PPCTargetTransformInfo.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- PPCTargetTransformInfo.cpp - PPC specific TTI pass ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// PPC target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#include "PPC.h"
18#include "PPCTargetMachine.h"
19#include "llvm/Analysis/TargetTransformInfo.h"
20#include "llvm/Support/CommandLine.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Target/CostTable.h"
23#include "llvm/Target/TargetLowering.h"
24using namespace llvm;
25
26#define DEBUG_TYPE "ppctti"
27
28static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
29cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
30
31// Declare the pass initialization routine locally as target-specific passes
32// don't have a target-wide initialization entry point, and so we rely on the
33// pass constructor initialization.
34namespace llvm {
35void initializePPCTTIPass(PassRegistry &);
36}
37
38namespace {
39
40class PPCTTI final : public ImmutablePass, public TargetTransformInfo {
41  const PPCSubtarget *ST;
42  const PPCTargetLowering *TLI;
43
44public:
45  PPCTTI() : ImmutablePass(ID), ST(nullptr), TLI(nullptr) {
46    llvm_unreachable("This pass cannot be directly constructed");
47  }
48
49  PPCTTI(const PPCTargetMachine *TM)
50      : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
51        TLI(TM->getTargetLowering()) {
52    initializePPCTTIPass(*PassRegistry::getPassRegistry());
53  }
54
55  virtual void initializePass() override {
56    pushTTIStack(this);
57  }
58
59  virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
60    TargetTransformInfo::getAnalysisUsage(AU);
61  }
62
63  /// Pass identification.
64  static char ID;
65
66  /// Provide necessary pointer adjustments for the two base classes.
67  virtual void *getAdjustedAnalysisPointer(const void *ID) override {
68    if (ID == &TargetTransformInfo::ID)
69      return (TargetTransformInfo*)this;
70    return this;
71  }
72
73  /// \name Scalar TTI Implementations
74  /// @{
75  unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
76
77  unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
78                         Type *Ty) const override;
79  unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
80                         Type *Ty) const override;
81
82  virtual PopcntSupportKind
83  getPopcntSupport(unsigned TyWidth) const override;
84  virtual void getUnrollingPreferences(
85    Loop *L, UnrollingPreferences &UP) const override;
86
87  /// @}
88
89  /// \name Vector TTI Implementations
90  /// @{
91
92  virtual unsigned getNumberOfRegisters(bool Vector) const override;
93  virtual unsigned getRegisterBitWidth(bool Vector) const override;
94  virtual unsigned getMaximumUnrollFactor() const override;
95  virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
96                                          OperandValueKind,
97                                          OperandValueKind) const override;
98  virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
99                                  int Index, Type *SubTp) const override;
100  virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
101                                    Type *Src) const override;
102  virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
103                                      Type *CondTy) const override;
104  virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
105                                      unsigned Index) const override;
106  virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
107                                   unsigned Alignment,
108                                   unsigned AddressSpace) const override;
109
110  /// @}
111};
112
113} // end anonymous namespace
114
115INITIALIZE_AG_PASS(PPCTTI, TargetTransformInfo, "ppctti",
116                   "PPC Target Transform Info", true, true, false)
117char PPCTTI::ID = 0;
118
119ImmutablePass *
120llvm::createPPCTargetTransformInfoPass(const PPCTargetMachine *TM) {
121  return new PPCTTI(TM);
122}
123
124
125//===----------------------------------------------------------------------===//
126//
127// PPC cost model.
128//
129//===----------------------------------------------------------------------===//
130
131PPCTTI::PopcntSupportKind PPCTTI::getPopcntSupport(unsigned TyWidth) const {
132  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
133  if (ST->hasPOPCNTD() && TyWidth <= 64)
134    return PSK_FastHardware;
135  return PSK_Software;
136}
137
138unsigned PPCTTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
139  if (DisablePPCConstHoist)
140    return TargetTransformInfo::getIntImmCost(Imm, Ty);
141
142  assert(Ty->isIntegerTy());
143
144  unsigned BitSize = Ty->getPrimitiveSizeInBits();
145  if (BitSize == 0)
146    return ~0U;
147
148  if (Imm == 0)
149    return TCC_Free;
150
151  if (Imm.getBitWidth() <= 64) {
152    if (isInt<16>(Imm.getSExtValue()))
153      return TCC_Basic;
154
155    if (isInt<32>(Imm.getSExtValue())) {
156      // A constant that can be materialized using lis.
