PPCInstrInfo.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the PowerPC implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCInstrInfo.h"
15#include "MCTargetDesc/PPCPredicates.h"
16#include "PPC.h"
17#include "PPCHazardRecognizers.h"
18#include "PPCInstrBuilder.h"
19#include "PPCMachineFunctionInfo.h"
20#include "PPCTargetMachine.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/LiveIntervalAnalysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/CodeGen/SlotIndexes.h"
31#include "llvm/MC/MCAsmInfo.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/TargetRegistry.h"
36#include "llvm/Support/raw_ostream.h"
37
38#define GET_INSTRMAP_INFO
39#define GET_INSTRINFO_CTOR_DTOR
40#include "PPCGenInstrInfo.inc"
41
42using namespace llvm;
43
44static cl::
45opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
46            cl::desc("Disable analysis for CTR loops"));
47
48static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
49cl::desc("Disable compare instruction optimization"), cl::Hidden);
50
51static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation",
52cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden);
53
54static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
55cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
56cl::Hidden);
57
58// Pin the vtable to this file.
59void PPCInstrInfo::anchor() {}
60
61PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm)
62  : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
63    TM(tm), RI(*TM.getSubtargetImpl()) {}
64
65/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
66/// this target when scheduling the DAG.
67ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer(
68  const TargetMachine *TM,
69  const ScheduleDAG *DAG) const {
70  unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective();
71  if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
72      Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
73    const InstrItineraryData *II = TM->getInstrItineraryData();
74    return new ScoreboardHazardRecognizer(II, DAG);
75  }
76
77  return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG);
78}
79
80/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
81/// to use for this target when scheduling the DAG.
82ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer(
83  const InstrItineraryData *II,
84  const ScheduleDAG *DAG) const {
85  unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
86
87  if (Directive == PPC::DIR_PWR7)
88    return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
89
90  // Most subtargets use a PPC970 recognizer.
91  if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
92      Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
93    assert(TM.getInstrInfo() && "No InstrInfo?");
94
95    return new PPCHazardRecognizer970(TM);
96  }
97
98  return new ScoreboardHazardRecognizer(II, DAG);
99}
100
101
102int PPCInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
103                                    const MachineInstr *DefMI, unsigned DefIdx,
104                                    const MachineInstr *UseMI,
105                                    unsigned UseIdx) const {
106  int Latency = PPCGenInstrInfo::getOperandLatency(ItinData, DefMI, DefIdx,
107                                                   UseMI, UseIdx);
108
109  const MachineOperand &DefMO = DefMI->getOperand(DefIdx);
110  unsigned Reg = DefMO.getReg();
111
112  const TargetRegisterInfo *TRI = &getRegisterInfo();
113  bool IsRegCR;
114  if (TRI->isVirtualRegister(Reg)) {
115    const MachineRegisterInfo *MRI =
116      &DefMI->getParent()->getParent()->getRegInfo();
117    IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
118              MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
119  } else {
120    IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
121              PPC::CRBITRCRegClass.contains(Reg);
122  }
123
124  if (UseMI->isBranch() && IsRegCR) {
125    if (Latency < 0)
126      Latency = getInstrLatency(ItinData, DefMI);
127
128    // On some cores, there is an additional delay between writing to a condition
129    // register, and using it from a branch.
130    unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
131    switch (Directive) {
132    default: break;
133    case PPC::DIR_7400:
134    case PPC::DIR_750:
135    case PPC::DIR_970:
136    case PPC::DIR_E5500:
137    case PPC::DIR_PWR4:
138    case PPC::DIR_PWR5:
139    case PPC::DIR_PWR5X:
140    case PPC::DIR_PWR6:
141    case PPC::DIR_PWR6X:
142    case PPC::DIR_PWR7:
143      Latency += 2;
144      break;
145    }
146  }
147
148  return Latency;
149}
150
151// Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
152bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
153                                         unsigned &SrcReg, unsigned &DstReg,
154                                         unsigned &SubIdx) const {
155  switch (MI.getOpcode()) {
156  default: return false;
157  case PPC::EXTSW:
158  case PPC::EXTSW_32_64:
159    SrcReg = MI.getOperand(1).getReg();
160    DstReg = MI.getOperand(0).getReg();
161    SubIdx = PPC::sub_32;
162    return true;
163  }
164}
165
166unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
167                                           int &FrameIndex) const {
168  // Note: This list must be kept consistent with LoadRegFromStackSlot.
169  switch (MI->getOpcode()) {
170  default: break;
171  case PPC::LD:
172  case PPC::LWZ:
173  case PPC::LFS:
174  case PPC::LFD:
175  case PPC::RESTORE_CR:
176  case PPC::RESTORE_CRBIT:
177  case PPC::LVX:
178  case PPC::LXVD2X:
179  case PPC::RESTORE_VRSAVE:
180    // Check for the operands added by addFrameReference (the immediate is the
181    // offset which defaults to 0).
182    if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
183        MI->getOperand(2).isFI()) {
184      FrameIndex = MI->getOperand(2).getIndex();
185      return MI->getOperand(0).getReg();
186    }
187    break;
188  }
189  return 0;
190}
191
192unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
193                                          int &FrameIndex) const {
194  // Note: This list must be kept consistent with StoreRegToStackSlot.
195  switch (MI->getOpcode()) {
196  default: break;
197  case PPC::STD:
198  case PPC::STW:
199  case PPC::STFS:
200  case PPC::STFD:
201  case PPC::SPILL_CR:
202  case PPC::SPILL_CRBIT:
203  case PPC::STVX:
204  case PPC::STXVD2X:
205  case PPC::SPILL_VRSAVE:
206    // Check for the operands added by addFrameReference (the immediate is the
207    // offset which defaults to 0).
208    if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
209        MI->getOperand(2).isFI()) {
210      FrameIndex = MI->getOperand(2).getIndex();
211      return MI->getOperand(0).getReg();
212    }
213    break;
214  }
215  return 0;
216}
217
218// commuteInstruction - We can commute rlwimi instructions, but only if the
219// rotate amt is zero.  We also have to munge the immediates a bit.
220MachineInstr *
221PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
222  MachineFunction &MF = *MI->getParent()->getParent();
223
224  // Normal instructions can be commuted the obvious way.
225  if (MI->getOpcode() != PPC::RLWIMI &&
226      MI->getOpcode() != PPC::RLWIMIo &&
227      MI->getOpcode() != PPC::RLWIMI8 &&
228      MI->getOpcode() != PPC::RLWIMI8o)
229    return TargetInstrInfo::commuteInstruction(MI, NewMI);
230
231  // Cannot commute if it has a non-zero rotate count.
232  if (MI->getOperand(3).getImm() != 0)
233    return 0;
234
235  // If we have a zero rotate count, we have:
236  //   M = mask(MB,ME)
237  //   Op0 = (Op1 & ~M) | (Op2 & M)
238  // Change this to:
239  //   M = mask((ME+1)&31, (MB-1)&31)
240  //   Op0 = (Op2 & ~M) | (Op1 & M)
241
242  // Swap op1/op2
243  unsigned Reg0 = MI->getOperand(0).getReg();
244  unsigned Reg1 = MI->getOperand(1).getReg();
245  unsigned Reg2 = MI->getOperand(2).getReg();
246  unsigned SubReg1 = MI->getOperand(1).getSubReg();
247  unsigned SubReg2 = MI->getOperand(2).getSubReg();
248  bool Reg1IsKill = MI->getOperand(1).isKill();
249  bool Reg2IsKill = MI->getOperand(2).isKill();
250  bool ChangeReg0 = false;
251  // If machine instrs are no longer in two-address forms, update
252  // destination register as well.
253  if (Reg0 == Reg1) {
254    // Must be two address instruction!
255    assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
256           "Expecting a two-address instruction!");
257    assert(MI->getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
258    Reg2IsKill = false;
259    ChangeReg0 = true;
260  }
261
262  // Masks.
263  unsigned MB = MI->getOperand(4).getImm();
264  unsigned ME = MI->getOperand(5).getImm();
265
266  if (NewMI) {
267    // Create a new instruction.
268    unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
269    bool Reg0IsDead = MI->getOperand(0).isDead();
270    return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
271      .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
272      .addReg(Reg2, getKillRegState(Reg2IsKill))
273      .addReg(Reg1, getKillRegState(Reg1IsKill))
274      .addImm((ME+1) & 31)
275      .addImm((MB-1) & 31);
276  }
277
278  if (ChangeReg0) {
279    MI->getOperand(0).setReg(Reg2);
280    MI->getOperand(0).setSubReg(SubReg2);
281  }
282  MI->getOperand(2).setReg(Reg1);
283  MI->getOperand(1).setReg(Reg2);
284  MI->getOperand(2).setSubReg(SubReg1);
285  MI->getOperand(1).setSubReg(SubReg2);
286  MI->getOperand(2).setIsKill(Reg1IsKill);
287  MI->getOperand(1).setIsKill(Reg2IsKill);
288
289  // Swap the mask around.
290  MI->getOperand(4).setImm((ME+1) & 31);
291  MI->getOperand(5).setImm((MB-1) & 31);
292  return MI;
293}
294
295bool PPCInstrInfo::findCommutedOpIndices(MachineInstr *MI, unsigned &SrcOpIdx1,
296                                         unsigned &SrcOpIdx2) const {
297  // For VSX A-Type FMA instructions, it is the first two operands that can be
298  // commuted, however, because the non-encoded tied input operand is listed
299  // first, the operands to swap are actually the second and third.
300
301  int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
302  if (AltOpc == -1)
303    return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
304
305  SrcOpIdx1 = 2;
306  SrcOpIdx2 = 3;
307  return true;
308}
309
310void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
311                              MachineBasicBlock::iterator MI) const {
312  // This function is used for scheduling, and the nop wanted here is the type
313  // that terminates dispatch groups on the POWER cores.
