AMDGPUISelLowering.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief This is the parent TargetLowering class for hardware code gen
12/// targets.
13//
14//===----------------------------------------------------------------------===//
15
16#include "AMDGPUISelLowering.h"
17#include "AMDGPU.h"
18#include "AMDGPUFrameLowering.h"
19#include "AMDGPURegisterInfo.h"
20#include "AMDGPUSubtarget.h"
21#include "AMDILIntrinsicInfo.h"
22#include "R600MachineFunctionInfo.h"
23#include "SIMachineFunctionInfo.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/SelectionDAG.h"
29#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DiagnosticInfo.h"
32#include "llvm/IR/DiagnosticPrinter.h"
33
34using namespace llvm;
35
36namespace {
37
38/// Diagnostic information for unimplemented or unsupported feature reporting.
39class DiagnosticInfoUnsupported : public DiagnosticInfo {
40private:
41  const Twine &Description;
42  const Function &Fn;
43
44  static int KindID;
45
46  static int getKindID() {
47    if (KindID == 0)
48      KindID = llvm::getNextAvailablePluginDiagnosticKind();
49    return KindID;
50  }
51
52public:
53  DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc,
54                          DiagnosticSeverity Severity = DS_Error)
55    : DiagnosticInfo(getKindID(), Severity),
56      Description(Desc),
57      Fn(Fn) { }
58
59  const Function &getFunction() const { return Fn; }
60  const Twine &getDescription() const { return Description; }
61
62  void print(DiagnosticPrinter &DP) const override {
63    DP << "unsupported " << getDescription() << " in " << Fn.getName();
64  }
65
66  static bool classof(const DiagnosticInfo *DI) {
67    return DI->getKind() == getKindID();
68  }
69};
70
71int DiagnosticInfoUnsupported::KindID = 0;
72}
73
74
75static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
76                      CCValAssign::LocInfo LocInfo,
77                      ISD::ArgFlagsTy ArgFlags, CCState &State) {
78  unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
79                                        ArgFlags.getOrigAlign());
80  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
81
82  return true;
83}
84
85#include "AMDGPUGenCallingConv.inc"
86
87AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
88  TargetLowering(TM, new TargetLoweringObjectFileELF()) {
89
90  Subtarget = &TM.getSubtarget<AMDGPUSubtarget>();
91
92  // Initialize target lowering borrowed from AMDIL
93  InitAMDILLowering();
94
95  // We need to custom lower some of the intrinsics
96  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
97
98  // Library functions.  These default to Expand, but we have instructions
99  // for them.
100  setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
101  setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
102  setOperationAction(ISD::FPOW,   MVT::f32, Legal);
103  setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
104  setOperationAction(ISD::FABS,   MVT::f32, Legal);
105  setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
106  setOperationAction(ISD::FRINT,  MVT::f32, Legal);
107  setOperationAction(ISD::FROUND, MVT::f32, Legal);
108  setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
109
110  // The hardware supports ROTR, but not ROTL
111  setOperationAction(ISD::ROTL, MVT::i32, Expand);
112
113  // Lower floating point store/load to integer store/load to reduce the number
114  // of patterns in tablegen.
115  setOperationAction(ISD::STORE, MVT::f32, Promote);
116  AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
117
118  setOperationAction(ISD::STORE, MVT::v2f32, Promote);
119  AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
120
121  setOperationAction(ISD::STORE, MVT::v4f32, Promote);
122  AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
123
124  setOperationAction(ISD::STORE, MVT::v8f32, Promote);
125  AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
126
127  setOperationAction(ISD::STORE, MVT::v16f32, Promote);
128  AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
129
130  setOperationAction(ISD::STORE, MVT::f64, Promote);
131  AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
132
133  setOperationAction(ISD::STORE, MVT::v2f64, Promote);
134  AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
135
136  // Custom lowering of vector stores is required for local address space
137  // stores.
138  setOperationAction(ISD::STORE, MVT::v4i32, Custom);
139  // XXX: Native v2i32 local address space stores are possible, but not
140  // currently implemented.
141  setOperationAction(ISD::STORE, MVT::v2i32, Custom);
142
143  setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
144  setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
145  setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
146
147  // XXX: This can be change to Custom, once ExpandVectorStores can
148  // handle 64-bit stores.
149  setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
150
151  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
152  setTruncStoreAction(MVT::i64, MVT::i8, Expand);
153  setTruncStoreAction(MVT::i64, MVT::i1, Expand);
154  setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
155  setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
156
157
158  setOperationAction(ISD::LOAD, MVT::f32, Promote);
159  AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
160
161  setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
162  AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
163
164  setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
165  AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
166
167  setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
168  AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
169
170  setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
171  AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
172
173  setOperationAction(ISD::LOAD, MVT::f64, Promote);
174  AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
175
176  setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
177  AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
178
179  setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
180  setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
181  setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
182  setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
183  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
184  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
185  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
186  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
187  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
188  setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
189
190  setLoadExtAction(ISD::EXTLOAD, MVT::v2i8, Expand);
191  setLoadExtAction(ISD::SEXTLOAD, MVT::v2i8, Expand);
192  setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i8, Expand);
193  setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
194  setLoadExtAction(ISD::SEXTLOAD, MVT::v4i8, Expand);
195  setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i8, Expand);
196  setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, Expand);
197  setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, Expand);
198  setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, Expand);
199  setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, Expand);
200  setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, Expand);
201  setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, Expand);
202
203  setOperationAction(ISD::BR_CC, MVT::i1, Expand);
204
205  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
206
207  setOperationAction(ISD::FNEG, MVT::v2f32, Expand);
208  setOperationAction(ISD::FNEG, MVT::v4f32, Expand);
209
210  setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
211
212  setOperationAction(ISD::MUL, MVT::i64, Expand);
213  setOperationAction(ISD::SUB, MVT::i64, Expand);
214
215  setOperationAction(ISD::UDIV, MVT::i32, Expand);
216  setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
217  setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
218  setOperationAction(ISD::UREM, MVT::i32, Expand);
219  setOperationAction(ISD::VSELECT, MVT::v2f32, Expand);
220  setOperationAction(ISD::VSELECT, MVT::v4f32, Expand);
221
