SIISelLowering.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief Custom DAG lowering for SI
12//
13//===----------------------------------------------------------------------===//
14
15#include "SIISelLowering.h"
16#include "AMDGPU.h"
17#include "AMDGPUIntrinsicInfo.h"
18#include "AMDGPUSubtarget.h"
19#include "SIInstrInfo.h"
20#include "SIMachineFunctionInfo.h"
21#include "SIRegisterInfo.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/SelectionDAG.h"
26#include "llvm/IR/Function.h"
27#include "llvm/ADT/SmallString.h"
28
29using namespace llvm;
30
31SITargetLowering::SITargetLowering(TargetMachine &TM) :
32    AMDGPUTargetLowering(TM) {
33  addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
34  addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
35
36  addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
37  addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
38
39  addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
40  addRegisterClass(MVT::f32, &AMDGPU::VReg_32RegClass);
41
42  addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
43  addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
44  addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
45
46  addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
47  addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
48
49  addRegisterClass(MVT::v8i32, &AMDGPU::VReg_256RegClass);
50  addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
51
52  addRegisterClass(MVT::v16i32, &AMDGPU::VReg_512RegClass);
53  addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
54
55  computeRegisterProperties();
56
57  // Condition Codes
58  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
59  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
60  setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
61  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
62  setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
63  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
64
65  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
66  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
67  setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
68  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
69  setCondCodeAction(ISD::SETULE, MVT::f64, Expand);
70  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
71
72  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
73  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
74  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
75  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
76
77  setOperationAction(ISD::ADD, MVT::i32, Legal);
78  setOperationAction(ISD::ADDC, MVT::i32, Legal);
79  setOperationAction(ISD::ADDE, MVT::i32, Legal);
80  setOperationAction(ISD::SUBC, MVT::i32, Legal);
81  setOperationAction(ISD::SUBE, MVT::i32, Legal);
82
83  // We need to custom lower vector stores from local memory
84  setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
85  setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
86  setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
87  setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
88
89  setOperationAction(ISD::STORE, MVT::v8i32, Custom);
90  setOperationAction(ISD::STORE, MVT::v16i32, Custom);
91
92  // We need to custom lower loads/stores from private memory
93  setOperationAction(ISD::LOAD, MVT::i32, Custom);
94  setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
95  setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
96  setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
97
98  setOperationAction(ISD::STORE, MVT::i1, Custom);
99  setOperationAction(ISD::STORE, MVT::i32, Custom);
100  setOperationAction(ISD::STORE, MVT::v2i32, Custom);
101  setOperationAction(ISD::STORE, MVT::v4i32, Custom);
102
103  setOperationAction(ISD::SELECT, MVT::f32, Promote);
104  AddPromotedToType(ISD::SELECT, MVT::f32, MVT::i32);
105  setOperationAction(ISD::SELECT, MVT::i64, Custom);
106  setOperationAction(ISD::SELECT, MVT::f64, Promote);
107  AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
108
109  setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
110  setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
111  setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
112  setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
113
114  setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
115  setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
116
117  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
118  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
119  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
120
121  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
122  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
123  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
124
125  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
126  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
127  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
128
129  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Custom);
130
131  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
132
133  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
134  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
135  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
136  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
137
138  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
139  setOperationAction(ISD::BRCOND, MVT::Other, Custom);
140
141  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
142  setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Custom);
143  setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Custom);
144  setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Expand);
145  setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, Expand);
146  setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, Expand);
147
148  setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
149  setLoadExtAction(ISD::ZEXTLOAD, MVT::i8, Custom);
150  setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Custom);
151  setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Expand);
152
153  setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
154  setLoadExtAction(ISD::EXTLOAD, MVT::i8, Custom);
155  setLoadExtAction(ISD::EXTLOAD, MVT::i16, Custom);
156  setLoadExtAction(ISD::EXTLOAD, MVT::i32, Expand);
157  setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
158
159  setTruncStoreAction(MVT::i32, MVT::i8, Custom);
160  setTruncStoreAction(MVT::i32, MVT::i16, Custom);
161  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
162  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
163  setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
164  setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
165
166  setOperationAction(ISD::LOAD, MVT::i1, Custom);
167
168  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
169  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
170  setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
171
172  // These should use UDIVREM, so set them to expand
173  setOperationAction(ISD::UDIV, MVT::i64, Expand);
174  setOperationAction(ISD::UREM, MVT::i64, Expand);
175
176  // We only support LOAD/STORE and vector manipulation ops for vectors
177  // with > 4 elements.
178  MVT VecTypes[] = {
179    MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32
180  };
181
182  for (MVT VT : VecTypes) {
183    for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
184      switch(Op) {
185      case ISD::LOAD:
186      case ISD::STORE:
187      case ISD::BUILD_VECTOR:
188      case ISD::BITCAST:
189      case ISD::EXTRACT_VECTOR_ELT:
190      case ISD::INSERT_VECTOR_ELT:
191      case ISD::CONCAT_VECTORS:
192      case ISD::INSERT_SUBVECTOR:
193      case ISD::EXTRACT_SUBVECTOR:
194        break;
195      default:
196        setOperationAction(Op, VT, Expand);
197        break;
198      }
199    }
200  }
201
202  for (int I = MVT::v1f64; I <= MVT::v8f64; ++I) {
203    MVT::SimpleValueType VT = static_cast<MVT::SimpleValueType>(I);
204    setOperationAction(ISD::FTRUNC, VT, Expand);
205    setOperationAction(ISD::FCEIL, VT, Expand);
206    setOperationAction(ISD::FFLOOR, VT, Expand);
207  }
208
209  if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
210    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
211    setOperationAction(ISD::FCEIL, MVT::f64, Legal);
212    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
213    setOperationAction(ISD::FRINT, MVT::f64, Legal);
214  }
215
216  // FIXME: These should be removed and handled the same was as f32 fneg. Source
217  // modifiers also work for the double instructions.
