
332}
333
334// Branch analysis.
335// Note: If the condition register is set to CTR or CTR8 then this is a
336// BDNZ (imm == 1) or BDZ (imm == 0) branch.
337bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
338                                 MachineBasicBlock *&FBB,
339                                 SmallVectorImpl<MachineOperand> &Cond,
340                                 bool AllowModify) const {
341  bool isPPC64 = Subtarget.isPPC64();
342
343  // If the block has no terminators, it just falls into the block after it.
344  MachineBasicBlock::iterator I = MBB.end();
345  if (I == MBB.begin())
346    return false;
347  --I;
348  while (I->isDebugValue()) {
349    if (I == MBB.begin())
350      return false;
351    --I;
352  }
353  if (!isUnpredicatedTerminator(I))
354    return false;
355
356  // Get the last instruction in the block.
357  MachineInstr *LastInst = I;
358
359  // If there is only one terminator instruction, process it.
360  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
361    if (LastInst->getOpcode() == PPC::B) {
362      if (!LastInst->getOperand(0).isMBB())
363        return true;
364      TBB = LastInst->getOperand(0).getMBB();
365      return false;
366    } else if (LastInst->getOpcode() == PPC::BCC) {
367      if (!LastInst->getOperand(2).isMBB())
368        return true;
369      // Block ends with fall-through condbranch.
370      TBB = LastInst->getOperand(2).getMBB();
371      Cond.push_back(LastInst->getOperand(0));
372      Cond.push_back(LastInst->getOperand(1));
373      return false;
374    } else if (LastInst->getOpcode() == PPC::BC) {
375      if (!LastInst->getOperand(1).isMBB())
376        return true;
377      // Block ends with fall-through condbranch.
378      TBB = LastInst->getOperand(1).getMBB();
379      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
380      Cond.push_back(LastInst->getOperand(0));
381      return false;
382    } else if (LastInst->getOpcode() == PPC::BCn) {
383      if (!LastInst->getOperand(1).isMBB())
384        return true;
385      // Block ends with fall-through condbranch.
386      TBB = LastInst->getOperand(1).getMBB();
387      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
388      Cond.push_back(LastInst->getOperand(0));
389      return false;
390    } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
391               LastInst->getOpcode() == PPC::BDNZ) {
392      if (!LastInst->getOperand(0).isMBB())
393        return true;
394      if (DisableCTRLoopAnal)
395        return true;
396      TBB = LastInst->getOperand(0).getMBB();
397      Cond.push_back(MachineOperand::CreateImm(1));
398      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
399                                               true));
400      return false;
401    } else if (LastInst->getOpcode() == PPC::BDZ8 ||
402               LastInst->getOpcode() == PPC::BDZ) {
403      if (!LastInst->getOperand(0).isMBB())
404        return true;
405      if (DisableCTRLoopAnal)
406        return true;
407      TBB = LastInst->getOperand(0).getMBB();
408      Cond.push_back(MachineOperand::CreateImm(0));
409      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
410                                               true));
411      return false;
412    }
413
414    // Otherwise, don't know what this is.
415    return true;
416  }
417
418  // Get the instruction before it if it's a terminator.
419  MachineInstr *SecondLastInst = I;
420
421  // If there are three terminators, we don't know what sort of block this is.
422  if (SecondLastInst && I != MBB.begin() &&
423      isUnpredicatedTerminator(--I))
424    return true;
425
426  // If the block ends with PPC::B and PPC:BCC, handle it.
427  if (SecondLastInst->getOpcode() == PPC::BCC &&
428      LastInst->getOpcode() == PPC::B) {
429    if (!SecondLastInst->getOperand(2).isMBB() ||
430        !LastInst->getOperand(0).isMBB())
431      return true;
432    TBB =  SecondLastInst->getOperand(2).getMBB();
433    Cond.push_back(SecondLastInst->getOperand(0));
434    Cond.push_back(SecondLastInst->getOperand(1));
435    FBB = LastInst->getOperand(0).getMBB();
436    return false;
437  } else if (SecondLastInst->getOpcode() == PPC::BC &&
438      LastInst->getOpcode() == PPC::B) {
439    if (!SecondLastInst->getOperand(1).isMBB() ||
440        !LastInst->getOperand(0).isMBB())
441      return true;
442    TBB =  SecondLastInst->getOperand(1).getMBB();
443    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
444    Cond.push_back(SecondLastInst->getOperand(0));
445    FBB = LastInst->getOperand(0).getMBB();
446    return false;
447  } else if (SecondLastInst->getOpcode() == PPC::BCn &&
448      LastInst->getOpcode() == PPC::B) {
449    if (!SecondLastInst->getOperand(1).isMBB() ||
450        !LastInst->getOperand(0).isMBB())
451      return true;
452    TBB =  SecondLastInst->getOperand(1).getMBB();
453    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
454    Cond.push_back(SecondLastInst->getOperand(0));
455    FBB = LastInst->getOperand(0).getMBB();
456    return false;
457  } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
458              SecondLastInst->getOpcode() == PPC::BDNZ) &&
459      LastInst->getOpcode() == PPC::B) {
460    if (!SecondLastInst->getOperand(0).isMBB() ||
461        !LastInst->getOperand(0).isMBB())
462      return true;
463    if (DisableCTRLoopAnal)
464      return true;
465    TBB = SecondLastInst->getOperand(0).getMBB();
466    Cond.push_back(MachineOperand::CreateImm(1));
467    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
468                                             true));
469    FBB = LastInst->getOperand(0).getMBB();
470    return false;
471  } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
472              SecondLastInst->getOpcode() == PPC::BDZ) &&
473      LastInst->getOpcode() == PPC::B) {
474    if (!SecondLastInst->getOperand(0).isMBB() ||
475        !LastInst->getOperand(0).isMBB())
476      return true;
477    if (DisableCTRLoopAnal)
478      return true;
479    TBB = SecondLastInst->getOperand(0).getMBB();
480    Cond.push_back(MachineOperand::CreateImm(0));
481    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
482                                             true));
483    FBB = LastInst->getOperand(0).getMBB();
484    return false;
485  }
486
487  // If the block ends with two PPC:Bs, handle it.  The second one is not
488  // executed, so remove it.
489  if (SecondLastInst->getOpcode() == PPC::B &&
490      LastInst->getOpcode() == PPC::B) {
491    if (!SecondLastInst->getOperand(0).isMBB())
492      return true;
493    TBB = SecondLastInst->getOperand(0).getMBB();
494    I = LastInst;
495    if (AllowModify)
496      I->eraseFromParent();
497    return false;
498  }
499
500  // Otherwise, can't handle this.
501  return true;
502}
503
504unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
505  MachineBasicBlock::iterator I = MBB.end();
506  if (I == MBB.begin()) return 0;
507  --I;
508  while (I->isDebugValue()) {
509    if (I == MBB.begin())
510      return 0;
511    --I;
512  }
513  if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
514      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
515      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
516      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
517    return 0;
518
519  // Remove the branch.
520  I->eraseFromParent();
521
522  I = MBB.end();
523
524  if (I == MBB.begin()) return 1;
525  --I;
526  if (I->getOpcode() != PPC::BCC &&
527      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
528      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
529      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
530    return 1;
531
532  // Remove the branch.
533  I->eraseFromParent();
534  return 2;
535}
536
537unsigned
538PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
539                           MachineBasicBlock *FBB,
540                           const SmallVectorImpl<MachineOperand> &Cond,
541                           DebugLoc DL) const {
542  // Shouldn't be a fall through.
543  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
544  assert((Cond.size() == 2 || Cond.size() == 0) &&
545         "PPC branch conditions have two components!");
546
547  bool isPPC64 = Subtarget.isPPC64();
548
549  // One-way branch.