222  static const MVT::SimpleValueType IntTypes[] = {
223    MVT::v2i32, MVT::v4i32
224  };
225
226  for (MVT VT : IntTypes) {
227    //Expand the following operations for the current type by default
228    setOperationAction(ISD::ADD,  VT, Expand);
229    setOperationAction(ISD::AND,  VT, Expand);
230    setOperationAction(ISD::FP_TO_SINT, VT, Expand);
231    setOperationAction(ISD::FP_TO_UINT, VT, Expand);
232    setOperationAction(ISD::MUL,  VT, Expand);
233    setOperationAction(ISD::OR,   VT, Expand);
234    setOperationAction(ISD::SHL,  VT, Expand);
235    setOperationAction(ISD::SINT_TO_FP, VT, Expand);
236    setOperationAction(ISD::SRL,  VT, Expand);
237    setOperationAction(ISD::SRA,  VT, Expand);
238    setOperationAction(ISD::SUB,  VT, Expand);
239    setOperationAction(ISD::UDIV, VT, Expand);
240    setOperationAction(ISD::UINT_TO_FP, VT, Expand);
241    setOperationAction(ISD::UREM, VT, Expand);
242    setOperationAction(ISD::SELECT, VT, Expand);
243    setOperationAction(ISD::VSELECT, VT, Expand);
244    setOperationAction(ISD::XOR,  VT, Expand);
245  }
246
247  static const MVT::SimpleValueType FloatTypes[] = {
248    MVT::v2f32, MVT::v4f32
249  };
250
251  for (MVT VT : FloatTypes) {
252    setOperationAction(ISD::FABS, VT, Expand);
253    setOperationAction(ISD::FADD, VT, Expand);
254    setOperationAction(ISD::FCOS, VT, Expand);
255    setOperationAction(ISD::FDIV, VT, Expand);
256    setOperationAction(ISD::FPOW, VT, Expand);
257    setOperationAction(ISD::FFLOOR, VT, Expand);
258    setOperationAction(ISD::FTRUNC, VT, Expand);
259    setOperationAction(ISD::FMUL, VT, Expand);
260    setOperationAction(ISD::FRINT, VT, Expand);
261    setOperationAction(ISD::FSQRT, VT, Expand);
262    setOperationAction(ISD::FSIN, VT, Expand);
263    setOperationAction(ISD::FSUB, VT, Expand);
264    setOperationAction(ISD::SELECT, VT, Expand);
265  }
266
267  setTargetDAGCombine(ISD::MUL);
268  setTargetDAGCombine(ISD::SELECT_CC);
269}
270
271//===----------------------------------------------------------------------===//
272// Target Information
273//===----------------------------------------------------------------------===//
274
275MVT AMDGPUTargetLowering::getVectorIdxTy() const {
276  return MVT::i32;
277}
278
279bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
280                                                   EVT CastTy) const {
281  if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
282    return true;
283
284  unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
285  unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
286
287  return ((LScalarSize <= CastScalarSize) ||
288          (CastScalarSize >= 32) ||
289          (LScalarSize < 32));
290}
291
292//===---------------------------------------------------------------------===//
293// Target Properties
294//===---------------------------------------------------------------------===//
295
296bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
297  assert(VT.isFloatingPoint());
298  return VT == MVT::f32;
299}
300
301bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
302  assert(VT.isFloatingPoint());
303  return VT == MVT::f32;
304}
305
306bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
307  // Truncate is just accessing a subregister.
308  return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
309}
310
311bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
312  // Truncate is just accessing a subregister.
313  return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
314         (Dest->getPrimitiveSizeInBits() % 32 == 0);
315}
316
317bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
318  const DataLayout *DL = getDataLayout();
319  unsigned SrcSize = DL->getTypeSizeInBits(Src->getScalarType());
320  unsigned DestSize = DL->getTypeSizeInBits(Dest->getScalarType());
321
322  return SrcSize == 32 && DestSize == 64;
323}
324
325bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
326  // Any register load of a 64-bit value really requires 2 32-bit moves. For all
327  // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
328  // this will enable reducing 64-bit operations the 32-bit, which is always
329  // good.
330  return Src == MVT::i32 && Dest == MVT::i64;
331}
332
333bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
334  // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
335  // limited number of native 64-bit operations. Shrinking an operation to fit
336  // in a single 32-bit register should always be helpful. As currently used,
337  // this is much less general than the name suggests, and is only used in
338  // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
339  // not profitable, and may actually be harmful.
340  return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
341}
342
343//===---------------------------------------------------------------------===//
344// TargetLowering Callbacks
345//===---------------------------------------------------------------------===//
346
347void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
348                             const SmallVectorImpl<ISD::InputArg> &Ins) const {
349
350  State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
351}
352
353SDValue AMDGPUTargetLowering::LowerReturn(
354                                     SDValue Chain,
355                                     CallingConv::ID CallConv,
356                                     bool isVarArg,
357                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
358                                     const SmallVectorImpl<SDValue> &OutVals,
359                                     SDLoc DL, SelectionDAG &DAG) const {
360  return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
361}
362
363//===---------------------------------------------------------------------===//
364// Target specific lowering
365//===---------------------------------------------------------------------===//
366
367SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
368                                        SmallVectorImpl<SDValue> &InVals) const {
369  SDValue Callee = CLI.Callee;
370  SelectionDAG &DAG = CLI.DAG;
371
372  const Function &Fn = *DAG.getMachineFunction().getFunction();
373
374  StringRef FuncName("<unknown>");
375
376  if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
377    FuncName = G->getSymbol();
378  else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
379    FuncName = G->getGlobal()->getName();
380
381  DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
382  DAG.getContext()->diagnose(NoCalls);
383  return SDValue();
384}
385
386SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG)
387    const {
388  switch (Op.getOpcode()) {
389  default:
390    Op.getNode()->dump();
391    llvm_unreachable("Custom lowering code for this"
392                     "instruction is not implemented yet!");
393    break;
394  // AMDIL DAG lowering
395  case ISD::SDIV: return LowerSDIV(Op, DAG);
396  case ISD::SREM: return LowerSREM(Op, DAG);
397  case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
398  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
399  // AMDGPU DAG lowering
400  case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
401  case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
402  case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
403  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
404  case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
405  case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
406  }
407  return Op;
408}
409
410void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
411                                              SmallVectorImpl<SDValue> &Results,
412                                              SelectionDAG &DAG) const {
413  switch (N->getOpcode()) {
414  case ISD::SIGN_EXTEND_INREG:
415    // Different parts of legalization seem to interpret which type of
416    // sign_extend_inreg is the one to check for custom lowering. The extended
417    // from type is what really matters, but some places check for custom
418    // lowering of the result type. This results in trying to use
419    // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
420    // nothing here and let the illegal result integer be handled normally.