218  setOperationAction(ISD::FNEG, MVT::f64, Expand);
219  setOperationAction(ISD::FABS, MVT::f64, Expand);
220
221  setTargetDAGCombine(ISD::SELECT_CC);
222  setTargetDAGCombine(ISD::SETCC);
223
224  setTargetDAGCombine(ISD::UINT_TO_FP);
225
226  setSchedulingPreference(Sched::RegPressure);
227}
228
229//===----------------------------------------------------------------------===//
230// TargetLowering queries
231//===----------------------------------------------------------------------===//
232
233bool SITargetLowering::allowsUnalignedMemoryAccesses(EVT  VT,
234                                                     unsigned AddrSpace,
235                                                     bool *IsFast) const {
236  if (IsFast)
237    *IsFast = false;
238
239  // XXX: This depends on the address space and also we may want to revist
240  // the alignment values we specify in the DataLayout.
241
242  // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
243  // which isn't a simple VT.
244  if (!VT.isSimple() || VT == MVT::Other)
245    return false;
246
247  // XXX - CI changes say "Support for unaligned memory accesses" but I don't
248  // see what for specifically. The wording everywhere else seems to be the
249  // same.
250
251  // 3.6.4 - Operations using pairs of VGPRs (for example: double-floats) have
252  // no alignment restrictions.
253  if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
254    // Using any pair of GPRs should be the same as any other pair.
255    if (IsFast)
256      *IsFast = true;
257    return VT.bitsGE(MVT::i64);
258  }
259
260  // XXX - The only mention I see of this in the ISA manual is for LDS direct
261  // reads the "byte address and must be dword aligned". Is it also true for the
262  // normal loads and stores?
263  if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS)
264    return false;
265
266  // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
267  // byte-address are ignored, thus forcing Dword alignment.
268  if (IsFast)
269    *IsFast = true;
270  return VT.bitsGT(MVT::i32);
271}
272
273TargetLoweringBase::LegalizeTypeAction
274SITargetLowering::getPreferredVectorAction(EVT VT) const {
275  if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
276    return TypeSplitVector;
277
278  return TargetLoweringBase::getPreferredVectorAction(VT);
279}
280
281bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
282                                                         Type *Ty) const {
283  const SIInstrInfo *TII =
284    static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
285  return TII->isInlineConstant(Imm);
286}
287
288SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
289                                         SDLoc DL, SDValue Chain,
290                                         unsigned Offset, bool Signed) const {
291  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
292  PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
293                                            AMDGPUAS::CONSTANT_ADDRESS);
294  SDValue BasePtr =  DAG.getCopyFromReg(Chain, DL,
295                           MRI.getLiveInVirtReg(AMDGPU::SGPR0_SGPR1), MVT::i64);
296  SDValue Ptr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
297                                             DAG.getConstant(Offset, MVT::i64));
298  return DAG.getExtLoad(Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD, DL, VT, Chain, Ptr,
299                            MachinePointerInfo(UndefValue::get(PtrTy)), MemVT,
300                            false, false, MemVT.getSizeInBits() >> 3);
301
302}
303
304SDValue SITargetLowering::LowerFormalArguments(
305                                      SDValue Chain,
306                                      CallingConv::ID CallConv,
307                                      bool isVarArg,
308                                      const SmallVectorImpl<ISD::InputArg> &Ins,
309                                      SDLoc DL, SelectionDAG &DAG,
310                                      SmallVectorImpl<SDValue> &InVals) const {
311
312  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
313
314  MachineFunction &MF = DAG.getMachineFunction();
315  FunctionType *FType = MF.getFunction()->getFunctionType();
316  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
317
318  assert(CallConv == CallingConv::C);
319
320  SmallVector<ISD::InputArg, 16> Splits;
321  uint32_t Skipped = 0;
322
323  for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
324    const ISD::InputArg &Arg = Ins[i];
325
326    // First check if it's a PS input addr
327    if (Info->ShaderType == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
328        !Arg.Flags.isByVal()) {
329
330      assert((PSInputNum <= 15) && "Too many PS inputs!");
331
332      if (!Arg.Used) {
333        // We can savely skip PS inputs
334        Skipped |= 1 << i;
335        ++PSInputNum;
336        continue;
337      }
338
339      Info->PSInputAddr |= 1 << PSInputNum++;
340    }
341
342    // Second split vertices into their elements
343    if (Info->ShaderType != ShaderType::COMPUTE && Arg.VT.isVector()) {
344      ISD::InputArg NewArg = Arg;
345      NewArg.Flags.setSplit();
346      NewArg.VT = Arg.VT.getVectorElementType();
347
348      // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
349      // three or five element vertex only needs three or five registers,
350      // NOT four or eigth.
351      Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
352      unsigned NumElements = ParamType->getVectorNumElements();
353
354      for (unsigned j = 0; j != NumElements; ++j) {
355        Splits.push_back(NewArg);
356        NewArg.PartOffset += NewArg.VT.getStoreSize();
357      }
358
359    } else if (Info->ShaderType != ShaderType::COMPUTE) {
360      Splits.push_back(Arg);
361    }
362  }
363
364  SmallVector<CCValAssign, 16> ArgLocs;
365  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
366                 getTargetMachine(), ArgLocs, *DAG.getContext());
367
368  // At least one interpolation mode must be enabled or else the GPU will hang.
369  if (Info->ShaderType == ShaderType::PIXEL && (Info->PSInputAddr & 0x7F) == 0) {
370    Info->PSInputAddr |= 1;
371    CCInfo.AllocateReg(AMDGPU::VGPR0);
372    CCInfo.AllocateReg(AMDGPU::VGPR1);
373  }
374
375  // The pointer to the list of arguments is stored in SGPR0, SGPR1
376  if (Info->ShaderType == ShaderType::COMPUTE) {
377    CCInfo.AllocateReg(AMDGPU::SGPR0);
378    CCInfo.AllocateReg(AMDGPU::SGPR1);
379    MF.addLiveIn(AMDGPU::SGPR0_SGPR1, &AMDGPU::SReg_64RegClass);
380  }
381
382  if (Info->ShaderType == ShaderType::COMPUTE) {
383    getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
384                            Splits);
385  }
386
387  AnalyzeFormalArguments(CCInfo, Splits);
388
389  for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
390
391    const ISD::InputArg &Arg = Ins[i];
392    if (Skipped & (1 << i)) {
393      InVals.push_back(DAG.getUNDEF(Arg.VT));
394      continue;
395    }
396
397    CCValAssign &VA = ArgLocs[ArgIdx++];
398    EVT VT = VA.getLocVT();
399
400    if (VA.isMemLoc()) {
401      VT = Ins[i].VT;
402      EVT MemVT = Splits[i].VT;
403      // The first 36 bytes of the input buffer contains information about
404      // thread group and global sizes.