550  if (!FBB) {
551    if (Cond.empty())   // Unconditional branch
552      BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
553    else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
554      BuildMI(&MBB, DL, get(Cond[0].getImm() ?
555                              (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
556                              (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
557    else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
558      BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
559    else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
560      BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
561    else                // Conditional branch
562      BuildMI(&MBB, DL, get(PPC::BCC))
563        .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
564    return 1;
565  }
566
567  // Two-way Conditional Branch.
568  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
569    BuildMI(&MBB, DL, get(Cond[0].getImm() ?
570                            (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
571                            (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
572  else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
573    BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
574  else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
575    BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
576  else
577    BuildMI(&MBB, DL, get(PPC::BCC))
578      .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
579  BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
580  return 2;
581}
582
583// Select analysis.
584bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
585                const SmallVectorImpl<MachineOperand> &Cond,
586                unsigned TrueReg, unsigned FalseReg,
587                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
588  if (!Subtarget.hasISEL())
589    return false;
590
591  if (Cond.size() != 2)
592    return false;
593
594  // If this is really a bdnz-like condition, then it cannot be turned into a
595  // select.
596  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
597    return false;
598
599  // Check register classes.
600  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
601  const TargetRegisterClass *RC =
602    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
603  if (!RC)
604    return false;
605
606  // isel is for regular integer GPRs only.
607  if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
608      !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
609      !PPC::G8RCRegClass.hasSubClassEq(RC) &&
610      !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
611    return false;
612
613  // FIXME: These numbers are for the A2, how well they work for other cores is
614  // an open question. On the A2, the isel instruction has a 2-cycle latency
615  // but single-cycle throughput. These numbers are used in combination with
616  // the MispredictPenalty setting from the active SchedMachineModel.
617  CondCycles = 1;
618  TrueCycles = 1;
619  FalseCycles = 1;
620
621  return true;
622}
623
624void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
625                                MachineBasicBlock::iterator MI, DebugLoc dl,
626                                unsigned DestReg,
627                                const SmallVectorImpl<MachineOperand> &Cond,
628                                unsigned TrueReg, unsigned FalseReg) const {
629  assert(Cond.size() == 2 &&
630         "PPC branch conditions have two components!");
631
632  assert(Subtarget.hasISEL() &&
633         "Cannot insert select on target without ISEL support");
634
635  // Get the register classes.
636  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
637  const TargetRegisterClass *RC =
638    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
639  assert(RC && "TrueReg and FalseReg must have overlapping register classes");
640
641  bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
642                 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
643  assert((Is64Bit ||
644          PPC::GPRCRegClass.hasSubClassEq(RC) ||
645          PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
646         "isel is for regular integer GPRs only");
647
648  unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
649  unsigned SelectPred = Cond[0].getImm();
650
651  unsigned SubIdx;
652  bool SwapOps;
653  switch (SelectPred) {
654  default: llvm_unreachable("invalid predicate for isel");
655  case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
656  case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
657  case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
658  case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
659  case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
660  case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
661  case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
662  case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
663  case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
664  case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
665  }
666
667  unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
668           SecondReg = SwapOps ? TrueReg  : FalseReg;
669
670  // The first input register of isel cannot be r0. If it is a member
671  // of a register class that can be r0, then copy it first (the
672  // register allocator should eliminate the copy).
673  if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
674      MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
675    const TargetRegisterClass *FirstRC =
676      MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
677        &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
678    unsigned OldFirstReg = FirstReg;
679    FirstReg = MRI.createVirtualRegister(FirstRC);
680    BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
681      .addReg(OldFirstReg);
682  }
683
684  BuildMI(MBB, MI, dl, get(OpCode), DestReg)
685    .addReg(FirstReg).addReg(SecondReg)
686    .addReg(Cond[1].getReg(), 0, SubIdx);
687}
688
689void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
690                               MachineBasicBlock::iterator I, DebugLoc DL,
691                               unsigned DestReg, unsigned SrcReg,
692                               bool KillSrc) const {
693  // We can end up with self copies and similar things as a result of VSX copy
694  // legalization. Promote them here.
695  const TargetRegisterInfo *TRI = &getRegisterInfo();
696  if (PPC::F8RCRegClass.contains(DestReg) &&
697      PPC::VSLRCRegClass.contains(SrcReg)) {
698    unsigned SuperReg =
699      TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
700
701    if (VSXSelfCopyCrash && SrcReg == SuperReg)
702      llvm_unreachable("nop VSX copy");
703
704    DestReg = SuperReg;
705  } else if (PPC::VRRCRegClass.contains(DestReg) &&
706             PPC::VSHRCRegClass.contains(SrcReg)) {
707    unsigned SuperReg =
708      TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
709
710    if (VSXSelfCopyCrash && SrcReg == SuperReg)
711      llvm_unreachable("nop VSX copy");
712
713    DestReg = SuperReg;
714  } else if (PPC::F8RCRegClass.contains(SrcReg) &&
715             PPC::VSLRCRegClass.contains(DestReg)) {
716    unsigned SuperReg =
717      TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
718
719    if (VSXSelfCopyCrash && DestReg == SuperReg)
720      llvm_unreachable("nop VSX copy");
721
722    SrcReg = SuperReg;
723  } else if (PPC::VRRCRegClass.contains(SrcReg) &&
724             PPC::VSHRCRegClass.contains(DestReg)) {
725    unsigned SuperReg =
726      TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
727
728    if (VSXSelfCopyCrash && DestReg == SuperReg)
729      llvm_unreachable("nop VSX copy");
730
731    SrcReg = SuperReg;
732  }
733
734  unsigned Opc;
735  if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
736    Opc = PPC::OR;
737  else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
738    Opc = PPC::OR8;
739  else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
740    Opc = PPC::FMR;
741  else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
742    Opc = PPC::MCRF;
743  else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
744    Opc = PPC::VOR;
745  else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
746    // There are two different ways this can be done:
747    //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
748    //      issue in VSU pipeline 0.
749    //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
750    //      can go to either pipeline.
751    // We'll always use xxlor here, because in practically all cases where
752    // copies are generated, they are close enough to some use that the
753    // lower-latency form is preferable.
754    Opc = PPC::XXLOR;
755  else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg))
756    Opc = PPC::XXLORf;
757  else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
758    Opc = PPC::CROR;
759  else
760    llvm_unreachable("Impossible reg-to-reg copy");
761
762  const MCInstrDesc &MCID = get(Opc);
763  if (MCID.getNumOperands() == 3)
764    BuildMI(MBB, I, DL, MCID, DestReg)
765      .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
766  else
767    BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
768}
769
770// This function returns true if a CR spill is necessary and false otherwise.
771bool
772PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
773                                  unsigned SrcReg, bool isKill,
774                                  int FrameIdx,
775                                  const TargetRegisterClass *RC,
776                                  SmallVectorImpl<MachineInstr*> &NewMIs,
777                                  bool &NonRI, bool &SpillsVRS) const{
778  // Note: If additional store instructions are added here,
779  // update isStoreToStackSlot.