421    return;
422  case ISD::UDIV: {
423    SDValue Op = SDValue(N, 0);
424    SDLoc DL(Op);
425    EVT VT = Op.getValueType();
426    SDValue UDIVREM = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT),
427      N->getOperand(0), N->getOperand(1));
428    Results.push_back(UDIVREM);
429    break;
430  }
431  case ISD::UREM: {
432    SDValue Op = SDValue(N, 0);
433    SDLoc DL(Op);
434    EVT VT = Op.getValueType();
435    SDValue UDIVREM = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT),
436      N->getOperand(0), N->getOperand(1));
437    Results.push_back(UDIVREM.getValue(1));
438    break;
439  }
440  case ISD::UDIVREM: {
441    SDValue Op = SDValue(N, 0);
442    SDLoc DL(Op);
443    EVT VT = Op.getValueType();
444    EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
445
446    SDValue one = DAG.getConstant(1, HalfVT);
447    SDValue zero = DAG.getConstant(0, HalfVT);
448
449    //HiLo split
450    SDValue LHS = N->getOperand(0);
451    SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
452    SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
453
454    SDValue RHS = N->getOperand(1);
455    SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
456    SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
457
458    // Get Speculative values
459    SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
460    SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
461
462    SDValue REM_Hi = zero;
463    SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
464
465    SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
466    SDValue DIV_Lo = zero;
467
468    const unsigned halfBitWidth = HalfVT.getSizeInBits();
469
470    for (unsigned i = 0; i < halfBitWidth; ++i) {
471      SDValue POS = DAG.getConstant(halfBitWidth - i - 1, HalfVT);
472      // Get Value of high bit
473      SDValue HBit;
474      if (halfBitWidth == 32 && Subtarget->hasBFE()) {
475        HBit = DAG.getNode(AMDGPUISD::BFE_U32, DL, HalfVT, LHS_Lo, POS, one);
476      } else {
477        HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
478        HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
479      }
480
481      SDValue Carry = DAG.getNode(ISD::SRL, DL, HalfVT, REM_Lo,
482        DAG.getConstant(halfBitWidth - 1, HalfVT));
483      REM_Hi = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Hi, one);
484      REM_Hi = DAG.getNode(ISD::OR, DL, HalfVT, REM_Hi, Carry);
485
486      REM_Lo = DAG.getNode(ISD::SHL, DL, HalfVT, REM_Lo, one);
487      REM_Lo = DAG.getNode(ISD::OR, DL, HalfVT, REM_Lo, HBit);
488
489
490      SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
491
492      SDValue BIT = DAG.getConstant(1 << (halfBitWidth - i - 1), HalfVT);
493      SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETGE);
494
495      DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
496
497      // Update REM
498
499      SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
500
501      REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETGE);
502      REM_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, zero);
503      REM_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, REM, one);
504    }
505
506    SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, REM_Hi);
507    SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
508    Results.push_back(DIV);
509    Results.push_back(REM);
510    break;
511  }
512  default:
513    return;
514  }
515}
516
517// FIXME: This implements accesses to initialized globals in the constant
518// address space by copying them to private and accessing that. It does not
519// properly handle illegal types or vectors. The private vector loads are not
520// scalarized, and the illegal scalars hit an assertion. This technique will not
521// work well with large initializers, and this should eventually be
522// removed. Initialized globals should be placed into a data section that the
523// runtime will load into a buffer before the kernel is executed. Uses of the
524// global need to be replaced with a pointer loaded from an implicit kernel
525// argument into this buffer holding the copy of the data, which will remove the
526// need for any of this.
527SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
528                                                       const GlobalValue *GV,
529                                                       const SDValue &InitPtr,
530                                                       SDValue Chain,
531                                                       SelectionDAG &DAG) const {
532  const DataLayout *TD = getTargetMachine().getDataLayout();
533  SDLoc DL(InitPtr);
534  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
535    EVT VT = EVT::getEVT(CI->getType());
536    PointerType *PtrTy = PointerType::get(CI->getType(), 0);
537    return DAG.getStore(Chain, DL,  DAG.getConstant(*CI, VT), InitPtr,
538                 MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
539                 TD->getPrefTypeAlignment(CI->getType()));
540  }
541
542  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
543    EVT VT = EVT::getEVT(CFP->getType());
544    PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
545    return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, VT), InitPtr,
546                 MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
547                 TD->getPrefTypeAlignment(CFP->getType()));
548  }
549
550  Type *InitTy = Init->getType();
551  if (StructType *ST = dyn_cast<StructType>(InitTy)) {
552    const StructLayout *SL = TD->getStructLayout(ST);
553
554    EVT PtrVT = InitPtr.getValueType();
555    SmallVector<SDValue, 8> Chains;
556
557    for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
558      SDValue Offset = DAG.getConstant(SL->getElementOffset(I), PtrVT);
559      SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
560
561      Constant *Elt = Init->getAggregateElement(I);
562      Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
563    }
564
565    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
566  }
567
568  if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
569    EVT PtrVT = InitPtr.getValueType();
570
571    unsigned NumElements;
572    if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
573      NumElements = AT->getNumElements();
574    else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
575      NumElements = VT->getNumElements();
576    else
577      llvm_unreachable("Unexpected type");
578
579    unsigned EltSize = TD->getTypeAllocSize(SeqTy->getElementType());
580    SmallVector<SDValue, 8> Chains;
581    for (unsigned i = 0; i < NumElements; ++i) {
582      SDValue Offset = DAG.getConstant(i * EltSize, PtrVT);
583      SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
584
585      Constant *Elt = Init->getAggregateElement(i);
586      Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
587    }
588
589    return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
590  }
591
592  Init->dump();
593  llvm_unreachable("Unhandled constant initializer");
594}
595
596SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
597                                                 SDValue Op,
598                                                 SelectionDAG &DAG) const {
599
600  const DataLayout *TD = getTargetMachine().getDataLayout();
601  GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
602  const GlobalValue *GV = G->getGlobal();
603
604  switch (G->getAddressSpace()) {
605  default: llvm_unreachable("Global Address lowering not implemented for this "
606                            "address space");
607  case AMDGPUAS::LOCAL_ADDRESS: {
608    // XXX: What does the value of G->getOffset() mean?
609    assert(G->getOffset() == 0 &&
610         "Do not know what to do with an non-zero offset");
611
612    unsigned Offset;
613    if (MFI->LocalMemoryObjects.count(GV) == 0) {
614      uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
615      Offset = MFI->LDSSize;
616      MFI->LocalMemoryObjects[GV] = Offset;
617      // XXX: Account for alignment?