405      SDValue Arg = LowerParameter(DAG, VT, MemVT,  DL, DAG.getRoot(),
406                                   36 + VA.getLocMemOffset(),
407                                   Ins[i].Flags.isSExt());
408      InVals.push_back(Arg);
409      continue;
410    }
411    assert(VA.isRegLoc() && "Parameter must be in a register!");
412
413    unsigned Reg = VA.getLocReg();
414
415    if (VT == MVT::i64) {
416      // For now assume it is a pointer
417      Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
418                                     &AMDGPU::SReg_64RegClass);
419      Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
420      InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
421      continue;
422    }
423
424    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
425
426    Reg = MF.addLiveIn(Reg, RC);
427    SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
428
429    if (Arg.VT.isVector()) {
430
431      // Build a vector from the registers
432      Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
433      unsigned NumElements = ParamType->getVectorNumElements();
434
435      SmallVector<SDValue, 4> Regs;
436      Regs.push_back(Val);
437      for (unsigned j = 1; j != NumElements; ++j) {
438        Reg = ArgLocs[ArgIdx++].getLocReg();
439        Reg = MF.addLiveIn(Reg, RC);
440        Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
441      }
442
443      // Fill up the missing vector elements
444      NumElements = Arg.VT.getVectorNumElements() - NumElements;
445      for (unsigned j = 0; j != NumElements; ++j)
446        Regs.push_back(DAG.getUNDEF(VT));
447
448      InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
449      continue;
450    }
451
452    InVals.push_back(Val);
453  }
454  return Chain;
455}
456
457MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
458    MachineInstr * MI, MachineBasicBlock * BB) const {
459
460  MachineBasicBlock::iterator I = *MI;
461  const SIInstrInfo *TII =
462    static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
463  MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
464
465  switch (MI->getOpcode()) {
466  default:
467    return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
468  case AMDGPU::BRANCH: return BB;
469  case AMDGPU::SI_ADDR64_RSRC: {
470    unsigned SuperReg = MI->getOperand(0).getReg();
471    unsigned SubRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
472    unsigned SubRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
473    unsigned SubRegHiHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
474    unsigned SubRegHiLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
475    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), SubRegLo)
476            .addOperand(MI->getOperand(1));
477    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiLo)
478            .addImm(0);
479    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiHi)
480            .addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
481    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SubRegHi)
482            .addReg(SubRegHiLo)
483            .addImm(AMDGPU::sub0)
484            .addReg(SubRegHiHi)
485            .addImm(AMDGPU::sub1);
486    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SuperReg)
487            .addReg(SubRegLo)
488            .addImm(AMDGPU::sub0_sub1)
489            .addReg(SubRegHi)
490            .addImm(AMDGPU::sub2_sub3);
491    MI->eraseFromParent();
492    break;
493  }
494  case AMDGPU::V_SUB_F64: {
495    unsigned DestReg = MI->getOperand(0).getReg();
496    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F64), DestReg)
497      .addImm(0)  // SRC0 modifiers
498      .addReg(MI->getOperand(1).getReg())
499      .addImm(1)  // SRC1 modifiers
500      .addReg(MI->getOperand(2).getReg())
501      .addImm(0)  // SRC2 modifiers
502      .addImm(0)  // src2
503      .addImm(0)  // CLAMP
504      .addImm(0); // OMOD
505    MI->eraseFromParent();
506    break;
507  }
508  case AMDGPU::SI_RegisterStorePseudo: {
509    MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
510    unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
511    MachineInstrBuilder MIB =
512        BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
513                Reg);
514    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
515      MIB.addOperand(MI->getOperand(i));
516
517    MI->eraseFromParent();
518    break;
519  }
520  case AMDGPU::FABS_SI: {
521    MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
522    const SIInstrInfo *TII =
523      static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
524    unsigned Reg = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
525    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_MOV_B32_e32),
526            Reg)
527            .addImm(0x7fffffff);
528    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_AND_B32_e32),
529            MI->getOperand(0).getReg())
530            .addReg(MI->getOperand(1).getReg())
531            .addReg(Reg);
532    MI->eraseFromParent();
533    break;
534  }
535  case AMDGPU::FNEG_SI: {
536    MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
537    const SIInstrInfo *TII =
538      static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
539    unsigned Reg = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
540    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_MOV_B32_e32),
541            Reg)
542            .addImm(0x80000000);
543    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_XOR_B32_e32),
544            MI->getOperand(0).getReg())
545            .addReg(MI->getOperand(1).getReg())
546            .addReg(Reg);
547    MI->eraseFromParent();
548    break;
549  }
550  case AMDGPU::FCLAMP_SI: {
551    const SIInstrInfo *TII =
552      static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
553    BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F32_e64),
554            MI->getOperand(0).getReg())
555            .addImm(0) // SRC0 modifiers
556            .addOperand(MI->getOperand(1))
557            .addImm(0) // SRC1 modifiers
558            .addImm(0) // SRC1
559            .addImm(1) // CLAMP
560            .addImm(0); // OMOD
561    MI->eraseFromParent();
562  }
563  }
564  return BB;
565}
566
567EVT SITargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
568  if (!VT.isVector()) {
569    return MVT::i1;
570  }
571  return MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
572}
573
574MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
575  return MVT::i32;
576}
577
578bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
579  VT = VT.getScalarType();
580
581  if (!VT.isSimple())
582    return false;
583
584  switch (VT.getSimpleVT().SimpleTy) {
585  case MVT::f32:
586    return false; /* There is V_MAD_F32 for f32 */
587  case MVT::f64:
588    return true;
589  default:
590    break;
591  }
592
593  return false;
594}
595
596//===----------------------------------------------------------------------===//
597// Custom DAG Lowering Operations
598//===----------------------------------------------------------------------===//
599
600SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
601  MachineFunction &MF = DAG.getMachineFunction();
602  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
603  switch (Op.getOpcode()) {
604  default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
605  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
606  case ISD::LOAD: {
607    LoadSDNode *Load = dyn_cast<LoadSDNode>(Op);
608    EVT VT = Op.getValueType();
609
610    // These loads are legal.