780
781  DebugLoc DL;
782  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
783      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
784    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
785                                       .addReg(SrcReg,
786                                               getKillRegState(isKill)),
787                                       FrameIdx));
788  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
789             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
790    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
791                                       .addReg(SrcReg,
792                                               getKillRegState(isKill)),
793                                       FrameIdx));
794  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
795    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
796                                       .addReg(SrcReg,
797                                               getKillRegState(isKill)),
798                                       FrameIdx));
799  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
800    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
801                                       .addReg(SrcReg,
802                                               getKillRegState(isKill)),
803                                       FrameIdx));
804  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
805    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
806                                       .addReg(SrcReg,
807                                               getKillRegState(isKill)),
808                                       FrameIdx));
809    return true;
810  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
811    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
812                                       .addReg(SrcReg,
813                                               getKillRegState(isKill)),
814                                       FrameIdx));
815    return true;
816  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
817    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
818                                       .addReg(SrcReg,
819                                               getKillRegState(isKill)),
820                                       FrameIdx));
821    NonRI = true;
822  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
823    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
824                                       .addReg(SrcReg,
825                                               getKillRegState(isKill)),
826                                       FrameIdx));
827    NonRI = true;
828  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
829    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
830                                       .addReg(SrcReg,
831                                               getKillRegState(isKill)),
832                                       FrameIdx));
833    NonRI = true;
834  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
835    assert(Subtarget.isDarwin() &&
836           "VRSAVE only needs spill/restore on Darwin");
837    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
838                                       .addReg(SrcReg,
839                                               getKillRegState(isKill)),
840                                       FrameIdx));
841    SpillsVRS = true;
842  } else {
843    llvm_unreachable("Unknown regclass!");
844  }
845
846  return false;
847}
848
849void
850PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
851                                  MachineBasicBlock::iterator MI,
852                                  unsigned SrcReg, bool isKill, int FrameIdx,
853                                  const TargetRegisterClass *RC,
854                                  const TargetRegisterInfo *TRI) const {
855  MachineFunction &MF = *MBB.getParent();
856  SmallVector<MachineInstr*, 4> NewMIs;
857
858  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
859  FuncInfo->setHasSpills();
860
861  bool NonRI = false, SpillsVRS = false;
862  if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
863                          NonRI, SpillsVRS))
864    FuncInfo->setSpillsCR();
865
866  if (SpillsVRS)
867    FuncInfo->setSpillsVRSAVE();
868
869  if (NonRI)
870    FuncInfo->setHasNonRISpills();
871
872  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
873    MBB.insert(MI, NewMIs[i]);
874
875  const MachineFrameInfo &MFI = *MF.getFrameInfo();
876  MachineMemOperand *MMO =
877    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
878                            MachineMemOperand::MOStore,
879                            MFI.getObjectSize(FrameIdx),
880                            MFI.getObjectAlignment(FrameIdx));
881  NewMIs.back()->addMemOperand(MF, MMO);
882}
883
884bool
885PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
886                                   unsigned DestReg, int FrameIdx,
887                                   const TargetRegisterClass *RC,
888                                   SmallVectorImpl<MachineInstr*> &NewMIs,
889                                   bool &NonRI, bool &SpillsVRS) const{
890  // Note: If additional load instructions are added here,
891  // update isLoadFromStackSlot.
892
893  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
894      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
895    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
896                                               DestReg), FrameIdx));
897  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
898             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
899    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
900                                       FrameIdx));
901  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
902    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
903                                       FrameIdx));
904  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
905    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
906                                       FrameIdx));
907  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
908    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
909                                               get(PPC::RESTORE_CR), DestReg),
910                                       FrameIdx));
911    return true;
912  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
913    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
914                                               get(PPC::RESTORE_CRBIT), DestReg),
915                                       FrameIdx));
916    return true;
917  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
918    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
919                                       FrameIdx));
920    NonRI = true;
921  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
922    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
923                                       FrameIdx));
924    NonRI = true;
925  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
926    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
927                                       FrameIdx));
928    NonRI = true;
929  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
930    assert(Subtarget.isDarwin() &&
931           "VRSAVE only needs spill/restore on Darwin");
932    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
933                                               get(PPC::RESTORE_VRSAVE),
934                                               DestReg),
935                                       FrameIdx));
936    SpillsVRS = true;
937  } else {
938    llvm_unreachable("Unknown regclass!");
939  }
940
941  return false;
942}
943
944void
945PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
946                                   MachineBasicBlock::iterator MI,
947                                   unsigned DestReg, int FrameIdx,
948                                   const TargetRegisterClass *RC,
949                                   const TargetRegisterInfo *TRI) const {
950  MachineFunction &MF = *MBB.getParent();
951  SmallVector<MachineInstr*, 4> NewMIs;
952  DebugLoc DL;
953  if (MI != MBB.end()) DL = MI->getDebugLoc();
954
955  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
956  FuncInfo->setHasSpills();
957
958  bool NonRI = false, SpillsVRS = false;
959  if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
960                           NonRI, SpillsVRS))
961    FuncInfo->setSpillsCR();
962
963  if (SpillsVRS)
964    FuncInfo->setSpillsVRSAVE();
965
966  if (NonRI)
967    FuncInfo->setHasNonRISpills();
968
969  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
970    MBB.insert(MI, NewMIs[i]);
971
972  const MachineFrameInfo &MFI = *MF.getFrameInfo();
973  MachineMemOperand *MMO =
974    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
975                            MachineMemOperand::MOLoad,
976                            MFI.getObjectSize(FrameIdx),
977                            MFI.getObjectAlignment(FrameIdx));
978  NewMIs.back()->addMemOperand(MF, MMO);
979}
980
981bool PPCInstrInfo::
982ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
983  assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
984  if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
985    Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
986  else
987    // Leave the CR# the same, but invert the condition.
988    Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
989  return false;
990}
991
992bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
993                             unsigned Reg, MachineRegisterInfo *MRI) const {
994  // For some instructions, it is legal to fold ZERO into the RA register field.
995  // A zero immediate should always be loaded with a single li.
996  unsigned DefOpc = DefMI->getOpcode();
997  if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
998    return false;
999  if (!DefMI->getOperand(1).isImm())
1000    return false;
1001  if (DefMI->getOperand(1).getImm() != 0)
1002    return false;
1003
1004  // Note that we cannot here invert the arguments of an isel in order to fold
1005  // a ZERO into what is presented as the second argument. All we have here
1006  // is the condition bit, and that might come from a CR-logical bit operation.
1007
1008  const MCInstrDesc &UseMCID = UseMI->getDesc();
1009
1010  // Only fold into real machine instructions.
1011  if (UseMCID.isPseudo())
1012    return false;
1013
1014  unsigned UseIdx;
1015  for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
1016    if (UseMI->getOperand(UseIdx).isReg() &&
1017        UseMI->getOperand(UseIdx).getReg() == Reg)
1018      break;
1019
1020  assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
1021  assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1022
1023  const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1024
1025  // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1026  // register (which might also be specified as a pointer class kind).
1027  if (UseInfo->isLookupPtrRegClass()) {
1028    if (UseInfo->RegClass /* Kind */ != 1)
1029      return false;
1030  } else {
1031    if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1032        UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1033      return false;
1034  }
1035
1036  // Make sure this is not tied to an output register (or otherwise
1037  // constrained). This is true for ST?UX registers, for example, which
1038  // are tied to their output registers.
1039  if (UseInfo->Constraints != 0)
1040    return false;
1041
1042  unsigned ZeroReg;
1043  if (UseInfo->isLookupPtrRegClass()) {
1044    bool isPPC64 = Subtarget.isPPC64();
1045    ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1046  } else {
1047    ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1048              PPC::ZERO8 : PPC::ZERO;
1049  }
1050
1051  bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1052  UseMI->getOperand(UseIdx).setReg(ZeroReg);
1053
1054  if (DeleteDef)
1055    DefMI->eraseFromParent();
1056
1057  return true;
1058}
1059
1060static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1061  for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1062       I != IE; ++I)
1063    if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1064      return true;
1065  return false;
1066}
1067
1068// We should make sure that, if we're going to predicate both sides of a
1069// condition (a diamond), that both sides don't define the counter register. We
1070// can predicate counter-decrement-based branches, but while that predicates
1071// the branching, it does not predicate the counter decrement. If we tried to
1072// merge the triangle into one predicated block, we'd decrement the counter
1073// twice.