618      MFI->LDSSize += Size;
619    } else {
620      Offset = MFI->LocalMemoryObjects[GV];
621    }
622
623    return DAG.getConstant(Offset, getPointerTy(G->getAddressSpace()));
624  }
625  case AMDGPUAS::CONSTANT_ADDRESS: {
626    MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
627    Type *EltType = GV->getType()->getElementType();
628    unsigned Size = TD->getTypeAllocSize(EltType);
629    unsigned Alignment = TD->getPrefTypeAlignment(EltType);
630
631    const GlobalVariable *Var = cast<GlobalVariable>(GV);
632    const Constant *Init = Var->getInitializer();
633    int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
634    SDValue InitPtr = DAG.getFrameIndex(FI,
635        getPointerTy(AMDGPUAS::PRIVATE_ADDRESS));
636    SmallVector<SDNode*, 8> WorkList;
637
638    for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
639                              E = DAG.getEntryNode()->use_end(); I != E; ++I) {
640      if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
641        continue;
642      WorkList.push_back(*I);
643    }
644    SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
645    for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
646                                           E = WorkList.end(); I != E; ++I) {
647      SmallVector<SDValue, 8> Ops;
648      Ops.push_back(Chain);
649      for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
650        Ops.push_back((*I)->getOperand(i));
651      }
652      DAG.UpdateNodeOperands(*I, Ops);
653    }
654    return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op),
655        getPointerTy(AMDGPUAS::CONSTANT_ADDRESS));
656  }
657  }
658}
659
660SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
661                                                  SelectionDAG &DAG) const {
662  SmallVector<SDValue, 8> Args;
663  SDValue A = Op.getOperand(0);
664  SDValue B = Op.getOperand(1);
665
666  DAG.ExtractVectorElements(A, Args);
667  DAG.ExtractVectorElements(B, Args);
668
669  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
670}
671
672SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
673                                                     SelectionDAG &DAG) const {
674
675  SmallVector<SDValue, 8> Args;
676  unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
677  EVT VT = Op.getValueType();
678  DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
679                            VT.getVectorNumElements());
680
681  return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
682}
683
684SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
685                                              SelectionDAG &DAG) const {
686
687  MachineFunction &MF = DAG.getMachineFunction();
688  const AMDGPUFrameLowering *TFL =
689   static_cast<const AMDGPUFrameLowering*>(getTargetMachine().getFrameLowering());
690
691  FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Op);
692  assert(FIN);
693
694  unsigned FrameIndex = FIN->getIndex();
695  unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
696  return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF),
697                         Op.getValueType());
698}
699
700SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
701    SelectionDAG &DAG) const {
702  unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
703  SDLoc DL(Op);
704  EVT VT = Op.getValueType();
705
706  switch (IntrinsicID) {
707    default: return Op;
708    case AMDGPUIntrinsic::AMDIL_abs:
709      return LowerIntrinsicIABS(Op, DAG);
710    case AMDGPUIntrinsic::AMDIL_exp:
711      return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
712    case AMDGPUIntrinsic::AMDGPU_lrp:
713      return LowerIntrinsicLRP(Op, DAG);
714    case AMDGPUIntrinsic::AMDIL_fraction:
715      return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
716    case AMDGPUIntrinsic::AMDIL_max:
717      return DAG.getNode(AMDGPUISD::FMAX, DL, VT, Op.getOperand(1),
718                                                  Op.getOperand(2));
719    case AMDGPUIntrinsic::AMDGPU_imax:
720      return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Op.getOperand(1),
721                                                  Op.getOperand(2));
722    case AMDGPUIntrinsic::AMDGPU_umax:
723      return DAG.getNode(AMDGPUISD::UMAX, DL, VT, Op.getOperand(1),
724                                                  Op.getOperand(2));
725    case AMDGPUIntrinsic::AMDIL_min:
726      return DAG.getNode(AMDGPUISD::FMIN, DL, VT, Op.getOperand(1),
727                                                  Op.getOperand(2));
728    case AMDGPUIntrinsic::AMDGPU_imin:
729      return DAG.getNode(AMDGPUISD::SMIN, DL, VT, Op.getOperand(1),
730                                                  Op.getOperand(2));
731    case AMDGPUIntrinsic::AMDGPU_umin:
732      return DAG.getNode(AMDGPUISD::UMIN, DL, VT, Op.getOperand(1),
733                                                  Op.getOperand(2));
734
735    case AMDGPUIntrinsic::AMDGPU_umul24:
736      return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
737                         Op.getOperand(1), Op.getOperand(2));
738
739    case AMDGPUIntrinsic::AMDGPU_imul24:
740      return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
741                         Op.getOperand(1), Op.getOperand(2));
742
743    case AMDGPUIntrinsic::AMDGPU_umad24:
744      return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
745                         Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
746
747    case AMDGPUIntrinsic::AMDGPU_imad24:
748      return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
749                         Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
750
751    case AMDGPUIntrinsic::AMDGPU_bfe_i32:
752      return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
753                         Op.getOperand(1),
754                         Op.getOperand(2),
755                         Op.getOperand(3));
756
757    case AMDGPUIntrinsic::AMDGPU_bfe_u32:
758      return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
759                         Op.getOperand(1),
760                         Op.getOperand(2),
761                         Op.getOperand(3));
762
763    case AMDGPUIntrinsic::AMDGPU_bfi:
764      return DAG.getNode(AMDGPUISD::BFI, DL, VT,
765                         Op.getOperand(1),
766                         Op.getOperand(2),
767                         Op.getOperand(3));
768
769    case AMDGPUIntrinsic::AMDGPU_bfm:
770      return DAG.getNode(AMDGPUISD::BFM, DL, VT,
771                         Op.getOperand(1),
772                         Op.getOperand(2));
773
774    case AMDGPUIntrinsic::AMDIL_round_nearest:
775      return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
776  }
777}
778
779///IABS(a) = SMAX(sub(0, a), a)
780SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
781                                                 SelectionDAG &DAG) const {
782  SDLoc DL(Op);
783  EVT VT = Op.getValueType();
784  SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
785                                              Op.getOperand(1));
786
787  return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Neg, Op.getOperand(1));
788}
789
790/// Linear Interpolation
791/// LRP(a, b, c) = muladd(a,  b, (1 - a) * c)
792SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
793                                                SelectionDAG &DAG) const {
794  SDLoc DL(Op);
795  EVT VT = Op.getValueType();
796  SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
797                                DAG.getConstantFP(1.0f, MVT::f32),
798                                Op.getOperand(1));
799  SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
800                                                    Op.getOperand(3));
801  return DAG.getNode(ISD::FADD, DL, VT,
802      DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
803      OneSubAC);
804}
805
806/// \brief Generate Min/Max node
807SDValue AMDGPUTargetLowering::CombineMinMax(SDNode *N,
808                                            SelectionDAG &DAG) const {
809  SDLoc DL(N);
810  EVT VT = N->getValueType(0);
811
812  SDValue LHS = N->getOperand(0);
813  SDValue RHS = N->getOperand(1);
814  SDValue True = N->getOperand(2);
815  SDValue False = N->getOperand(3);
816  SDValue CC = N->getOperand(4);
817
818  if (VT != MVT::f32 ||
819      !((LHS == True && RHS == False) || (LHS == False && RHS == True))) {
820    return SDValue();
821  }
822
823  ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
824  switch (CCOpcode) {
825  case ISD::SETOEQ:
826  case ISD::SETONE:
827  case ISD::SETUNE:
828  case ISD::SETNE:
829  case ISD::SETUEQ:
830  case ISD::SETEQ:
831  case ISD::SETFALSE:
832  case ISD::SETFALSE2:
833  case ISD::SETTRUE:
834  case ISD::SETTRUE2:
835  case ISD::SETUO:
836  case ISD::SETO:
837    llvm_unreachable("Operation should already be optimised!");
838  case ISD::SETULE:
839  case ISD::SETULT:
840  case ISD::SETOLE:
841  case ISD::SETOLT:
842  case ISD::SETLE:
843  case ISD::SETLT: {
844    unsigned Opc = (LHS == True) ? AMDGPUISD::FMIN : AMDGPUISD::FMAX;
845    return DAG.getNode(Opc, DL, VT, LHS, RHS);
846  }
847  case ISD::SETGT:
848  case ISD::SETGE:
849  case ISD::SETUGE:
850  case ISD::SETOGE:
851  case ISD::SETUGT:
852  case ISD::SETOGT: {
853    unsigned Opc = (LHS == True) ? AMDGPUISD::FMAX : AMDGPUISD::FMIN;
854    return DAG.getNode(Opc, DL, VT, LHS, RHS);
855  }
856  case ISD::SETCC_INVALID:
857    llvm_unreachable("Invalid setcc condcode!");
858  }
859  return SDValue();
860}
861
862SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue &Op,
863                                              SelectionDAG &DAG) const {
864  LoadSDNode *Load = dyn_cast<LoadSDNode>(Op);
865  EVT MemEltVT = Load->getMemoryVT().getVectorElementType();
866  EVT EltVT = Op.getValueType().getVectorElementType();
867  EVT PtrVT = Load->getBasePtr().getValueType();
868  unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
869  SmallVector<SDValue, 8> Loads;
870  SDLoc SL(Op);
871
872  for (unsigned i = 0, e = NumElts; i != e; ++i) {
873    SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
874                    DAG.getConstant(i * (MemEltVT.getSizeInBits() / 8), PtrVT));
875    Loads.push_back(DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
876                        Load->getChain(), Ptr,
877                        MachinePointerInfo(Load->getMemOperand()->getValue()),
878                        MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
879                        Load->getAlignment()));
880  }
881  return DAG.getNode(ISD::BUILD_VECTOR, SL, Op.getValueType(), Loads);
882}
883
884SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
885                                               SelectionDAG &DAG) const {
886  StoreSDNode *Store = dyn_cast<StoreSDNode>(Op);
887  EVT MemVT = Store->getMemoryVT();
888  unsigned MemBits = MemVT.getSizeInBits();
889
890  // Byte stores are really expensive, so if possible, try to pack 32-bit vector
891  // truncating store into an i32 store.
