R600Instructions.td revision a2b4eb6d15a13de257319ac6231b5ab622cd02b1
1//===-- R600Instructions.td - R600 Instruction defs  -------*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// R600 Tablegen instruction definitions
11//
12//===----------------------------------------------------------------------===//
13
14include "R600Intrinsics.td"
15include "R600InstrFormats.td"
16
17class InstR600ISA <dag outs, dag ins, string asm, list<dag> pattern> :
18    InstR600 <outs, ins, asm, pattern, NullALU> {
19
20  let Namespace = "AMDGPU";
21}
22
23def MEMxi : Operand<iPTR> {
24  let MIOperandInfo = (ops R600_TReg32_X:$ptr, i32imm:$index);
25  let PrintMethod = "printMemOperand";
26}
27
28def MEMrr : Operand<iPTR> {
29  let MIOperandInfo = (ops R600_Reg32:$ptr, R600_Reg32:$index);
30}
31
32// Operands for non-registers
33
34class InstFlag<string PM = "printOperand", int Default = 0>
35    : OperandWithDefaultOps <i32, (ops (i32 Default))> {
36  let PrintMethod = PM;
37}
38
39// src_sel for ALU src operands, see also ALU_CONST, ALU_PARAM registers
40def SEL : OperandWithDefaultOps <i32, (ops (i32 -1))> {
41  let PrintMethod = "printSel";
42}
43def BANK_SWIZZLE : OperandWithDefaultOps <i32, (ops (i32 0))> {
44  let PrintMethod = "printBankSwizzle";
45}
46
47def LITERAL : InstFlag<"printLiteral">;
48
49def WRITE : InstFlag <"printWrite", 1>;
50def OMOD : InstFlag <"printOMOD">;
51def REL : InstFlag <"printRel">;
52def CLAMP : InstFlag <"printClamp">;
53def NEG : InstFlag <"printNeg">;
54def ABS : InstFlag <"printAbs">;
55def UEM : InstFlag <"printUpdateExecMask">;
56def UP : InstFlag <"printUpdatePred">;
57
58// XXX: The r600g finalizer in Mesa expects last to be one in most cases.
59// Once we start using the packetizer in this backend we should have this
60// default to 0.
61def LAST : InstFlag<"printLast", 1>;
62def RSel : Operand<i32> {
63  let PrintMethod = "printRSel";
64}
65def CT: Operand<i32> {
66  let PrintMethod = "printCT";
67}
68
69def FRAMEri : Operand<iPTR> {
70  let MIOperandInfo = (ops R600_Reg32:$ptr, i32imm:$index);
71}
72
73def ADDRParam : ComplexPattern<i32, 2, "SelectADDRParam", [], []>;
74def ADDRDWord : ComplexPattern<i32, 1, "SelectADDRDWord", [], []>;
75def ADDRVTX_READ : ComplexPattern<i32, 2, "SelectADDRVTX_READ", [], []>;
76def ADDRGA_CONST_OFFSET : ComplexPattern<i32, 1, "SelectGlobalValueConstantOffset", [], []>;
77def ADDRGA_VAR_OFFSET : ComplexPattern<i32, 2, "SelectGlobalValueVariableOffset", [], []>;
78
79
80def R600_Pred : PredicateOperand<i32, (ops R600_Predicate),
81                                     (ops PRED_SEL_OFF)>;
82
83
84let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
85
86// Class for instructions with only one source register.
87// If you add new ins to this instruction, make sure they are listed before
88// $literal, because the backend currently assumes that the last operand is
89// a literal.  Also be sure to update the enum R600Op1OperandIndex::ROI in
90// R600Defines.h, R600InstrInfo::buildDefaultInstruction(),
91// and R600InstrInfo::getOperandIdx().
92class R600_1OP <bits<11> inst, string opName, list<dag> pattern,
93                InstrItinClass itin = AnyALU> :
94    InstR600 <(outs R600_Reg32:$dst),
95              (ins WRITE:$write, OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
96                   R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
97                   LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
98                   BANK_SWIZZLE:$bank_swizzle),
99              !strconcat("  ", opName,
100                   "$clamp $last $dst$write$dst_rel$omod, "
101                   "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
102                   "$pred_sel $bank_swizzle"),
103              pattern,
104              itin>,
105    R600ALU_Word0,
106    R600ALU_Word1_OP2 <inst> {
107
108  let src1 = 0;
109  let src1_rel = 0;
110  let src1_neg = 0;
111  let src1_abs = 0;
112  let update_exec_mask = 0;
113  let update_pred = 0;
114  let HasNativeOperands = 1;
115  let Op1 = 1;
116  let ALUInst = 1;
117  let DisableEncoding = "$literal";
118  let UseNamedOperandTable = 1;
119
120  let Inst{31-0}  = Word0;
121  let Inst{63-32} = Word1;
122}
123
124class R600_1OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
125                    InstrItinClass itin = AnyALU> :
126    R600_1OP <inst, opName,
127              [(set R600_Reg32:$dst, (node R600_Reg32:$src0))]
128>;
129
130// If you add or change the operands for R600_2OP instructions, you must
131// also update the R600Op2OperandIndex::ROI enum in R600Defines.h,
132// R600InstrInfo::buildDefaultInstruction(), and R600InstrInfo::getOperandIdx().
133class R600_2OP <bits<11> inst, string opName, list<dag> pattern,
134                InstrItinClass itin = AnyALU> :
135  InstR600 <(outs R600_Reg32:$dst),
136          (ins UEM:$update_exec_mask, UP:$update_pred, WRITE:$write,
137               OMOD:$omod, REL:$dst_rel, CLAMP:$clamp,
138               R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, ABS:$src0_abs, SEL:$src0_sel,
139               R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, ABS:$src1_abs, SEL:$src1_sel,
140               LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
141               BANK_SWIZZLE:$bank_swizzle),
142          !strconcat("  ", opName,
143                "$clamp $last $update_exec_mask$update_pred$dst$write$dst_rel$omod, "
144                "$src0_neg$src0_abs$src0$src0_abs$src0_rel, "
145                "$src1_neg$src1_abs$src1$src1_abs$src1_rel, "
146                "$pred_sel $bank_swizzle"),
147          pattern,
148          itin>,
149    R600ALU_Word0,
150    R600ALU_Word1_OP2 <inst> {
151
152  let HasNativeOperands = 1;
153  let Op2 = 1;
154  let ALUInst = 1;
155  let DisableEncoding = "$literal";
156  let UseNamedOperandTable = 1;
157
158  let Inst{31-0}  = Word0;
159  let Inst{63-32} = Word1;
160}
161
162class R600_2OP_Helper <bits<11> inst, string opName, SDPatternOperator node,
163                       InstrItinClass itim = AnyALU> :
164    R600_2OP <inst, opName,
165              [(set R600_Reg32:$dst, (node R600_Reg32:$src0,
166                                           R600_Reg32:$src1))]
167>;
168
169// If you add our change the operands for R600_3OP instructions, you must
170// also update the R600Op3OperandIndex::ROI enum in R600Defines.h,
171// R600InstrInfo::buildDefaultInstruction(), and
172// R600InstrInfo::getOperandIdx().
173class R600_3OP <bits<5> inst, string opName, list<dag> pattern,
174                InstrItinClass itin = AnyALU> :
175  InstR600 <(outs R600_Reg32:$dst),
176          (ins REL:$dst_rel, CLAMP:$clamp,
177               R600_Reg32:$src0, NEG:$src0_neg, REL:$src0_rel, SEL:$src0_sel,
178               R600_Reg32:$src1, NEG:$src1_neg, REL:$src1_rel, SEL:$src1_sel,
179               R600_Reg32:$src2, NEG:$src2_neg, REL:$src2_rel, SEL:$src2_sel,
180               LAST:$last, R600_Pred:$pred_sel, LITERAL:$literal,
181               BANK_SWIZZLE:$bank_swizzle),
182          !strconcat("  ", opName, "$clamp $last $dst$dst_rel, "
183                             "$src0_neg$src0$src0_rel, "
184                             "$src1_neg$src1$src1_rel, "
185                             "$src2_neg$src2$src2_rel, "
186                             "$pred_sel"
187                             "$bank_swizzle"),
188          pattern,
189          itin>,
190    R600ALU_Word0,
191    R600ALU_Word1_OP3<inst>{
192
193  let HasNativeOperands = 1;
194  let DisableEncoding = "$literal";
195  let Op3 = 1;
196  let UseNamedOperandTable = 1;
197  let ALUInst = 1;
198
199  let Inst{31-0}  = Word0;
200  let Inst{63-32} = Word1;
201}
202
203class R600_REDUCTION <bits<11> inst, dag ins, string asm, list<dag> pattern,
204                      InstrItinClass itin = VecALU> :
205  InstR600 <(outs R600_Reg32:$dst),
206          ins,
207          asm,
208          pattern,
209          itin>;
210
211
212
213} // End mayLoad = 1, mayStore = 0, hasSideEffects = 0
214
215def TEX_SHADOW : PatLeaf<
216  (imm),
217  [{uint32_t TType = (uint32_t)N->getZExtValue();
218    return (TType >= 6 && TType <= 8) || (TType >= 11 && TType <= 13);
219  }]
220>;
221
222def TEX_RECT : PatLeaf<
223  (imm),
224  [{uint32_t TType = (uint32_t)N->getZExtValue();
225    return TType == 5;
226  }]
227>;
228
229def TEX_ARRAY : PatLeaf<
230  (imm),
231  [{uint32_t TType = (uint32_t)N->getZExtValue();
232    return TType == 9 || TType == 10 || TType == 16;
233  }]
234>;
235
236def TEX_SHADOW_ARRAY : PatLeaf<
237  (imm),
238  [{uint32_t TType = (uint32_t)N->getZExtValue();
239    return TType == 11 || TType == 12 || TType == 17;
240  }]
241>;
242
243def TEX_MSAA : PatLeaf<
244  (imm),
245  [{uint32_t TType = (uint32_t)N->getZExtValue();
246    return TType == 14;
247  }]
248>;
249
250def TEX_ARRAY_MSAA : PatLeaf<
251  (imm),
252  [{uint32_t TType = (uint32_t)N->getZExtValue();
253    return TType == 15;
254  }]
255>;
256
257class EG_CF_RAT <bits <8> cfinst, bits <6> ratinst, bits<4> ratid, bits<4> mask,
258                 dag outs, dag ins, string asm, list<dag> pattern> :
259    InstR600ISA <outs, ins, asm, pattern>,
260    CF_ALLOC_EXPORT_WORD0_RAT, CF_ALLOC_EXPORT_WORD1_BUF  {
261
262  let rat_id = ratid;
263  let rat_inst = ratinst;
264  let rim         = 0;
265  // XXX: Have a separate instruction for non-indexed writes.
266  let type        = 1;
267  let rw_rel      = 0;
268  let elem_size   = 0;
269
270  let array_size  = 0;
271  let comp_mask   = mask;
272  let burst_count = 0;
273  let vpm         = 0;
274  let cf_inst = cfinst;
275  let mark        = 0;
276  let barrier     = 1;
277
278  let Inst{31-0} = Word0;
279  let Inst{63-32} = Word1;
280  let IsExport = 1;
281
282}
283
284class VTX_READ <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
285    : InstR600ISA <outs, (ins MEMxi:$src_gpr), name, pattern>,
286      VTX_WORD1_GPR {
287
288  // Static fields
289  let DST_REL = 0;
290  // The docs say that if this bit is set, then DATA_FORMAT, NUM_FORMAT_ALL,
291  // FORMAT_COMP_ALL, SRF_MODE_ALL, and ENDIAN_SWAP fields will be ignored,
292  // however, based on my testing if USE_CONST_FIELDS is set, then all
293  // these fields need to be set to 0.