314  unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
315  unsigned Opcode;
316  switch (Directive) {
317  default:            Opcode = PPC::NOP; break;
318  case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
319  case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
320  }
321
322  DebugLoc DL;
323  BuildMI(MBB, MI, DL, get(Opcode));
324}
325
326// Branch analysis.
327// Note: If the condition register is set to CTR or CTR8 then this is a
328// BDNZ (imm == 1) or BDZ (imm == 0) branch.
329bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
330                                 MachineBasicBlock *&FBB,
331                                 SmallVectorImpl<MachineOperand> &Cond,
332                                 bool AllowModify) const {
333  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
334
335  // If the block has no terminators, it just falls into the block after it.
336  MachineBasicBlock::iterator I = MBB.end();
337  if (I == MBB.begin())
338    return false;
339  --I;
340  while (I->isDebugValue()) {
341    if (I == MBB.begin())
342      return false;
343    --I;
344  }
345  if (!isUnpredicatedTerminator(I))
346    return false;
347
348  // Get the last instruction in the block.
349  MachineInstr *LastInst = I;
350
351  // If there is only one terminator instruction, process it.
352  if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
353    if (LastInst->getOpcode() == PPC::B) {
354      if (!LastInst->getOperand(0).isMBB())
355        return true;
356      TBB = LastInst->getOperand(0).getMBB();
357      return false;
358    } else if (LastInst->getOpcode() == PPC::BCC) {
359      if (!LastInst->getOperand(2).isMBB())
360        return true;
361      // Block ends with fall-through condbranch.
362      TBB = LastInst->getOperand(2).getMBB();
363      Cond.push_back(LastInst->getOperand(0));
364      Cond.push_back(LastInst->getOperand(1));
365      return false;
366    } else if (LastInst->getOpcode() == PPC::BC) {
367      if (!LastInst->getOperand(1).isMBB())
368        return true;
369      // Block ends with fall-through condbranch.
370      TBB = LastInst->getOperand(1).getMBB();
371      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
372      Cond.push_back(LastInst->getOperand(0));
373      return false;
374    } else if (LastInst->getOpcode() == PPC::BCn) {
375      if (!LastInst->getOperand(1).isMBB())
376        return true;
377      // Block ends with fall-through condbranch.
378      TBB = LastInst->getOperand(1).getMBB();
379      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
380      Cond.push_back(LastInst->getOperand(0));
381      return false;
382    } else if (LastInst->getOpcode() == PPC::BDNZ8 ||
383               LastInst->getOpcode() == PPC::BDNZ) {
384      if (!LastInst->getOperand(0).isMBB())
385        return true;
386      if (DisableCTRLoopAnal)
387        return true;
388      TBB = LastInst->getOperand(0).getMBB();
389      Cond.push_back(MachineOperand::CreateImm(1));
390      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
391                                               true));
392      return false;
393    } else if (LastInst->getOpcode() == PPC::BDZ8 ||
394               LastInst->getOpcode() == PPC::BDZ) {
395      if (!LastInst->getOperand(0).isMBB())
396        return true;
397      if (DisableCTRLoopAnal)
398        return true;
399      TBB = LastInst->getOperand(0).getMBB();
400      Cond.push_back(MachineOperand::CreateImm(0));
401      Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
402                                               true));
403      return false;
404    }
405
406    // Otherwise, don't know what this is.
407    return true;
408  }
409
410  // Get the instruction before it if it's a terminator.
411  MachineInstr *SecondLastInst = I;
412
413  // If there are three terminators, we don't know what sort of block this is.
414  if (SecondLastInst && I != MBB.begin() &&
415      isUnpredicatedTerminator(--I))
416    return true;
417
418  // If the block ends with PPC::B and PPC:BCC, handle it.
419  if (SecondLastInst->getOpcode() == PPC::BCC &&
420      LastInst->getOpcode() == PPC::B) {
421    if (!SecondLastInst->getOperand(2).isMBB() ||
422        !LastInst->getOperand(0).isMBB())
423      return true;
424    TBB =  SecondLastInst->getOperand(2).getMBB();
425    Cond.push_back(SecondLastInst->getOperand(0));
426    Cond.push_back(SecondLastInst->getOperand(1));
427    FBB = LastInst->getOperand(0).getMBB();
428    return false;
429  } else if (SecondLastInst->getOpcode() == PPC::BC &&
430      LastInst->getOpcode() == PPC::B) {
431    if (!SecondLastInst->getOperand(1).isMBB() ||
432        !LastInst->getOperand(0).isMBB())
433      return true;
434    TBB =  SecondLastInst->getOperand(1).getMBB();
435    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
436    Cond.push_back(SecondLastInst->getOperand(0));
437    FBB = LastInst->getOperand(0).getMBB();
438    return false;
439  } else if (SecondLastInst->getOpcode() == PPC::BCn &&
440      LastInst->getOpcode() == PPC::B) {
441    if (!SecondLastInst->getOperand(1).isMBB() ||
442        !LastInst->getOperand(0).isMBB())
443      return true;
444    TBB =  SecondLastInst->getOperand(1).getMBB();
445    Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
446    Cond.push_back(SecondLastInst->getOperand(0));
447    FBB = LastInst->getOperand(0).getMBB();
448    return false;
449  } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 ||
450              SecondLastInst->getOpcode() == PPC::BDNZ) &&
451      LastInst->getOpcode() == PPC::B) {
452    if (!SecondLastInst->getOperand(0).isMBB() ||
453        !LastInst->getOperand(0).isMBB())
454      return true;
455    if (DisableCTRLoopAnal)
456      return true;
457    TBB = SecondLastInst->getOperand(0).getMBB();
458    Cond.push_back(MachineOperand::CreateImm(1));
459    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
460                                             true));
461    FBB = LastInst->getOperand(0).getMBB();
462    return false;
463  } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 ||
464              SecondLastInst->getOpcode() == PPC::BDZ) &&
465      LastInst->getOpcode() == PPC::B) {
466    if (!SecondLastInst->getOperand(0).isMBB() ||
467        !LastInst->getOperand(0).isMBB())
468      return true;
469    if (DisableCTRLoopAnal)
470      return true;
471    TBB = SecondLastInst->getOperand(0).getMBB();
472    Cond.push_back(MachineOperand::CreateImm(0));
473    Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
474                                             true));
475    FBB = LastInst->getOperand(0).getMBB();
476    return false;
477  }
478
479  // If the block ends with two PPC:Bs, handle it.  The second one is not
480  // executed, so remove it.
481  if (SecondLastInst->getOpcode() == PPC::B &&
482      LastInst->getOpcode() == PPC::B) {
483    if (!SecondLastInst->getOperand(0).isMBB())
484      return true;
485    TBB = SecondLastInst->getOperand(0).getMBB();
486    I = LastInst;
487    if (AllowModify)
488      I->eraseFromParent();
489    return false;
490  }
491
492  // Otherwise, can't handle this.
493  return true;
494}
495
496unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
497  MachineBasicBlock::iterator I = MBB.end();
498  if (I == MBB.begin()) return 0;
499  --I;
500  while (I->isDebugValue()) {
501    if (I == MBB.begin())
502      return 0;
503    --I;
504  }
505  if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
506      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
507      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
508      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
509    return 0;
510
511  // Remove the branch.
512  I->eraseFromParent();
513
514  I = MBB.end();
515
516  if (I == MBB.begin()) return 1;
517  --I;
518  if (I->getOpcode() != PPC::BCC &&
519      I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
520      I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
521      I->getOpcode() != PPC::BDZ8  && I->getOpcode() != PPC::BDZ)
522    return 1;
523
524  // Remove the branch.
525  I->eraseFromParent();
526  return 2;
527}
528
529unsigned
530PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
531                           MachineBasicBlock *FBB,
532                           const SmallVectorImpl<MachineOperand> &Cond,
533                           DebugLoc DL) const {
534  // Shouldn't be a fall through.
535  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
536  assert((Cond.size() == 2 || Cond.size() == 0) &&
537         "PPC branch conditions have two components!");
538
539  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
540
541  // One-way branch.
542  if (FBB == 0) {
543    if (Cond.empty())   // Unconditional branch
544      BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
545    else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
546      BuildMI(&MBB, DL, get(Cond[0].getImm() ?
547                              (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
548                              (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
549    else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
550      BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
551    else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
552      BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
553    else                // Conditional branch
554      BuildMI(&MBB, DL, get(PPC::BCC))
555        .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
556    return 1;
557  }
558
559  // Two-way Conditional Branch.
560  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
561    BuildMI(&MBB, DL, get(Cond[0].getImm() ?
562                            (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
563                            (isPPC64 ? PPC::BDZ8  : PPC::BDZ))).addMBB(TBB);
564  else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
565    BuildMI(&MBB, DL, get(PPC::BC)).addOperand(Cond[1]).addMBB(TBB);
566  else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
567    BuildMI(&MBB, DL, get(PPC::BCn)).addOperand(Cond[1]).addMBB(TBB);
568  else
569    BuildMI(&MBB, DL, get(PPC::BCC))
570      .addImm(Cond[0].getImm()).addOperand(Cond[1]).addMBB(TBB);
571  BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
572  return 2;
573}
574
575// Select analysis.
576bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
577                const SmallVectorImpl<MachineOperand> &Cond,
578                unsigned TrueReg, unsigned FalseReg,
579                int &CondCycles, int &TrueCycles, int &FalseCycles) const {
580  if (!TM.getSubtargetImpl()->hasISEL())
581    return false;
582
583  if (Cond.size() != 2)
584    return false;
585
586  // If this is really a bdnz-like condition, then it cannot be turned into a
587  // select.