892  // XXX: We could also handle optimize other vector bitwidths.
893  if (!MemVT.isVector() || MemBits > 32) {
894    return SDValue();
895  }
896
897  SDLoc DL(Op);
898  SDValue Value = Store->getValue();
899  EVT VT = Value.getValueType();
900  EVT ElemVT = VT.getVectorElementType();
901  SDValue Ptr = Store->getBasePtr();
902  EVT MemEltVT = MemVT.getVectorElementType();
903  unsigned MemEltBits = MemEltVT.getSizeInBits();
904  unsigned MemNumElements = MemVT.getVectorNumElements();
905  unsigned PackedSize = MemVT.getStoreSizeInBits();
906  SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, MVT::i32);
907
908  assert(Value.getValueType().getScalarSizeInBits() >= 32);
909
910  SDValue PackedValue;
911  for (unsigned i = 0; i < MemNumElements; ++i) {
912    SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
913                              DAG.getConstant(i, MVT::i32));
914    Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
915    Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
916
917    SDValue Shift = DAG.getConstant(MemEltBits * i, MVT::i32);
918    Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
919
920    if (i == 0) {
921      PackedValue = Elt;
922    } else {
923      PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
924    }
925  }
926
927  if (PackedSize < 32) {
928    EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
929    return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
930                             Store->getMemOperand()->getPointerInfo(),
931                             PackedVT,
932                             Store->isNonTemporal(), Store->isVolatile(),
933                             Store->getAlignment());
934  }
935
936  return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
937                      Store->getMemOperand()->getPointerInfo(),
938                      Store->isVolatile(),  Store->isNonTemporal(),
939                      Store->getAlignment());
940}
941
942SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
943                                            SelectionDAG &DAG) const {
944  StoreSDNode *Store = cast<StoreSDNode>(Op);
945  EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
946  EVT EltVT = Store->getValue().getValueType().getVectorElementType();
947  EVT PtrVT = Store->getBasePtr().getValueType();
948  unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
949  SDLoc SL(Op);
950
951  SmallVector<SDValue, 8> Chains;
952
953  for (unsigned i = 0, e = NumElts; i != e; ++i) {
954    SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
955                              Store->getValue(), DAG.getConstant(i, MVT::i32));
956    SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT,
957                              Store->getBasePtr(),
958                            DAG.getConstant(i * (MemEltVT.getSizeInBits() / 8),
959                                            PtrVT));
960    Chains.push_back(DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
961                         MachinePointerInfo(Store->getMemOperand()->getValue()),
962                         MemEltVT, Store->isVolatile(), Store->isNonTemporal(),
963                         Store->getAlignment()));
964  }
965  return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
966}
967
968SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
969  SDLoc DL(Op);
970  LoadSDNode *Load = cast<LoadSDNode>(Op);
971  ISD::LoadExtType ExtType = Load->getExtensionType();
972  EVT VT = Op.getValueType();
973  EVT MemVT = Load->getMemoryVT();
974
975  if (ExtType != ISD::NON_EXTLOAD && !VT.isVector() && VT.getSizeInBits() > 32) {
976    // We can do the extload to 32-bits, and then need to separately extend to
977    // 64-bits.
978
979    SDValue ExtLoad32 = DAG.getExtLoad(ExtType, DL, MVT::i32,
980                                       Load->getChain(),
981                                       Load->getBasePtr(),
982                                       MemVT,
983                                       Load->getMemOperand());
984    return DAG.getNode(ISD::getExtForLoadExtType(ExtType), DL, VT, ExtLoad32);
985  }
986
987  if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
988    assert(VT == MVT::i1 && "Only i1 non-extloads expected");
989    // FIXME: Copied from PPC
990    // First, load into 32 bits, then truncate to 1 bit.