294  let USE_CONST_FIELDS = 0;
295  let NUM_FORMAT_ALL = 1;
296  let FORMAT_COMP_ALL = 0;
297  let SRF_MODE_ALL = 0;
298
299  let Inst{63-32} = Word1;
300  // LLVM can only encode 64-bit instructions, so these fields are manually
301  // encoded in R600CodeEmitter
302  //
303  // bits<16> OFFSET;
304  // bits<2>  ENDIAN_SWAP = 0;
305  // bits<1>  CONST_BUF_NO_STRIDE = 0;
306  // bits<1>  MEGA_FETCH = 0;
307  // bits<1>  ALT_CONST = 0;
308  // bits<2>  BUFFER_INDEX_MODE = 0;
309
310  // VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
311  // is done in R600CodeEmitter
312  //
313  // Inst{79-64} = OFFSET;
314  // Inst{81-80} = ENDIAN_SWAP;
315  // Inst{82}    = CONST_BUF_NO_STRIDE;
316  // Inst{83}    = MEGA_FETCH;
317  // Inst{84}    = ALT_CONST;
318  // Inst{86-85} = BUFFER_INDEX_MODE;
319  // Inst{95-86} = 0; Reserved
320
321  // VTX_WORD3 (Padding)
322  //
323  // Inst{127-96} = 0;
324
325  let VTXInst = 1;
326}
327
328class LoadParamFrag <PatFrag load_type> : PatFrag <
329  (ops node:$ptr), (load_type node:$ptr),
330  [{ return isConstantLoad(dyn_cast<LoadSDNode>(N), 0); }]
331>;
332
333def load_param : LoadParamFrag<load>;
334def load_param_exti8 : LoadParamFrag<az_extloadi8>;
335def load_param_exti16 : LoadParamFrag<az_extloadi16>;
336
337def isR600 : Predicate<"Subtarget.getGeneration() <= AMDGPUSubtarget::R700">;
338def isR700 : Predicate<"Subtarget.getGeneration() == AMDGPUSubtarget::R700">;
339def isEG : Predicate<
340  "Subtarget.getGeneration() >= AMDGPUSubtarget::EVERGREEN && "
341  "Subtarget.getGeneration() < AMDGPUSubtarget::SOUTHERN_ISLANDS && "
342  "!Subtarget.hasCaymanISA()">;
343
344def isCayman : Predicate<"Subtarget.hasCaymanISA()">;
345def isEGorCayman : Predicate<"Subtarget.getGeneration() == "
346                             "AMDGPUSubtarget::EVERGREEN"
347                            "|| Subtarget.getGeneration() =="
348                            "AMDGPUSubtarget::NORTHERN_ISLANDS">;
349
350def isR600toCayman : Predicate<
351                     "Subtarget.getGeneration() <= AMDGPUSubtarget::NORTHERN_ISLANDS">;
352
353//===----------------------------------------------------------------------===//
354// R600 SDNodes
355//===----------------------------------------------------------------------===//
356
357def INTERP_PAIR_XY :  AMDGPUShaderInst <
358  (outs R600_TReg32_X:$dst0, R600_TReg32_Y:$dst1),
359  (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2),
360  "INTERP_PAIR_XY $src0 $src1 $src2 : $dst0 dst1",
361  []>;
362
363def INTERP_PAIR_ZW :  AMDGPUShaderInst <
364  (outs R600_TReg32_Z:$dst0, R600_TReg32_W:$dst1),
365  (ins i32imm:$src0, R600_TReg32_Y:$src1, R600_TReg32_X:$src2),
366  "INTERP_PAIR_ZW $src0 $src1 $src2 : $dst0 dst1",
367  []>;
368
369def CONST_ADDRESS: SDNode<"AMDGPUISD::CONST_ADDRESS",
370  SDTypeProfile<1, -1, [SDTCisInt<0>, SDTCisPtrTy<1>]>,
371  [SDNPVariadic]
372>;
373
374def DOT4 : SDNode<"AMDGPUISD::DOT4",
375  SDTypeProfile<1, 8, [SDTCisFP<0>, SDTCisVT<1, f32>, SDTCisVT<2, f32>,
376      SDTCisVT<3, f32>, SDTCisVT<4, f32>, SDTCisVT<5, f32>,
377      SDTCisVT<6, f32>, SDTCisVT<7, f32>, SDTCisVT<8, f32>]>,
378  []
379>;
380
381def COS_HW : SDNode<"AMDGPUISD::COS_HW",
382  SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>
383>;
384
385def SIN_HW : SDNode<"AMDGPUISD::SIN_HW",
386  SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisFP<1>]>
387>;
388
389def TEXTURE_FETCH_Type : SDTypeProfile<1, 19, [SDTCisFP<0>]>;
390
391def TEXTURE_FETCH: SDNode<"AMDGPUISD::TEXTURE_FETCH", TEXTURE_FETCH_Type, []>;
392
393multiclass TexPattern<bits<32> TextureOp, Instruction inst, ValueType vt = v4f32> {
394def : Pat<(TEXTURE_FETCH (i32 TextureOp), vt:$SRC_GPR,
395          (i32 imm:$srcx), (i32 imm:$srcy), (i32 imm:$srcz), (i32 imm:$srcw),
396          (i32 imm:$offsetx), (i32 imm:$offsety), (i32 imm:$offsetz),
397          (i32 imm:$DST_SEL_X), (i32 imm:$DST_SEL_Y), (i32 imm:$DST_SEL_Z),
398          (i32 imm:$DST_SEL_W),
399          (i32 imm:$RESOURCE_ID), (i32 imm:$SAMPLER_ID),
400          (i32 imm:$COORD_TYPE_X), (i32 imm:$COORD_TYPE_Y), (i32 imm:$COORD_TYPE_Z),
401          (i32 imm:$COORD_TYPE_W)),
402          (inst R600_Reg128:$SRC_GPR,
403          imm:$srcx, imm:$srcy, imm:$srcz, imm:$srcw,
404          imm:$offsetx, imm:$offsety, imm:$offsetz,
405          imm:$DST_SEL_X, imm:$DST_SEL_Y, imm:$DST_SEL_Z,
406          imm:$DST_SEL_W,
407          imm:$RESOURCE_ID, imm:$SAMPLER_ID,
408          imm:$COORD_TYPE_X, imm:$COORD_TYPE_Y, imm:$COORD_TYPE_Z,
409          imm:$COORD_TYPE_W)>;
410}
411
412//===----------------------------------------------------------------------===//
413// Interpolation Instructions
414//===----------------------------------------------------------------------===//
415
416def INTERP_VEC_LOAD :  AMDGPUShaderInst <
417  (outs R600_Reg128:$dst),
418  (ins i32imm:$src0),
419  "INTERP_LOAD $src0 : $dst",
420  [(set R600_Reg128:$dst, (int_R600_interp_const imm:$src0))]>;
421
422def INTERP_XY : R600_2OP <0xD6, "INTERP_XY", []> {
423  let bank_swizzle = 5;
424}
425
426def INTERP_ZW : R600_2OP <0xD7, "INTERP_ZW", []> {
427  let bank_swizzle = 5;
428}
429
430def INTERP_LOAD_P0 : R600_1OP <0xE0, "INTERP_LOAD_P0", []>;
431
432//===----------------------------------------------------------------------===//
433// Export Instructions
434//===----------------------------------------------------------------------===//
435
436def ExportType : SDTypeProfile<0, 7, [SDTCisFP<0>, SDTCisInt<1>]>;
437
438def EXPORT: SDNode<"AMDGPUISD::EXPORT", ExportType,
439  [SDNPHasChain, SDNPSideEffect]>;
440
441class ExportWord0 {
442  field bits<32> Word0;
443
444  bits<13> arraybase;
445  bits<2> type;
446  bits<7> gpr;
447  bits<2> elem_size;
448
449  let Word0{12-0} = arraybase;
450  let Word0{14-13} = type;
451  let Word0{21-15} = gpr;
452  let Word0{22} = 0; // RW_REL
453  let Word0{29-23} = 0; // INDEX_GPR
454  let Word0{31-30} = elem_size;
455}
456
457class ExportSwzWord1 {
458  field bits<32> Word1;
459
460  bits<3> sw_x;
461  bits<3> sw_y;
462  bits<3> sw_z;
463  bits<3> sw_w;
464  bits<1> eop;
465  bits<8> inst;
466
467  let Word1{2-0} = sw_x;
468  let Word1{5-3} = sw_y;
469  let Word1{8-6} = sw_z;
470  let Word1{11-9} = sw_w;
471}
472
473class ExportBufWord1 {
474  field bits<32> Word1;
475
476  bits<12> arraySize;
477  bits<4> compMask;
478  bits<1> eop;
479  bits<8> inst;
480
481  let Word1{11-0} = arraySize;
482  let Word1{15-12} = compMask;
483}
484
485multiclass ExportPattern<Instruction ExportInst, bits<8> cf_inst> {
486  def : Pat<(int_R600_store_pixel_depth R600_Reg32:$reg),
487    (ExportInst
488        (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
489        0, 61, 0, 7, 7, 7, cf_inst, 0)
490  >;
491
492  def : Pat<(int_R600_store_pixel_stencil R600_Reg32:$reg),
493    (ExportInst
494        (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), R600_Reg32:$reg, sub0),
495        0, 61, 7, 0, 7, 7, cf_inst, 0)
496  >;
497
498  def : Pat<(int_R600_store_dummy (i32 imm:$type)),
499    (ExportInst
500        (v4f32 (IMPLICIT_DEF)), imm:$type, 0, 7, 7, 7, 7, cf_inst, 0)
501  >;
502
503  def : Pat<(int_R600_store_dummy 1),
504    (ExportInst
505        (v4f32 (IMPLICIT_DEF)), 1, 60, 7, 7, 7, 7, cf_inst, 0)
506  >;
507
508  def : Pat<(EXPORT (v4f32 R600_Reg128:$src), (i32 imm:$base), (i32 imm:$type),
509    (i32 imm:$swz_x), (i32 imm:$swz_y), (i32 imm:$swz_z), (i32 imm:$swz_w)),
510        (ExportInst R600_Reg128:$src, imm:$type, imm:$base,
511        imm:$swz_x, imm:$swz_y, imm:$swz_z, imm:$swz_w, cf_inst, 0)
512  >;
513
514}
515
516multiclass SteamOutputExportPattern<Instruction ExportInst,
517    bits<8> buf0inst, bits<8> buf1inst, bits<8> buf2inst, bits<8> buf3inst> {
518// Stream0
519  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
520      (i32 imm:$arraybase), (i32 0), (i32 imm:$mask)),
521      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
522      4095, imm:$mask, buf0inst, 0)>;
523// Stream1
524  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
525      (i32 imm:$arraybase), (i32 1), (i32 imm:$mask)),
526      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
527      4095, imm:$mask, buf1inst, 0)>;
528// Stream2
529  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
530      (i32 imm:$arraybase), (i32 2), (i32 imm:$mask)),
531      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
532      4095, imm:$mask, buf2inst, 0)>;
533// Stream3
534  def : Pat<(int_R600_store_stream_output (v4f32 R600_Reg128:$src),
535      (i32 imm:$arraybase), (i32 3), (i32 imm:$mask)),
536      (ExportInst R600_Reg128:$src, 0, imm:$arraybase,
537      4095, imm:$mask, buf3inst, 0)>;
538}
539
540// Export Instructions should not be duplicated by TailDuplication pass
541// (which assumes that duplicable instruction are affected by exec mask)
542let usesCustomInserter = 1, isNotDuplicable = 1 in {
543
544class ExportSwzInst : InstR600ISA<(
545    outs),
546    (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
547    RSel:$sw_x, RSel:$sw_y, RSel:$sw_z, RSel:$sw_w, i32imm:$inst,
548    i32imm:$eop),
549    !strconcat("EXPORT", " $gpr.$sw_x$sw_y$sw_z$sw_w"),
550    []>, ExportWord0, ExportSwzWord1 {
551  let elem_size = 3;
552  let Inst{31-0} = Word0;
553  let Inst{63-32} = Word1;
554  let IsExport = 1;
555}
556
557} // End usesCustomInserter = 1
558
559class ExportBufInst : InstR600ISA<(
560    outs),
561    (ins R600_Reg128:$gpr, i32imm:$type, i32imm:$arraybase,
562    i32imm:$arraySize, i32imm:$compMask, i32imm:$inst, i32imm:$eop),
563    !strconcat("EXPORT", " $gpr"),
564    []>, ExportWord0, ExportBufWord1 {
565  let elem_size = 0;
566  let Inst{31-0} = Word0;
567  let Inst{63-32} = Word1;
568  let IsExport = 1;
569}
570
571//===----------------------------------------------------------------------===//
572// Control Flow Instructions
573//===----------------------------------------------------------------------===//
574
575
576def KCACHE : InstFlag<"printKCache">;
577
578class ALU_CLAUSE<bits<4> inst, string OpName> : AMDGPUInst <(outs),
579(ins i32imm:$ADDR, i32imm:$KCACHE_BANK0, i32imm:$KCACHE_BANK1,
580KCACHE:$KCACHE_MODE0, KCACHE:$KCACHE_MODE1,
581i32imm:$KCACHE_ADDR0, i32imm:$KCACHE_ADDR1,
582i32imm:$COUNT, i32imm:$Enabled),
583!strconcat(OpName, " $COUNT, @$ADDR, "
584"KC0[$KCACHE_MODE0], KC1[$KCACHE_MODE1]"),
585[] >, CF_ALU_WORD0, CF_ALU_WORD1 {
586  field bits<64> Inst;
587
588  let CF_INST = inst;
589  let ALT_CONST = 0;
590  let WHOLE_QUAD_MODE = 0;
591  let BARRIER = 1;
592  let UseNamedOperandTable = 1;
593
594  let Inst{31-0} = Word0;
595  let Inst{63-32} = Word1;
596}
597
598class CF_WORD0_R600 {
599  field bits<32> Word0;
600
601  bits<32> ADDR;
602
603  let Word0 = ADDR;
604}
605
606class CF_CLAUSE_R600 <bits<7> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs),
607ins, AsmPrint, [] >, CF_WORD0_R600, CF_WORD1_R600 {
608  field bits<64> Inst;
609  bits<4> CNT;
610
611  let CF_INST = inst;
612  let BARRIER = 1;
613  let CF_CONST = 0;
614  let VALID_PIXEL_MODE = 0;
615  let COND = 0;
616  let COUNT = CNT{2-0};
617  let CALL_COUNT = 0;
618  let COUNT_3 = CNT{3};
619  let END_OF_PROGRAM = 0;
620  let WHOLE_QUAD_MODE = 0;
621
622  let Inst{31-0} = Word0;
623  let Inst{63-32} = Word1;
624}
625
626class CF_CLAUSE_EG <bits<8> inst, dag ins, string AsmPrint> : AMDGPUInst <(outs),
627ins, AsmPrint, [] >, CF_WORD0_EG, CF_WORD1_EG {
628  field bits<64> Inst;
629
630  let CF_INST = inst;
631  let BARRIER = 1;
632  let JUMPTABLE_SEL = 0;
633  let CF_CONST = 0;
634  let VALID_PIXEL_MODE = 0;
635  let COND = 0;
636  let END_OF_PROGRAM = 0;
637
638  let Inst{31-0} = Word0;
639  let Inst{63-32} = Word1;
640}
641
642def CF_ALU : ALU_CLAUSE<8, "ALU">;
643def CF_ALU_PUSH_BEFORE : ALU_CLAUSE<9, "ALU_PUSH_BEFORE">;
644def CF_ALU_POP_AFTER : ALU_CLAUSE<10, "ALU_POP_AFTER">;
645
646def FETCH_CLAUSE : AMDGPUInst <(outs),
647(ins i32imm:$addr), "Fetch clause starting at $addr:", [] > {
648  field bits<8> Inst;
649  bits<8> num;
650  let Inst = num;
651}
652
653def ALU_CLAUSE : AMDGPUInst <(outs),
654(ins i32imm:$addr), "ALU clause starting at $addr:", [] > {
655  field bits<8> Inst;
656  bits<8> num;
657  let Inst = num;
658}
659
660def LITERALS : AMDGPUInst <(outs),
661(ins LITERAL:$literal1, LITERAL:$literal2), "$literal1, $literal2", [] > {
662  field bits<64> Inst;
663  bits<32> literal1;
664  bits<32> literal2;
665
666  let Inst{31-0} = literal1;
667  let Inst{63-32} = literal2;
668}
669
670def PAD : AMDGPUInst <(outs), (ins), "PAD", [] > {
671  field bits<64> Inst;
672}
673
674let Predicates = [isR600toCayman] in {
675
676//===----------------------------------------------------------------------===//
677// Common Instructions R600, R700, Evergreen, Cayman
678//===----------------------------------------------------------------------===//
679
680def ADD : R600_2OP_Helper <0x0, "ADD", fadd>;
681// Non-IEEE MUL: 0 * anything = 0
682def MUL : R600_2OP_Helper <0x1, "MUL NON-IEEE", int_AMDGPU_mul>;
683def MUL_IEEE : R600_2OP_Helper <0x2, "MUL_IEEE", fmul>;
684def MAX : R600_2OP_Helper <0x3, "MAX", AMDGPUfmax>;
685def MIN : R600_2OP_Helper <0x4, "MIN", AMDGPUfmin>;
686
687// For the SET* instructions there is a naming conflict in TargetSelectionDAG.td,
688// so some of the instruction names don't match the asm string.