157      if ((Imm.getZExtValue() & 0xFFFF) == 0)
158        return TCC_Basic;
159
160      return 2 * TCC_Basic;
161    }
162  }
163
164  return 4 * TCC_Basic;
165}
166
167unsigned PPCTTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
168                               const APInt &Imm, Type *Ty) const {
169  if (DisablePPCConstHoist)
170    return TargetTransformInfo::getIntImmCost(IID, Idx, Imm, Ty);
171
172  assert(Ty->isIntegerTy());
173
174  unsigned BitSize = Ty->getPrimitiveSizeInBits();
175  if (BitSize == 0)
176    return ~0U;
177
178  switch (IID) {
179  default: return TCC_Free;
180  case Intrinsic::sadd_with_overflow:
181  case Intrinsic::uadd_with_overflow:
182  case Intrinsic::ssub_with_overflow:
183  case Intrinsic::usub_with_overflow:
184    if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
185      return TCC_Free;
186    break;
187  }
188  return PPCTTI::getIntImmCost(Imm, Ty);
189}
190
191unsigned PPCTTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
192                               Type *Ty) const {
193  if (DisablePPCConstHoist)
194    return TargetTransformInfo::getIntImmCost(Opcode, Idx, Imm, Ty);
195
196  assert(Ty->isIntegerTy());
197
198  unsigned BitSize = Ty->getPrimitiveSizeInBits();
199  if (BitSize == 0)
200    return ~0U;
201
202  unsigned ImmIdx = ~0U;
203  bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
204       ZeroFree = false;
205  switch (Opcode) {
206  default: return TCC_Free;
207  case Instruction::GetElementPtr:
208    // Always hoist the base address of a GetElementPtr. This prevents the
209    // creation of new constants for every base constant that gets constant
210    // folded with the offset.
211    if (Idx == 0)
212      return 2 * TCC_Basic;
213    return TCC_Free;
214  case Instruction::And:
215    RunFree = true; // (for the rotate-and-mask instructions)
216    // Fallthrough...
217  case Instruction::Add:
218  case Instruction::Or:
219  case Instruction::Xor:
220    ShiftedFree = true;
221    // Fallthrough...
222  case Instruction::Sub:
223  case Instruction::Mul:
224  case Instruction::Shl:
225  case Instruction::LShr:
226  case Instruction::AShr:
227    ImmIdx = 1;
228    break;
229  case Instruction::ICmp:
230    UnsignedFree = true;
231    ImmIdx = 1;
232    // Fallthrough... (zero comparisons can use record-form instructions)
233  case Instruction::Select:
234    ZeroFree = true;
235    break;
236  case Instruction::PHI:
237  case Instruction::Call:
238  case Instruction::Ret:
239  case Instruction::Load:
240  case Instruction::Store:
241    break;
242  }
243
244  if (ZeroFree && Imm == 0)
245    return TCC_Free;
246
247  if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
248    if (isInt<16>(Imm.getSExtValue()))
249      return TCC_Free;
250
251    if (RunFree) {
252      if (Imm.getBitWidth() <= 32 &&
253          (isShiftedMask_32(Imm.getZExtValue()) ||
254           isShiftedMask_32(~Imm.getZExtValue())))
255        return TCC_Free;
256
257
258      if (ST->isPPC64() &&
259          (isShiftedMask_64(Imm.getZExtValue()) ||
260           isShiftedMask_64(~Imm.getZExtValue())))
261        return TCC_Free;
262    }
263
264    if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
265      return TCC_Free;
266
267    if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
268      return TCC_Free;
269  }
270
271  return PPCTTI::getIntImmCost(Imm, Ty);
272}
273
274void PPCTTI::getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const {
275  if (ST->getDarwinDirective() == PPC::DIR_A2) {
276    // The A2 is in-order with a deep pipeline, and concatenation unrolling
277    // helps expose latency-hiding opportunities to the instruction scheduler.