991
992    SDValue Chain = Load->getChain();
993    SDValue BasePtr = Load->getBasePtr();
994    MachineMemOperand *MMO = Load->getMemOperand();
995
996    SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
997                                   BasePtr, MVT::i8, MMO);
998    return DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
999  }
1000
1001  // Lower loads constant address space global variable loads
1002  if (Load->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS &&
1003      isa<GlobalVariable>(
1004          GetUnderlyingObject(Load->getMemOperand()->getValue()))) {
1005
1006    SDValue Ptr = DAG.getZExtOrTrunc(Load->getBasePtr(), DL,
1007        getPointerTy(AMDGPUAS::PRIVATE_ADDRESS));
1008    Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1009        DAG.getConstant(2, MVT::i32));
1010    return DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
1011                       Load->getChain(), Ptr,
1012                       DAG.getTargetConstant(0, MVT::i32), Op.getOperand(2));
1013  }
1014
1015  if (Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
1016      ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
1017    return SDValue();
1018
1019
1020  SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
1021                            DAG.getConstant(2, MVT::i32));
1022  SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
1023                            Load->getChain(), Ptr,
1024                            DAG.getTargetConstant(0, MVT::i32),
1025                            Op.getOperand(2));
1026  SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1027                                Load->getBasePtr(),
1028                                DAG.getConstant(0x3, MVT::i32));
1029  SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1030                                 DAG.getConstant(3, MVT::i32));
1031
1032  Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
1033
1034  EVT MemEltVT = MemVT.getScalarType();
1035  if (ExtType == ISD::SEXTLOAD) {
1036    SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1037    return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1038  }
1039
1040  return DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1041}
1042
1043SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1044  SDLoc DL(Op);
1045  SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
1046  if (Result.getNode()) {
1047    return Result;
1048  }
1049
1050  StoreSDNode *Store = cast<StoreSDNode>(Op);
1051  SDValue Chain = Store->getChain();
1052  if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1053       Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1054      Store->getValue().getValueType().isVector()) {
1055    return SplitVectorStore(Op, DAG);
1056  }
1057
1058  EVT MemVT = Store->getMemoryVT();
1059  if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
1060      MemVT.bitsLT(MVT::i32)) {
1061    unsigned Mask = 0;
1062    if (Store->getMemoryVT() == MVT::i8) {
1063      Mask = 0xff;
1064    } else if (Store->getMemoryVT() == MVT::i16) {
1065      Mask = 0xffff;
1066    }
1067    SDValue BasePtr = Store->getBasePtr();
1068    SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
1069                              DAG.getConstant(2, MVT::i32));
1070    SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
1071                              Chain, Ptr, DAG.getTargetConstant(0, MVT::i32));
1072
1073    SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
1074                                  DAG.getConstant(0x3, MVT::i32));
1075
1076    SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1077                                   DAG.getConstant(3, MVT::i32));
1078
1079    SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1080                                    Store->getValue());
1081
1082    SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1083
1084    SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1085                                       MaskedValue, ShiftAmt);
1086
1087    SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, DAG.getConstant(Mask, MVT::i32),
1088                                  ShiftAmt);
1089    DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
1090                          DAG.getConstant(0xffffffff, MVT::i32));
1091    Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1092
1093    SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1094    return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
1095                       Chain, Value, Ptr, DAG.getTargetConstant(0, MVT::i32));
1096  }
1097  return SDValue();
1098}
1099
1100SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1101                                           SelectionDAG &DAG) const {
1102  SDLoc DL(Op);
1103  EVT VT = Op.getValueType();
1104
1105  SDValue Num = Op.getOperand(0);
1106  SDValue Den = Op.getOperand(1);
1107
1108  // RCP =  URECIP(Den) = 2^32 / Den + e
1109  // e is rounding error.
1110  SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1111
1112  // RCP_LO = umulo(RCP, Den) */
1113  SDValue RCP_LO = DAG.getNode(ISD::UMULO, DL, VT, RCP, Den);
1114
1115  // RCP_HI = mulhu (RCP, Den) */
1116  SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1117
1118  // NEG_RCP_LO = -RCP_LO
1119  SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
1120                                                     RCP_LO);
1121
1122  // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1123  SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
1124                                           NEG_RCP_LO, RCP_LO,
1125                                           ISD::SETEQ);
1126  // Calculate the rounding error from the URECIP instruction
1127  // E = mulhu(ABS_RCP_LO, RCP)
1128  SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1129
1130  // RCP_A_E = RCP + E
1131  SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1132
1133  // RCP_S_E = RCP - E
1134  SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1135
1136  // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1137  SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
1138                                     RCP_A_E, RCP_S_E,
1139                                     ISD::SETEQ);
1140  // Quotient = mulhu(Tmp0, Num)
1141  SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1142
1143  // Num_S_Remainder = Quotient * Den
1144  SDValue Num_S_Remainder = DAG.getNode(ISD::UMULO, DL, VT, Quotient, Den);
1145
1146  // Remainder = Num - Num_S_Remainder
1147  SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1148
1149  // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1150  SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1151                                                 DAG.getConstant(-1, VT),
1152                                                 DAG.getConstant(0, VT),
1153                                                 ISD::SETUGE);
1154  // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1155  SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1156                                                  Num_S_Remainder,
1157                                                  DAG.getConstant(-1, VT),
1158                                                  DAG.getConstant(0, VT),
1159                                                  ISD::SETUGE);
1160  // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1161  SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1162                                               Remainder_GE_Zero);
1163
1164  // Calculate Division result:
1165
1166  // Quotient_A_One = Quotient + 1
1167  SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1168                                                         DAG.getConstant(1, VT));
1169
1170  // Quotient_S_One = Quotient - 1
1171  SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1172                                                         DAG.getConstant(1, VT));
1173
1174  // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1175  SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
1176                                     Quotient, Quotient_A_One, ISD::SETEQ);
1177
1178  // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1179  Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
1180                            Quotient_S_One, Div, ISD::SETEQ);
1181
1182  // Calculate Rem result:
1183
1184  // Remainder_S_Den = Remainder - Den
1185  SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1186
1187  // Remainder_A_Den = Remainder + Den
1188  SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1189
1190  // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1191  SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
1192                                    Remainder, Remainder_S_Den, ISD::SETEQ);
1193
1194  // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1195  Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
1196                            Remainder_A_Den, Rem, ISD::SETEQ);
1197  SDValue Ops[2] = {
1198    Div,
1199    Rem
1200  };
1201  return DAG.getMergeValues(Ops, DL);
1202}
1203
1204SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
1205                                               SelectionDAG &DAG) const {
1206  SDValue S0 = Op.getOperand(0);
1207  SDLoc DL(Op);
1208  if (Op.getValueType() != MVT::f32 || S0.getValueType() != MVT::i64)
1209    return SDValue();
1210
1211  // f32 uint_to_fp i64
1212  SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
1213                           DAG.getConstant(0, MVT::i32));
1214  SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
1215  SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
1216                           DAG.getConstant(1, MVT::i32));
1217  SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
1218  FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
1219                        DAG.getConstantFP(4294967296.0f, MVT::f32)); // 2^32
1220  return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
1221
1222}
1223
1224SDValue AMDGPUTargetLowering::ExpandSIGN_EXTEND_INREG(SDValue Op,
1225                                                      unsigned BitsDiff,
1226                                                      SelectionDAG &DAG) const {
1227  MVT VT = Op.getSimpleValueType();
1228  SDLoc DL(Op);
1229  SDValue Shift = DAG.getConstant(BitsDiff, VT);
1230  // Shift left by 'Shift' bits.
1231  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Op.getOperand(0), Shift);
1232  // Signed shift Right by 'Shift' bits.
1233  return DAG.getNode(ISD::SRA, DL, VT, Shl, Shift);
1234}
1235
1236SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1237                                                     SelectionDAG &DAG) const {
1238  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1239  MVT VT = Op.getSimpleValueType();
1240  MVT ScalarVT = VT.getScalarType();
1241
1242  if (!VT.isVector())
1243    return SDValue();
1244
1245  SDValue Src = Op.getOperand(0);
1246  SDLoc DL(Op);
1247
1248  // TODO: Don't scalarize on Evergreen?