689// XXX: Use the defs in TargetSelectionDAG.td instead of intrinsics.
690def SETE : R600_2OP <
691  0x08, "SETE",
692  [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OEQ))]
693>;
694
695def SGT : R600_2OP <
696  0x09, "SETGT",
697  [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGT))]
698>;
699
700def SGE : R600_2OP <
701  0xA, "SETGE",
702  [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_OGE))]
703>;
704
705def SNE : R600_2OP <
706  0xB, "SETNE",
707  [(set f32:$dst, (selectcc f32:$src0, f32:$src1, FP_ONE, FP_ZERO, COND_UNE))]
708>;
709
710def SETE_DX10 : R600_2OP <
711  0xC, "SETE_DX10",
712  [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OEQ))]
713>;
714
715def SETGT_DX10 : R600_2OP <
716  0xD, "SETGT_DX10",
717  [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGT))]
718>;
719
720def SETGE_DX10 : R600_2OP <
721  0xE, "SETGE_DX10",
722  [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_OGE))]
723>;
724
725def SETNE_DX10 : R600_2OP <
726  0xF, "SETNE_DX10",
727  [(set i32:$dst, (selectcc f32:$src0, f32:$src1, -1, 0, COND_UNE))]
728>;
729
730def FRACT : R600_1OP_Helper <0x10, "FRACT", AMDGPUfract>;
731def TRUNC : R600_1OP_Helper <0x11, "TRUNC", int_AMDGPU_trunc>;
732def CEIL : R600_1OP_Helper <0x12, "CEIL", fceil>;
733def RNDNE : R600_1OP_Helper <0x13, "RNDNE", frint>;
734def FLOOR : R600_1OP_Helper <0x14, "FLOOR", ffloor>;
735
736def MOV : R600_1OP <0x19, "MOV", []>;
737
738let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in {
739
740class MOV_IMM <ValueType vt, Operand immType> : AMDGPUInst <
741  (outs R600_Reg32:$dst),
742  (ins immType:$imm),
743  "",
744  []
745>;
746
747} // end let isPseudo = 1, isCodeGenOnly = 1, usesCustomInserter = 1
748
749def MOV_IMM_I32 : MOV_IMM<i32, i32imm>;
750def : Pat <
751  (imm:$val),
752  (MOV_IMM_I32 imm:$val)
753>;
754
755def MOV_IMM_F32 : MOV_IMM<f32, f32imm>;
756def : Pat <
757  (fpimm:$val),
758  (MOV_IMM_F32  fpimm:$val)
759>;
760
761def PRED_SETE : R600_2OP <0x20, "PRED_SETE", []>;
762def PRED_SETGT : R600_2OP <0x21, "PRED_SETGT", []>;
763def PRED_SETGE : R600_2OP <0x22, "PRED_SETGE", []>;
764def PRED_SETNE : R600_2OP <0x23, "PRED_SETNE", []>;
765
766let hasSideEffects = 1 in {
767
768def KILLGT : R600_2OP <0x2D, "KILLGT", []>;
769
770} // end hasSideEffects
771
772def AND_INT : R600_2OP_Helper <0x30, "AND_INT", and>;
773def OR_INT : R600_2OP_Helper <0x31, "OR_INT", or>;
774def XOR_INT : R600_2OP_Helper <0x32, "XOR_INT", xor>;
775def NOT_INT : R600_1OP_Helper <0x33, "NOT_INT", not>;
776def ADD_INT : R600_2OP_Helper <0x34, "ADD_INT", add>;
777def SUB_INT : R600_2OP_Helper <0x35, "SUB_INT", sub>;
778def MAX_INT : R600_2OP_Helper <0x36, "MAX_INT", AMDGPUsmax>;
779def MIN_INT : R600_2OP_Helper <0x37, "MIN_INT", AMDGPUsmin>;
780def MAX_UINT : R600_2OP_Helper <0x38, "MAX_UINT", AMDGPUumax>;
781def MIN_UINT : R600_2OP_Helper <0x39, "MIN_UINT", AMDGPUumin>;
782
783def SETE_INT : R600_2OP <
784  0x3A, "SETE_INT",
785  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETEQ))]
786>;
787
788def SETGT_INT : R600_2OP <
789  0x3B, "SETGT_INT",
790  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGT))]
791>;
792
793def SETGE_INT : R600_2OP <
794  0x3C, "SETGE_INT",
795  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETGE))]
796>;
797
798def SETNE_INT : R600_2OP <
799  0x3D, "SETNE_INT",
800  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETNE))]
801>;
802
803def SETGT_UINT : R600_2OP <
804  0x3E, "SETGT_UINT",
805  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGT))]
806>;
807
808def SETGE_UINT : R600_2OP <
809  0x3F, "SETGE_UINT",
810  [(set i32:$dst, (selectcc i32:$src0, i32:$src1, -1, 0, SETUGE))]
811>;
812
813def PRED_SETE_INT : R600_2OP <0x42, "PRED_SETE_INT", []>;
814def PRED_SETGT_INT : R600_2OP <0x43, "PRED_SETGE_INT", []>;
815def PRED_SETGE_INT : R600_2OP <0x44, "PRED_SETGE_INT", []>;
816def PRED_SETNE_INT : R600_2OP <0x45, "PRED_SETNE_INT", []>;
817
818def CNDE_INT : R600_3OP <
819  0x1C, "CNDE_INT",
820  [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_EQ))]
821>;
822
823def CNDGE_INT : R600_3OP <
824  0x1E, "CNDGE_INT",
825  [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_GE))]
826>;
827
828def CNDGT_INT : R600_3OP <
829  0x1D, "CNDGT_INT",
830  [(set i32:$dst, (selectcc i32:$src0, 0, i32:$src1, i32:$src2, COND_GT))]
831>;
832
833//===----------------------------------------------------------------------===//
834// Texture instructions
835//===----------------------------------------------------------------------===//
836
837let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
838
839class R600_TEX <bits<11> inst, string opName> :
840  InstR600 <(outs R600_Reg128:$DST_GPR),
841          (ins R600_Reg128:$SRC_GPR,
842          RSel:$srcx, RSel:$srcy, RSel:$srcz, RSel:$srcw,
843          i32imm:$offsetx, i32imm:$offsety, i32imm:$offsetz,
844          RSel:$DST_SEL_X, RSel:$DST_SEL_Y, RSel:$DST_SEL_Z, RSel:$DST_SEL_W,
845          i32imm:$RESOURCE_ID, i32imm:$SAMPLER_ID,
846          CT:$COORD_TYPE_X, CT:$COORD_TYPE_Y, CT:$COORD_TYPE_Z,
847          CT:$COORD_TYPE_W),
848          !strconcat(opName,
849          " $DST_GPR.$DST_SEL_X$DST_SEL_Y$DST_SEL_Z$DST_SEL_W, "
850          "$SRC_GPR.$srcx$srcy$srcz$srcw "
851          "RID:$RESOURCE_ID SID:$SAMPLER_ID "
852          "CT:$COORD_TYPE_X$COORD_TYPE_Y$COORD_TYPE_Z$COORD_TYPE_W"),
853          [],
854          NullALU>, TEX_WORD0, TEX_WORD1, TEX_WORD2 {
855  let Inst{31-0} = Word0;
856  let Inst{63-32} = Word1;
857
858  let TEX_INST = inst{4-0};
859  let SRC_REL = 0;
860  let DST_REL = 0;
861  let LOD_BIAS = 0;
862
863  let INST_MOD = 0;
864  let FETCH_WHOLE_QUAD = 0;
865  let ALT_CONST = 0;
866  let SAMPLER_INDEX_MODE = 0;
867  let RESOURCE_INDEX_MODE = 0;
868
869  let TEXInst = 1;
870}
871
872} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
873
874
875
876def TEX_SAMPLE : R600_TEX <0x10, "TEX_SAMPLE">;
877def TEX_SAMPLE_C : R600_TEX <0x18, "TEX_SAMPLE_C">;
878def TEX_SAMPLE_L : R600_TEX <0x11, "TEX_SAMPLE_L">;
879def TEX_SAMPLE_C_L : R600_TEX <0x19, "TEX_SAMPLE_C_L">;
880def TEX_SAMPLE_LB : R600_TEX <0x12, "TEX_SAMPLE_LB">;
881def TEX_SAMPLE_C_LB : R600_TEX <0x1A, "TEX_SAMPLE_C_LB">;
882def TEX_LD : R600_TEX <0x03, "TEX_LD">;
883def TEX_LDPTR : R600_TEX <0x03, "TEX_LDPTR"> {
884  let INST_MOD = 1;
885}
886def TEX_GET_TEXTURE_RESINFO : R600_TEX <0x04, "TEX_GET_TEXTURE_RESINFO">;
887def TEX_GET_GRADIENTS_H : R600_TEX <0x07, "TEX_GET_GRADIENTS_H">;
888def TEX_GET_GRADIENTS_V : R600_TEX <0x08, "TEX_GET_GRADIENTS_V">;
889def TEX_SET_GRADIENTS_H : R600_TEX <0x0B, "TEX_SET_GRADIENTS_H">;
890def TEX_SET_GRADIENTS_V : R600_TEX <0x0C, "TEX_SET_GRADIENTS_V">;
891def TEX_SAMPLE_G : R600_TEX <0x14, "TEX_SAMPLE_G">;
892def TEX_SAMPLE_C_G : R600_TEX <0x1C, "TEX_SAMPLE_C_G">;
893
894defm : TexPattern<0, TEX_SAMPLE>;
895defm : TexPattern<1, TEX_SAMPLE_C>;
896defm : TexPattern<2, TEX_SAMPLE_L>;
897defm : TexPattern<3, TEX_SAMPLE_C_L>;
898defm : TexPattern<4, TEX_SAMPLE_LB>;
899defm : TexPattern<5, TEX_SAMPLE_C_LB>;
900defm : TexPattern<6, TEX_LD, v4i32>;
901defm : TexPattern<7, TEX_GET_TEXTURE_RESINFO, v4i32>;
902defm : TexPattern<8, TEX_GET_GRADIENTS_H>;
903defm : TexPattern<9, TEX_GET_GRADIENTS_V>;
904defm : TexPattern<10, TEX_LDPTR, v4i32>;
905
906//===----------------------------------------------------------------------===//
907// Helper classes for common instructions
908//===----------------------------------------------------------------------===//
909
910class MUL_LIT_Common <bits<5> inst> : R600_3OP <
911  inst, "MUL_LIT",
912  []
913>;
914
915class MULADD_Common <bits<5> inst> : R600_3OP <
916  inst, "MULADD",
917  []
918>;
919
920class MULADD_IEEE_Common <bits<5> inst> : R600_3OP <
921  inst, "MULADD_IEEE",
922  [(set f32:$dst, (fadd (fmul f32:$src0, f32:$src1), f32:$src2))]
923>;
924
925class CNDE_Common <bits<5> inst> : R600_3OP <
926  inst, "CNDE",
927  [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OEQ))]
928>;
929
930class CNDGT_Common <bits<5> inst> : R600_3OP <
931  inst, "CNDGT",
932  [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGT))]
933> {
934  let Itinerary = VecALU;
935}
936
937class CNDGE_Common <bits<5> inst> : R600_3OP <
938  inst, "CNDGE",
939  [(set f32:$dst, (selectcc f32:$src0, FP_ZERO, f32:$src1, f32:$src2, COND_OGE))]
940> {
941  let Itinerary = VecALU;
942}
943
944
945let isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"  in {
946class R600_VEC2OP<list<dag> pattern> : InstR600 <(outs R600_Reg32:$dst), (ins
947// Slot X
948   UEM:$update_exec_mask_X, UP:$update_pred_X, WRITE:$write_X,
949   OMOD:$omod_X, REL:$dst_rel_X, CLAMP:$clamp_X,