588  if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
589    return false;
590
591  // Check register classes.
592  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
593  const TargetRegisterClass *RC =
594    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
595  if (!RC)
596    return false;
597
598  // isel is for regular integer GPRs only.
599  if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
600      !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
601      !PPC::G8RCRegClass.hasSubClassEq(RC) &&
602      !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
603    return false;
604
605  // FIXME: These numbers are for the A2, how well they work for other cores is
606  // an open question. On the A2, the isel instruction has a 2-cycle latency
607  // but single-cycle throughput. These numbers are used in combination with
608  // the MispredictPenalty setting from the active SchedMachineModel.
609  CondCycles = 1;
610  TrueCycles = 1;
611  FalseCycles = 1;
612
613  return true;
614}
615
616void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
617                                MachineBasicBlock::iterator MI, DebugLoc dl,
618                                unsigned DestReg,
619                                const SmallVectorImpl<MachineOperand> &Cond,
620                                unsigned TrueReg, unsigned FalseReg) const {
621  assert(Cond.size() == 2 &&
622         "PPC branch conditions have two components!");
623
624  assert(TM.getSubtargetImpl()->hasISEL() &&
625         "Cannot insert select on target without ISEL support");
626
627  // Get the register classes.
628  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
629  const TargetRegisterClass *RC =
630    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
631  assert(RC && "TrueReg and FalseReg must have overlapping register classes");
632
633  bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
634                 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
635  assert((Is64Bit ||
636          PPC::GPRCRegClass.hasSubClassEq(RC) ||
637          PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
638         "isel is for regular integer GPRs only");
639
640  unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
641  unsigned SelectPred = Cond[0].getImm();
642
643  unsigned SubIdx;
644  bool SwapOps;
645  switch (SelectPred) {
646  default: llvm_unreachable("invalid predicate for isel");
647  case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
648  case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
649  case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
650  case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
651  case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
652  case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
653  case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
654  case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
655  case PPC::PRED_BIT_SET:   SubIdx = 0; SwapOps = false; break;
656  case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
657  }
658
659  unsigned FirstReg =  SwapOps ? FalseReg : TrueReg,
660           SecondReg = SwapOps ? TrueReg  : FalseReg;
661
662  // The first input register of isel cannot be r0. If it is a member
663  // of a register class that can be r0, then copy it first (the
664  // register allocator should eliminate the copy).
665  if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
666      MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
667    const TargetRegisterClass *FirstRC =
668      MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
669        &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
670    unsigned OldFirstReg = FirstReg;
671    FirstReg = MRI.createVirtualRegister(FirstRC);
672    BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
673      .addReg(OldFirstReg);
674  }
675
676  BuildMI(MBB, MI, dl, get(OpCode), DestReg)
677    .addReg(FirstReg).addReg(SecondReg)
678    .addReg(Cond[1].getReg(), 0, SubIdx);
679}
680
681void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
682                               MachineBasicBlock::iterator I, DebugLoc DL,
683                               unsigned DestReg, unsigned SrcReg,
684                               bool KillSrc) const {
685  // We can end up with self copies and similar things as a result of VSX copy
686  // legalization. Promote them here.
687  const TargetRegisterInfo *TRI = &getRegisterInfo();
688  if (PPC::F8RCRegClass.contains(DestReg) &&
689      PPC::VSLRCRegClass.contains(SrcReg)) {
690    unsigned SuperReg =
691      TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
692
693    if (VSXSelfCopyCrash && SrcReg == SuperReg)
694      llvm_unreachable("nop VSX copy");
695
696    DestReg = SuperReg;
697  } else if (PPC::VRRCRegClass.contains(DestReg) &&
698             PPC::VSHRCRegClass.contains(SrcReg)) {
699    unsigned SuperReg =
700      TRI->getMatchingSuperReg(DestReg, PPC::sub_128, &PPC::VSRCRegClass);
701
702    if (VSXSelfCopyCrash && SrcReg == SuperReg)
703      llvm_unreachable("nop VSX copy");
704
705    DestReg = SuperReg;
706  } else if (PPC::F8RCRegClass.contains(SrcReg) &&
707             PPC::VSLRCRegClass.contains(DestReg)) {
708    unsigned SuperReg =
709      TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
710
711    if (VSXSelfCopyCrash && DestReg == SuperReg)
712      llvm_unreachable("nop VSX copy");
713
714    SrcReg = SuperReg;
715  } else if (PPC::VRRCRegClass.contains(SrcReg) &&
716             PPC::VSHRCRegClass.contains(DestReg)) {
717    unsigned SuperReg =
718      TRI->getMatchingSuperReg(SrcReg, PPC::sub_128, &PPC::VSRCRegClass);
719
720    if (VSXSelfCopyCrash && DestReg == SuperReg)
721      llvm_unreachable("nop VSX copy");
722
723    SrcReg = SuperReg;
724  }
725
726  unsigned Opc;
727  if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
728    Opc = PPC::OR;
729  else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
730    Opc = PPC::OR8;
731  else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
732    Opc = PPC::FMR;
733  else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
734    Opc = PPC::MCRF;
735  else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
736    Opc = PPC::VOR;
737  else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
738    // There are two different ways this can be done:
739    //   1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
740    //      issue in VSU pipeline 0.
741    //   2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
742    //      can go to either pipeline.
743    // We'll always use xxlor here, because in practically all cases where
744    // copies are generated, they are close enough to some use that the
745    // lower-latency form is preferable.
746    Opc = PPC::XXLOR;
747  else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg))
748    Opc = PPC::XXLORf;
749  else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
750    Opc = PPC::CROR;
751  else
752    llvm_unreachable("Impossible reg-to-reg copy");
753
754  const MCInstrDesc &MCID = get(Opc);
755  if (MCID.getNumOperands() == 3)
756    BuildMI(MBB, I, DL, MCID, DestReg)
757      .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
758  else
759    BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
760}
761
762// This function returns true if a CR spill is necessary and false otherwise.
763bool
764PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
765                                  unsigned SrcReg, bool isKill,
766                                  int FrameIdx,
767                                  const TargetRegisterClass *RC,
768                                  SmallVectorImpl<MachineInstr*> &NewMIs,
769                                  bool &NonRI, bool &SpillsVRS) const{
770  // Note: If additional store instructions are added here,
771  // update isStoreToStackSlot.
772
773  DebugLoc DL;
774  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
775      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
776    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
777                                       .addReg(SrcReg,
778                                               getKillRegState(isKill)),
779                                       FrameIdx));
780  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
781             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
782    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
783                                       .addReg(SrcReg,
784                                               getKillRegState(isKill)),
785                                       FrameIdx));
786  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
787    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
788                                       .addReg(SrcReg,
789                                               getKillRegState(isKill)),
790                                       FrameIdx));
791  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
792    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
793                                       .addReg(SrcReg,
794                                               getKillRegState(isKill)),
795                                       FrameIdx));
796  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
797    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
798                                       .addReg(SrcReg,
799                                               getKillRegState(isKill)),
800                                       FrameIdx));
801    return true;
802  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
803    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CRBIT))
804                                       .addReg(SrcReg,
805                                               getKillRegState(isKill)),
806                                       FrameIdx));
807    return true;
808  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
809    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STVX))
810                                       .addReg(SrcReg,
811                                               getKillRegState(isKill)),
812                                       FrameIdx));
813    NonRI = true;
814  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
815    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXVD2X))
816                                       .addReg(SrcReg,
817                                               getKillRegState(isKill)),
818                                       FrameIdx));
819    NonRI = true;
820  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
821    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STXSDX))
822                                       .addReg(SrcReg,
823                                               getKillRegState(isKill)),
824                                       FrameIdx));
825    NonRI = true;
826  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
827    assert(TM.getSubtargetImpl()->isDarwin() &&
828           "VRSAVE only needs spill/restore on Darwin");
829    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_VRSAVE))
830                                       .addReg(SrcReg,
831                                               getKillRegState(isKill)),
832                                       FrameIdx));
833    SpillsVRS = true;
834  } else {
835    llvm_unreachable("Unknown regclass!");
836  }
837
838  return false;
839}
840
841void
842PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
843                                  MachineBasicBlock::iterator MI,
844                                  unsigned SrcReg, bool isKill, int FrameIdx,
845                                  const TargetRegisterClass *RC,
846                                  const TargetRegisterInfo *TRI) const {
847  MachineFunction &MF = *MBB.getParent();
848  SmallVector<MachineInstr*, 4> NewMIs;
849
850  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
851  FuncInfo->setHasSpills();
852
853  bool NonRI = false, SpillsVRS = false;
854  if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs,
855                          NonRI, SpillsVRS))
856    FuncInfo->setSpillsCR();
857
858  if (SpillsVRS)
859    FuncInfo->setSpillsVRSAVE();
860
861  if (NonRI)
862    FuncInfo->setHasNonRISpills();
863
864  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
865    MBB.insert(MI, NewMIs[i]);
866
867  const MachineFrameInfo &MFI = *MF.getFrameInfo();
868  MachineMemOperand *MMO =
869    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
870                            MachineMemOperand::MOStore,
871                            MFI.getObjectSize(FrameIdx),
872                            MFI.getObjectAlignment(FrameIdx));
873  NewMIs.back()->addMemOperand(MF, MMO);
874}
875
876bool
877PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
878                                   unsigned DestReg, int FrameIdx,
879                                   const TargetRegisterClass *RC,
880                                   SmallVectorImpl<MachineInstr*> &NewMIs,
881                                   bool &NonRI, bool &SpillsVRS) const{
882  // Note: If additional load instructions are added here,
883  // update isLoadFromStackSlot.