278    UP.Partial = UP.Runtime = true;
279  }
280}
281
282unsigned PPCTTI::getNumberOfRegisters(bool Vector) const {
283  if (Vector && !ST->hasAltivec())
284    return 0;
285  return ST->hasVSX() ? 64 : 32;
286}
287
288unsigned PPCTTI::getRegisterBitWidth(bool Vector) const {
289  if (Vector) {
290    if (ST->hasAltivec()) return 128;
291    return 0;
292  }
293
294  if (ST->isPPC64())
295    return 64;
296  return 32;
297
298}
299
300unsigned PPCTTI::getMaximumUnrollFactor() const {
301  unsigned Directive = ST->getDarwinDirective();
302  // The 440 has no SIMD support, but floating-point instructions
303  // have a 5-cycle latency, so unroll by 5x for latency hiding.
304  if (Directive == PPC::DIR_440)
305    return 5;
306
307  // The A2 has no SIMD support, but floating-point instructions
308  // have a 6-cycle latency, so unroll by 6x for latency hiding.
309  if (Directive == PPC::DIR_A2)
310    return 6;
311
312  // FIXME: For lack of any better information, do no harm...
313  if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
314    return 1;
315
316  // For most things, modern systems have two execution units (and
317  // out-of-order execution).
318  return 2;
319}
320
321unsigned PPCTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
322                                        OperandValueKind Op1Info,
323                                        OperandValueKind Op2Info) const {
324  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
325
326  // Fallback to the default implementation.
327  return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
328                                                     Op2Info);
329}
330
331unsigned PPCTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
332                                Type *SubTp) const {
333  return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
334}
335
336unsigned PPCTTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
337  assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
338
339  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
340}
341
342unsigned PPCTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
343                                    Type *CondTy) const {
344  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
345}
346
347unsigned PPCTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
348                                    unsigned Index) const {
349  assert(Val->isVectorTy() && "This must be a vector type");
350
351  int ISD = TLI->InstructionOpcodeToISD(Opcode);
352  assert(ISD && "Invalid opcode");
353
354  if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
355    // Double-precision scalars are already located in index #0.
356    if (Index == 0)
357      return 0;
358
359    return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
360  }
361
362  // Estimated cost of a load-hit-store delay.  This was obtained
363  // experimentally as a minimum needed to prevent unprofitable
364  // vectorization for the paq8p benchmark.  It may need to be
365  // raised further if other unprofitable cases remain.
366  unsigned LHSPenalty = 2;
367  if (ISD == ISD::INSERT_VECTOR_ELT)
368    LHSPenalty += 7;
369
370  // Vector element insert/extract with Altivec is very expensive,
371  // because they require store and reload with the attendant
372  // processor stall for load-hit-store.  Until VSX is available,
373  // these need to be estimated as very costly.
374  if (ISD == ISD::EXTRACT_VECTOR_ELT ||
375      ISD == ISD::INSERT_VECTOR_ELT)
376    return LHSPenalty +
377      TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
378
379  return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
380}
381
382unsigned PPCTTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
383                                 unsigned AddressSpace) const {
384  // Legalize the type.
385  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
386  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
387         "Invalid Opcode");
388
389  unsigned Cost =
390    TargetTransformInfo::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
391
392  // VSX loads/stores support unaligned access.
393  if (ST->hasVSX()) {
394    if (LT.second == MVT::v2f64 || LT.second == MVT::v2i64)
395      return Cost;
396  }
397
398  bool UnalignedAltivec =
399    Src->isVectorTy() &&
400    Src->getPrimitiveSizeInBits() >= LT.second.getSizeInBits() &&
401    LT.second.getSizeInBits() == 128 &&
402    Opcode == Instruction::Load;
403
404  // PPC in general does not support unaligned loads and stores. They'll need
405  // to be decomposed based on the alignment factor.
406  unsigned SrcBytes = LT.second.getStoreSize();
407  if (SrcBytes && Alignment && Alignment < SrcBytes && !UnalignedAltivec) {
408    Cost += LT.first*(SrcBytes/Alignment-1);
409
410    // For a vector type, there is also scalarization overhead (only for
411    // stores, loads are expanded using the vector-load + permutation sequence,
412    // which is much less expensive).
413    if (Src->isVectorTy() && Opcode == Instruction::Store)
414      for (int i = 0, e = Src->getVectorNumElements(); i < e; ++i)
415        Cost += getVectorInstrCost(Instruction::ExtractElement, Src, i);
416  }
417
418  return Cost;
419}
420
421