950   R600_TReg32_X:$src0_X, NEG:$src0_neg_X, REL:$src0_rel_X, ABS:$src0_abs_X, SEL:$src0_sel_X,
951   R600_TReg32_X:$src1_X, NEG:$src1_neg_X, REL:$src1_rel_X, ABS:$src1_abs_X, SEL:$src1_sel_X,
952   R600_Pred:$pred_sel_X,
953// Slot Y
954   UEM:$update_exec_mask_Y, UP:$update_pred_Y, WRITE:$write_Y,
955   OMOD:$omod_Y, REL:$dst_rel_Y, CLAMP:$clamp_Y,
956   R600_TReg32_Y:$src0_Y, NEG:$src0_neg_Y, REL:$src0_rel_Y, ABS:$src0_abs_Y, SEL:$src0_sel_Y,
957   R600_TReg32_Y:$src1_Y, NEG:$src1_neg_Y, REL:$src1_rel_Y, ABS:$src1_abs_Y, SEL:$src1_sel_Y,
958   R600_Pred:$pred_sel_Y,
959// Slot Z
960   UEM:$update_exec_mask_Z, UP:$update_pred_Z, WRITE:$write_Z,
961   OMOD:$omod_Z, REL:$dst_rel_Z, CLAMP:$clamp_Z,
962   R600_TReg32_Z:$src0_Z, NEG:$src0_neg_Z, REL:$src0_rel_Z, ABS:$src0_abs_Z, SEL:$src0_sel_Z,
963   R600_TReg32_Z:$src1_Z, NEG:$src1_neg_Z, REL:$src1_rel_Z, ABS:$src1_abs_Z, SEL:$src1_sel_Z,
964   R600_Pred:$pred_sel_Z,
965// Slot W
966   UEM:$update_exec_mask_W, UP:$update_pred_W, WRITE:$write_W,
967   OMOD:$omod_W, REL:$dst_rel_W, CLAMP:$clamp_W,
968   R600_TReg32_W:$src0_W, NEG:$src0_neg_W, REL:$src0_rel_W, ABS:$src0_abs_W, SEL:$src0_sel_W,
969   R600_TReg32_W:$src1_W, NEG:$src1_neg_W, REL:$src1_rel_W, ABS:$src1_abs_W, SEL:$src1_sel_W,
970   R600_Pred:$pred_sel_W,
971   LITERAL:$literal0, LITERAL:$literal1),
972  "",
973  pattern,
974  AnyALU> {
975
976  let UseNamedOperandTable = 1;
977
978}
979}
980
981def DOT_4 : R600_VEC2OP<[(set R600_Reg32:$dst, (DOT4
982  R600_TReg32_X:$src0_X, R600_TReg32_X:$src1_X,
983  R600_TReg32_Y:$src0_Y, R600_TReg32_Y:$src1_Y,
984  R600_TReg32_Z:$src0_Z, R600_TReg32_Z:$src1_Z,
985  R600_TReg32_W:$src0_W, R600_TReg32_W:$src1_W))]>;
986
987
988class DOT4_Common <bits<11> inst> : R600_2OP <inst, "DOT4", []>;
989
990
991let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in {
992multiclass CUBE_Common <bits<11> inst> {
993
994  def _pseudo : InstR600 <
995    (outs R600_Reg128:$dst),
996    (ins R600_Reg128:$src0),
997    "CUBE $dst $src0",
998    [(set v4f32:$dst, (int_AMDGPU_cube v4f32:$src0))],
999    VecALU
1000  > {
1001    let isPseudo = 1;
1002    let UseNamedOperandTable = 1;
1003  }
1004
1005  def _real : R600_2OP <inst, "CUBE", []>;
1006}
1007} // End mayLoad = 0, mayStore = 0, hasSideEffects = 0
1008
1009class EXP_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
1010  inst, "EXP_IEEE", fexp2
1011> {
1012  let Itinerary = TransALU;
1013}
1014
1015class FLT_TO_INT_Common <bits<11> inst> : R600_1OP_Helper <
1016  inst, "FLT_TO_INT", fp_to_sint
1017> {
1018  let Itinerary = TransALU;
1019}
1020
1021class INT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
1022  inst, "INT_TO_FLT", sint_to_fp
1023> {
1024  let Itinerary = TransALU;
1025}
1026
1027class FLT_TO_UINT_Common <bits<11> inst> : R600_1OP_Helper <
1028  inst, "FLT_TO_UINT", fp_to_uint
1029> {
1030  let Itinerary = TransALU;
1031}
1032
1033class UINT_TO_FLT_Common <bits<11> inst> : R600_1OP_Helper <
1034  inst, "UINT_TO_FLT", uint_to_fp
1035> {
1036  let Itinerary = TransALU;
1037}
1038
1039class LOG_CLAMPED_Common <bits<11> inst> : R600_1OP <
1040  inst, "LOG_CLAMPED", []
1041>;
1042
1043class LOG_IEEE_Common <bits<11> inst> : R600_1OP_Helper <
1044  inst, "LOG_IEEE", flog2
1045> {
1046  let Itinerary = TransALU;
1047}
1048
1049class LSHL_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHL", shl>;
1050class LSHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "LSHR", srl>;
1051class ASHR_Common <bits<11> inst> : R600_2OP_Helper <inst, "ASHR", sra>;
1052class MULHI_INT_Common <bits<11> inst> : R600_2OP_Helper <
1053  inst, "MULHI_INT", mulhs
1054> {
1055  let Itinerary = TransALU;
1056}
1057class MULHI_UINT_Common <bits<11> inst> : R600_2OP_Helper <
1058  inst, "MULHI", mulhu
1059> {
1060  let Itinerary = TransALU;
1061}
1062class MULLO_INT_Common <bits<11> inst> : R600_2OP_Helper <
1063  inst, "MULLO_INT", mul
1064> {
1065  let Itinerary = TransALU;
1066}
1067class MULLO_UINT_Common <bits<11> inst> : R600_2OP <inst, "MULLO_UINT", []> {
1068  let Itinerary = TransALU;
1069}
1070
1071class RECIP_CLAMPED_Common <bits<11> inst> : R600_1OP <
1072  inst, "RECIP_CLAMPED", []
1073> {
1074  let Itinerary = TransALU;
1075}
1076
1077class RECIP_IEEE_Common <bits<11> inst> : R600_1OP <
1078  inst, "RECIP_IEEE", [(set f32:$dst, (fdiv FP_ONE, f32:$src0))]
1079> {
1080  let Itinerary = TransALU;
1081}
1082
1083class RECIP_UINT_Common <bits<11> inst> : R600_1OP_Helper <
1084  inst, "RECIP_UINT", AMDGPUurecip
1085> {
1086  let Itinerary = TransALU;
1087}
1088
1089class RECIPSQRT_CLAMPED_Common <bits<11> inst> : R600_1OP_Helper <
1090  inst, "RECIPSQRT_CLAMPED", int_AMDGPU_rsq
1091> {
1092  let Itinerary = TransALU;
1093}
1094
1095class RECIPSQRT_IEEE_Common <bits<11> inst> : R600_1OP <
1096  inst, "RECIPSQRT_IEEE", []
1097> {
1098  let Itinerary = TransALU;
1099}
1100
1101class SIN_Common <bits<11> inst> : R600_1OP <
1102  inst, "SIN", [(set f32:$dst, (SIN_HW f32:$src0))]>{
1103  let Trig = 1;
1104  let Itinerary = TransALU;
1105}
1106
1107class COS_Common <bits<11> inst> : R600_1OP <
1108  inst, "COS", [(set f32:$dst, (COS_HW f32:$src0))]> {
1109  let Trig = 1;
1110  let Itinerary = TransALU;
1111}
1112
1113//===----------------------------------------------------------------------===//
1114// Helper patterns for complex intrinsics
1115//===----------------------------------------------------------------------===//
1116
1117multiclass DIV_Common <InstR600 recip_ieee> {
1118def : Pat<
1119  (int_AMDGPU_div f32:$src0, f32:$src1),
1120  (MUL_IEEE $src0, (recip_ieee $src1))
1121>;
1122
1123def : Pat<
1124  (fdiv f32:$src0, f32:$src1),
1125  (MUL_IEEE $src0, (recip_ieee $src1))
1126>;
1127}
1128
1129class TGSI_LIT_Z_Common <InstR600 mul_lit, InstR600 log_clamped, InstR600 exp_ieee>
1130  : Pat <
1131  (int_TGSI_lit_z f32:$src_x, f32:$src_y, f32:$src_w),
1132  (exp_ieee (mul_lit (log_clamped (MAX $src_y, (f32 ZERO))), $src_w, $src_x))
1133>;
1134
1135//===----------------------------------------------------------------------===//
1136// R600 / R700 Instructions
1137//===----------------------------------------------------------------------===//
1138
1139let Predicates = [isR600] in {
1140
1141  def MUL_LIT_r600 : MUL_LIT_Common<0x0C>;
1142  def MULADD_r600 : MULADD_Common<0x10>;
1143  def MULADD_IEEE_r600 : MULADD_IEEE_Common<0x14>;
1144  def CNDE_r600 : CNDE_Common<0x18>;
1145  def CNDGT_r600 : CNDGT_Common<0x19>;
1146  def CNDGE_r600 : CNDGE_Common<0x1A>;
1147  def DOT4_r600 : DOT4_Common<0x50>;
1148  defm CUBE_r600 : CUBE_Common<0x52>;
1149  def EXP_IEEE_r600 : EXP_IEEE_Common<0x61>;
1150  def LOG_CLAMPED_r600 : LOG_CLAMPED_Common<0x62>;
1151  def LOG_IEEE_r600 : LOG_IEEE_Common<0x63>;
1152  def RECIP_CLAMPED_r600 : RECIP_CLAMPED_Common<0x64>;
1153  def RECIP_IEEE_r600 : RECIP_IEEE_Common<0x66>;
1154  def RECIPSQRT_CLAMPED_r600 : RECIPSQRT_CLAMPED_Common<0x67>;
1155  def RECIPSQRT_IEEE_r600 : RECIPSQRT_IEEE_Common<0x69>;
1156  def FLT_TO_INT_r600 : FLT_TO_INT_Common<0x6b>;
1157  def INT_TO_FLT_r600 : INT_TO_FLT_Common<0x6c>;
1158  def FLT_TO_UINT_r600 : FLT_TO_UINT_Common<0x79>;
1159  def UINT_TO_FLT_r600 : UINT_TO_FLT_Common<0x6d>;
1160  def SIN_r600 : SIN_Common<0x6E>;
1161  def COS_r600 : COS_Common<0x6F>;
1162  def ASHR_r600 : ASHR_Common<0x70>;
1163  def LSHR_r600 : LSHR_Common<0x71>;
1164  def LSHL_r600 : LSHL_Common<0x72>;
1165  def MULLO_INT_r600 : MULLO_INT_Common<0x73>;
1166  def MULHI_INT_r600 : MULHI_INT_Common<0x74>;
1167  def MULLO_UINT_r600 : MULLO_UINT_Common<0x75>;
1168  def MULHI_UINT_r600 : MULHI_UINT_Common<0x76>;
1169  def RECIP_UINT_r600 : RECIP_UINT_Common <0x78>;
1170
1171  defm DIV_r600 : DIV_Common<RECIP_IEEE_r600>;
1172  def : POW_Common <LOG_IEEE_r600, EXP_IEEE_r600, MUL>;
1173  def TGSI_LIT_Z_r600 : TGSI_LIT_Z_Common<MUL_LIT_r600, LOG_CLAMPED_r600, EXP_IEEE_r600>;
1174
1175  def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_r600 $src))>;
1176
1177  def R600_ExportSwz : ExportSwzInst {
1178    let Word1{20-17} = 0; // BURST_COUNT
1179    let Word1{21} = eop;
1180    let Word1{22} = 0; // VALID_PIXEL_MODE
1181    let Word1{30-23} = inst;
1182    let Word1{31} = 1; // BARRIER
1183  }
1184  defm : ExportPattern<R600_ExportSwz, 39>;
1185
1186  def R600_ExportBuf : ExportBufInst {
1187    let Word1{20-17} = 0; // BURST_COUNT
1188    let Word1{21} = eop;
1189    let Word1{22} = 0; // VALID_PIXEL_MODE
1190    let Word1{30-23} = inst;
1191    let Word1{31} = 1; // BARRIER
1192  }
1193  defm : SteamOutputExportPattern<R600_ExportBuf, 0x20, 0x21, 0x22, 0x23>;
1194
1195  def CF_TC_R600 : CF_CLAUSE_R600<1, (ins i32imm:$ADDR, i32imm:$CNT),