884
885  if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
886      PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
887    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
888                                               DestReg), FrameIdx));
889  } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
890             PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
891    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
892                                       FrameIdx));
893  } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
894    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
895                                       FrameIdx));
896  } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
897    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
898                                       FrameIdx));
899  } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
900    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
901                                               get(PPC::RESTORE_CR), DestReg),
902                                       FrameIdx));
903    return true;
904  } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
905    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
906                                               get(PPC::RESTORE_CRBIT), DestReg),
907                                       FrameIdx));
908    return true;
909  } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
910    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LVX), DestReg),
911                                       FrameIdx));
912    NonRI = true;
913  } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
914    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXVD2X), DestReg),
915                                       FrameIdx));
916    NonRI = true;
917  } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
918    NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LXSDX), DestReg),
919                                       FrameIdx));
920    NonRI = true;
921  } else if (PPC::VRSAVERCRegClass.hasSubClassEq(RC)) {
922    assert(TM.getSubtargetImpl()->isDarwin() &&
923           "VRSAVE only needs spill/restore on Darwin");
924    NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
925                                               get(PPC::RESTORE_VRSAVE),
926                                               DestReg),
927                                       FrameIdx));
928    SpillsVRS = true;
929  } else {
930    llvm_unreachable("Unknown regclass!");
931  }
932
933  return false;
934}
935
936void
937PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
938                                   MachineBasicBlock::iterator MI,
939                                   unsigned DestReg, int FrameIdx,
940                                   const TargetRegisterClass *RC,
941                                   const TargetRegisterInfo *TRI) const {
942  MachineFunction &MF = *MBB.getParent();
943  SmallVector<MachineInstr*, 4> NewMIs;
944  DebugLoc DL;
945  if (MI != MBB.end()) DL = MI->getDebugLoc();
946
947  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
948  FuncInfo->setHasSpills();
949
950  bool NonRI = false, SpillsVRS = false;
951  if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs,
952                           NonRI, SpillsVRS))
953    FuncInfo->setSpillsCR();
954
955  if (SpillsVRS)
956    FuncInfo->setSpillsVRSAVE();
957
958  if (NonRI)
959    FuncInfo->setHasNonRISpills();
960
961  for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
962    MBB.insert(MI, NewMIs[i]);
963
964  const MachineFrameInfo &MFI = *MF.getFrameInfo();
965  MachineMemOperand *MMO =
966    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
967                            MachineMemOperand::MOLoad,
968                            MFI.getObjectSize(FrameIdx),
969                            MFI.getObjectAlignment(FrameIdx));
970  NewMIs.back()->addMemOperand(MF, MMO);
971}
972
973bool PPCInstrInfo::
974ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
975  assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
976  if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
977    Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
978  else
979    // Leave the CR# the same, but invert the condition.
980    Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
981  return false;
982}
983
984bool PPCInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI,
985                             unsigned Reg, MachineRegisterInfo *MRI) const {
986  // For some instructions, it is legal to fold ZERO into the RA register field.
987  // A zero immediate should always be loaded with a single li.
988  unsigned DefOpc = DefMI->getOpcode();
989  if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
990    return false;
991  if (!DefMI->getOperand(1).isImm())
992    return false;
993  if (DefMI->getOperand(1).getImm() != 0)
994    return false;
995
996  // Note that we cannot here invert the arguments of an isel in order to fold
997  // a ZERO into what is presented as the second argument. All we have here
998  // is the condition bit, and that might come from a CR-logical bit operation.
999
1000  const MCInstrDesc &UseMCID = UseMI->getDesc();
1001
1002  // Only fold into real machine instructions.
1003  if (UseMCID.isPseudo())
1004    return false;
1005
1006  unsigned UseIdx;
1007  for (UseIdx = 0; UseIdx < UseMI->getNumOperands(); ++UseIdx)
1008    if (UseMI->getOperand(UseIdx).isReg() &&
1009        UseMI->getOperand(UseIdx).getReg() == Reg)
1010      break;
1011
1012  assert(UseIdx < UseMI->getNumOperands() && "Cannot find Reg in UseMI");
1013  assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
1014
1015  const MCOperandInfo *UseInfo = &UseMCID.OpInfo[UseIdx];
1016
1017  // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
1018  // register (which might also be specified as a pointer class kind).
1019  if (UseInfo->isLookupPtrRegClass()) {
1020    if (UseInfo->RegClass /* Kind */ != 1)
1021      return false;
1022  } else {
1023    if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
1024        UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
1025      return false;
1026  }
1027
1028  // Make sure this is not tied to an output register (or otherwise
1029  // constrained). This is true for ST?UX registers, for example, which
1030  // are tied to their output registers.
1031  if (UseInfo->Constraints != 0)
1032    return false;
1033
1034  unsigned ZeroReg;
1035  if (UseInfo->isLookupPtrRegClass()) {
1036    bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
1037    ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
1038  } else {
1039    ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
1040              PPC::ZERO8 : PPC::ZERO;
1041  }
1042
1043  bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
1044  UseMI->getOperand(UseIdx).setReg(ZeroReg);
1045
1046  if (DeleteDef)
1047    DefMI->eraseFromParent();
1048
1049  return true;
1050}
1051
1052static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
1053  for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1054       I != IE; ++I)
1055    if (I->definesRegister(PPC::CTR) || I->definesRegister(PPC::CTR8))
1056      return true;
1057  return false;
1058}
1059
1060// We should make sure that, if we're going to predicate both sides of a
1061// condition (a diamond), that both sides don't define the counter register. We
1062// can predicate counter-decrement-based branches, but while that predicates
1063// the branching, it does not predicate the counter decrement. If we tried to
1064// merge the triangle into one predicated block, we'd decrement the counter
1065// twice.
1066bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
1067                     unsigned NumT, unsigned ExtraT,
1068                     MachineBasicBlock &FMBB,
1069                     unsigned NumF, unsigned ExtraF,
1070                     const BranchProbability &Probability) const {
1071  return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
1072}
1073
1074
1075bool PPCInstrInfo::isPredicated(const MachineInstr *MI) const {
1076  // The predicated branches are identified by their type, not really by the
1077  // explicit presence of a predicate. Furthermore, some of them can be
1078  // predicated more than once. Because if conversion won't try to predicate
1079  // any instruction which already claims to be predicated (by returning true
1080  // here), always return false. In doing so, we let isPredicable() be the
1081  // final word on whether not the instruction can be (further) predicated.
1082
1083  return false;
1084}
1085
1086bool PPCInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
1087  if (!MI->isTerminator())
1088    return false;
1089
1090  // Conditional branch is a special case.
1091  if (MI->isBranch() && !MI->isBarrier())
1092    return true;
1093
1094  return !isPredicated(MI);
1095}
1096
1097bool PPCInstrInfo::PredicateInstruction(
1098                     MachineInstr *MI,
1099                     const SmallVectorImpl<MachineOperand> &Pred) const {
1100  unsigned OpC = MI->getOpcode();
1101  if (OpC == PPC::BLR) {
1102    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1103      bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
1104      MI->setDesc(get(Pred[0].getImm() ?
1105                      (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR) :
1106                      (isPPC64 ? PPC::BDZLR8  : PPC::BDZLR)));
1107    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1108      MI->setDesc(get(PPC::BCLR));
1109      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1110        .addReg(Pred[1].getReg());
1111    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1112      MI->setDesc(get(PPC::BCLRn));
1113      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1114        .addReg(Pred[1].getReg());
1115    } else {
1116      MI->setDesc(get(PPC::BCCLR));
1117      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1118        .addImm(Pred[0].getImm())
1119        .addReg(Pred[1].getReg());
1120    }
1121
1122    return true;
1123  } else if (OpC == PPC::B) {
1124    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
1125      bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
1126      MI->setDesc(get(Pred[0].getImm() ?
1127                      (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1128                      (isPPC64 ? PPC::BDZ8  : PPC::BDZ)));
1129    } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1130      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1131      MI->RemoveOperand(0);
1132
1133      MI->setDesc(get(PPC::BC));
1134      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1135        .addReg(Pred[1].getReg())
1136        .addMBB(MBB);
1137    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1138      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1139      MI->RemoveOperand(0);
1140
1141      MI->setDesc(get(PPC::BCn));
1142      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1143        .addReg(Pred[1].getReg())
1144        .addMBB(MBB);
1145    } else {
1146      MachineBasicBlock *MBB = MI->getOperand(0).getMBB();
1147      MI->RemoveOperand(0);
1148
1149      MI->setDesc(get(PPC::BCC));
1150      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1151        .addImm(Pred[0].getImm())
1152        .addReg(Pred[1].getReg())
1153        .addMBB(MBB);
1154    }
1155
1156    return true;
1157  } else if (OpC == PPC::BCTR  || OpC == PPC::BCTR8 ||
1158             OpC == PPC::BCTRL || OpC == PPC::BCTRL8) {
1159    if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
1160      llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
1161
1162    bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8;
1163    bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
1164
1165    if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
1166      MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8) :
1167                                (setLR ? PPC::BCCTRL  : PPC::BCCTR)));
1168      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1169        .addReg(Pred[1].getReg());
1170      return true;
1171    } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
1172      MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n) :
1173                                (setLR ? PPC::BCCTRLn  : PPC::BCCTRn)));
1174      MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1175        .addReg(Pred[1].getReg());
1176      return true;
1177    }
1178
1179    MI->setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8) :
1180                              (setLR ? PPC::BCCCTRL  : PPC::BCCCTR)));
1181    MachineInstrBuilder(*MI->getParent()->getParent(), MI)
1182      .addImm(Pred[0].getImm())
1183      .addReg(Pred[1].getReg());
1184    return true;
1185  }
1186
1187  return false;
1188}
1189
1190bool PPCInstrInfo::SubsumesPredicate(
1191                     const SmallVectorImpl<MachineOperand> &Pred1,
1192                     const SmallVectorImpl<MachineOperand> &Pred2) const {
1193  assert(Pred1.size() == 2 && "Invalid PPC first predicate");
1194  assert(Pred2.size() == 2 && "Invalid PPC second predicate");
1195
1196  if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
1197    return false;
1198  if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
1199    return false;
1200
1201  // P1 can only subsume P2 if they test the same condition register.