1074bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1075                     unsigned NumT, unsigned ExtraT,
1076                     MachineBasicBlock &FMBB,
1077                     unsigned NumF, unsigned ExtraF,
1078                     const BranchProbability &Probability) const {
1079  return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1080}
1081
1082
1083bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
1084  // The predicated branches are identified by their type, not really by the
1085  // explicit presence of a predicate. Furthermore, some of them can be
1086  // predicated more than once. Because if conversion won't try to predicate
1087  // any instruction which already claims to be predicated (by returning true
1088  // here), always return false. In doing so, we let isPredicable() be the
1089  // final word on whether not the instruction can be (further) predicated.
1090
1091  return false;
1092}
1093
1094bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1095  if (!MI->isTerminator())
1096    return false;
1097
1098  // Conditional branch is a special case.
1099  if (MI->isBranch() && !MI->isBarrier())
1100    return true;
1101
1102  return !isPredicated(MI);
1103}
1104
1105bool PPCInstrInfo::PredicateInstruction(
1106                     MachineInstr *MI,
1107                     const SmallVectorImpl<MachineOperand> &Pred) const {
1108  unsigned OpC = MI->getOpcode();
1109  if (OpC == PPC::BLR) {
1110    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1111      bool isPPC64 = Subtarget.isPPC64();
1112      MI->setDesc(get(Pred[0].getImm() ?
1113                      (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
1114                      (isPPC64 ? PPC::BDZLR8  : PPC::BDZLR)));
1115    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1116      MI->setDesc(get(PPC::BCLR));
1117      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1118        .addReg(Pred[1].getReg());
1119    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1120      MI->setDesc(get(PPC::BCLRn));
1121      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1122        .addReg(Pred[1].getReg());
1123    } else {
1124      MI->setDesc(get(PPC::BCCLR));
1125      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1126        .addImm(Pred[0].getImm())
1127        .addReg(Pred[1].getReg());
1128    }
1129
1130    return true;
1131  } else if (OpC == PPC::B) {
1132    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1133      bool isPPC64 = Subtarget.isPPC64();
1134      MI->setDesc(get(Pred[0].getImm() ?
1135                      (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1136                      (isPPC64 ? PPC::BDZ8  : PPC::BDZ)));
1137    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1138      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1139      MI->RemoveOperand(0);
1140
1141      MI->setDesc(get(PPC::BC));
1142      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1143        .addReg(Pred[1].getReg())
1144        .addMBB(MBB);
1145    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1146      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1147      MI->RemoveOperand(0);
1148
1149      MI->setDesc(get(PPC::BCn));
1150      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1151        .addReg(Pred[1].getReg())
1152        .addMBB(MBB);
1153    } else {
1154      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1155      MI->RemoveOperand(0);
1156
1157      MI->setDesc(get(PPC::BCC));
1158      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1159        .addImm(Pred[0].getImm())
1160        .addReg(Pred[1].getReg())
1161        .addMBB(MBB);
1162    }
1163
1164    return true;
1165  } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1166             OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1167    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1168      llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1169
1170    bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1171    bool isPPC64 = Subtarget.isPPC64();
1172
1173    if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1174      MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
1175                                (setLR ? PPC::BCCTRL  : PPC::BCCTR)));
1176      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1177        .addReg(Pred[1].getReg());
1178      return true;
1179    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1180      MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
1181                                (setLR ? PPC::BCCTRLn  : PPC::BCCTRn)));
1182      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1183        .addReg(Pred[1].getReg());
1184      return true;
1185    }
1186
1187    MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
1188                              (setLR ? PPC::BCCCTRL  : PPC::BCCCTR)));
1189    MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1190      .addImm(Pred[0].getImm())
1191      .addReg(Pred[1].getReg());
1192    return true;
1193  }
1194
1195  return false;
1196}
1197
1198bool PPCInstrInfo::SubsumesPredicate(
1199                     const SmallVectorImpl<MachineOperand> &Pred1,
1200                     const SmallVectorImpl<MachineOperand> &Pred2) const {
1201  assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1202  assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1203
1204  if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1205    return false;
1206  if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1207    return false;
1208
1209  // P1 can only subsume P2 if they test the same condition register.
1210  if (Pred1[1].getReg() != Pred2[1].getReg())
1211    return false;
1212
1213  PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1214  PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1215
1216  if (P1 == P2)
1217    return true;
1218
1219  // Does P1 subsume P2, e.g. GE subsumes GT.
1220  if (P1 == PPC::PRED_LE &&
1221      (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1222    return true;
1223  if (P1 == PPC::PRED_GE &&
1224      (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1225    return true;
1226
1227  return false;
1228}
1229
1230bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
1231                                    std::vector<MachineOperand> &Pred) const {
1232  // Note: At the present time, the contents of Pred from this function is
1233  // unused by IfConversion. This implementation follows ARM by pushing the
1234  // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1235  // predicate, instructions defining CTR or CTR8 are also included as
1236  // predicate-defining instructions.
1237
1238  const TargetRegisterClass *RCs[] =
1239    { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1240      &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1241
1242  bool Found = false;
1243  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1244    const MachineOperand &MO = MI->getOperand(i);
1245    for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1246      const TargetRegisterClass *RC = RCs[c];
1247      if (MO.isReg()) {
1248        if (MO.isDef() && RC->contains(MO.getReg())) {
1249          Pred.push_back(MO);
1250          Found = true;
1251        }
1252      } else if (MO.isRegMask()) {
1253        for (TargetRegisterClass::iterator I = RC->begin(),
1254             IE = RC->end(); I != IE; ++I)
1255          if (MO.clobbersPhysReg(*I)) {
1256            Pred.push_back(MO);
1257            Found = true;
1258          }
1259      }
1260    }
1261  }
1262
1263  return Found;
1264}
1265
1266bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
1267  unsigned OpC = MI->getOpcode();
1268  switch (OpC) {
1269  default:
1270    return false;
1271  case PPC::B:
1272  case PPC::BLR:
1273  case PPC::BCTR:
1274  case PPC::BCTR8:
1275  case PPC::BCTRL:
1276  case PPC::BCTRL8:
1277    return true;
1278  }
1279}
1280
1281bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
1282                                  unsigned &SrcReg, unsigned &SrcReg2,
1283                                  int &Mask, int &Value) const {
1284  unsigned Opc = MI->getOpcode();
1285
1286  switch (Opc) {
1287  default: return false;
1288  case PPC::CMPWI:
1289  case PPC::CMPLWI:
1290  case PPC::CMPDI:
1291  case PPC::CMPLDI:
1292    SrcReg = MI->getOperand(1).getReg();
1293    SrcReg2 = 0;
1294    Value = MI->getOperand(2).getImm();
1295    Mask = 0xFFFF;
1296    return true;
1297  case PPC::CMPW:
1298  case PPC::CMPLW:
1299  case PPC::CMPD:
1300  case PPC::CMPLD:
1301  case PPC::FCMPUS:
1302  case PPC::FCMPUD:
1303    SrcReg = MI->getOperand(1).getReg();
1304    SrcReg2 = MI->getOperand(2).getReg();
1305    return true;
1306  }
1307}
1308
1309bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
1310                                        unsigned SrcReg, unsigned SrcReg2,
1311                                        int Mask, int Value,
1312                                        const MachineRegisterInfo *MRI) const {
1313  if (DisableCmpOpt)
1314    return false;
1315
1316  int OpC = CmpInstr->getOpcode();
1317  unsigned CRReg = CmpInstr->getOperand(0).getReg();
1318
1319  // FP record forms set CR1 based on the execption status bits, not a
1320  // comparison with zero.
1321  if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1322    return false;
1323
1324  // The record forms set the condition register based on a signed comparison
1325  // with zero (so says the ISA manual). This is not as straightforward as it
1326  // seems, however, because this is always a 64-bit comparison on PPC64, even
1327  // for instructions that are 32-bit in nature (like slw for example).