1196  "TEX $CNT @$ADDR"> {
1197    let POP_COUNT = 0;
1198  }
1199  def CF_VC_R600 : CF_CLAUSE_R600<2, (ins i32imm:$ADDR, i32imm:$CNT),
1200  "VTX $CNT @$ADDR"> {
1201    let POP_COUNT = 0;
1202  }
1203  def WHILE_LOOP_R600 : CF_CLAUSE_R600<6, (ins i32imm:$ADDR),
1204  "LOOP_START_DX10 @$ADDR"> {
1205    let POP_COUNT = 0;
1206    let CNT = 0;
1207  }
1208  def END_LOOP_R600 : CF_CLAUSE_R600<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
1209    let POP_COUNT = 0;
1210    let CNT = 0;
1211  }
1212  def LOOP_BREAK_R600 : CF_CLAUSE_R600<9, (ins i32imm:$ADDR),
1213  "LOOP_BREAK @$ADDR"> {
1214    let POP_COUNT = 0;
1215    let CNT = 0;
1216  }
1217  def CF_CONTINUE_R600 : CF_CLAUSE_R600<8, (ins i32imm:$ADDR),
1218  "CONTINUE @$ADDR"> {
1219    let POP_COUNT = 0;
1220    let CNT = 0;
1221  }
1222  def CF_JUMP_R600 : CF_CLAUSE_R600<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1223  "JUMP @$ADDR POP:$POP_COUNT"> {
1224    let CNT = 0;
1225  }
1226  def CF_ELSE_R600 : CF_CLAUSE_R600<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1227  "ELSE @$ADDR POP:$POP_COUNT"> {
1228    let CNT = 0;
1229  }
1230  def CF_CALL_FS_R600 : CF_CLAUSE_R600<19, (ins), "CALL_FS"> {
1231    let ADDR = 0;
1232    let CNT = 0;
1233    let POP_COUNT = 0;
1234  }
1235  def POP_R600 : CF_CLAUSE_R600<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1236  "POP @$ADDR POP:$POP_COUNT"> {
1237    let CNT = 0;
1238  }
1239  def CF_END_R600 : CF_CLAUSE_R600<0, (ins), "CF_END"> {
1240    let CNT = 0;
1241    let POP_COUNT = 0;
1242    let ADDR = 0;
1243    let END_OF_PROGRAM = 1;
1244  }
1245
1246}
1247
1248//===----------------------------------------------------------------------===//
1249// R700 Only instructions
1250//===----------------------------------------------------------------------===//
1251
1252let Predicates = [isR700] in {
1253  def SIN_r700 : SIN_Common<0x6E>;
1254  def COS_r700 : COS_Common<0x6F>;
1255}
1256
1257//===----------------------------------------------------------------------===//
1258// Evergreen / Cayman store instructions
1259//===----------------------------------------------------------------------===//
1260
1261let Predicates = [isEGorCayman] in {
1262
1263class CF_MEM_RAT_CACHELESS <bits<6> rat_inst, bits<4> rat_id, bits<4> mask, dag ins,
1264                           string name, list<dag> pattern>
1265    : EG_CF_RAT <0x57, rat_inst, rat_id, mask, (outs), ins,
1266                 "MEM_RAT_CACHELESS "#name, pattern>;
1267
1268class CF_MEM_RAT <bits<6> rat_inst, bits<4> rat_id, dag ins, string name,
1269                  list<dag> pattern>
1270    : EG_CF_RAT <0x56, rat_inst, rat_id, 0xf /* mask */, (outs), ins,
1271                 "MEM_RAT "#name, pattern>;
1272
1273def RAT_MSKOR : CF_MEM_RAT <0x11, 0,
1274  (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr),
1275  "MSKOR $rw_gpr.XW, $index_gpr",
1276  [(mskor_global v4i32:$rw_gpr, i32:$index_gpr)]
1277> {
1278  let eop = 0;
1279}
1280
1281} // End Predicates = [isEGorCayman]
1282
1283
1284//===----------------------------------------------------------------------===//
1285// Evergreen Only instructions
1286//===----------------------------------------------------------------------===//
1287
1288let Predicates = [isEG] in {
1289
1290def RECIP_IEEE_eg : RECIP_IEEE_Common<0x86>;
1291defm DIV_eg : DIV_Common<RECIP_IEEE_eg>;
1292
1293def MULLO_INT_eg : MULLO_INT_Common<0x8F>;
1294def MULHI_INT_eg : MULHI_INT_Common<0x90>;
1295def MULLO_UINT_eg : MULLO_UINT_Common<0x91>;
1296def MULHI_UINT_eg : MULHI_UINT_Common<0x92>;
1297def RECIP_UINT_eg : RECIP_UINT_Common<0x94>;
1298def RECIPSQRT_CLAMPED_eg : RECIPSQRT_CLAMPED_Common<0x87>;
1299def EXP_IEEE_eg : EXP_IEEE_Common<0x81>;
1300def LOG_IEEE_eg : LOG_IEEE_Common<0x83>;
1301def RECIP_CLAMPED_eg : RECIP_CLAMPED_Common<0x84>;
1302def RECIPSQRT_IEEE_eg : RECIPSQRT_IEEE_Common<0x89>;
1303def SIN_eg : SIN_Common<0x8D>;
1304def COS_eg : COS_Common<0x8E>;
1305
1306def : POW_Common <LOG_IEEE_eg, EXP_IEEE_eg, MUL>;
1307def : Pat<(fsqrt f32:$src), (MUL $src, (RECIPSQRT_CLAMPED_eg $src))>;
1308
1309//===----------------------------------------------------------------------===//
1310// Memory read/write instructions
1311//===----------------------------------------------------------------------===//
1312
1313let usesCustomInserter = 1 in {
1314
1315// 32-bit store
1316def RAT_WRITE_CACHELESS_32_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x1,
1317  (ins R600_TReg32_X:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
1318  "STORE_RAW $rw_gpr, $index_gpr, $eop",
1319  [(global_store i32:$rw_gpr, i32:$index_gpr)]
1320>;
1321
1322// 64-bit store
1323def RAT_WRITE_CACHELESS_64_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0x3,
1324  (ins R600_Reg64:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
1325  "STORE_RAW $rw_gpr.XY, $index_gpr, $eop",
1326  [(global_store v2i32:$rw_gpr, i32:$index_gpr)]
1327>;
1328
1329//128-bit store
1330def RAT_WRITE_CACHELESS_128_eg : CF_MEM_RAT_CACHELESS <0x2, 0, 0xf,
1331  (ins R600_Reg128:$rw_gpr, R600_TReg32_X:$index_gpr, InstFlag:$eop),
1332  "STORE_RAW $rw_gpr.XYZW, $index_gpr, $eop",
1333  [(global_store v4i32:$rw_gpr, i32:$index_gpr)]
1334>;
1335
1336} // End usesCustomInserter = 1
1337
1338class VTX_READ_eg <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
1339    : VTX_WORD0_eg, VTX_READ<name, buffer_id, outs, pattern> {
1340
1341  // Static fields
1342  let VC_INST = 0;
1343  let FETCH_TYPE = 2;
1344  let FETCH_WHOLE_QUAD = 0;
1345  let BUFFER_ID = buffer_id;
1346  let SRC_REL = 0;
1347  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
1348  // to store vertex addresses in any channel, not just X.
1349  let SRC_SEL_X = 0;
1350
1351  let Inst{31-0} = Word0;
1352}
1353
1354class VTX_READ_8_eg <bits<8> buffer_id, list<dag> pattern>
1355    : VTX_READ_eg <"VTX_READ_8 $dst_gpr, $src_gpr", buffer_id,
1356                   (outs R600_TReg32_X:$dst_gpr), pattern> {
1357
1358  let MEGA_FETCH_COUNT = 1;
1359  let DST_SEL_X = 0;
1360  let DST_SEL_Y = 7;   // Masked
1361  let DST_SEL_Z = 7;   // Masked
1362  let DST_SEL_W = 7;   // Masked
1363  let DATA_FORMAT = 1; // FMT_8
1364}
1365
1366class VTX_READ_16_eg <bits<8> buffer_id, list<dag> pattern>
1367    : VTX_READ_eg <"VTX_READ_16 $dst_gpr, $src_gpr", buffer_id,
1368                   (outs R600_TReg32_X:$dst_gpr), pattern> {
1369  let MEGA_FETCH_COUNT = 2;
1370  let DST_SEL_X = 0;
1371  let DST_SEL_Y = 7;   // Masked
1372  let DST_SEL_Z = 7;   // Masked
1373  let DST_SEL_W = 7;   // Masked
1374  let DATA_FORMAT = 5; // FMT_16
1375
1376}
1377
1378class VTX_READ_32_eg <bits<8> buffer_id, list<dag> pattern>
1379    : VTX_READ_eg <"VTX_READ_32 $dst_gpr, $src_gpr", buffer_id,
1380                   (outs R600_TReg32_X:$dst_gpr), pattern> {
1381
1382  let MEGA_FETCH_COUNT = 4;
1383  let DST_SEL_X        = 0;
1384  let DST_SEL_Y        = 7;   // Masked
1385  let DST_SEL_Z        = 7;   // Masked
1386  let DST_SEL_W        = 7;   // Masked
1387  let DATA_FORMAT      = 0xD; // COLOR_32
1388
1389  // This is not really necessary, but there were some GPU hangs that appeared
1390  // to be caused by ALU instructions in the next instruction group that wrote
1391  // to the $src_gpr registers of the VTX_READ.
1392  // e.g.
1393  // %T3_X<def> = VTX_READ_PARAM_32_eg %T2_X<kill>, 24
1394  // %T2_X<def> = MOV %ZERO
1395  //Adding this constraint prevents this from happening.
1396  let Constraints = "$src_gpr.ptr = $dst_gpr";
1397}
1398
1399class VTX_READ_64_eg <bits<8> buffer_id, list<dag> pattern>
1400    : VTX_READ_eg <"VTX_READ_64 $dst_gpr.XY, $src_gpr", buffer_id,
1401                   (outs R600_Reg64:$dst_gpr), pattern> {
1402
1403  let MEGA_FETCH_COUNT = 8;
1404  let DST_SEL_X        = 0;
1405  let DST_SEL_Y        = 1;
1406  let DST_SEL_Z        = 7;
1407  let DST_SEL_W        = 7;
1408  let DATA_FORMAT      = 0x1D; // COLOR_32_32
1409}
1410
1411class VTX_READ_128_eg <bits<8> buffer_id, list<dag> pattern>
1412    : VTX_READ_eg <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr", buffer_id,
1413                   (outs R600_Reg128:$dst_gpr), pattern> {
1414
1415  let MEGA_FETCH_COUNT = 16;
1416  let DST_SEL_X        =  0;
1417  let DST_SEL_Y        =  1;
1418  let DST_SEL_Z        =  2;
1419  let DST_SEL_W        =  3;
1420  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32
1421
1422  // XXX: Need to force VTX_READ_128 instructions to write to the same register
1423  // that holds its buffer address to avoid potential hangs.  We can't use
1424  // the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst
1425  // registers are different sizes.