1202  if (Pred1[1].getReg() != Pred2[1].getReg())
1203    return false;
1204
1205  PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
1206  PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
1207
1208  if (P1 == P2)
1209    return true;
1210
1211  // Does P1 subsume P2, e.g. GE subsumes GT.
1212  if (P1 == PPC::PRED_LE &&
1213      (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
1214    return true;
1215  if (P1 == PPC::PRED_GE &&
1216      (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
1217    return true;
1218
1219  return false;
1220}
1221
1222bool PPCInstrInfo::DefinesPredicate(MachineInstr *MI,
1223                                    std::vector<MachineOperand> &Pred) const {
1224  // Note: At the present time, the contents of Pred from this function is
1225  // unused by IfConversion. This implementation follows ARM by pushing the
1226  // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
1227  // predicate, instructions defining CTR or CTR8 are also included as
1228  // predicate-defining instructions.
1229
1230  const TargetRegisterClass *RCs[] =
1231    { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
1232      &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
1233
1234  bool Found = false;
1235  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1236    const MachineOperand &MO = MI->getOperand(i);
1237    for (unsigned c = 0; c < array_lengthof(RCs) && !Found; ++c) {
1238      const TargetRegisterClass *RC = RCs[c];
1239      if (MO.isReg()) {
1240        if (MO.isDef() && RC->contains(MO.getReg())) {
1241          Pred.push_back(MO);
1242          Found = true;
1243        }
1244      } else if (MO.isRegMask()) {
1245        for (TargetRegisterClass::iterator I = RC->begin(),
1246             IE = RC->end(); I != IE; ++I)
1247          if (MO.clobbersPhysReg(*I)) {
1248            Pred.push_back(MO);
1249            Found = true;
1250          }
1251      }
1252    }
1253  }
1254
1255  return Found;
1256}
1257
1258bool PPCInstrInfo::isPredicable(MachineInstr *MI) const {
1259  unsigned OpC = MI->getOpcode();
1260  switch (OpC) {
1261  default:
1262    return false;
1263  case PPC::B:
1264  case PPC::BLR:
1265  case PPC::BCTR:
1266  case PPC::BCTR8:
1267  case PPC::BCTRL:
1268  case PPC::BCTRL8:
1269    return true;
1270  }
1271}
1272
1273bool PPCInstrInfo::analyzeCompare(const MachineInstr *MI,
1274                                  unsigned &SrcReg, unsigned &SrcReg2,
1275                                  int &Mask, int &Value) const {
1276  unsigned Opc = MI->getOpcode();
1277
1278  switch (Opc) {
1279  default: return false;
1280  case PPC::CMPWI:
1281  case PPC::CMPLWI:
1282  case PPC::CMPDI:
1283  case PPC::CMPLDI:
1284    SrcReg = MI->getOperand(1).getReg();
1285    SrcReg2 = 0;
1286    Value = MI->getOperand(2).getImm();
1287    Mask = 0xFFFF;
1288    return true;
1289  case PPC::CMPW:
1290  case PPC::CMPLW:
1291  case PPC::CMPD:
1292  case PPC::CMPLD:
1293  case PPC::FCMPUS:
1294  case PPC::FCMPUD:
1295    SrcReg = MI->getOperand(1).getReg();
1296    SrcReg2 = MI->getOperand(2).getReg();
1297    return true;
1298  }
1299}
1300
1301bool PPCInstrInfo::optimizeCompareInstr(MachineInstr *CmpInstr,
1302                                        unsigned SrcReg, unsigned SrcReg2,
1303                                        int Mask, int Value,
1304                                        const MachineRegisterInfo *MRI) const {
1305  if (DisableCmpOpt)
1306    return false;
1307
1308  int OpC = CmpInstr->getOpcode();
1309  unsigned CRReg = CmpInstr->getOperand(0).getReg();
1310
1311  // FP record forms set CR1 based on the execption status bits, not a
1312  // comparison with zero.
1313  if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
1314    return false;
1315
1316  // The record forms set the condition register based on a signed comparison
1317  // with zero (so says the ISA manual). This is not as straightforward as it
1318  // seems, however, because this is always a 64-bit comparison on PPC64, even
1319  // for instructions that are 32-bit in nature (like slw for example).
1320  // So, on PPC32, for unsigned comparisons, we can use the record forms only
1321  // for equality checks (as those don't depend on the sign). On PPC64,
1322  // we are restricted to equality for unsigned 64-bit comparisons and for
1323  // signed 32-bit comparisons the applicability is more restricted.
1324  bool isPPC64 = TM.getSubtargetImpl()->isPPC64();
1325  bool is32BitSignedCompare   = OpC ==  PPC::CMPWI || OpC == PPC::CMPW;
1326  bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
1327  bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
1328
1329  // Get the unique definition of SrcReg.
1330  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
1331  if (!MI) return false;
1332  int MIOpC = MI->getOpcode();
1333
1334  bool equalityOnly = false;
1335  bool noSub = false;
1336  if (isPPC64) {
1337    if (is32BitSignedCompare) {
1338      // We can perform this optimization only if MI is sign-extending.
1339      if (MIOpC == PPC::SRAW  || MIOpC == PPC::SRAWo ||
1340          MIOpC == PPC::SRAWI || MIOpC == PPC::SRAWIo ||
1341          MIOpC == PPC::EXTSB || MIOpC == PPC::EXTSBo ||
1342          MIOpC == PPC::EXTSH || MIOpC == PPC::EXTSHo ||
1343          MIOpC == PPC::EXTSW || MIOpC == PPC::EXTSWo) {
1344        noSub = true;
1345      } else
1346        return false;
1347    } else if (is32BitUnsignedCompare) {
1348      // We can perform this optimization, equality only, if MI is
1349      // zero-extending.
1350      if (MIOpC == PPC::CNTLZW || MIOpC == PPC::CNTLZWo ||
1351          MIOpC == PPC::SLW    || MIOpC == PPC::SLWo ||
1352          MIOpC == PPC::SRW    || MIOpC == PPC::SRWo) {
1353        noSub = true;
1354        equalityOnly = true;
1355      } else
1356        return false;
1357    } else
1358      equalityOnly = is64BitUnsignedCompare;
1359  } else
1360    equalityOnly = is32BitUnsignedCompare;
1361
1362  if (equalityOnly) {
1363    // We need to check the uses of the condition register in order to reject
1364    // non-equality comparisons.
1365    for (MachineRegisterInfo::use_instr_iterator I =MRI->use_instr_begin(CRReg),
1366         IE = MRI->use_instr_end(); I != IE; ++I) {
1367      MachineInstr *UseMI = &*I;
1368      if (UseMI->getOpcode() == PPC::BCC) {
1369        unsigned Pred = UseMI->getOperand(0).getImm();
1370        if (Pred != PPC::PRED_EQ && Pred != PPC::PRED_NE)
1371          return false;
1372      } else if (UseMI->getOpcode() == PPC::ISEL ||
1373                 UseMI->getOpcode() == PPC::ISEL8) {
1374        unsigned SubIdx = UseMI->getOperand(3).getSubReg();
1375        if (SubIdx != PPC::sub_eq)
1376          return false;
1377      } else
1378        return false;
1379    }
1380  }
1381
1382  MachineBasicBlock::iterator I = CmpInstr;
1383
1384  // Scan forward to find the first use of the compare.
1385  for (MachineBasicBlock::iterator EL = CmpInstr->getParent()->end();
1386       I != EL; ++I) {
1387    bool FoundUse = false;
1388    for (MachineRegisterInfo::use_instr_iterator J =MRI->use_instr_begin(CRReg),
1389         JE = MRI->use_instr_end(); J != JE; ++J)
1390      if (&*J == &*I) {
1391        FoundUse = true;
1392        break;
1393      }
1394
1395    if (FoundUse)
1396      break;
1397  }
1398
1399  // There are two possible candidates which can be changed to set CR[01].
1400  // One is MI, the other is a SUB instruction.
1401  // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
1402  MachineInstr *Sub = NULL;
1403  if (SrcReg2 != 0)
1404    // MI is not a candidate for CMPrr.
1405    MI = NULL;
1406  // FIXME: Conservatively refuse to convert an instruction which isn't in the
1407  // same BB as the comparison. This is to allow the check below to avoid calls
1408  // (and other explicit clobbers); instead we should really check for these
1409  // more explicitly (in at least a few predecessors).
1410  else if (MI->getParent() != CmpInstr->getParent() || Value != 0) {
1411    // PPC does not have a record-form SUBri.
1412    return false;
1413  }
1414
1415  // Search for Sub.
1416  const TargetRegisterInfo *TRI = &getRegisterInfo();
1417  --I;
1418
1419  // Get ready to iterate backward from CmpInstr.
1420  MachineBasicBlock::iterator E = MI,
1421                              B = CmpInstr->getParent()->begin();
1422
1423  for (; I != E && !noSub; --I) {
1424    const MachineInstr &Instr = *I;
1425    unsigned IOpC = Instr.getOpcode();
1426
1427    if (&*I != CmpInstr && (
1428        Instr.modifiesRegister(PPC::CR0, TRI) ||
1429        Instr.readsRegister(PPC::CR0, TRI)))
1430      // This instruction modifies or uses the record condition register after
1431      // the one we want to change. While we could do this transformation, it
1432      // would likely not be profitable. This transformation removes one
1433      // instruction, and so even forcing RA to generate one move probably
1434      // makes it unprofitable.