1328  // So, on PPC32, for unsigned comparisons, we can use the record forms only
1329  // for equality checks (as those don't depend on the sign). On PPC64,
1330  // we are restricted to equality for unsigned 64-bit comparisons and for
1331  // signed 32-bit comparisons the applicability is more restricted.
1332  bool isPPC64 = Subtarget.isPPC64();
1333  bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1334  bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1335  bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1336
1337  // Get the unique definition of SrcReg.
1338  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1339  if (!MI) return false;
1340  int MIOpC = MI->getOpcode();
1341
1342  bool equalityOnly = false;
1343  bool noSub = false;
1344  if (isPPC64) {
1345    if (is32BitSignedCompare) {
1346      // We can perform this optimization only if MI is sign-extending.
1347      if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1348          MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1349          MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1350          MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1351          MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1352        noSub = true;
1353      } else
1354        return false;
1355    } else if (is32BitUnsignedCompare) {
1356      // We can perform this optimization, equality only, if MI is
1357      // zero-extending.
1358      if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1359          MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1360          MIOpC == PPC::SRW    || MIOpC == PPC::SRWo) {
1361        noSub = true;
1362        equalityOnly = true;
1363      } else
1364        return false;
1365    } else
1366      equalityOnly = is64BitUnsignedCompare;
1367  } else
1368    equalityOnly = is32BitUnsignedCompare;
1369
1370  if (equalityOnly) {
1371    // We need to check the uses of the condition register in order to reject
1372    // non-equality comparisons.
1373    for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1374         IE = MRI->use_instr_end(); I != IE; ++I) {
1375      MachineInstr *UseMI = &*I;
1376      if (UseMI->getOpcode() == PPC::BCC) {
1377        unsigned Pred = UseMI->getOperand(0).getImm();
1378        if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1379          return false;
1380      } else if (UseMI->getOpcode() == PPC::ISEL ||
1381                 UseMI->getOpcode() == PPC::ISEL8) {
1382        unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1383        if (SubIdx != PPC::sub_eq)
1384          return false;
1385      } else
1386        return false;
1387    }
1388  }
1389
1390  MachineBasicBlock::iterator I = CmpInstr;
1391
1392  // Scan forward to find the first use of the compare.
1393  for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
1394       I != EL; ++I) {
1395    bool FoundUse = false;
1396    for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1397         JE = MRI->use_instr_end(); J != JE; ++J)
1398      if (&*J == &*I) {
1399        FoundUse = true;
1400        break;
1401      }
1402
1403    if (FoundUse)
1404      break;
1405  }
1406
1407  // There are two possible candidates which can be changed to set CR[01].
1408  // One is MI, the other is a SUB instruction.
1409  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1410  MachineInstr *Sub = nullptr;
1411  if (SrcReg2 != 0)
1412    // MI is not a candidate for CMPrr.
1413    MI = nullptr;
1414  // FIXME: Conservatively refuse to convert an instruction which isn't in the
1415  // same BB as the comparison. This is to allow the check below to avoid calls
1416  // (and other explicit clobbers); instead we should really check for these
1417  // more explicitly (in at least a few predecessors).
1418  else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
1419    // PPC does not have a record-form SUBri.
1420    return false;
1421  }
1422
1423  // Search for Sub.
1424  const TargetRegisterInfo *TRI = &getRegisterInfo();
1425  --I;
1426
1427  // Get ready to iterate backward from CmpInstr.
1428  MachineBasicBlock::iterator E = MI,
1429                              B = CmpInstr->getParent()->begin();
1430
1431  for (; I != E && !noSub; --I) {
1432    const MachineInstr &Instr = *I;
1433    unsigned IOpC = Instr.getOpcode();
1434
1435    if (&*I != CmpInstr && (
1436        Instr.modifiesRegister(PPC::CR0, TRI) ||
1437        Instr.readsRegister(PPC::CR0, TRI)))
1438      // This instruction modifies or uses the record condition register after
1439      // the one we want to change. While we could do this transformation, it
1440      // would likely not be profitable. This transformation removes one
1441      // instruction, and so even forcing RA to generate one move probably
1442      // makes it unprofitable.
1443      return false;
1444
1445    // Check whether CmpInstr can be made redundant by the current instruction.
1446    if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1447         OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1448        (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1449        ((Instr.getOperand(1).getReg() == SrcReg &&
1450          Instr.getOperand(2).getReg() == SrcReg2) ||
1451        (Instr.getOperand(1).getReg() == SrcReg2 &&
1452         Instr.getOperand(2).getReg() == SrcReg))) {
1453      Sub = &*I;
1454      break;
1455    }
1456
1457    if (I == B)
1458      // The 'and' is below the comparison instruction.
1459      return false;
1460  }
1461
1462  // Return false if no candidates exist.
1463  if (!MI && !Sub)
1464    return false;
1465
1466  // The single candidate is called MI.
1467  if (!MI) MI = Sub;
1468
1469  int NewOpC = -1;
1470  MIOpC = MI->getOpcode();
1471  if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1472    NewOpC = MIOpC;
1473  else {
1474    NewOpC = PPC::getRecordFormOpcode(MIOpC);
1475    if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1476      NewOpC = MIOpC;
1477  }
1478
1479  // FIXME: On the non-embedded POWER architectures, only some of the record
1480  // forms are fast, and we should use only the fast ones.
1481
1482  // The defining instruction has a record form (or is already a record
1483  // form). It is possible, however, that we'll need to reverse the condition
1484  // code of the users.
1485  if (NewOpC == -1)
1486    return false;
1487
1488  SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1489  SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1490
1491  // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1492  // needs to be updated to be based on SUB.  Push the condition code
1493  // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1494  // condition code of these operands will be modified.
1495  bool ShouldSwap = false;
1496  if (Sub) {
1497    ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1498      Sub->getOperand(2).getReg() == SrcReg;
1499
1500    // The operands to subf are the opposite of sub, so only in the fixed-point
1501    // case, invert the order.
1502    ShouldSwap = !ShouldSwap;
1503  }
1504
1505  if (ShouldSwap)
1506    for (MachineRegisterInfo::use_instr_iterator
1507         I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1508         I != IE; ++I) {
1509      MachineInstr *UseMI = &*I;
1510      if (UseMI->getOpcode() == PPC::BCC) {
1511        PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1512        assert((!equalityOnly ||
1513                Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1514               "Invalid predicate for equality-only optimization");
1515        PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1516                                PPC::getSwappedPredicate(Pred)));
1517      } else if (UseMI->getOpcode() == PPC::ISEL ||
1518                 UseMI->getOpcode() == PPC::ISEL8) {
1519        unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1520        assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1521               "Invalid CR bit for equality-only optimization");
1522
1523        if (NewSubReg == PPC::sub_lt)
1524          NewSubReg = PPC::sub_gt;
1525        else if (NewSubReg == PPC::sub_gt)
1526          NewSubReg = PPC::sub_lt;
1527
1528        SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1529                                                 NewSubReg));
1530      } else // We need to abort on a user we don't understand.
1531        return false;
1532    }
1533
1534  // Create a new virtual register to hold the value of the CR set by the
1535  // record-form instruction. If the instruction was not previously in
1536  // record form, then set the kill flag on the CR.
1537  CmpInstr->eraseFromParent();
1538
1539  MachineBasicBlock::iterator MII = MI;
1540  BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1541          get(TargetOpcode::COPY), CRReg)
1542    .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1543
1544  if (MIOpC != NewOpC) {
1545    // We need to be careful here: we're replacing one instruction with
1546    // another, and we need to make sure that we get all of the right
1547    // implicit uses and defs. On the other hand, the caller may be holding
1548    // an iterator to this instruction, and so we can't delete it (this is
1549    // specifically the case if this is the instruction directly after the
1550    // compare).