1426}
1427
1428//===----------------------------------------------------------------------===//
1429// VTX Read from parameter memory space
1430//===----------------------------------------------------------------------===//
1431
1432def VTX_READ_PARAM_8_eg : VTX_READ_8_eg <0,
1433  [(set i32:$dst_gpr, (load_param_exti8 ADDRVTX_READ:$src_gpr))]
1434>;
1435
1436def VTX_READ_PARAM_16_eg : VTX_READ_16_eg <0,
1437  [(set i32:$dst_gpr, (load_param_exti16 ADDRVTX_READ:$src_gpr))]
1438>;
1439
1440def VTX_READ_PARAM_32_eg : VTX_READ_32_eg <0,
1441  [(set i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
1442>;
1443
1444def VTX_READ_PARAM_64_eg : VTX_READ_64_eg <0,
1445  [(set v2i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
1446>;
1447
1448def VTX_READ_PARAM_128_eg : VTX_READ_128_eg <0,
1449  [(set v4i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
1450>;
1451
1452//===----------------------------------------------------------------------===//
1453// VTX Read from global memory space
1454//===----------------------------------------------------------------------===//
1455
1456// 8-bit reads
1457def VTX_READ_GLOBAL_8_eg : VTX_READ_8_eg <1,
1458  [(set i32:$dst_gpr, (az_extloadi8_global ADDRVTX_READ:$src_gpr))]
1459>;
1460
1461def VTX_READ_GLOBAL_16_eg : VTX_READ_16_eg <1,
1462  [(set i32:$dst_gpr, (az_extloadi16_global ADDRVTX_READ:$src_gpr))]
1463>;
1464
1465// 32-bit reads
1466def VTX_READ_GLOBAL_32_eg : VTX_READ_32_eg <1,
1467  [(set i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
1468>;
1469
1470// 64-bit reads
1471def VTX_READ_GLOBAL_64_eg : VTX_READ_64_eg <1,
1472  [(set v2i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
1473>;
1474
1475// 128-bit reads
1476def VTX_READ_GLOBAL_128_eg : VTX_READ_128_eg <1,
1477  [(set v4i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
1478>;
1479
1480} // End Predicates = [isEG]
1481
1482//===----------------------------------------------------------------------===//
1483// Evergreen / Cayman Instructions
1484//===----------------------------------------------------------------------===//
1485
1486let Predicates = [isEGorCayman] in {
1487
1488  // BFE_UINT - bit_extract, an optimization for mask and shift
1489  // Src0 = Input
1490  // Src1 = Offset
1491  // Src2 = Width
1492  //
1493  // bit_extract = (Input << (32 - Offset - Width)) >> (32 - Width)
1494  //
1495  // Example Usage:
1496  // (Offset, Width)
1497  //
1498  // (0, 8)           = (Input << 24) >> 24  = (Input &  0xff)       >> 0
1499  // (8, 8)           = (Input << 16) >> 24  = (Input &  0xffff)     >> 8
1500  // (16,8)           = (Input <<  8) >> 24  = (Input &  0xffffff)   >> 16
1501  // (24,8)           = (Input <<  0) >> 24  = (Input &  0xffffffff) >> 24
1502  def BFE_UINT_eg : R600_3OP <0x4, "BFE_UINT",
1503    [(set i32:$dst, (int_AMDIL_bit_extract_u32 i32:$src0, i32:$src1,
1504                                               i32:$src2))],
1505    VecALU
1506  >;
1507  def : BFEPattern <BFE_UINT_eg>;
1508
1509  def BFI_INT_eg : R600_3OP <0x06, "BFI_INT", [], VecALU>;
1510  defm : BFIPatterns <BFI_INT_eg>;
1511
1512  def MULADD_UINT24_eg : R600_3OP <0x10, "MULADD_UINT24",
1513    [(set i32:$dst, (add (mul U24:$src0, U24:$src1), i32:$src2))], VecALU
1514  >;
1515  def BIT_ALIGN_INT_eg : R600_3OP <0xC, "BIT_ALIGN_INT", [], VecALU>;
1516  def : ROTRPattern <BIT_ALIGN_INT_eg>;
1517
1518  def MULADD_eg : MULADD_Common<0x14>;
1519  def MULADD_IEEE_eg : MULADD_IEEE_Common<0x18>;
1520  def ASHR_eg : ASHR_Common<0x15>;
1521  def LSHR_eg : LSHR_Common<0x16>;
1522  def LSHL_eg : LSHL_Common<0x17>;
1523  def CNDE_eg : CNDE_Common<0x19>;
1524  def CNDGT_eg : CNDGT_Common<0x1A>;
1525  def CNDGE_eg : CNDGE_Common<0x1B>;
1526  def MUL_LIT_eg : MUL_LIT_Common<0x1F>;
1527  def LOG_CLAMPED_eg : LOG_CLAMPED_Common<0x82>;
1528  def MUL_UINT24_eg : R600_2OP <0xB5, "MUL_UINT24",
1529    [(set i32:$dst, (mul U24:$src0, U24:$src1))], VecALU
1530  >;
1531  def DOT4_eg : DOT4_Common<0xBE>;
1532  defm CUBE_eg : CUBE_Common<0xC0>;
1533
1534let hasSideEffects = 1 in {
1535  def MOVA_INT_eg : R600_1OP <0xCC, "MOVA_INT", []>;
1536}
1537
1538  def TGSI_LIT_Z_eg : TGSI_LIT_Z_Common<MUL_LIT_eg, LOG_CLAMPED_eg, EXP_IEEE_eg>;
1539
1540  def FLT_TO_INT_eg : FLT_TO_INT_Common<0x50> {
1541    let Pattern = [];
1542    let Itinerary = AnyALU;
1543  }
1544
1545  def INT_TO_FLT_eg : INT_TO_FLT_Common<0x9B>;
1546
1547  def FLT_TO_UINT_eg : FLT_TO_UINT_Common<0x9A> {
1548    let Pattern = [];
1549  }
1550
1551  def UINT_TO_FLT_eg : UINT_TO_FLT_Common<0x9C>;
1552
1553def GROUP_BARRIER : InstR600 <
1554    (outs), (ins), "  GROUP_BARRIER", [(int_AMDGPU_barrier_local)], AnyALU>,
1555    R600ALU_Word0,
1556    R600ALU_Word1_OP2 <0x54> {
1557
1558  let dst = 0;
1559  let dst_rel = 0;
1560  let src0 = 0;
1561  let src0_rel = 0;
1562  let src0_neg = 0;
1563  let src0_abs = 0;
1564  let src1 = 0;
1565  let src1_rel = 0;
1566  let src1_neg = 0;
1567  let src1_abs = 0;
1568  let write = 0;
1569  let omod = 0;
1570  let clamp = 0;
1571  let last = 1;
1572  let bank_swizzle = 0;
1573  let pred_sel = 0;
1574  let update_exec_mask = 0;
1575  let update_pred = 0;
1576
1577  let Inst{31-0}  = Word0;
1578  let Inst{63-32} = Word1;
1579
1580  let ALUInst = 1;
1581}
1582
1583//===----------------------------------------------------------------------===//
1584// LDS Instructions
1585//===----------------------------------------------------------------------===//
1586class R600_LDS  <bits<6> op, dag outs, dag ins, string asm,
1587                 list<dag> pattern = []> :
1588
1589    InstR600 <outs, ins, asm, pattern, XALU>,
1590    R600_ALU_LDS_Word0,
1591    R600LDS_Word1 {
1592
1593  bits<6>  offset = 0;
1594  let lds_op = op;
1595
1596  let Word1{27} = offset{0};
1597  let Word1{12} = offset{1};
1598  let Word1{28} = offset{2};
1599  let Word1{31} = offset{3};
1600  let Word0{12} = offset{4};
1601  let Word0{25} = offset{5};
1602
1603
1604  let Inst{31-0}  = Word0;
1605  let Inst{63-32} = Word1;
1606
1607  let ALUInst = 1;
1608  let HasNativeOperands = 1;
1609  let UseNamedOperandTable = 1;
1610}
1611
1612class R600_LDS_1A <bits<6> lds_op, string name, list<dag> pattern> : R600_LDS <
1613  lds_op,
1614  (outs R600_Reg32:$dst),
1615  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
1616       LAST:$last, R600_Pred:$pred_sel,
1617       BANK_SWIZZLE:$bank_swizzle),
1618  "  "#name#" $last OQAP, $src0$src0_rel $pred_sel",
1619  pattern
1620  > {
1621
1622  let src1 = 0;
1623  let src1_rel = 0;
1624  let src2 = 0;
1625  let src2_rel = 0;
1626
1627  let Defs = [OQAP];
1628  let usesCustomInserter = 1;
1629  let LDS_1A = 1;
1630  let DisableEncoding = "$dst";
1631}
1632
1633class R600_LDS_1A1D <bits<6> lds_op, dag outs, string name, list<dag> pattern,
1634                     string dst =""> :
1635    R600_LDS <
1636  lds_op, outs,
1637  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
1638       R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
1639       LAST:$last, R600_Pred:$pred_sel,
1640       BANK_SWIZZLE:$bank_swizzle),
1641  "  "#name#" $last "#dst#"$src0$src0_rel, $src1$src1_rel, $pred_sel",
1642  pattern
1643  > {
1644
1645  field string BaseOp;
1646
1647  let src2 = 0;
1648  let src2_rel = 0;
1649  let LDS_1A1D = 1;
1650}
1651
1652class R600_LDS_1A1D_NORET <bits<6> lds_op, string name, list<dag> pattern> :
1653    R600_LDS_1A1D <lds_op, (outs), name, pattern> {
1654  let BaseOp = name;
1655}
1656
1657class R600_LDS_1A1D_RET <bits<6> lds_op, string name, list<dag> pattern> :
1658    R600_LDS_1A1D <lds_op,  (outs R600_Reg32:$dst), name##"_RET", pattern, "OQAP, "> {
1659
1660  let BaseOp = name;
1661  let usesCustomInserter = 1;
1662  let DisableEncoding = "$dst";
1663  let Defs = [OQAP];
1664}
1665
1666class R600_LDS_1A2D <bits<6> lds_op, string name, list<dag> pattern> :
1667    R600_LDS <
1668  lds_op,
1669  (outs),
1670  (ins R600_Reg32:$src0, REL:$src0_rel, SEL:$src0_sel,
1671       R600_Reg32:$src1, REL:$src1_rel, SEL:$src1_sel,
1672       R600_Reg32:$src2, REL:$src2_rel, SEL:$src2_sel,
1673       LAST:$last, R600_Pred:$pred_sel, BANK_SWIZZLE:$bank_swizzle),
1674  "  "#name# "$last $src0$src0_rel, $src1$src1_rel, $src2$src2_rel, $pred_sel",
1675  pattern> {
1676  let LDS_1A2D = 1;
1677}
1678
1679def LDS_ADD : R600_LDS_1A1D_NORET <0x0, "LDS_ADD", [] >;
1680def LDS_SUB : R600_LDS_1A1D_NORET <0x1, "LDS_SUB", [] >;
1681def LDS_WRITE : R600_LDS_1A1D_NORET <0xD, "LDS_WRITE",
1682  [(local_store (i32 R600_Reg32:$src1), R600_Reg32:$src0)]
1683>;
1684def LDS_BYTE_WRITE : R600_LDS_1A1D_NORET<0x12, "LDS_BYTE_WRITE",
1685  [(truncstorei8_local i32:$src1, i32:$src0)]
1686>;
1687def LDS_SHORT_WRITE : R600_LDS_1A1D_NORET<0x13, "LDS_SHORT_WRITE",
1688  [(truncstorei16_local i32:$src1, i32:$src0)]
1689>;
1690def LDS_ADD_RET : R600_LDS_1A1D_RET <0x20, "LDS_ADD",
1691  [(set i32:$dst, (atomic_load_add_local i32:$src0, i32:$src1))]
1692>;
1693def LDS_SUB_RET : R600_LDS_1A1D_RET <0x21, "LDS_SUB",
1694  [(set i32:$dst, (atomic_load_sub_local i32:$src0, i32:$src1))]
1695>;
1696def LDS_READ_RET : R600_LDS_1A <0x32, "LDS_READ_RET",
1697  [(set (i32 R600_Reg32:$dst), (local_load R600_Reg32:$src0))]
1698>;
1699def LDS_BYTE_READ_RET : R600_LDS_1A <0x36, "LDS_BYTE_READ_RET",
1700  [(set i32:$dst, (sextloadi8_local i32:$src0))]
1701>;
1702def LDS_UBYTE_READ_RET : R600_LDS_1A <0x37, "LDS_UBYTE_READ_RET",
1703  [(set i32:$dst, (az_extloadi8_local i32:$src0))]
1704>;
1705def LDS_SHORT_READ_RET : R600_LDS_1A <0x38, "LDS_SHORT_READ_RET",
1706  [(set i32:$dst, (sextloadi16_local i32:$src0))]
1707>;
1708def LDS_USHORT_READ_RET : R600_LDS_1A <0x39, "LDS_USHORT_READ_RET",
1709  [(set i32:$dst, (az_extloadi16_local i32:$src0))]
1710>;
1711
1712  // TRUNC is used for the FLT_TO_INT instructions to work around a
1713  // perceived problem where the rounding modes are applied differently
1714  // depending on the instruction and the slot they are in.
1715  // See:
1716  // https://bugs.freedesktop.org/show_bug.cgi?id=50232
1717  // Mesa commit: a1a0974401c467cb86ef818f22df67c21774a38c
1718  //
1719  // XXX: Lowering SELECT_CC will sometimes generate fp_to_[su]int nodes,
1720  // which do not need to be truncated since the fp values are 0.0f or 1.0f.
1721  // We should look into handling these cases separately.