1435      return false;
1436
1437    // Check whether CmpInstr can be made redundant by the current instruction.
1438    if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
1439         OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
1440        (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
1441        ((Instr.getOperand(1).getReg() == SrcReg &&
1442          Instr.getOperand(2).getReg() == SrcReg2) ||
1443        (Instr.getOperand(1).getReg() == SrcReg2 &&
1444         Instr.getOperand(2).getReg() == SrcReg))) {
1445      Sub = &*I;
1446      break;
1447    }
1448
1449    if (I == B)
1450      // The 'and' is below the comparison instruction.
1451      return false;
1452  }
1453
1454  // Return false if no candidates exist.
1455  if (!MI && !Sub)
1456    return false;
1457
1458  // The single candidate is called MI.
1459  if (!MI) MI = Sub;
1460
1461  int NewOpC = -1;
1462  MIOpC = MI->getOpcode();
1463  if (MIOpC == PPC::ANDIo || MIOpC == PPC::ANDIo8)
1464    NewOpC = MIOpC;
1465  else {
1466    NewOpC = PPC::getRecordFormOpcode(MIOpC);
1467    if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
1468      NewOpC = MIOpC;
1469  }
1470
1471  // FIXME: On the non-embedded POWER architectures, only some of the record
1472  // forms are fast, and we should use only the fast ones.
1473
1474  // The defining instruction has a record form (or is already a record
1475  // form). It is possible, however, that we'll need to reverse the condition
1476  // code of the users.
1477  if (NewOpC == -1)
1478    return false;
1479
1480  SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
1481  SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
1482
1483  // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
1484  // needs to be updated to be based on SUB.  Push the condition code
1485  // operands to OperandsToUpdate.  If it is safe to remove CmpInstr, the
1486  // condition code of these operands will be modified.
1487  bool ShouldSwap = false;
1488  if (Sub) {
1489    ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
1490      Sub->getOperand(2).getReg() == SrcReg;
1491
1492    // The operands to subf are the opposite of sub, so only in the fixed-point
1493    // case, invert the order.
1494    ShouldSwap = !ShouldSwap;
1495  }
1496
1497  if (ShouldSwap)
1498    for (MachineRegisterInfo::use_instr_iterator
1499         I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
1500         I != IE; ++I) {
1501      MachineInstr *UseMI = &*I;
1502      if (UseMI->getOpcode() == PPC::BCC) {
1503        PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
1504        assert((!equalityOnly ||
1505                Pred == PPC::PRED_EQ || Pred == PPC::PRED_NE) &&
1506               "Invalid predicate for equality-only optimization");
1507        PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
1508                                PPC::getSwappedPredicate(Pred)));
1509      } else if (UseMI->getOpcode() == PPC::ISEL ||
1510                 UseMI->getOpcode() == PPC::ISEL8) {
1511        unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
1512        assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
1513               "Invalid CR bit for equality-only optimization");
1514
1515        if (NewSubReg == PPC::sub_lt)
1516          NewSubReg = PPC::sub_gt;
1517        else if (NewSubReg == PPC::sub_gt)
1518          NewSubReg = PPC::sub_lt;
1519
1520        SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
1521                                                 NewSubReg));
1522      } else // We need to abort on a user we don't understand.
1523        return false;
1524    }
1525
1526  // Create a new virtual register to hold the value of the CR set by the
1527  // record-form instruction. If the instruction was not previously in
1528  // record form, then set the kill flag on the CR.
1529  CmpInstr->eraseFromParent();
1530
1531  MachineBasicBlock::iterator MII = MI;
1532  BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
1533          get(TargetOpcode::COPY), CRReg)
1534    .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
1535
1536  if (MIOpC != NewOpC) {
1537    // We need to be careful here: we're replacing one instruction with
1538    // another, and we need to make sure that we get all of the right
1539    // implicit uses and defs. On the other hand, the caller may be holding
1540    // an iterator to this instruction, and so we can't delete it (this is
1541    // specifically the case if this is the instruction directly after the
1542    // compare).
1543
1544    const MCInstrDesc &NewDesc = get(NewOpC);
1545    MI->setDesc(NewDesc);
1546
1547    if (NewDesc.ImplicitDefs)
1548      for (const uint16_t *ImpDefs = NewDesc.getImplicitDefs();
1549           *ImpDefs; ++ImpDefs)
1550        if (!MI->definesRegister(*ImpDefs))
1551          MI->addOperand(*MI->getParent()->getParent(),
1552                         MachineOperand::CreateReg(*ImpDefs, true, true));
1553    if (NewDesc.ImplicitUses)
1554      for (const uint16_t *ImpUses = NewDesc.getImplicitUses();
1555           *ImpUses; ++ImpUses)
1556        if (!MI->readsRegister(*ImpUses))
1557          MI->addOperand(*MI->getParent()->getParent(),
1558                         MachineOperand::CreateReg(*ImpUses, false, true));
1559  }
1560
1561  // Modify the condition code of operands in OperandsToUpdate.
1562  // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
1563  // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
1564  for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
1565    PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
1566
1567  for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
1568    SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
1569
1570  return true;
1571}
1572
1573/// GetInstSize - Return the number of bytes of code the specified
1574/// instruction may be.  This returns the maximum number of bytes.
1575///
1576unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
1577  unsigned Opcode = MI->getOpcode();
1578
1579  if (Opcode == PPC::INLINEASM) {
1580    const MachineFunction *MF = MI->getParent()->getParent();
1581    const char *AsmStr = MI->getOperand(0).getSymbolName();
1582    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1583  } else {
1584    const MCInstrDesc &Desc = get(Opcode);
1585    return Desc.getSize();
1586  }
1587}
1588
1589#undef DEBUG_TYPE
1590#define DEBUG_TYPE "ppc-vsx-fma-mutate"
1591
1592namespace {
1593  // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
1594  // (Altivec and scalar floating-point registers), we need to transform the
1595  // copies into subregister copies with other restrictions.
1596  struct PPCVSXFMAMutate : public MachineFunctionPass {
1597    static char ID;
1598    PPCVSXFMAMutate() : MachineFunctionPass(ID) {
1599      initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
1600    }
1601
1602    LiveIntervals *LIS;
1603
1604    const PPCTargetMachine *TM;
1605    const PPCInstrInfo *TII;
1606
1607protected:
1608    bool processBlock(MachineBasicBlock &MBB) {
1609      bool Changed = false;
1610
1611      MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1612      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1613           I != IE; ++I) {
1614        MachineInstr *MI = I;
1615
1616        // The default (A-type) VSX FMA form kills the addend (it is taken from
1617        // the target register, which is then updated to reflect the result of
1618        // the FMA). If the instruction, however, kills one of the registers
1619        // used for the product, then we can use the M-form instruction (which
1620        // will take that value from the to-be-defined register).
1621
1622        int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode());
1623        if (AltOpc == -1)
1624          continue;
1625
1626        // This pass is run after register coalescing, and so we're looking for
1627        // a situation like this:
1628        //   ...
1629        //   %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
1630        //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
1631        //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
1632        //   ...
1633        //   %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19,
1634        //                         %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19
1635        //   ...
1636        // Where we can eliminate the copy by changing from the A-type to the
1637        // M-type instruction. Specifically, for this example, this means:
1638        //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16,
1639        //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16
1640        // is replaced by:
1641        //   %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9,
1642        //                         %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9
1643        // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9
1644
1645        SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
1646
1647        VNInfo *AddendValNo =
1648          LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn();
1649        MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
1650
1651        // The addend and this instruction must be in the same block.
1652
1653        if (!AddendMI || AddendMI->getParent() != MI->getParent())
1654          continue;
1655
1656        // The addend must be a full copy within the same register class.
1657
1658        if (!AddendMI->isFullCopy())
1659          continue;
1660
1661        unsigned AddendSrcReg = AddendMI->getOperand(1).getReg();
1662        if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) {
1663          if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
1664              MRI.getRegClass(AddendSrcReg))
1665            continue;
1666        } else {
1667          // If AddendSrcReg is a physical register, make sure the destination
1668          // register class contains it.
1669          if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
1670                ->contains(AddendSrcReg))
1671            continue;
1672        }
1673
1674        // In theory, there could be other uses of the addend copy before this
1675        // fma.  We could deal with this, but that would require additional
1676        // logic below and I suspect it will not occur in any relevant
1677        // situations.
1678        bool OtherUsers = false;
1679        for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
1680             J != JE; --J)
1681          if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
1682            OtherUsers = true;
1683            break;
1684          }
1685
1686        if (OtherUsers)
1687          continue;
1688
1689        // Find one of the product operands that is killed by this instruction.
1690
1691        unsigned KilledProdOp = 0, OtherProdOp = 0;
1692        if (LIS->getInterval(MI->getOperand(2).getReg())
1693                     .Query(FMAIdx).isKill()) {
1694          KilledProdOp = 2;
1695          OtherProdOp  = 3;
1696        } else if (LIS->getInterval(MI->getOperand(3).getReg())
1697                     .Query(FMAIdx).isKill()) {
1698          KilledProdOp = 3;
1699          OtherProdOp  = 2;
1700        }
1701
1702        // If there are no killed product operands, then this transformation is
1703        // likely not profitable.
1704        if (!KilledProdOp)
1705          continue;
1706
1707        // In order to replace the addend here with the source of the copy,
1708        // it must still be live here.