1249  unsigned NElts = VT.getVectorNumElements();
1250  SmallVector<SDValue, 8> Args;
1251  DAG.ExtractVectorElements(Src, Args, 0, NElts);
1252
1253  SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
1254  for (unsigned I = 0; I < NElts; ++I)
1255    Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
1256
1257  return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
1258}
1259
1260//===----------------------------------------------------------------------===//
1261// Custom DAG optimizations
1262//===----------------------------------------------------------------------===//
1263
1264static bool isU24(SDValue Op, SelectionDAG &DAG) {
1265  APInt KnownZero, KnownOne;
1266  EVT VT = Op.getValueType();
1267  DAG.computeKnownBits(Op, KnownZero, KnownOne);
1268
1269  return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
1270}
1271
1272static bool isI24(SDValue Op, SelectionDAG &DAG) {
1273  EVT VT = Op.getValueType();
1274
1275  // In order for this to be a signed 24-bit value, bit 23, must
1276  // be a sign bit.
1277  return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
1278                                     // as unsigned 24-bit values.
1279         (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
1280}
1281
1282static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
1283
1284  SelectionDAG &DAG = DCI.DAG;
1285  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1286  EVT VT = Op.getValueType();
1287
1288  APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
1289  APInt KnownZero, KnownOne;
1290  TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
1291  if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
1292    DCI.CommitTargetLoweringOpt(TLO);
1293}
1294
1295template <typename IntTy>
1296static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
1297                               uint32_t Offset, uint32_t Width) {
1298  if (Width + Offset < 32) {
1299    IntTy Result = (Src0 << (32 - Offset - Width)) >> (32 - Width);
1300    return DAG.getConstant(Result, MVT::i32);
1301  }
1302
1303  return DAG.getConstant(Src0 >> Offset, MVT::i32);
1304}
1305
1306SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
1307                                            DAGCombinerInfo &DCI) const {
1308  SelectionDAG &DAG = DCI.DAG;
1309  SDLoc DL(N);
1310
1311  switch(N->getOpcode()) {
1312    default: break;
1313    case ISD::MUL: {
1314      EVT VT = N->getValueType(0);
1315      SDValue N0 = N->getOperand(0);
1316      SDValue N1 = N->getOperand(1);
1317      SDValue Mul;
1318
1319      // FIXME: Add support for 24-bit multiply with 64-bit output on SI.
1320      if (VT.isVector() || VT.getSizeInBits() > 32)
1321        break;
1322
1323      if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
1324        N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
1325        N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
1326        Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
1327      } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
1328        N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
1329        N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
1330        Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
1331      } else {
1332        break;
1333      }
1334
1335      // We need to use sext even for MUL_U24, because MUL_U24 is used
1336      // for signed multiply of 8 and 16-bit types.
1337      SDValue Reg = DAG.getSExtOrTrunc(Mul, DL, VT);
1338
1339      return Reg;
1340    }
1341    case AMDGPUISD::MUL_I24:
1342    case AMDGPUISD::MUL_U24: {
1343      SDValue N0 = N->getOperand(0);
1344      SDValue N1 = N->getOperand(1);
1345      simplifyI24(N0, DCI);
1346      simplifyI24(N1, DCI);
1347      return SDValue();
1348    }
1349    case ISD::SELECT_CC: {
1350      return CombineMinMax(N, DAG);
1351    }
1352  case AMDGPUISD::BFE_I32:
1353  case AMDGPUISD::BFE_U32: {
1354    assert(!N->getValueType(0).isVector() &&
1355           "Vector handling of BFE not implemented");
1356    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
1357    if (!Width)
1358      break;
1359
1360    uint32_t WidthVal = Width->getZExtValue() & 0x1f;
1361    if (WidthVal == 0)
1362      return DAG.getConstant(0, MVT::i32);
1363
1364    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
1365    if (!Offset)
1366      break;
1367
1368    SDValue BitsFrom = N->getOperand(0);
1369    uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
1370
1371    bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
1372
1373    if (OffsetVal == 0) {
1374      // This is already sign / zero extended, so try to fold away extra BFEs.
1375      unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
1376
1377      unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
1378      if (OpSignBits >= SignBits)
1379        return BitsFrom;
1380
1381      EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
1382      if (Signed) {
1383        // This is a sign_extend_inreg. Replace it to take advantage of existing
1384        // DAG Combines. If not eliminated, we will match back to BFE during
1385        // selection.
1386
1387        // TODO: The sext_inreg of extended types ends, although we can could
1388        // handle them in a single BFE.
1389        return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
1390                           DAG.getValueType(SmallVT));
1391      }
1392
1393      return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
1394    }
1395
1396    if (ConstantSDNode *Val = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
1397      if (Signed) {
1398        return constantFoldBFE<int32_t>(DAG,
1399                                        Val->getSExtValue(),
1400                                        OffsetVal,
1401                                        WidthVal);
1402      }
1403
1404      return constantFoldBFE<uint32_t>(DAG,
1405                                       Val->getZExtValue(),
1406                                       OffsetVal,
1407                                       WidthVal);
1408    }
1409
1410    APInt Demanded = APInt::getBitsSet(32,
1411                                       OffsetVal,
1412                                       OffsetVal + WidthVal);
1413
1414    if ((OffsetVal + WidthVal) >= 32) {
1415      SDValue ShiftVal = DAG.getConstant(OffsetVal, MVT::i32);
1416      return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
1417                         BitsFrom, ShiftVal);
1418    }
1419
1420    APInt KnownZero, KnownOne;
1421    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1422                                          !DCI.isBeforeLegalizeOps());
1423    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1424    if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
1425        TLI.SimplifyDemandedBits(BitsFrom, Demanded, KnownZero, KnownOne, TLO)) {
1426      DCI.CommitTargetLoweringOpt(TLO);
1427    }
1428
1429    break;
1430  }
1431  }
1432  return SDValue();
1433}
1434
1435//===----------------------------------------------------------------------===//
1436// Helper functions
1437//===----------------------------------------------------------------------===//
1438
1439void AMDGPUTargetLowering::getOriginalFunctionArgs(
1440                               SelectionDAG &DAG,
1441                               const Function *F,
1442                               const SmallVectorImpl<ISD::InputArg> &Ins,
1443                               SmallVectorImpl<ISD::InputArg> &OrigIns) const {
1444
1445  for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1446    if (Ins[i].ArgVT == Ins[i].VT) {
1447      OrigIns.push_back(Ins[i]);
1448      continue;
1449    }
1450
1451    EVT VT;
1452    if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
1453      // Vector has been split into scalars.
1454      VT = Ins[i].ArgVT.getVectorElementType();
1455    } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
1456               Ins[i].ArgVT.getVectorElementType() !=
1457               Ins[i].VT.getVectorElementType()) {
1458      // Vector elements have been promoted
1459      VT = Ins[i].ArgVT;
1460    } else {
1461      // Vector has been spilt into smaller vectors.