1722  def : Pat<(fp_to_sint f32:$src0), (FLT_TO_INT_eg (TRUNC $src0))>;
1723
1724  def : Pat<(fp_to_uint f32:$src0), (FLT_TO_UINT_eg (TRUNC $src0))>;
1725
1726  // SHA-256 Patterns
1727  def : SHA256MaPattern <BFI_INT_eg, XOR_INT>;
1728
1729  def EG_ExportSwz : ExportSwzInst {
1730    let Word1{19-16} = 0; // BURST_COUNT
1731    let Word1{20} = 0; // VALID_PIXEL_MODE
1732    let Word1{21} = eop;
1733    let Word1{29-22} = inst;
1734    let Word1{30} = 0; // MARK
1735    let Word1{31} = 1; // BARRIER
1736  }
1737  defm : ExportPattern<EG_ExportSwz, 83>;
1738
1739  def EG_ExportBuf : ExportBufInst {
1740    let Word1{19-16} = 0; // BURST_COUNT
1741    let Word1{20} = 0; // VALID_PIXEL_MODE
1742    let Word1{21} = eop;
1743    let Word1{29-22} = inst;
1744    let Word1{30} = 0; // MARK
1745    let Word1{31} = 1; // BARRIER
1746  }
1747  defm : SteamOutputExportPattern<EG_ExportBuf, 0x40, 0x41, 0x42, 0x43>;
1748
1749  def CF_TC_EG : CF_CLAUSE_EG<1, (ins i32imm:$ADDR, i32imm:$COUNT),
1750  "TEX $COUNT @$ADDR"> {
1751    let POP_COUNT = 0;
1752  }
1753  def CF_VC_EG : CF_CLAUSE_EG<2, (ins i32imm:$ADDR, i32imm:$COUNT),
1754  "VTX $COUNT @$ADDR"> {
1755    let POP_COUNT = 0;
1756  }
1757  def WHILE_LOOP_EG : CF_CLAUSE_EG<6, (ins i32imm:$ADDR),
1758  "LOOP_START_DX10 @$ADDR"> {
1759    let POP_COUNT = 0;
1760    let COUNT = 0;
1761  }
1762  def END_LOOP_EG : CF_CLAUSE_EG<5, (ins i32imm:$ADDR), "END_LOOP @$ADDR"> {
1763    let POP_COUNT = 0;
1764    let COUNT = 0;
1765  }
1766  def LOOP_BREAK_EG : CF_CLAUSE_EG<9, (ins i32imm:$ADDR),
1767  "LOOP_BREAK @$ADDR"> {
1768    let POP_COUNT = 0;
1769    let COUNT = 0;
1770  }
1771  def CF_CONTINUE_EG : CF_CLAUSE_EG<8, (ins i32imm:$ADDR),
1772  "CONTINUE @$ADDR"> {
1773    let POP_COUNT = 0;
1774    let COUNT = 0;
1775  }
1776  def CF_JUMP_EG : CF_CLAUSE_EG<10, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1777  "JUMP @$ADDR POP:$POP_COUNT"> {
1778    let COUNT = 0;
1779  }
1780  def CF_ELSE_EG : CF_CLAUSE_EG<13, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1781  "ELSE @$ADDR POP:$POP_COUNT"> {
1782    let COUNT = 0;
1783  }
1784  def CF_CALL_FS_EG : CF_CLAUSE_EG<19, (ins), "CALL_FS"> {
1785    let ADDR = 0;
1786    let COUNT = 0;
1787    let POP_COUNT = 0;
1788  }
1789  def POP_EG : CF_CLAUSE_EG<14, (ins i32imm:$ADDR, i32imm:$POP_COUNT),
1790  "POP @$ADDR POP:$POP_COUNT"> {
1791    let COUNT = 0;
1792  }
1793  def CF_END_EG :  CF_CLAUSE_EG<0, (ins), "CF_END"> {
1794    let COUNT = 0;
1795    let POP_COUNT = 0;
1796    let ADDR = 0;
1797    let END_OF_PROGRAM = 1;
1798  }
1799
1800} // End Predicates = [isEGorCayman]
1801
1802//===----------------------------------------------------------------------===//
1803// Regist loads and stores - for indirect addressing
1804//===----------------------------------------------------------------------===//
1805
1806defm R600_ : RegisterLoadStore <R600_Reg32, FRAMEri, ADDRIndirect>;
1807
1808//===----------------------------------------------------------------------===//
1809// Cayman Instructions
1810//===----------------------------------------------------------------------===//
1811
1812let Predicates = [isCayman] in {
1813
1814def MULADD_INT24_cm : R600_3OP <0x08, "MULADD_INT24",
1815  [(set i32:$dst, (add (mul I24:$src0, I24:$src1), i32:$src2))], VecALU
1816>;
1817def MUL_INT24_cm : R600_2OP <0x5B, "MUL_INT24",
1818  [(set i32:$dst, (mul I24:$src0, I24:$src1))], VecALU
1819>;
1820
1821let isVector = 1 in {
1822
1823def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>;
1824
1825def MULLO_INT_cm : MULLO_INT_Common<0x8F>;
1826def MULHI_INT_cm : MULHI_INT_Common<0x90>;
1827def MULLO_UINT_cm : MULLO_UINT_Common<0x91>;
1828def MULHI_UINT_cm : MULHI_UINT_Common<0x92>;
1829def RECIPSQRT_CLAMPED_cm : RECIPSQRT_CLAMPED_Common<0x87>;
1830def EXP_IEEE_cm : EXP_IEEE_Common<0x81>;
1831def LOG_IEEE_cm : LOG_IEEE_Common<0x83>;
1832def RECIP_CLAMPED_cm : RECIP_CLAMPED_Common<0x84>;
1833def RECIPSQRT_IEEE_cm : RECIPSQRT_IEEE_Common<0x89>;
1834def SIN_cm : SIN_Common<0x8D>;
1835def COS_cm : COS_Common<0x8E>;
1836} // End isVector = 1
1837
1838def : POW_Common <LOG_IEEE_cm, EXP_IEEE_cm, MUL>;
1839
1840defm DIV_cm : DIV_Common<RECIP_IEEE_cm>;
1841
1842// RECIP_UINT emulation for Cayman
1843// The multiplication scales from [0,1] to the unsigned integer range
1844def : Pat <
1845  (AMDGPUurecip i32:$src0),
1846  (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg $src0)),
1847                            (MOV_IMM_I32 CONST.FP_UINT_MAX_PLUS_1)))
1848>;
1849
1850  def CF_END_CM : CF_CLAUSE_EG<32, (ins), "CF_END"> {
1851    let ADDR = 0;
1852    let POP_COUNT = 0;
1853    let COUNT = 0;
1854  }
1855
1856def : Pat<(fsqrt f32:$src), (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_cm $src))>;
1857
1858class RAT_STORE_DWORD <RegisterClass rc, ValueType vt, bits<4> mask> :
1859  CF_MEM_RAT_CACHELESS <0x14, 0, mask,
1860                        (ins rc:$rw_gpr, R600_TReg32_X:$index_gpr),
1861                        "STORE_DWORD $rw_gpr, $index_gpr",
1862                        [(global_store vt:$rw_gpr, i32:$index_gpr)]> {
1863  let eop = 0; // This bit is not used on Cayman.
1864}
1865
1866def RAT_STORE_DWORD32 : RAT_STORE_DWORD <R600_TReg32_X, i32, 0x1>;
1867def RAT_STORE_DWORD64 : RAT_STORE_DWORD <R600_Reg64, v2i32, 0x3>;
1868def RAT_STORE_DWORD128 : RAT_STORE_DWORD <R600_Reg128, v4i32, 0xf>;
1869
1870class VTX_READ_cm <string name, bits<8> buffer_id, dag outs, list<dag> pattern>
1871    : VTX_WORD0_cm, VTX_READ<name, buffer_id, outs, pattern> {
1872
1873  // Static fields
1874  let VC_INST = 0;
1875  let FETCH_TYPE = 2;
1876  let FETCH_WHOLE_QUAD = 0;
1877  let BUFFER_ID = buffer_id;
1878  let SRC_REL = 0;
1879  // XXX: We can infer this field based on the SRC_GPR.  This would allow us
1880  // to store vertex addresses in any channel, not just X.
1881  let SRC_SEL_X = 0;
1882  let SRC_SEL_Y = 0;
1883  let STRUCTURED_READ = 0;
1884  let LDS_REQ = 0;
1885  let COALESCED_READ = 0;
1886
1887  let Inst{31-0} = Word0;
1888}
1889
1890class VTX_READ_8_cm <bits<8> buffer_id, list<dag> pattern>
1891    : VTX_READ_cm <"VTX_READ_8 $dst_gpr, $src_gpr", buffer_id,
1892                   (outs R600_TReg32_X:$dst_gpr), pattern> {
1893
1894  let DST_SEL_X = 0;
1895  let DST_SEL_Y = 7;   // Masked
1896  let DST_SEL_Z = 7;   // Masked
1897  let DST_SEL_W = 7;   // Masked
1898  let DATA_FORMAT = 1; // FMT_8
1899}
1900
1901class VTX_READ_16_cm <bits<8> buffer_id, list<dag> pattern>
1902    : VTX_READ_cm <"VTX_READ_16 $dst_gpr, $src_gpr", buffer_id,
1903                   (outs R600_TReg32_X:$dst_gpr), pattern> {
1904  let DST_SEL_X = 0;
1905  let DST_SEL_Y = 7;   // Masked
1906  let DST_SEL_Z = 7;   // Masked
1907  let DST_SEL_W = 7;   // Masked
1908  let DATA_FORMAT = 5; // FMT_16
1909
1910}
1911
1912class VTX_READ_32_cm <bits<8> buffer_id, list<dag> pattern>
1913    : VTX_READ_cm <"VTX_READ_32 $dst_gpr, $src_gpr", buffer_id,
1914                   (outs R600_TReg32_X:$dst_gpr), pattern> {
1915
1916  let DST_SEL_X        = 0;
1917  let DST_SEL_Y        = 7;   // Masked
1918  let DST_SEL_Z        = 7;   // Masked
1919  let DST_SEL_W        = 7;   // Masked
1920  let DATA_FORMAT      = 0xD; // COLOR_32
1921
1922  // This is not really necessary, but there were some GPU hangs that appeared
1923  // to be caused by ALU instructions in the next instruction group that wrote
1924  // to the $src_gpr registers of the VTX_READ.
1925  // e.g.
1926  // %T3_X<def> = VTX_READ_PARAM_32_eg %T2_X<kill>, 24
1927  // %T2_X<def> = MOV %ZERO
1928  //Adding this constraint prevents this from happening.
1929  let Constraints = "$src_gpr.ptr = $dst_gpr";
1930}
1931
1932class VTX_READ_64_cm <bits<8> buffer_id, list<dag> pattern>
1933    : VTX_READ_cm <"VTX_READ_64 $dst_gpr, $src_gpr", buffer_id,
1934                   (outs R600_Reg64:$dst_gpr), pattern> {
1935
1936  let DST_SEL_X        = 0;
1937  let DST_SEL_Y        = 1;
1938  let DST_SEL_Z        = 7;
1939  let DST_SEL_W        = 7;
1940  let DATA_FORMAT      = 0x1D; // COLOR_32_32
1941}
1942
1943class VTX_READ_128_cm <bits<8> buffer_id, list<dag> pattern>
1944    : VTX_READ_cm <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr", buffer_id,
1945                   (outs R600_Reg128:$dst_gpr), pattern> {
1946
1947  let DST_SEL_X        =  0;
1948  let DST_SEL_Y        =  1;
1949  let DST_SEL_Z        =  2;
1950  let DST_SEL_W        =  3;
1951  let DATA_FORMAT      =  0x22; // COLOR_32_32_32_32
1952
1953  // XXX: Need to force VTX_READ_128 instructions to write to the same register
1954  // that holds its buffer address to avoid potential hangs.  We can't use
1955  // the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst
1956  // registers are different sizes.
1957}
1958
1959//===----------------------------------------------------------------------===//
1960// VTX Read from parameter memory space
1961//===----------------------------------------------------------------------===//
1962def VTX_READ_PARAM_8_cm : VTX_READ_8_cm <0,
1963  [(set i32:$dst_gpr, (load_param_exti8 ADDRVTX_READ:$src_gpr))]
1964>;
1965
1966def VTX_READ_PARAM_16_cm : VTX_READ_16_cm <0,
1967  [(set i32:$dst_gpr, (load_param_exti16 ADDRVTX_READ:$src_gpr))]
1968>;
1969
1970def VTX_READ_PARAM_32_cm : VTX_READ_32_cm <0,
1971  [(set i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
1972>;
1973
1974def VTX_READ_PARAM_64_cm : VTX_READ_64_cm <0,
1975  [(set v2i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
1976>;
1977
1978def VTX_READ_PARAM_128_cm : VTX_READ_128_cm <0,
1979  [(set v4i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))]
1980>;
1981
1982//===----------------------------------------------------------------------===//
1983// VTX Read from global memory space
1984//===----------------------------------------------------------------------===//
1985
1986// 8-bit reads
1987def VTX_READ_GLOBAL_8_cm : VTX_READ_8_cm <1,
1988  [(set i32:$dst_gpr, (az_extloadi8_global ADDRVTX_READ:$src_gpr))]
1989>;
1990
1991def VTX_READ_GLOBAL_16_cm : VTX_READ_16_cm <1,
1992  [(set i32:$dst_gpr, (az_extloadi16_global ADDRVTX_READ:$src_gpr))]
1993>;
1994
1995// 32-bit reads
1996def VTX_READ_GLOBAL_32_cm : VTX_READ_32_cm <1,
1997  [(set i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
1998>;
1999
2000// 64-bit reads
2001def VTX_READ_GLOBAL_64_cm : VTX_READ_64_cm <1,
2002  [(set v2i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
2003>;
2004
2005// 128-bit reads
2006def VTX_READ_GLOBAL_128_cm : VTX_READ_128_cm <1,
2007  [(set v4i32:$dst_gpr, (global_load ADDRVTX_READ:$src_gpr))]
2008>;
2009
2010} // End isCayman
2011
2012//===----------------------------------------------------------------------===//
2013// Branch Instructions
2014//===----------------------------------------------------------------------===//
2015
2016
2017def IF_PREDICATE_SET  : ILFormat<(outs), (ins GPRI32:$src),
2018  "IF_PREDICATE_SET $src", []>;
2019
2020//===----------------------------------------------------------------------===//
2021// Pseudo instructions
2022//===----------------------------------------------------------------------===//
2023
2024let isPseudo = 1 in {
2025
2026def PRED_X : InstR600 <
2027  (outs R600_Predicate_Bit:$dst),
2028  (ins R600_Reg32:$src0, i32imm:$src1, i32imm:$flags),
2029  "", [], NullALU> {
2030  let FlagOperandIdx = 3;
2031}
2032
2033let isTerminator = 1, isBranch = 1 in {
2034def JUMP_COND : InstR600 <
2035          (outs),
2036          (ins brtarget:$target, R600_Predicate_Bit:$p),
2037          "JUMP $target ($p)",
2038          [], AnyALU
2039  >;
2040
2041def JUMP : InstR600 <
2042          (outs),
2043          (ins brtarget:$target),
2044          "JUMP $target",
2045          [], AnyALU
2046  >
2047{
2048  let isPredicable = 1;
2049  let isBarrier = 1;
2050}
2051