1709        if (!LIS->getInterval(AddendMI->getOperand(1).getReg()).liveAt(FMAIdx))
1710          continue;
1711
1712        // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
1713
1714        unsigned AddReg = AddendMI->getOperand(1).getReg();
1715        unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg();
1716        unsigned OtherProdReg  = MI->getOperand(OtherProdOp).getReg();
1717
1718        unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
1719        unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg();
1720        unsigned OtherProdSubReg  = MI->getOperand(OtherProdOp).getSubReg();
1721
1722        bool AddRegKill = AddendMI->getOperand(1).isKill();
1723        bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill();
1724        bool OtherProdRegKill  = MI->getOperand(OtherProdOp).isKill();
1725
1726        bool AddRegUndef = AddendMI->getOperand(1).isUndef();
1727        bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef();
1728        bool OtherProdRegUndef  = MI->getOperand(OtherProdOp).isUndef();
1729
1730        unsigned OldFMAReg = MI->getOperand(0).getReg();
1731
1732        assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
1733               "Addend copy not tied to old FMA output!");
1734
1735        DEBUG(dbgs() << "VSX FMA Mutation:\n    " << *MI;);
1736
1737        MI->getOperand(0).setReg(KilledProdReg);
1738        MI->getOperand(1).setReg(KilledProdReg);
1739        MI->getOperand(3).setReg(AddReg);
1740        MI->getOperand(2).setReg(OtherProdReg);
1741
1742        MI->getOperand(0).setSubReg(KilledProdSubReg);
1743        MI->getOperand(1).setSubReg(KilledProdSubReg);
1744        MI->getOperand(3).setSubReg(AddSubReg);
1745        MI->getOperand(2).setSubReg(OtherProdSubReg);
1746
1747        MI->getOperand(1).setIsKill(KilledProdRegKill);
1748        MI->getOperand(3).setIsKill(AddRegKill);
1749        MI->getOperand(2).setIsKill(OtherProdRegKill);
1750
1751        MI->getOperand(1).setIsUndef(KilledProdRegUndef);
1752        MI->getOperand(3).setIsUndef(AddRegUndef);
1753        MI->getOperand(2).setIsUndef(OtherProdRegUndef);
1754
1755        MI->setDesc(TII->get(AltOpc));
1756
1757        DEBUG(dbgs() << " -> " << *MI);
1758
1759        // The killed product operand was killed here, so we can reuse it now
1760        // for the result of the fma.
1761
1762        LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
1763        VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
1764        for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
1765             UI != UE;) {
1766          MachineOperand &UseMO = *UI;
1767          MachineInstr *UseMI = UseMO.getParent();
1768          ++UI;
1769
1770          // Don't replace the result register of the copy we're about to erase.
1771          if (UseMI == AddendMI)
1772            continue;
1773
1774          UseMO.setReg(KilledProdReg);
1775          UseMO.setSubReg(KilledProdSubReg);
1776        }
1777
1778        // Extend the live intervals of the killed product operand to hold the
1779        // fma result.
1780
1781        LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
1782        for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
1783             AI != AE; ++AI) {
1784          // Don't add the segment that corresponds to the original copy.
1785          if (AI->valno == AddendValNo)
1786            continue;
1787
1788          VNInfo *NewFMAValNo =
1789            NewFMAInt.getNextValue(AI->start,
1790                                   LIS->getVNInfoAllocator());
1791
1792          NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
1793                                                     NewFMAValNo));
1794        }
1795        DEBUG(dbgs() << "  extended: " << NewFMAInt << '\n');
1796
1797        FMAInt.removeValNo(FMAValNo);
1798        DEBUG(dbgs() << "  trimmed:  " << FMAInt << '\n');
1799
1800        // Remove the (now unused) copy.
1801
1802        DEBUG(dbgs() << "  removing: " << *AddendMI << '\n');
1803        LIS->RemoveMachineInstrFromMaps(AddendMI);
1804        AddendMI->eraseFromParent();
1805
1806        Changed = true;
1807      }
1808
1809      return Changed;
1810    }
1811
1812public:
1813    virtual bool runOnMachineFunction(MachineFunction &MF) {
1814      LIS = &getAnalysis<LiveIntervals>();
1815
1816      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
1817      TII = TM->getInstrInfo();
1818
1819      bool Changed = false;
1820
1821      if (DisableVSXFMAMutate)
1822        return Changed;
1823
1824      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
1825        MachineBasicBlock &B = *I++;
1826        if (processBlock(B))
1827          Changed = true;
1828      }
1829
1830      return Changed;
1831    }
1832
1833    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1834      AU.addRequired<LiveIntervals>();
1835      AU.addPreserved<LiveIntervals>();
1836      AU.addRequired<SlotIndexes>();
1837      AU.addPreserved<SlotIndexes>();
1838      MachineFunctionPass::getAnalysisUsage(AU);
1839    }
1840  };
1841}
1842
1843INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
1844                      "PowerPC VSX FMA Mutation", false, false)
1845INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
1846INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
1847INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
1848                    "PowerPC VSX FMA Mutation", false, false)
1849
1850char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
1851
1852char PPCVSXFMAMutate::ID = 0;
1853FunctionPass*
1854llvm::createPPCVSXFMAMutatePass() { return new PPCVSXFMAMutate(); }
1855
1856#undef DEBUG_TYPE
1857#define DEBUG_TYPE "ppc-vsx-copy"
1858
1859namespace llvm {
1860  void initializePPCVSXCopyPass(PassRegistry&);
1861}
1862
1863namespace {
1864  // PPCVSXCopy pass - For copies between VSX registers and non-VSX registers
1865  // (Altivec and scalar floating-point registers), we need to transform the
1866  // copies into subregister copies with other restrictions.
1867  struct PPCVSXCopy : public MachineFunctionPass {
1868    static char ID;
1869    PPCVSXCopy() : MachineFunctionPass(ID) {
1870      initializePPCVSXCopyPass(*PassRegistry::getPassRegistry());
1871    }
1872
1873    const PPCTargetMachine *TM;
1874    const PPCInstrInfo *TII;
1875
1876    bool IsRegInClass(unsigned Reg, const TargetRegisterClass *RC,
1877                      MachineRegisterInfo &MRI) {
1878      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1879        return RC->hasSubClassEq(MRI.getRegClass(Reg));
1880      } else if (RC->contains(Reg)) {
1881        return true;
1882      }
1883
1884      return false;
1885    }
1886
1887    bool IsVSReg(unsigned Reg, MachineRegisterInfo &MRI) {
1888      return IsRegInClass(Reg, &PPC::VSRCRegClass, MRI);
1889    }
1890
1891    bool IsVRReg(unsigned Reg, MachineRegisterInfo &MRI) {
1892      return IsRegInClass(Reg, &PPC::VRRCRegClass, MRI);
1893    }
1894
1895    bool IsF8Reg(unsigned Reg, MachineRegisterInfo &MRI) {
1896      return IsRegInClass(Reg, &PPC::F8RCRegClass, MRI);
1897    }
1898
1899protected:
1900    bool processBlock(MachineBasicBlock &MBB) {
1901      bool Changed = false;
1902
1903      MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1904      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
1905           I != IE; ++I) {
1906        MachineInstr *MI = I;
1907        if (!MI->isFullCopy())
1908          continue;
1909
1910        MachineOperand &DstMO = MI->getOperand(0);
1911        MachineOperand &SrcMO = MI->getOperand(1);
1912
1913        if ( IsVSReg(DstMO.getReg(), MRI) &&
1914            !IsVSReg(SrcMO.getReg(), MRI)) {
1915          // This is a copy *to* a VSX register from a non-VSX register.
1916          Changed = true;
1917
1918          const TargetRegisterClass *SrcRC =
1919            IsVRReg(SrcMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
1920                                           &PPC::VSLRCRegClass;
1921          assert((IsF8Reg(SrcMO.getReg(), MRI) ||
1922                  IsVRReg(SrcMO.getReg(), MRI)) &&
1923                 "Unknown source for a VSX copy");
1924
1925          unsigned NewVReg = MRI.createVirtualRegister(SrcRC);
1926          BuildMI(MBB, MI, MI->getDebugLoc(),
1927                  TII->get(TargetOpcode::SUBREG_TO_REG), NewVReg)
1928            .addImm(1) // add 1, not 0, because there is no implicit clearing
1929                       // of the high bits.
1930            .addOperand(SrcMO)
1931            .addImm(IsVRReg(SrcMO.getReg(), MRI) ? PPC::sub_128 :
1932                                                   PPC::sub_64);
1933
1934          // The source of the original copy is now the new virtual register.
1935          SrcMO.setReg(NewVReg);
1936        } else if (!IsVSReg(DstMO.getReg(), MRI) &&
1937                    IsVSReg(SrcMO.getReg(), MRI)) {
1938          // This is a copy *from* a VSX register to a non-VSX register.
1939          Changed = true;
1940
1941          const TargetRegisterClass *DstRC =
1942            IsVRReg(DstMO.getReg(), MRI) ? &PPC::VSHRCRegClass :
1943                                           &PPC::VSLRCRegClass;
1944          assert((IsF8Reg(DstMO.getReg(), MRI) ||
1945                  IsVRReg(DstMO.getReg(), MRI)) &&
1946                 "Unknown destination for a VSX copy");
1947
1948          // Copy the VSX value into a new VSX register of the correct subclass.
1949          unsigned NewVReg = MRI.createVirtualRegister(DstRC);
1950          BuildMI(MBB, MI, MI->getDebugLoc(),
1951                  TII->get(TargetOpcode::COPY), NewVReg)
1952            .addOperand(SrcMO);
1953
1954          // Transform the original copy into a subregister extraction copy.