1551
1552    const MCInstrDesc &NewDesc = get(NewOpC);
1553    MI->setDesc(NewDesc);
1554
1555    if (NewDesc.ImplicitDefs)
1556      for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
1557           *ImpDefs; ++ImpDefs)
1558        if (!MI->definesRegister(*ImpDefs))
1559          MI->addOperand(*MI->getParent()->getParent(),
1560                         MachineOperand::CreateReg(*ImpDefs, true, true));
1561    if (NewDesc.ImplicitUses)
1562      for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
1563           *ImpUses; ++ImpUses)
1564        if (!MI->readsRegister(*ImpUses))
1565          MI->addOperand(*MI->getParent()->getParent(),
1566                         MachineOperand::CreateReg(*ImpUses, false, true));
1567  }
1568
1569  // Modify the condition code of operands in OperandsToUpdate.
1570  // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1571  // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1572  for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1573    PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1574
1575  for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1576    SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1577
1578  return true;
1579}
1580
1581/// GetInstSize - Return the number of bytes of code the specified
1582/// instruction may be.  This returns the maximum number of bytes.
1583///
1584unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
1585  unsigned Opcode = MI->getOpcode();
1586
1587  if (Opcode == PPC::INLINEASM) {
1588    const MachineFunction *MF = MI->getParent()->getParent();
1589    const char *AsmStr = MI->getOperand(0).getSymbolName();
1590    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1591  } else {
1592    const MCInstrDesc &Desc = get(Opcode);
1593    return Desc.getSize();
1594  }
1595}
1596
1597#undef DEBUG_TYPE
1598#define DEBUG_TYPE "ppc-vsx-fma-mutate"
1599
1600namespace {
1601  // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
1602  // (Altivec and scalar floating-point registers), we need to transform the
1603  // copies into subregister copies with other restrictions.
1604  struct PPCVSXFMAMutate : public MachineFunctionPass {
1605    static char ID;
1606    PPCVSXFMAMutate() : MachineFunctionPass(ID) {
1607      initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
1608    }
1609
1610    LiveIntervals *LIS;
1611
1612    const PPCTargetMachine *TM;
1613    const PPCInstrInfo *TII;
1614
1615protected:
1616    bool processBlock(MachineBasicBlock &MBB) {
1617      bool Changed = false;
1618
1619      MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1620      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1621           I != IE; ++I) {
1622        MachineInstr *MI = I;
1623
1624        // The default (A-type) VSX FMA form kills the addend (it is taken from
1625        // the target register, which is then updated to reflect the result of
1626        // the FMA). If the instruction, however, kills one of the registers
1627        // used for the product, then we can use the M-form instruction (which
1628        // will take that value from the to-be-defined register).
1629
1630        int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
1631        if (AltOpc == -1)
1632          continue;
1633
1634        // This pass is run after register coalescing, and so we're looking for
1635        // a situation like this:
1636        //   ...
1637        //   %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
1638        //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
1639        //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
1640        //   ...
1641        //   %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
1642        //                         %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
1643        //   ...
1644        // Where we can eliminate the copy by changing from the A-type to the
1645        // M-type instruction. Specifically, for this example, this means:
1646        //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
1647        //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
1648        // is replaced by:
1649        //   %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
1650        //                         %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9
1651        // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
1652
1653        SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
1654
1655        VNInfo *AddendValNo =
1656          LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn();
1657        MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
1658
1659        // The addend and this instruction must be in the same block.
1660
1661        if (!AddendMI || AddendMI->getParent() != MI->getParent())
1662          continue;
1663
1664        // The addend must be a full copy within the same register class.
1665
1666        if (!AddendMI->isFullCopy())
1667          continue;
1668
1669        unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
1670        if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
1671          if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
1672              MRI.getRegClass(AddendSrcReg))
1673            continue;
1674        } else {
1675          // If AddendSrcReg is a physical register, make sure the destination
1676          // register class contains it.
1677          if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
1678                ->contains(AddendSrcReg))
1679            continue;
1680        }
1681
1682        // In theory, there could be other uses of the addend copy before this
1683        // fma.  We could deal with this, but that would require additional
1684        // logic below and I suspect it will not occur in any relevant
1685        // situations.
1686        bool OtherUsers = false;
1687        for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
1688             J != JE; --J)
1689          if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
1690            OtherUsers = true;
1691            break;
1692          }
1693
1694        if (OtherUsers)
1695          continue;
1696
1697        // Find one of the product operands that is killed by this instruction.
1698
1699        unsigned KilledProdOp = 0, OtherProdOp = 0;
1700        if (LIS->getInterval(MI->getOperand(2).getReg())
1701                     .Query(FMAIdx).isKill()) {
1702          KilledProdOp = 2;
1703          OtherProdOp  = 3;
1704        } else if (LIS->getInterval(MI->getOperand(3).getReg())
1705                     .Query(FMAIdx).isKill()) {
1706          KilledProdOp = 3;
1707          OtherProdOp  = 2;
1708        }
1709
1710        // If there are no killed product operands, then this transformation is
1711        // likely not profitable.
1712        if (!KilledProdOp)
1713          continue;
1714
1715        // In order to replace the addend here with the source of the copy,
1716        // it must still be live here.
1717        if (!LIS->getInterval(AddendMI->getOperand(1).getReg()).liveAt(FMAIdx))
1718          continue;
1719
1720        // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
1721
1722        unsigned AddReg = AddendMI->getOperand(1).getReg();
1723        unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg();
1724        unsigned OtherProdReg  = MI->getOperand(OtherProdOp).getReg();
1725
1726        unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
1727        unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg();
1728        unsigned OtherProdSubReg  = MI->getOperand(OtherProdOp).getSubReg();
1729
1730        bool AddRegKill = AddendMI->getOperand(1).isKill();
1731        bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill();
1732        bool OtherProdRegKill  = MI->getOperand(OtherProdOp).isKill();
1733
1734        bool AddRegUndef = AddendMI->getOperand(1).isUndef();
1735        bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef();
1736        bool OtherProdRegUndef  = MI->getOperand(OtherProdOp).isUndef();
1737
1738        unsigned OldFMAReg = MI->getOperand(0).getReg();
1739
1740        assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
1741               "Addend copy not tied to old FMA output!");
1742
1743        DEBUG(dbgs() << "VSX FMA Mutation:\n    " << *MI;);
1744
1745        MI->getOperand(0).setReg(KilledProdReg);
1746        MI->getOperand(1).setReg(KilledProdReg);
1747        MI->getOperand(3).setReg(AddReg);
1748        MI->getOperand(2).setReg(OtherProdReg);
1749
1750        MI->getOperand(0).setSubReg(KilledProdSubReg);
1751        MI->getOperand(1).setSubReg(KilledProdSubReg);
1752        MI->getOperand(3).setSubReg(AddSubReg);
1753        MI->getOperand(2).setSubReg(OtherProdSubReg);
1754
1755        MI->getOperand(1).setIsKill(KilledProdRegKill);
1756        MI->getOperand(3).setIsKill(AddRegKill);
1757        MI->getOperand(2).setIsKill(OtherProdRegKill);
1758
1759        MI->getOperand(1).setIsUndef(KilledProdRegUndef);
1760        MI->getOperand(3).setIsUndef(AddRegUndef);
1761        MI->getOperand(2).setIsUndef(OtherProdRegUndef);
1762
1763        MI->setDesc(TII->get(AltOpc));
1764
1765        DEBUG(dbgs() << " -> " << *MI);
1766
1767        // The killed product operand was killed here, so we can reuse it now
1768        // for the result of the fma.