2052}  // End isTerminator = 1, isBranch = 1
2053
2054let usesCustomInserter = 1 in {
2055
2056let mayLoad = 0, mayStore = 0, hasSideEffects = 1 in {
2057
2058def MASK_WRITE : AMDGPUShaderInst <
2059    (outs),
2060    (ins R600_Reg32:$src),
2061    "MASK_WRITE $src",
2062    []
2063>;
2064
2065} // End mayLoad = 0, mayStore = 0, hasSideEffects = 1
2066
2067
2068def TXD: InstR600 <
2069  (outs R600_Reg128:$dst),
2070  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2,
2071       i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
2072  "TXD $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
2073  [(set v4f32:$dst, (int_AMDGPU_txd v4f32:$src0, v4f32:$src1, v4f32:$src2,
2074                     imm:$resourceId, imm:$samplerId, imm:$textureTarget))],
2075  NullALU > {
2076  let TEXInst = 1;
2077}
2078
2079def TXD_SHADOW: InstR600 <
2080  (outs R600_Reg128:$dst),
2081  (ins R600_Reg128:$src0, R600_Reg128:$src1, R600_Reg128:$src2,
2082       i32imm:$resourceId, i32imm:$samplerId, i32imm:$textureTarget),
2083  "TXD_SHADOW $dst, $src0, $src1, $src2, $resourceId, $samplerId, $textureTarget",
2084  [(set v4f32:$dst, (int_AMDGPU_txd v4f32:$src0, v4f32:$src1, v4f32:$src2,
2085        imm:$resourceId, imm:$samplerId, TEX_SHADOW:$textureTarget))],
2086   NullALU
2087> {
2088  let TEXInst = 1;
2089}
2090} // End isPseudo = 1
2091} // End usesCustomInserter = 1
2092
2093def CLAMP_R600 :  CLAMP <R600_Reg32>;
2094def FABS_R600 : FABS<R600_Reg32>;
2095def FNEG_R600 : FNEG<R600_Reg32>;
2096
2097//===---------------------------------------------------------------------===//
2098// Return instruction
2099//===---------------------------------------------------------------------===//
2100let isTerminator = 1, isReturn = 1, hasCtrlDep = 1,
2101    usesCustomInserter = 1 in {
2102  def RETURN          : ILFormat<(outs), (ins variable_ops),
2103      "RETURN", [(IL_retflag)]>;
2104}
2105
2106
2107//===----------------------------------------------------------------------===//
2108// Constant Buffer Addressing Support
2109//===----------------------------------------------------------------------===//
2110
2111let usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"  in {
2112def CONST_COPY : Instruction {
2113  let OutOperandList = (outs R600_Reg32:$dst);
2114  let InOperandList = (ins i32imm:$src);
2115  let Pattern =
2116      [(set R600_Reg32:$dst, (CONST_ADDRESS ADDRGA_CONST_OFFSET:$src))];
2117  let AsmString = "CONST_COPY";
2118  let neverHasSideEffects = 1;
2119  let isAsCheapAsAMove = 1;
2120  let Itinerary = NullALU;
2121}
2122} // end usesCustomInserter = 1, isCodeGenOnly = 1, isPseudo = 1, Namespace = "AMDGPU"
2123
2124def TEX_VTX_CONSTBUF :
2125  InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "VTX_READ_eg $dst, $ptr",
2126      [(set v4i32:$dst, (CONST_ADDRESS ADDRGA_VAR_OFFSET:$ptr, (i32 imm:$BUFFER_ID)))]>,
2127  VTX_WORD1_GPR, VTX_WORD0_eg {
2128
2129  let VC_INST = 0;
2130  let FETCH_TYPE = 2;
2131  let FETCH_WHOLE_QUAD = 0;
2132  let SRC_REL = 0;
2133  let SRC_SEL_X = 0;
2134  let DST_REL = 0;
2135  let USE_CONST_FIELDS = 0;
2136  let NUM_FORMAT_ALL = 2;
2137  let FORMAT_COMP_ALL = 1;
2138  let SRF_MODE_ALL = 1;
2139  let MEGA_FETCH_COUNT = 16;
2140  let DST_SEL_X        = 0;
2141  let DST_SEL_Y        = 1;
2142  let DST_SEL_Z        = 2;
2143  let DST_SEL_W        = 3;
2144  let DATA_FORMAT      = 35;
2145
2146  let Inst{31-0} = Word0;
2147  let Inst{63-32} = Word1;
2148
2149// LLVM can only encode 64-bit instructions, so these fields are manually
2150// encoded in R600CodeEmitter
2151//
2152// bits<16> OFFSET;
2153// bits<2>  ENDIAN_SWAP = 0;
2154// bits<1>  CONST_BUF_NO_STRIDE = 0;
2155// bits<1>  MEGA_FETCH = 0;
2156// bits<1>  ALT_CONST = 0;
2157// bits<2>  BUFFER_INDEX_MODE = 0;
2158
2159
2160
2161// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
2162// is done in R600CodeEmitter
2163//
2164// Inst{79-64} = OFFSET;
2165// Inst{81-80} = ENDIAN_SWAP;
2166// Inst{82}    = CONST_BUF_NO_STRIDE;
2167// Inst{83}    = MEGA_FETCH;
2168// Inst{84}    = ALT_CONST;
2169// Inst{86-85} = BUFFER_INDEX_MODE;
2170// Inst{95-86} = 0; Reserved
2171
2172// VTX_WORD3 (Padding)
2173//
2174// Inst{127-96} = 0;
2175  let VTXInst = 1;
2176}
2177
2178def TEX_VTX_TEXBUF:
2179  InstR600ISA <(outs R600_Reg128:$dst), (ins MEMxi:$ptr, i32imm:$BUFFER_ID), "TEX_VTX_EXPLICIT_READ $dst, $ptr",
2180      [(set v4f32:$dst, (int_R600_load_texbuf ADDRGA_VAR_OFFSET:$ptr, imm:$BUFFER_ID))]>,
2181VTX_WORD1_GPR, VTX_WORD0_eg {
2182
2183let VC_INST = 0;
2184let FETCH_TYPE = 2;
2185let FETCH_WHOLE_QUAD = 0;
2186let SRC_REL = 0;
2187let SRC_SEL_X = 0;
2188let DST_REL = 0;
2189let USE_CONST_FIELDS = 1;
2190let NUM_FORMAT_ALL = 0;
2191let FORMAT_COMP_ALL = 0;
2192let SRF_MODE_ALL = 1;
2193let MEGA_FETCH_COUNT = 16;
2194let DST_SEL_X        = 0;
2195let DST_SEL_Y        = 1;
2196let DST_SEL_Z        = 2;
2197let DST_SEL_W        = 3;
2198let DATA_FORMAT      = 0;
2199
2200let Inst{31-0} = Word0;
2201let Inst{63-32} = Word1;
2202
2203// LLVM can only encode 64-bit instructions, so these fields are manually
2204// encoded in R600CodeEmitter
2205//
2206// bits<16> OFFSET;
2207// bits<2>  ENDIAN_SWAP = 0;
2208// bits<1>  CONST_BUF_NO_STRIDE = 0;
2209// bits<1>  MEGA_FETCH = 0;
2210// bits<1>  ALT_CONST = 0;
2211// bits<2>  BUFFER_INDEX_MODE = 0;
2212
2213
2214
2215// VTX_WORD2 (LLVM can only encode 64-bit instructions, so WORD2 encoding
2216// is done in R600CodeEmitter
2217//
2218// Inst{79-64} = OFFSET;
2219// Inst{81-80} = ENDIAN_SWAP;
2220// Inst{82}    = CONST_BUF_NO_STRIDE;
2221// Inst{83}    = MEGA_FETCH;
2222// Inst{84}    = ALT_CONST;
2223// Inst{86-85} = BUFFER_INDEX_MODE;
2224// Inst{95-86} = 0; Reserved
2225
2226// VTX_WORD3 (Padding)
2227//
2228// Inst{127-96} = 0;
2229  let VTXInst = 1;
2230}
2231
2232
2233
2234//===--------------------------------------------------------------------===//
2235// Instructions support
2236//===--------------------------------------------------------------------===//
2237//===---------------------------------------------------------------------===//
2238// Custom Inserter for Branches and returns, this eventually will be a
2239// seperate pass
2240//===---------------------------------------------------------------------===//
2241let isTerminator = 1, usesCustomInserter = 1, isBranch = 1, isBarrier = 1 in {
2242  def BRANCH : ILFormat<(outs), (ins brtarget:$target),
2243      "; Pseudo unconditional branch instruction",
2244      [(br bb:$target)]>;
2245  defm BRANCH_COND : BranchConditional<IL_brcond, R600_Reg32, R600_Reg32>;
2246}
2247
2248//===---------------------------------------------------------------------===//
2249// Flow and Program control Instructions
2250//===---------------------------------------------------------------------===//
2251let isTerminator=1 in {
2252  def SWITCH      : ILFormat< (outs), (ins GPRI32:$src),
2253  !strconcat("SWITCH", " $src"), []>;
2254  def CASE        : ILFormat< (outs), (ins GPRI32:$src),
2255      !strconcat("CASE", " $src"), []>;
2256  def BREAK       : ILFormat< (outs), (ins),
2257      "BREAK", []>;
2258  def CONTINUE    : ILFormat< (outs), (ins),
2259      "CONTINUE", []>;
2260  def DEFAULT     : ILFormat< (outs), (ins),
2261      "DEFAULT", []>;
2262  def ELSE        : ILFormat< (outs), (ins),
2263      "ELSE", []>;
2264  def ENDSWITCH   : ILFormat< (outs), (ins),
2265      "ENDSWITCH", []>;
2266  def ENDMAIN     : ILFormat< (outs), (ins),
2267      "ENDMAIN", []>;
2268  def END         : ILFormat< (outs), (ins),
2269      "END", []>;
2270  def ENDFUNC     : ILFormat< (outs), (ins),
2271      "ENDFUNC", []>;
2272  def ENDIF       : ILFormat< (outs), (ins),
2273      "ENDIF", []>;
2274  def WHILELOOP   : ILFormat< (outs), (ins),
2275      "WHILE", []>;
2276  def ENDLOOP     : ILFormat< (outs), (ins),
2277      "ENDLOOP", []>;
2278  def FUNC        : ILFormat< (outs), (ins),
2279      "FUNC", []>;
2280  def RETDYN      : ILFormat< (outs), (ins),
2281      "RET_DYN", []>;
2282  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2283  defm IF_LOGICALNZ  : BranchInstr<"IF_LOGICALNZ">;
2284  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2285  defm IF_LOGICALZ   : BranchInstr<"IF_LOGICALZ">;
2286  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2287  defm BREAK_LOGICALNZ : BranchInstr<"BREAK_LOGICALNZ">;
2288  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2289  defm BREAK_LOGICALZ : BranchInstr<"BREAK_LOGICALZ">;
2290  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2291  defm CONTINUE_LOGICALNZ : BranchInstr<"CONTINUE_LOGICALNZ">;
2292  // This opcode has custom swizzle pattern encoded in Swizzle Encoder
2293  defm CONTINUE_LOGICALZ : BranchInstr<"CONTINUE_LOGICALZ">;
2294  defm IFC         : BranchInstr2<"IFC">;
2295  defm BREAKC      : BranchInstr2<"BREAKC">;
2296  defm CONTINUEC   : BranchInstr2<"CONTINUEC">;
2297}
2298
2299//===----------------------------------------------------------------------===//
2300// ISel Patterns
2301//===----------------------------------------------------------------------===//
2302
2303// CND*_INT Pattterns for f32 True / False values
2304
2305class CND_INT_f32 <InstR600 cnd, CondCode cc> : Pat <
2306  (selectcc i32:$src0, 0, f32:$src1, f32:$src2, cc),
2307  (cnd $src0, $src1, $src2)
2308>;
2309
2310def : CND_INT_f32 <CNDE_INT,  SETEQ>;
2311def : CND_INT_f32 <CNDGT_INT, SETGT>;
2312def : CND_INT_f32 <CNDGE_INT, SETGE>;
2313
2314//CNDGE_INT extra pattern
2315def : Pat <
2316  (selectcc i32:$src0, -1, i32:$src1, i32:$src2, COND_GT),
2317  (CNDGE_INT $src0, $src1, $src2)
2318>;
2319
2320// KIL Patterns
2321def KILP : Pat <
2322  (int_AMDGPU_kilp),
2323  (MASK_WRITE (KILLGT (f32 ONE), (f32 ZERO)))
2324>;
2325
2326def KIL : Pat <
2327  (int_AMDGPU_kill f32:$src0),
2328  (MASK_WRITE (KILLGT (f32 ZERO), $src0))
2329>;
2330
2331def : Extract_Element <f32, v4f32, 0, sub0>;
2332def : Extract_Element <f32, v4f32, 1, sub1>;
2333def : Extract_Element <f32, v4f32, 2, sub2>;
2334def : Extract_Element <f32, v4f32, 3, sub3>;
2335
2336def : Insert_Element <f32, v4f32, 0, sub0>;
2337def : Insert_Element <f32, v4f32, 1, sub1>;
2338def : Insert_Element <f32, v4f32, 2, sub2>;
2339def : Insert_Element <f32, v4f32, 3, sub3>;
2340
2341def : Extract_Element <i32, v4i32, 0, sub0>;
2342def : Extract_Element <i32, v4i32, 1, sub1>;
2343def : Extract_Element <i32, v4i32, 2, sub2>;
2344def : Extract_Element <i32, v4i32, 3, sub3>;
2345
2346def : Insert_Element <i32, v4i32, 0, sub0>;
2347def : Insert_Element <i32, v4i32, 1, sub1>;
2348def : Insert_Element <i32, v4i32, 2, sub2>;
2349def : Insert_Element <i32, v4i32, 3, sub3>;
2350
2351def : Vector4_Build <v4f32, f32>;
2352def : Vector4_Build <v4i32, i32>;
2353
2354def : Extract_Element <f32, v2f32, 0, sub0>;
2355def : Extract_Element <f32, v2f32, 1, sub1>;
2356
2357def : Insert_Element <f32, v2f32, 0, sub0>;
2358def : Insert_Element <f32, v2f32, 1, sub1>;
2359
2360def : Extract_Element <i32, v2i32, 0, sub0>;
2361def : Extract_Element <i32, v2i32, 1, sub1>;
2362
2363def : Insert_Element <i32, v2i32, 0, sub0>;
2364def : Insert_Element <i32, v2i32, 1, sub1>;
2365
2366// bitconvert patterns
2367
2368def : BitConvert <i32, f32, R600_Reg32>;
2369def : BitConvert <f32, i32, R600_Reg32>;
2370def : BitConvert <v2f32, v2i32, R600_Reg64>;
2371def : BitConvert <v2i32, v2f32, R600_Reg64>;
2372def : BitConvert <v4f32, v4i32, R600_Reg128>;
2373def : BitConvert <v4i32, v4f32, R600_Reg128>;
2374
2375// DWORDADDR pattern
2376def : DwordAddrPat  <i32, R600_Reg32>;
2377
2378} // End isR600toCayman Predicate
2379
2380def getLDSNoRetOp : InstrMapping {
2381  let FilterClass = "R600_LDS_1A1D";
2382  let RowFields = ["BaseOp"];
2383  let ColFields = ["DisableEncoding"];
2384  let KeyCol = ["$dst"];
2385  let ValueCols = [[""""]];
2386}
2387