1955          SrcMO.setReg(NewVReg);
1956          SrcMO.setSubReg(IsVRReg(DstMO.getReg(), MRI) ? PPC::sub_128 :
1957                                                         PPC::sub_64);
1958        }
1959      }
1960
1961      return Changed;
1962    }
1963
1964public:
1965    virtual bool runOnMachineFunction(MachineFunction &MF) {
1966      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
1967      TII = TM->getInstrInfo();
1968
1969      bool Changed = false;
1970
1971      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
1972        MachineBasicBlock &B = *I++;
1973        if (processBlock(B))
1974          Changed = true;
1975      }
1976
1977      return Changed;
1978    }
1979
1980    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1981      MachineFunctionPass::getAnalysisUsage(AU);
1982    }
1983  };
1984}
1985
1986INITIALIZE_PASS(PPCVSXCopy, DEBUG_TYPE,
1987                "PowerPC VSX Copy Legalization", false, false)
1988
1989char PPCVSXCopy::ID = 0;
1990FunctionPass*
1991llvm::createPPCVSXCopyPass() { return new PPCVSXCopy(); }
1992
1993#undef DEBUG_TYPE
1994#define DEBUG_TYPE "ppc-vsx-copy-cleanup"
1995
1996namespace llvm {
1997  void initializePPCVSXCopyCleanupPass(PassRegistry&);
1998}
1999
2000namespace {
2001  // PPCVSXCopyCleanup pass - We sometimes end up generating self copies of VSX
2002  // registers (mostly because the ABI code still places all values into the
2003  // "traditional" floating-point and vector registers). Remove them here.
2004  struct PPCVSXCopyCleanup : public MachineFunctionPass {
2005    static char ID;
2006    PPCVSXCopyCleanup() : MachineFunctionPass(ID) {
2007      initializePPCVSXCopyCleanupPass(*PassRegistry::getPassRegistry());
2008    }
2009
2010    const PPCTargetMachine *TM;
2011    const PPCInstrInfo *TII;
2012
2013protected:
2014    bool processBlock(MachineBasicBlock &MBB) {
2015      bool Changed = false;
2016
2017      SmallVector<MachineInstr *, 4> ToDelete;
2018      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
2019           I != IE; ++I) {
2020        MachineInstr *MI = I;
2021        if (MI->getOpcode() == PPC::XXLOR &&
2022            MI->getOperand(0).getReg() == MI->getOperand(1).getReg() &&
2023            MI->getOperand(0).getReg() == MI->getOperand(2).getReg())
2024          ToDelete.push_back(MI);
2025      }
2026
2027      if (!ToDelete.empty())
2028        Changed = true;
2029
2030      for (unsigned i = 0, ie = ToDelete.size(); i != ie; ++i) {
2031        DEBUG(dbgs() << "Removing VSX self-copy: " << *ToDelete[i]);
2032        ToDelete[i]->eraseFromParent();
2033      }
2034
2035      return Changed;
2036    }
2037
2038public:
2039    virtual bool runOnMachineFunction(MachineFunction &MF) {
2040      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
2041      TII = TM->getInstrInfo();
2042
2043      bool Changed = false;
2044
2045      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
2046        MachineBasicBlock &B = *I++;
2047        if (processBlock(B))
2048          Changed = true;
2049      }
2050
2051      return Changed;
2052    }
2053
2054    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
2055      MachineFunctionPass::getAnalysisUsage(AU);
2056    }
2057  };
2058}
2059
2060INITIALIZE_PASS(PPCVSXCopyCleanup, DEBUG_TYPE,
2061                "PowerPC VSX Copy Cleanup", false, false)
2062
2063char PPCVSXCopyCleanup::ID = 0;
2064FunctionPass*
2065llvm::createPPCVSXCopyCleanupPass() { return new PPCVSXCopyCleanup(); }
2066
2067#undef DEBUG_TYPE
2068#define DEBUG_TYPE "ppc-early-ret"
2069STATISTIC(NumBCLR, "Number of early conditional returns");
2070STATISTIC(NumBLR,  "Number of early returns");
2071
2072namespace llvm {
2073  void initializePPCEarlyReturnPass(PassRegistry&);
2074}
2075
2076namespace {
2077  // PPCEarlyReturn pass - For simple functions without epilogue code, move
2078  // returns up, and create conditional returns, to avoid unnecessary
2079  // branch-to-blr sequences.
2080  struct PPCEarlyReturn : public MachineFunctionPass {
2081    static char ID;
2082    PPCEarlyReturn() : MachineFunctionPass(ID) {
2083      initializePPCEarlyReturnPass(*PassRegistry::getPassRegistry());
2084    }
2085
2086    const PPCTargetMachine *TM;
2087    const PPCInstrInfo *TII;
2088
2089protected:
2090    bool processBlock(MachineBasicBlock &ReturnMBB) {
2091      bool Changed = false;
2092
2093      MachineBasicBlock::iterator I = ReturnMBB.begin();
2094      I = ReturnMBB.SkipPHIsAndLabels(I);
2095
2096      // The block must be essentially empty except for the blr.
2097      if (I == ReturnMBB.end() || I->getOpcode() != PPC::BLR ||
2098          I != ReturnMBB.getLastNonDebugInstr())
2099        return Changed;
2100
2101      SmallVector<MachineBasicBlock*, 8> PredToRemove;
2102      for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(),
2103           PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) {
2104        bool OtherReference = false, BlockChanged = false;
2105        for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) {
2106          if (J->getOpcode() == PPC::B) {
2107            if (J->getOperand(0).getMBB() == &ReturnMBB) {
2108              // This is an unconditional branch to the return. Replace the
2109              // branch with a blr.
2110              BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BLR));
2111              MachineBasicBlock::iterator K = J--;
2112              K->eraseFromParent();
2113              BlockChanged = true;
2114              ++NumBLR;
2115              continue;
2116            }
2117          } else if (J->getOpcode() == PPC::BCC) {
2118            if (J->getOperand(2).getMBB() == &ReturnMBB) {
2119              // This is a conditional branch to the return. Replace the branch
2120              // with a bclr.
2121              BuildMI(**PI, J, J->getDebugLoc(), TII->get(PPC::BCCLR))
2122                .addImm(J->getOperand(0).getImm())
2123                .addReg(J->getOperand(1).getReg());
2124              MachineBasicBlock::iterator K = J--;
2125              K->eraseFromParent();
2126              BlockChanged = true;
2127              ++NumBCLR;
2128              continue;
2129            }
2130          } else if (J->getOpcode() == PPC::BC || J->getOpcode() == PPC::BCn) {
2131            if (J->getOperand(1).getMBB() == &ReturnMBB) {
2132              // This is a conditional branch to the return. Replace the branch
2133              // with a bclr.
2134              BuildMI(**PI, J, J->getDebugLoc(),
2135                      TII->get(J->getOpcode() == PPC::BC ?
2136                               PPC::BCLR : PPC::BCLRn))
2137                .addReg(J->getOperand(0).getReg());
2138              MachineBasicBlock::iterator K = J--;
2139              K->eraseFromParent();
2140              BlockChanged = true;
2141              ++NumBCLR;
2142              continue;
2143            }
2144          } else if (J->isBranch()) {
2145            if (J->isIndirectBranch()) {
2146              if (ReturnMBB.hasAddressTaken())
2147                OtherReference = true;
2148            } else
2149              for (unsigned i = 0; i < J->getNumOperands(); ++i)
2150                if (J->getOperand(i).isMBB() &&
2151                    J->getOperand(i).getMBB() == &ReturnMBB)
2152                  OtherReference = true;
2153          } else if (!J->isTerminator() && !J->isDebugValue())
2154            break;
2155
2156          if (J == (*PI)->begin())
2157            break;
2158
2159          --J;
2160        }
2161
2162        if ((*PI)->canFallThrough() && (*PI)->isLayoutSuccessor(&ReturnMBB))
2163          OtherReference = true;
2164
2165        // Predecessors are stored in a vector and can't be removed here.
2166        if (!OtherReference && BlockChanged) {
2167          PredToRemove.push_back(*PI);
2168        }
2169
2170        if (BlockChanged)
2171          Changed = true;
2172      }
2173
2174      for (unsigned i = 0, ie = PredToRemove.size(); i != ie; ++i)
2175        PredToRemove[i]->removeSuccessor(&ReturnMBB);
2176
2177      if (Changed && !ReturnMBB.hasAddressTaken()) {
2178        // We now might be able to merge this blr-only block into its
2179        // by-layout predecessor.
2180        if (ReturnMBB.pred_size() == 1 &&
2181            (*ReturnMBB.pred_begin())->isLayoutSuccessor(&ReturnMBB)) {
2182          // Move the blr into the preceding block.
2183          MachineBasicBlock &PrevMBB = **ReturnMBB.pred_begin();
2184          PrevMBB.splice(PrevMBB.end(), &ReturnMBB, I);
2185          PrevMBB.removeSuccessor(&ReturnMBB);
2186        }
2187
2188        if (ReturnMBB.pred_empty())
2189          ReturnMBB.eraseFromParent();
2190      }
2191
2192      return Changed;
2193    }
2194
2195public:
2196    virtual bool runOnMachineFunction(MachineFunction &MF) {
2197      TM = static_cast<const PPCTargetMachine *>(&MF.getTarget());
2198      TII = TM->getInstrInfo();
2199
2200      bool Changed = false;
2201
2202      // If the function does not have at least two blocks, then there is
2203      // nothing to do.
2204      if (MF.size() < 2)
2205        return Changed;
2206
2207      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
2208        MachineBasicBlock &B = *I++;
2209        if (processBlock(B))
2210          Changed = true;
2211      }
2212
2213      return Changed;
2214    }
2215
2216    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
2217      MachineFunctionPass::getAnalysisUsage(AU);
2218    }
2219  };
2220}
2221
2222INITIALIZE_PASS(PPCEarlyReturn, DEBUG_TYPE,
2223                "PowerPC Early-Return Creation", false, false)
2224
2225char PPCEarlyReturn::ID = 0;
2226FunctionPass*
2227llvm::createPPCEarlyReturnPass() { return new PPCEarlyReturn(); }
2228