1769
1770        LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
1771        VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
1772        for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
1773             UI != UE;) {
1774          MachineOperand &UseMO = *UI;
1775          MachineInstr *UseMI = UseMO.getParent();
1776          ++UI;
1777
1778          // Don't replace the result register of the copy we're about to erase.
1779          if (UseMI == AddendMI)
1780            continue;
1781
1782          UseMO.setReg(KilledProdReg);
1783          UseMO.setSubReg(KilledProdSubReg);
1784        }
1785
1786        // Extend the live intervals of the killed product operand to hold the
1787        // fma result.
1788
1789        LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
1790        for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
1791             AI != AE; ++AI) {
1792          // Don't add the segment that corresponds to the original copy.
1793          if (AI->valno == AddendValNo)
1794            continue;
1795
1796          VNInfo *NewFMAValNo =
1797            NewFMAInt.getNextValue(AI->start,
1798                                   LIS->getVNInfoAllocator());
1799
1800          NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
1801                                                     NewFMAValNo));
1802        }
1803        DEBUG(dbgs() << "  extended: " << NewFMAInt << '\n');
1804
1805        FMAInt.removeValNo(FMAValNo);
1806        DEBUG(dbgs() << "  trimmed:  " << FMAInt << '\n');
1807
1808        // Remove the (now unused) copy.
1809
1810        DEBUG(dbgs() << "  removing: " << *AddendMI << '\n');
1811        LIS->RemoveMachineInstrFromMaps(AddendMI);
1812        AddendMI->eraseFromParent();
1813
1814        Changed = true;
1815      }
1816
1817      return Changed;
1818    }
1819
1820public:
1821    bool runOnMachineFunction(MachineFunction &MF) override {
1822      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
1823      // If we don't have VSX then go ahead and return without doing
1824      // anything.
1825      if (!TM->getSubtargetImpl()->hasVSX())
1826        return false;
1827
1828      LIS = &getAnalysis<LiveIntervals>();
1829
1830      TII = TM->getInstrInfo();
1831
1832      bool Changed = false;
1833
1834      if (DisableVSXFMAMutate)
1835        return Changed;
1836
1837      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
1838        MachineBasicBlock &B = *I++;
1839        if (processBlock(B))
1840          Changed = true;
1841      }
1842
1843      return Changed;
1844    }
1845
1846    void getAnalysisUsage(AnalysisUsage &AU) const override {
1847      AU.addRequired<LiveIntervals>();
1848      AU.addPreserved<LiveIntervals>();
1849      AU.addRequired<SlotIndexes>();
1850      AU.addPreserved<SlotIndexes>();
1851      MachineFunctionPass::getAnalysisUsage(AU);
1852    }
1853  };
1854}
1855
1856INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
1857                      "PowerPC VSX FMA Mutation", false, false)
1858INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
1859INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
1860INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
1861                    "PowerPC VSX FMA Mutation", false, false)
1862
1863char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
1864
1865char PPCVSXFMAMutate::ID = 0;
1866FunctionPass*
1867llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); }
1868
1869#undef DEBUG_TYPE
1870#define DEBUG_TYPE "ppc-vsx-copy"
1871
1872namespace llvm {
1873  void initializePPCVSXCopyPass(PassRegistry&);
1874}
1875
1876namespace {
1877  // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers
1878  // (Altivec and scalar floating-point registers), we need to transform the
1879  // copies into subregister copies with other restrictions.
1880  struct PPCVSXCopy : public MachineFunctionPass {
1881    static char ID;
1882    PPCVSXCopy() : MachineFunctionPass(ID) {
1883      initializePPCVSXCopyPass(*PassRegistry::getPassRegistry());
1884    }
1885
1886    const PPCTargetMachine *TM;
1887    const PPCInstrInfo *TII;
1888
1889    bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC,
1890                      MachineRegisterInfo &MRI) {
1891      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1892        return RC->hasSubClassEq(MRI.getRegClass(Reg));
1893      } else if (RC->contains(Reg)) {
1894        return true;
1895      }
1896
1897      return false;
1898    }
1899
1900    bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) {
1901      return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI);
1902    }
1903
1904    bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) {
1905      return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI);
1906    }
1907
1908    bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) {
1909      return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI);
1910    }
1911
1912protected:
1913    bool processBlock(MachineBasicBlock &MBB) {
1914      bool Changed = false;
1915
1916      MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1917      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1918           I != IE; ++I) {
1919        MachineInstr *MI = I;
1920        if (!MI->isFullCopy())
1921          continue;
1922
1923        MachineOperand &DstMO = MI->getOperand(0);
1924        MachineOperand &SrcMO = MI->getOperand(1);
1925
1926        if ( IsVSReg(DstMO.getReg(), MRI) &&
1927            !IsVSReg(SrcMO.getReg(), MRI)) {
1928          // This is a copy *to* a VSX register from a non-VSX register.
1929          Changed = true;
1930
1931          const TargetRegisterClass *SrcRC =
1932            IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
1933                                           &PPC::VSLRCRegClass;
1934          assert((IsF8Reg(SrcMO.getReg(), MRI) ||
1935                  IsVRReg(SrcMO.getReg(), MRI)) &&
1936                 "Unknown source for a VSX copy");
1937
1938          unsigned NewVReg = MRI.createVirtualRegister(SrcRC);
1939          BuildMI(MBB, MI, MI->getDebugLoc(),
1940                  TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg)
1941            .addImm(1) // add 1, not 0, because there is no implicit clearing
1942                       // of the high bits.
1943            .addOperand(SrcMO)
1944            .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 :
1945                                                   PPC::sub_64);
1946
1947          // The source of the original copy is now the new virtual register.
1948          SrcMO.setReg(NewVReg);
1949        } else if (!IsVSReg(DstMO.getReg(), MRI) &&
1950                    IsVSReg(SrcMO.getReg(), MRI)) {
1951          // This is a copy *from* a VSX register to a non-VSX register.
1952          Changed = true;
1953
1954          const TargetRegisterClass *DstRC =
1955            IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
1956                                           &PPC::VSLRCRegClass;
1957          assert((IsF8Reg(DstMO.getReg(), MRI) ||
1958                  IsVRReg(DstMO.getReg(), MRI)) &&
1959                 "Unknown destination for a VSX copy");
1960
1961          // Copy the VSX value into a new VSX register of the correct subclass.
1962          unsigned NewVReg = MRI.createVirtualRegister(DstRC);
1963          BuildMI(MBB, MI, MI->getDebugLoc(),
1964                  TII->get(TargetOpcode::COPY), NewVReg)
1965            .addOperand(SrcMO);
1966
1967          // Transform the original copy into a subregister extraction copy.
1968          SrcMO.setReg(NewVReg);
1969          SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 :
1970                                                         PPC::sub_64);
1971        }
1972      }
1973
1974      return Changed;
1975    }
1976
1977public:
1978    bool runOnMachineFunction(MachineFunction &MF) override {
1979      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
1980      // If we don't have VSX on the subtarget, don't do anything.
1981      if (!TM->getSubtargetImpl()->hasVSX())
1982        return false;
1983      TII = TM->getInstrInfo();
1984
1985      bool Changed = false;
1986
1987      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
1988        MachineBasicBlock &B = *I++;
1989        if (processBlock(B))
1990          Changed = true;
1991      }
1992
1993      return Changed;
1994    }
1995
1996    void getAnalysisUsage(AnalysisUsage &AU) const override {
1997      MachineFunctionPass::getAnalysisUsage(AU);
1998    }
1999  };
2000}
2001
2002INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE,
2003                "PowerPC VSX Copy Legalization", false, false)
2004
2005char PPCVSXCopy::ID = 0;
2006FunctionPass*
2007llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); }
2008
2009#undef DEBUG_TYPE
2010#define DEBUG_TYPE "ppc-vsx-copy-cleanup"
2011
2012namespace llvm {
2013  void initializePPCVSXCopyCleanupPass(PassRegistry&);
2014}
2015
2016namespace {
2017  // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX
2018  // registers (mostly because the ABI code still places all values into the
2019  // "traditional" floating-point and vector registers). Remove them here.