1462      VT = Ins[i].VT;
1463    }
1464
1465    ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
1466                      Ins[i].OrigArgIndex, Ins[i].PartOffset);
1467    OrigIns.push_back(Arg);
1468  }
1469}
1470
1471bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
1472  if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
1473    return CFP->isExactlyValue(1.0);
1474  }
1475  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
1476    return C->isAllOnesValue();
1477  }
1478  return false;
1479}
1480
1481bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
1482  if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
1483    return CFP->getValueAPF().isZero();
1484  }
1485  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
1486    return C->isNullValue();
1487  }
1488  return false;
1489}
1490
1491SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
1492                                                  const TargetRegisterClass *RC,
1493                                                   unsigned Reg, EVT VT) const {
1494  MachineFunction &MF = DAG.getMachineFunction();
1495  MachineRegisterInfo &MRI = MF.getRegInfo();
1496  unsigned VirtualRegister;
1497  if (!MRI.isLiveIn(Reg)) {
1498    VirtualRegister = MRI.createVirtualRegister(RC);
1499    MRI.addLiveIn(Reg, VirtualRegister);
1500  } else {
1501    VirtualRegister = MRI.getLiveInVirtReg(Reg);
1502  }
1503  return DAG.getRegister(VirtualRegister, VT);
1504}
1505
1506#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
1507
1508const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
1509  switch (Opcode) {
1510  default: return nullptr;
1511  // AMDIL DAG nodes
1512  NODE_NAME_CASE(CALL);
1513  NODE_NAME_CASE(UMUL);
1514  NODE_NAME_CASE(DIV_INF);
1515  NODE_NAME_CASE(RET_FLAG);
1516  NODE_NAME_CASE(BRANCH_COND);
1517
1518  // AMDGPU DAG nodes
1519  NODE_NAME_CASE(DWORDADDR)
1520  NODE_NAME_CASE(FRACT)
1521  NODE_NAME_CASE(FMAX)
1522  NODE_NAME_CASE(SMAX)
1523  NODE_NAME_CASE(UMAX)
1524  NODE_NAME_CASE(FMIN)
1525  NODE_NAME_CASE(SMIN)
1526  NODE_NAME_CASE(UMIN)
1527  NODE_NAME_CASE(BFE_U32)
1528  NODE_NAME_CASE(BFE_I32)
1529  NODE_NAME_CASE(BFI)
1530  NODE_NAME_CASE(BFM)
1531  NODE_NAME_CASE(MUL_U24)
1532  NODE_NAME_CASE(MUL_I24)
1533  NODE_NAME_CASE(MAD_U24)
1534  NODE_NAME_CASE(MAD_I24)
1535  NODE_NAME_CASE(URECIP)
1536  NODE_NAME_CASE(DOT4)
1537  NODE_NAME_CASE(EXPORT)
1538  NODE_NAME_CASE(CONST_ADDRESS)
1539  NODE_NAME_CASE(REGISTER_LOAD)
1540  NODE_NAME_CASE(REGISTER_STORE)
1541  NODE_NAME_CASE(LOAD_CONSTANT)
1542  NODE_NAME_CASE(LOAD_INPUT)
1543  NODE_NAME_CASE(SAMPLE)
1544  NODE_NAME_CASE(SAMPLEB)
1545  NODE_NAME_CASE(SAMPLED)
1546  NODE_NAME_CASE(SAMPLEL)
1547  NODE_NAME_CASE(STORE_MSKOR)
1548  NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
1549  }
1550}
1551
1552static void computeKnownBitsForMinMax(const SDValue Op0,
1553                                      const SDValue Op1,
1554                                      APInt &KnownZero,
1555                                      APInt &KnownOne,
1556                                      const SelectionDAG &DAG,
1557                                      unsigned Depth) {
1558  APInt Op0Zero, Op0One;
1559  APInt Op1Zero, Op1One;
1560  DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
1561  DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
1562
1563  KnownZero = Op0Zero & Op1Zero;
1564  KnownOne = Op0One & Op1One;
1565}
1566
1567void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
1568  const SDValue Op,
1569  APInt &KnownZero,
1570  APInt &KnownOne,
1571  const SelectionDAG &DAG,
1572  unsigned Depth) const {
1573
1574  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
1575
1576  APInt KnownZero2;
1577  APInt KnownOne2;
1578  unsigned Opc = Op.getOpcode();
1579
1580  switch (Opc) {
1581  default:
1582    break;
1583  case ISD::INTRINSIC_WO_CHAIN: {
1584    // FIXME: The intrinsic should just use the node.
1585    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
1586    case AMDGPUIntrinsic::AMDGPU_imax:
1587    case AMDGPUIntrinsic::AMDGPU_umax:
1588    case AMDGPUIntrinsic::AMDGPU_imin:
1589    case AMDGPUIntrinsic::AMDGPU_umin:
1590      computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
1591                                KnownZero, KnownOne, DAG, Depth);
1592      break;
1593    default:
1594      break;
1595    }
1596
1597    break;
1598  }
1599  case AMDGPUISD::SMAX:
1600  case AMDGPUISD::UMAX:
1601  case AMDGPUISD::SMIN:
1602  case AMDGPUISD::UMIN:
1603    computeKnownBitsForMinMax(Op.getOperand(0), Op.getOperand(1),
1604                              KnownZero, KnownOne, DAG, Depth);
1605    break;
1606
1607  case AMDGPUISD::BFE_I32:
1608  case AMDGPUISD::BFE_U32: {
1609    ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1610    if (!CWidth)
1611      return;
1612
1613    unsigned BitWidth = 32;
1614    uint32_t Width = CWidth->getZExtValue() & 0x1f;
1615    if (Width == 0) {
1616      KnownZero = APInt::getAllOnesValue(BitWidth);
1617      KnownOne = APInt::getNullValue(BitWidth);
1618      return;
1619    }
1620
1621    // FIXME: This could do a lot more. If offset is 0, should be the same as
1622    // sign_extend_inreg implementation, but that involves duplicating it.
1623    if (Opc == AMDGPUISD::BFE_I32)
1624      KnownOne = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
1625    else
1626      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
1627
1628    break;
1629  }
1630  }
1631}
1632
1633unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
1634  SDValue Op,
1635  const SelectionDAG &DAG,
1636  unsigned Depth) const {
1637  switch (Op.getOpcode()) {
1638  case AMDGPUISD::BFE_I32: {
1639    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1640    if (!Width)
1641      return 1;
1642
1643    unsigned SignBits = 32 - Width->getZExtValue() + 1;
1644    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1645    if (!Offset || !Offset->isNullValue())
1646      return SignBits;
1647
1648    // TODO: Could probably figure something out with non-0 offsets.
1649    unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
1650    return std::max(SignBits, Op0SignBits);
1651  }
1652
1653  case AMDGPUISD::BFE_U32: {
1654    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1655    return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
1656  }
1657
1658  default:
1659    return 1;
1660  }
1661}
1662