611    if (Load->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
612        VT.isVector() && VT.getVectorNumElements() == 2 &&
613        VT.getVectorElementType() == MVT::i32)
614      return SDValue();
615
616    if (Op.getValueType().isVector() &&
617        (Load->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
618         Load->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
619         (Load->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
620          Op.getValueType().getVectorNumElements() > 4))) {
621      return SplitVectorLoad(Op, DAG);
622    } else {
623      SDValue Result = LowerLOAD(Op, DAG);
624      assert((!Result.getNode() ||
625              Result.getNode()->getNumValues() == 2) &&
626             "Load should return a value and a chain");
627      return Result;
628    }
629  }
630
631  case ISD::SELECT: return LowerSELECT(Op, DAG);
632  case ISD::STORE: return LowerSTORE(Op, DAG);
633  case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
634  case ISD::INTRINSIC_WO_CHAIN: {
635    unsigned IntrinsicID =
636                         cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
637    EVT VT = Op.getValueType();
638    SDLoc DL(Op);
639    //XXX: Hardcoded we only use two to store the pointer to the parameters.
640    unsigned NumUserSGPRs = 2;
641    switch (IntrinsicID) {
642    default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
643    case Intrinsic::r600_read_ngroups_x:
644      return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 0, false);
645    case Intrinsic::r600_read_ngroups_y:
646      return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 4, false);
647    case Intrinsic::r600_read_ngroups_z:
648      return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 8, false);
649    case Intrinsic::r600_read_global_size_x:
650      return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 12, false);
651    case Intrinsic::r600_read_global_size_y:
652      return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 16, false);
653    case Intrinsic::r600_read_global_size_z:
654      return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 20, false);
655    case Intrinsic::r600_read_local_size_x:
656      return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 24, false);
657    case Intrinsic::r600_read_local_size_y:
658      return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 28, false);
659    case Intrinsic::r600_read_local_size_z:
660      return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 32, false);
661    case Intrinsic::r600_read_tgid_x:
662      return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
663                     AMDGPU::SReg_32RegClass.getRegister(NumUserSGPRs + 0), VT);
664    case Intrinsic::r600_read_tgid_y:
665      return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
666                     AMDGPU::SReg_32RegClass.getRegister(NumUserSGPRs + 1), VT);
667    case Intrinsic::r600_read_tgid_z:
668      return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
669                     AMDGPU::SReg_32RegClass.getRegister(NumUserSGPRs + 2), VT);
670    case Intrinsic::r600_read_tidig_x:
671      return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
672                                  AMDGPU::VGPR0, VT);
673    case Intrinsic::r600_read_tidig_y:
674      return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
675                                  AMDGPU::VGPR1, VT);
676    case Intrinsic::r600_read_tidig_z:
677      return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
678                                  AMDGPU::VGPR2, VT);
679    case AMDGPUIntrinsic::SI_load_const: {
680      SDValue Ops [] = {
681        Op.getOperand(1),
682        Op.getOperand(2)
683      };
684
685      MachineMemOperand *MMO = MF.getMachineMemOperand(
686          MachinePointerInfo(),
687          MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
688          VT.getSizeInBits() / 8, 4);
689      return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
690                                     Op->getVTList(), Ops, VT, MMO);
691    }
692    case AMDGPUIntrinsic::SI_sample:
693      return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
694    case AMDGPUIntrinsic::SI_sampleb:
695      return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
696    case AMDGPUIntrinsic::SI_sampled:
697      return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
698    case AMDGPUIntrinsic::SI_samplel:
699      return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
700    case AMDGPUIntrinsic::SI_vs_load_input:
701      return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
702                         Op.getOperand(1),
703                         Op.getOperand(2),
704                         Op.getOperand(3));
705    }
706  }
707
708  case ISD::INTRINSIC_VOID:
709    SDValue Chain = Op.getOperand(0);
710    unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
711
712    switch (IntrinsicID) {
713      case AMDGPUIntrinsic::SI_tbuffer_store: {
714        SDLoc DL(Op);
715        SDValue Ops [] = {
716          Chain,
717          Op.getOperand(2),
718          Op.getOperand(3),
719          Op.getOperand(4),
720          Op.getOperand(5),
721          Op.getOperand(6),
722          Op.getOperand(7),
723          Op.getOperand(8),
724          Op.getOperand(9),
725          Op.getOperand(10),
726          Op.getOperand(11),
727          Op.getOperand(12),
728          Op.getOperand(13),
729          Op.getOperand(14)
730        };
731        EVT VT = Op.getOperand(3).getValueType();
732
733        MachineMemOperand *MMO = MF.getMachineMemOperand(
734            MachinePointerInfo(),
735            MachineMemOperand::MOStore,
736            VT.getSizeInBits() / 8, 4);
737        return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
738                                       Op->getVTList(), Ops, VT, MMO);
739      }
740      default:
741        break;
742    }
743  }
744  return SDValue();
745}
746
747/// \brief Helper function for LowerBRCOND
748static SDNode *findUser(SDValue Value, unsigned Opcode) {
749
750  SDNode *Parent = Value.getNode();
751  for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