2020  struct PPCVSXCopyCleanup : public MachineFunctionPass {
2021    static char ID;
2022    PPCVSXCopyCleanup() : MachineFunctionPass(ID) {
2023      initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry());
2024    }
2025
2026    const PPCTargetMachine *TM;
2027    const PPCInstrInfo *TII;
2028
2029protected:
2030    bool processBlock(MachineBasicBlock &MBB) {
2031      bool Changed = false;
2032
2033      SmallVector<MachineInstr *, 4> ToDelete;
2034      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
2035           I != IE; ++I) {
2036        MachineInstr *MI = I;
2037        if (MI->getOpcode() == PPC::XXLOR &&
2038            MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
2039            MI->getOperand(0).getReg() == MI->getOperand(2).getReg())
2040          ToDelete.push_back(MI);
2041      }
2042
2043      if (!ToDelete.empty())
2044        Changed = true;
2045
2046      for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) {
2047        DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]);
2048        ToDelete[i]->eraseFromParent();
2049      }
2050
2051      return Changed;
2052    }
2053
2054public:
2055    bool runOnMachineFunction(MachineFunction &MF) override {
2056      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
2057      // If we don't have VSX don't bother doing anything here.
2058      if (!TM->getSubtargetImpl()->hasVSX())
2059        return false;
2060      TII = TM->getInstrInfo();
2061
2062      bool Changed = false;
2063
2064      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
2065        MachineBasicBlock &B = *I++;
2066        if (processBlock(B))
2067          Changed = true;
2068      }
2069
2070      return Changed;
2071    }
2072
2073    void getAnalysisUsage(AnalysisUsage &AU) const override {
2074      MachineFunctionPass::getAnalysisUsage(AU);
2075    }
2076  };
2077}
2078
2079INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE,
2080                "PowerPC VSX Copy Cleanup", false, false)
2081
2082char PPCVSXCopyCleanup::ID = 0;
2083FunctionPass*
2084llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); }
2085
2086#undef DEBUG_TYPE
2087#define DEBUG_TYPE "ppc-early-ret"
2088STATISTIC(NumBCLR, "Number of early conditional returns");
2089STATISTIC(NumBLR,  "Number of early returns");
2090
2091namespace llvm {
2092  void initializePPCEarlyReturnPass(PassRegistry&);
2093}
2094
2095namespace {
2096  // PPCEarlyReturn pass - For simple functions without epilogue code, move
2097  // returns up, and create conditional returns, to avoid unnecessary
2098  // branch-to-blr sequences.
2099  struct PPCEarlyReturn : public MachineFunctionPass {
2100    static char ID;
2101    PPCEarlyReturn() : MachineFunctionPass(ID) {
2102      initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry());
2103    }
2104
2105    const PPCTargetMachine *TM;
2106    const PPCInstrInfo *TII;
2107
2108protected:
2109    bool processBlock(MachineBasicBlock &ReturnMBB) {
2110      bool Changed = false;
2111
2112      MachineBasicBlock::iterator I = ReturnMBB.begin();
2113      I = ReturnMBB.SkipPHIsAndLabels(I);
2114
2115      // The block must be essentially empty except for the blr.
2116      if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR ||
2117          I != ReturnMBB.getLastNonDebugInstr())
2118        return Changed;
2119
2120      SmallVector<MachineBasicBlock*, 8> PredToRemove;
2121      for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(),
2122           PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) {
2123        bool OtherReference = false, BlockChanged = false;
2124        for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) {
2125          if (J->getOpcode() == PPC::B) {
2126            if (J->getOperand(0).getMBB() == &ReturnMBB) {
2127              // This is an unconditional branch to the return. Replace the
2128              // branch with a blr.
2129              BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR));
2130              MachineBasicBlock::iterator K = J--;
2131              K->eraseFromParent();
2132              BlockChanged = true;
2133              ++NumBLR;
2134              continue;
2135            }
2136          } else if (J->getOpcode() == PPC::BCC) {
2137            if (J->getOperand(2).getMBB() == &ReturnMBB) {
2138              // This is a conditional branch to the return. Replace the branch
2139              // with a bclr.
2140              BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR))
2141                .addImm(J->getOperand(0).getImm())
2142                .addReg(J->getOperand(1).getReg());
2143              MachineBasicBlock::iterator K = J--;
2144              K->eraseFromParent();
2145              BlockChanged = true;
2146              ++NumBCLR;
2147              continue;
2148            }
2149          } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) {
2150            if (J->getOperand(1).getMBB() == &ReturnMBB) {
2151              // This is a conditional branch to the return. Replace the branch
2152              // with a bclr.
2153              BuildMI(**PI, J, J->getDebugLoc(),
2154                      TII->get(J->getOpcode() == PPC::BC ?
2155                               PPC::BCLR : PPC::BCLRn))
2156                .addReg(J->getOperand(0).getReg());
2157              MachineBasicBlock::iterator K = J--;
2158              K->eraseFromParent();
2159              BlockChanged = true;
2160              ++NumBCLR;
2161              continue;
2162            }
2163          } else if (J->isBranch()) {
2164            if (J->isIndirectBranch()) {
2165              if (ReturnMBB.hasAddressTaken())
2166                OtherReference = true;
2167            } else
2168              for (unsigned i = 0; i < J->getNumOperands(); ++i)
2169                if (J->getOperand(i).isMBB() &&
2170                    J->getOperand(i).getMBB() == &ReturnMBB)
2171                  OtherReference = true;
2172          } else if (!J->isTerminator() && !J->isDebugValue())
2173            break;
2174
2175          if (J == (*PI)->begin())
2176            break;
2177
2178          --J;
2179        }
2180
2181        if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB))
2182          OtherReference = true;
2183
2184        // Predecessors are stored in a vector and can't be removed here.
2185        if (!OtherReference && BlockChanged) {
2186          PredToRemove.push_back(*PI);
2187        }
2188
2189        if (BlockChanged)
2190          Changed = true;
2191      }
2192
2193      for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i)
2194        PredToRemove[i]->removeSuccessor(&ReturnMBB);
2195
2196      if (Changed && !ReturnMBB.hasAddressTaken()) {
2197        // We now might be able to merge this blr-only block into its
2198        // by-layout predecessor.
2199        if (ReturnMBB.pred_size() == 1 &&
2200            (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) {
2201          // Move the blr into the preceding block.
2202          MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin();
2203          PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I);
2204          PrevMBB.removeSuccessor(&ReturnMBB);
2205        }
2206
2207        if (ReturnMBB.pred_empty())
2208          ReturnMBB.eraseFromParent();
2209      }
2210
2211      return Changed;
2212    }
2213
2214public:
2215    bool runOnMachineFunction(MachineFunction &MF) override {
2216      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
2217      TII = TM->getInstrInfo();
2218
2219      bool Changed = false;
2220
2221      // If the function does not have at least two blocks, then there is
2222      // nothing to do.
2223      if (MF.size() < 2)
2224        return Changed;
2225
2226      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
2227        MachineBasicBlock &B = *I++;
2228        if (processBlock(B))
2229          Changed = true;
2230      }
2231
2232      return Changed;
2233    }
2234
2235    void getAnalysisUsage(AnalysisUsage &AU) const override {
2236      MachineFunctionPass::getAnalysisUsage(AU);
2237    }
2238  };
2239}
2240
2241INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE,
2242                "PowerPC Early-Return Creation", false, false)
2243
2244char PPCEarlyReturn::ID = 0;
2245FunctionPass*
2246llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); }
2247