752       I != E; ++I) {
753
754    if (I.getUse().get() != Value)
755      continue;
756
757    if (I->getOpcode() == Opcode)
758      return *I;
759  }
760  return nullptr;
761}
762
763/// This transforms the control flow intrinsics to get the branch destination as
764/// last parameter, also switches branch target with BR if the need arise
765SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
766                                      SelectionDAG &DAG) const {
767
768  SDLoc DL(BRCOND);
769
770  SDNode *Intr = BRCOND.getOperand(1).getNode();
771  SDValue Target = BRCOND.getOperand(2);
772  SDNode *BR = nullptr;
773
774  if (Intr->getOpcode() == ISD::SETCC) {
775    // As long as we negate the condition everything is fine
776    SDNode *SetCC = Intr;
777    assert(SetCC->getConstantOperandVal(1) == 1);
778    assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
779           ISD::SETNE);
780    Intr = SetCC->getOperand(0).getNode();
781
782  } else {
783    // Get the target from BR if we don't negate the condition
784    BR = findUser(BRCOND, ISD::BR);
785    Target = BR->getOperand(1);
786  }
787
788  assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
789
790  // Build the result and
791  SmallVector<EVT, 4> Res;
792  for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i)
793    Res.push_back(Intr->getValueType(i));
794
795  // operands of the new intrinsic call
796  SmallVector<SDValue, 4> Ops;
797  Ops.push_back(BRCOND.getOperand(0));
798  for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i)
799    Ops.push_back(Intr->getOperand(i));
800  Ops.push_back(Target);
801
802  // build the new intrinsic call
803  SDNode *Result = DAG.getNode(
804    Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
805    DAG.getVTList(Res), Ops).getNode();
806
807  if (BR) {
808    // Give the branch instruction our target
809    SDValue Ops[] = {
810      BR->getOperand(0),
811      BRCOND.getOperand(2)
812    };
813    DAG.MorphNodeTo(BR, ISD::BR, BR->getVTList(), Ops);
814  }
815
816  SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
817
818  // Copy the intrinsic results to registers
819  for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
820    SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
821    if (!CopyToReg)
822      continue;
823
824    Chain = DAG.getCopyToReg(
825      Chain, DL,
826      CopyToReg->getOperand(1),
827      SDValue(Result, i - 1),
828      SDValue());
829
830    DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
831  }
832
833  // Remove the old intrinsic from the chain
834  DAG.ReplaceAllUsesOfValueWith(
835    SDValue(Intr, Intr->getNumValues() - 1),
836    Intr->getOperand(0));
837
838  return Chain;
839}
840
841SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
842  SDLoc DL(Op);
843  LoadSDNode *Load = cast<LoadSDNode>(Op);
844  SDValue Lowered = AMDGPUTargetLowering::LowerLOAD(Op, DAG);
845  if (Lowered.getNode())
846    return Lowered;
847
848  if (Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
849    return SDValue();
850  }
851
852  EVT MemVT = Load->getMemoryVT();
853
854  assert(!MemVT.isVector() && "Private loads should be scalarized");
855  assert(!MemVT.isFloatingPoint() && "FP loads should be promoted to int");
856
857  SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
858                            DAG.getConstant(2, MVT::i32));
859
860  // FIXME: REGISTER_LOAD should probably have a chain result.
861  SDValue Chain = Load->getChain();
862  SDValue LoLoad = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
863                               Chain, Ptr,
864                               DAG.getTargetConstant(0, MVT::i32),
865                               Op.getOperand(2));
866
867  SDValue Ret = LoLoad.getValue(0);
868  if (MemVT.getSizeInBits() == 64) {
869    // TODO: This needs a test to make sure the right thing is happening with
870    // the chain. That is hard without general function support.
871
872    SDValue IncPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, Ptr,
873                                 DAG.getConstant(1, MVT::i32));
874
875    SDValue HiLoad = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
876                                 Chain, IncPtr,
877                                 DAG.getTargetConstant(0, MVT::i32),
878                                 Op.getOperand(2));
879
880    Ret = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, LoLoad, HiLoad);
881    // Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
882    //                     LoLoad.getValue(1), HiLoad.getValue(1));
883  }
884
885  SDValue Ops[] = {
886    Ret,
887    Chain
888  };
889
890  return DAG.getMergeValues(Ops, DL);
891}
892
893SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
894                                               const SDValue &Op,
895                                               SelectionDAG &DAG) const {
896  return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
897                     Op.getOperand(2),
898                     Op.getOperand(3),
899                     Op.getOperand(4));
900}
901
902SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
903  if (Op.getValueType() != MVT::i64)
904    return SDValue();
905
906  SDLoc DL(Op);
907  SDValue Cond = Op.getOperand(0);
908
909  SDValue Zero = DAG.getConstant(0, MVT::i32);
910  SDValue One = DAG.getConstant(1, MVT::i32);
911
912  SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
913  SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
914
915  SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
916  SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
917
918  SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
919
920  SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
921  SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
922
923  SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
924
925  SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
926  return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
927}
928
929SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
930  SDLoc DL(Op);
931  StoreSDNode *Store = cast<StoreSDNode>(Op);
932  EVT VT = Store->getMemoryVT();
933
934  // These stores are legal.
935  if (Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
936      VT.isVector() && VT.getVectorNumElements() == 2 &&
937      VT.getVectorElementType() == MVT::i32)
938    return SDValue();
939
940  SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
941  if (Ret.getNode())
942    return Ret;
943
944  if (VT.isVector() && VT.getVectorNumElements() >= 8)
945      return SplitVectorStore(Op, DAG);
946
947  if (VT == MVT::i1)
948    return DAG.getTruncStore(Store->getChain(), DL,
949                        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
950                        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
951
952  if (Store->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
953    return SDValue();
954
955  SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Store->getBasePtr(),
956                            DAG.getConstant(2, MVT::i32));
957  SDValue Chain = Store->getChain();
958  SmallVector<SDValue, 8> Values;
959
960  if (Store->isTruncatingStore()) {
961    unsigned Mask = 0;
962    if (Store->getMemoryVT() == MVT::i8) {
963      Mask = 0xff;
964    } else if (Store->getMemoryVT() == MVT::i16) {
965      Mask = 0xffff;
966    }
967    SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
968                              Chain, Store->getBasePtr(),
969                              DAG.getConstant(0, MVT::i32));
970    SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, Store->getBasePtr(),
971                                  DAG.getConstant(0x3, MVT::i32));
972    SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
973                                   DAG.getConstant(3, MVT::i32));
974    SDValue MaskedValue = DAG.getNode(ISD::AND, DL, MVT::i32, Store->getValue(),
975                                      DAG.getConstant(Mask, MVT::i32));
976    SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
977                                       MaskedValue, ShiftAmt);
978    SDValue RotrAmt = DAG.getNode(ISD::SUB, DL, MVT::i32,
979                                  DAG.getConstant(32, MVT::i32), ShiftAmt);
980    SDValue DstMask = DAG.getNode(ISD::ROTR, DL, MVT::i32,
981                                  DAG.getConstant(Mask, MVT::i32),
982                                  RotrAmt);
983    Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
984    Dst = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
985
986    Values.push_back(Dst);
987  } else if (VT == MVT::i64) {
988    for (unsigned i = 0; i < 2; ++i) {
989      Values.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
990                       Store->getValue(), DAG.getConstant(i, MVT::i32)));
991    }
992  } else if (VT == MVT::i128) {
993    for (unsigned i = 0; i < 2; ++i) {
994      for (unsigned j = 0; j < 2; ++j) {
995        Values.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
996                           DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64,
997                           Store->getValue(), DAG.getConstant(i, MVT::i32)),
998                         DAG.getConstant(j, MVT::i32)));
999      }
1000    }
1001  } else {
1002    Values.push_back(Store->getValue());
1003  }
1004
1005  for (unsigned i = 0; i < Values.size(); ++i) {
1006    SDValue PartPtr = DAG.getNode(ISD::ADD, DL, MVT::i32,
1007                                  Ptr, DAG.getConstant(i, MVT::i32));
1008    Chain = DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
1009                        Chain, Values[i], PartPtr,
1010                        DAG.getTargetConstant(0, MVT::i32));
1011  }
1012  return Chain;
1013}
1014
1015//===----------------------------------------------------------------------===//
1016// Custom DAG optimizations
1017//===----------------------------------------------------------------------===//
1018
1019SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
1020                                                     DAGCombinerInfo &DCI) {
1021  EVT VT = N->getValueType(0);
1022  EVT ScalarVT = VT.getScalarType();
1023  if (ScalarVT != MVT::f32)
1024    return SDValue();
1025
1026  SelectionDAG &DAG = DCI.DAG;
1027  SDLoc DL(N);
1028
1029  SDValue Src = N->getOperand(0);
1030  EVT SrcVT = Src.getValueType();
1031
1032  // TODO: We could try to match extracting the higher bytes, which would be
1033  // easier if i8 vectors weren't promoted to i32 vectors, particularly after
1034  // types are legalized. v4i8 -> v4f32 is probably the only case to worry
1035  // about in practice.
1036  if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
1037    if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
1038      SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
1039      DCI.AddToWorklist(Cvt.getNode());
1040      return Cvt;
1041    }
1042  }
1043
1044  // We are primarily trying to catch operations on illegal vector types
1045  // before they are expanded.
1046  // For scalars, we can use the more flexible method of checking masked bits
1047  // after legalization.
1048  if (!DCI.isBeforeLegalize() ||
1049      !SrcVT.isVector() ||
1050      SrcVT.getVectorElementType() != MVT::i8) {
1051    return SDValue();
1052  }
1053
1054  assert(DCI.isBeforeLegalize() && "Unexpected legal type");
1055
1056  // Weird sized vectors are a pain to handle, but we know 3 is really the same
1057  // size as 4.
1058  unsigned NElts = SrcVT.getVectorNumElements();
1059  if (!SrcVT.isSimple() && NElts != 3)
1060    return SDValue();
1061
1062  // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
1063  // prevent a mess from expanding to v4i32 and repacking.
1064  if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
1065    EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
1066    EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
1067    EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
1068
1069    LoadSDNode *Load = cast<LoadSDNode>(Src);
1070    SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
1071                                     Load->getChain(),
1072                                     Load->getBasePtr(),
1073                                     LoadVT,
1074                                     Load->getMemOperand());
1075
1076    // Make sure successors of the original load stay after it by updating
1077    // them to use the new Chain.
1078    DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
1079
1080    SmallVector<SDValue, 4> Elts;
1081    if (RegVT.isVector())
1082      DAG.ExtractVectorElements(NewLoad, Elts);
1083    else
1084      Elts.push_back(NewLoad);
1085
1086    SmallVector<SDValue, 4> Ops;
1087
1088    unsigned EltIdx = 0;
1089    for (SDValue Elt : Elts) {
1090      unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
1091      for (unsigned I = 0; I < ComponentsInElt; ++I) {
1092        unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
1093        SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
1094        DCI.AddToWorklist(Cvt.getNode());
1095        Ops.push_back(Cvt);
1096      }
1097
1098      ++EltIdx;
1099    }
1100
1101    assert(Ops.size() == NElts);
1102
1103    return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
1104  }
1105
1106  return SDValue();
1107}
1108
1109SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
1110                                            DAGCombinerInfo &DCI) const {
1111  SelectionDAG &DAG = DCI.DAG;
1112  SDLoc DL(N);
1113  EVT VT = N->getValueType(0);
1114
1115  switch (N->getOpcode()) {
1116    default: return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1117    case ISD::SELECT_CC: {
1118      ConstantSDNode *True, *False;
1119      // i1 selectcc(l, r, -1, 0, cc) -> i1 setcc(l, r, cc)
1120      if ((True = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1121          && (False = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1122          && True->isAllOnesValue()
1123          && False->isNullValue()
1124          && VT == MVT::i1) {
1125        return DAG.getNode(ISD::SETCC, DL, VT, N->getOperand(0),
1126                           N->getOperand(1), N->getOperand(4));
1127
1128      }
1129      break;
1130    }
1131    case ISD::SETCC: {
1132      SDValue Arg0 = N->getOperand(0);
1133      SDValue Arg1 = N->getOperand(1);
1134      SDValue CC = N->getOperand(2);
1135      ConstantSDNode * C = nullptr;
1136      ISD::CondCode CCOp = dyn_cast<CondCodeSDNode>(CC)->get();
1137
1138      // i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne)
1139      if (VT == MVT::i1
1140          && Arg0.getOpcode() == ISD::SIGN_EXTEND
1141          && Arg0.getOperand(0).getValueType() == MVT::i1
1142          && (C = dyn_cast<ConstantSDNode>(Arg1))
1143          && C->isNullValue()
1144          && CCOp == ISD::SETNE) {
1145        return SimplifySetCC(VT, Arg0.getOperand(0),
1146                             DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL);
1147      }
1148      break;
1149    }
1150
1151  case AMDGPUISD::CVT_F32_UBYTE0:
1152  case AMDGPUISD::CVT_F32_UBYTE1:
1153  case AMDGPUISD::CVT_F32_UBYTE2:
1154  case AMDGPUISD::CVT_F32_UBYTE3: {
1155    unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
1156
1157    SDValue Src = N->getOperand(0);
1158    APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
1159
1160    APInt KnownZero, KnownOne;
1161    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1162                                          !DCI.isBeforeLegalizeOps());
1163    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1164    if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
1165        TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
1166      DCI.CommitTargetLoweringOpt(TLO);
1167    }
1168
1169    break;
1170  }
1171
1172  case ISD::UINT_TO_FP: {
1173    return performUCharToFloatCombine(N, DCI);
1174  }
1175  }
1176
1177  return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
1178}
1179
1180/// \brief Test if RegClass is one of the VSrc classes
1181static bool isVSrc(unsigned RegClass) {
1182  return AMDGPU::VSrc_32RegClassID == RegClass ||
1183         AMDGPU::VSrc_64RegClassID == RegClass;
1184}
1185
1186/// \brief Test if RegClass is one of the SSrc classes
1187static bool isSSrc(unsigned RegClass) {
1188  return AMDGPU::SSrc_32RegClassID == RegClass ||
1189         AMDGPU::SSrc_64RegClassID == RegClass;
1190}
1191
1192/// \brief Analyze the possible immediate value Op
1193///
1194/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
1195/// and the immediate value if it's a literal immediate
1196int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
1197
1198  union {
1199    int32_t I;
1200    float F;
1201  } Imm;
1202
1203  if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
1204    if (Node->getZExtValue() >> 32) {
1205        return -1;
1206    }
1207    Imm.I = Node->getSExtValue();
1208  } else if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
1209    if (N->getValueType(0) != MVT::f32)
1210      return -1;
1211    Imm.F = Node->getValueAPF().convertToFloat();
1212  } else
1213    return -1; // It isn't an immediate
1214
1215  if ((Imm.I >= -16 && Imm.I <= 64) ||
1216      Imm.F == 0.5f || Imm.F == -0.5f ||
1217      Imm.F == 1.0f || Imm.F == -1.0f ||
1218      Imm.F == 2.0f || Imm.F == -2.0f ||
1219      Imm.F == 4.0f || Imm.F == -4.0f)
1220    return 0; // It's an inline immediate
1221
1222  return Imm.I; // It's a literal immediate
1223}
1224
1225/// \brief Try to fold an immediate directly into an instruction
1226bool SITargetLowering::foldImm(SDValue &Operand, int32_t &Immediate,
1227                               bool &ScalarSlotUsed) const {
1228
1229  MachineSDNode *Mov = dyn_cast<MachineSDNode>(Operand);
1230  const SIInstrInfo *TII =
1231    static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
1232  if (!Mov || !TII->isMov(Mov->getMachineOpcode()))
1233    return false;
1234
1235  const SDValue &Op = Mov->getOperand(0);
1236  int32_t Value = analyzeImmediate(Op.getNode());
1237  if (Value == -1) {
1238    // Not an immediate at all
1239    return false;
1240
1241  } else if (Value == 0) {
1242    // Inline immediates can always be fold
1243    Operand = Op;
1244    return true;
1245
1246  } else if (Value == Immediate) {
1247    // Already fold literal immediate
1248    Operand = Op;
1249    return true;
1250
1251  } else if (!ScalarSlotUsed && !Immediate) {
1252    // Fold this literal immediate
1253    ScalarSlotUsed = true;
1254    Immediate = Value;
1255    Operand = Op;
1256    return true;
1257
1258  }
1259
1260  return false;
1261}
1262
1263const TargetRegisterClass *SITargetLowering::getRegClassForNode(
1264                                   SelectionDAG &DAG, const SDValue &Op) const {
1265  const SIInstrInfo *TII =
1266    static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
1267  const SIRegisterInfo &TRI = TII->getRegisterInfo();
1268
1269  if (!Op->isMachineOpcode()) {
1270    switch(Op->getOpcode()) {
1271    case ISD::CopyFromReg: {
1272      MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1273      unsigned Reg = cast<RegisterSDNode>(Op->getOperand(1))->getReg();
1274      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1275        return MRI.getRegClass(Reg);
1276      }
1277      return TRI.getPhysRegClass(Reg);
1278    }
1279    default:  return nullptr;
1280    }
1281  }
1282  const MCInstrDesc &Desc = TII->get(Op->getMachineOpcode());
1283  int OpClassID = Desc.OpInfo[Op.getResNo()].RegClass;
1284  if (OpClassID != -1) {
1285    return TRI.getRegClass(OpClassID);
1286  }
1287  switch(Op.getMachineOpcode()) {
1288  case AMDGPU::COPY_TO_REGCLASS:
1289    // Operand 1 is the register class id for COPY_TO_REGCLASS instructions.
1290    OpClassID = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
1291
1292    // If the COPY_TO_REGCLASS instruction is copying to a VSrc register
1293    // class, then the register class for the value could be either a
1294    // VReg or and SReg.  In order to get a more accurate
1295    if (OpClassID == AMDGPU::VSrc_32RegClassID ||
1296        OpClassID == AMDGPU::VSrc_64RegClassID) {
1297      return getRegClassForNode(DAG, Op.getOperand(0));
1298    }
1299    return TRI.getRegClass(OpClassID);
1300  case AMDGPU::EXTRACT_SUBREG: {
1301    int SubIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1302    const TargetRegisterClass *SuperClass =
1303      getRegClassForNode(DAG, Op.getOperand(0));
1304    return TRI.getSubClassWithSubReg(SuperClass, SubIdx);
1305  }
1306  case AMDGPU::REG_SEQUENCE:
1307    // Operand 0 is the register class id for REG_SEQUENCE instructions.
1308    return TRI.getRegClass(
1309      cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue());
1310  default:
1311    return getRegClassFor(Op.getSimpleValueType());
1312  }
1313}
1314
1315/// \brief Does "Op" fit into register class "RegClass" ?
1316bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
1317                                    unsigned RegClass) const {
1318  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
1319  const TargetRegisterClass *RC = getRegClassForNode(DAG, Op);
1320  if (!RC) {
1321    return false;
1322  }
1323  return TRI->getRegClass(RegClass)->hasSubClassEq(RC);
1324}
1325
1326/// \brief Make sure that we don't exeed the number of allowed scalars
1327void SITargetLowering::ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand,
1328                                       unsigned RegClass,
1329                                       bool &ScalarSlotUsed) const {
1330
1331  // First map the operands register class to a destination class
1332  if (RegClass == AMDGPU::VSrc_32RegClassID)
1333    RegClass = AMDGPU::VReg_32RegClassID;
1334  else if (RegClass == AMDGPU::VSrc_64RegClassID)
1335    RegClass = AMDGPU::VReg_64RegClassID;
1336  else
1337    return;
1338
1339  // Nothing to do if they fit naturally
1340  if (fitsRegClass(DAG, Operand, RegClass))
1341    return;
1342
1343  // If the scalar slot isn't used yet use it now
1344  if (!ScalarSlotUsed) {
1345    ScalarSlotUsed = true;
1346    return;
1347  }
1348
1349  // This is a conservative aproach. It is possible that we can't determine the
1350  // correct register class and copy too often, but better safe than sorry.
1351  SDValue RC = DAG.getTargetConstant(RegClass, MVT::i32);
1352  SDNode *Node = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, SDLoc(),
1353                                    Operand.getValueType(), Operand, RC);
1354  Operand = SDValue(Node, 0);
1355}
1356
1357/// \returns true if \p Node's operands are different from the SDValue list
1358/// \p Ops
1359static bool isNodeChanged(const SDNode *Node, const std::vector<SDValue> &Ops) {
1360  for (unsigned i = 0, e = Node->getNumOperands(); i < e; ++i) {
1361    if (Ops[i].getNode() != Node->getOperand(i).getNode()) {
1362      return true;
1363    }
1364  }
1365  return false;
1366}
1367
1368/// \brief Try to fold the Nodes operands into the Node
1369SDNode *SITargetLowering::foldOperands(MachineSDNode *Node,
1370                                       SelectionDAG &DAG) const {
1371
1372  // Original encoding (either e32 or e64)
1373  int Opcode = Node->getMachineOpcode();
1374  const SIInstrInfo *TII =
1375    static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
1376  const MCInstrDesc *Desc = &TII->get(Opcode);
1377
1378  unsigned NumDefs = Desc->getNumDefs();
1379  unsigned NumOps = Desc->getNumOperands();
1380
1381  // Commuted opcode if available
1382  int OpcodeRev = Desc->isCommutable() ? TII->commuteOpcode(Opcode) : -1;
1383  const MCInstrDesc *DescRev = OpcodeRev == -1 ? nullptr : &TII->get(OpcodeRev);
1384
1385  assert(!DescRev || DescRev->getNumDefs() == NumDefs);
1386  assert(!DescRev || DescRev->getNumOperands() == NumOps);
1387
1388  // e64 version if available, -1 otherwise
1389  int OpcodeE64 = AMDGPU::getVOPe64(Opcode);
1390  const MCInstrDesc *DescE64 = OpcodeE64 == -1 ? nullptr : &TII->get(OpcodeE64);
1391  int InputModifiers[3] = {0};
1392
1393  assert(!DescE64 || DescE64->getNumDefs() == NumDefs);
1394
1395  int32_t Immediate = Desc->getSize() == 4 ? 0 : -1;
1396  bool HaveVSrc = false, HaveSSrc = false;
1397
1398  // First figure out what we already have in this instruction.
1399  for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
1400       i != e && Op < NumOps; ++i, ++Op) {
1401
1402    unsigned RegClass = Desc->OpInfo[Op].RegClass;
1403    if (isVSrc(RegClass))
1404      HaveVSrc = true;
1405    else if (isSSrc(RegClass))
1406      HaveSSrc = true;
1407    else
1408      continue;
1409
1410    int32_t Imm = analyzeImmediate(Node->getOperand(i).getNode());
1411    if (Imm != -1 && Imm != 0) {
1412      // Literal immediate
1413      Immediate = Imm;
1414    }
1415  }
1416
1417  // If we neither have VSrc nor SSrc, it makes no sense to continue.
1418  if (!HaveVSrc && !HaveSSrc)
1419    return Node;
1420
1421  // No scalar allowed when we have both VSrc and SSrc
1422  bool ScalarSlotUsed = HaveVSrc && HaveSSrc;
1423
1424  // Second go over the operands and try to fold them
1425  std::vector<SDValue> Ops;
1426  bool Promote2e64 = false;
1427  for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
1428       i != e && Op < NumOps; ++i, ++Op) {
1429
1430    const SDValue &Operand = Node->getOperand(i);
1431    Ops.push_back(Operand);
1432
1433    // Already folded immediate?
1434    if (isa<ConstantSDNode>(Operand.getNode()) ||
1435        isa<ConstantFPSDNode>(Operand.getNode()))
1436      continue;
1437
1438    // Is this a VSrc or SSrc operand?
1439    unsigned RegClass = Desc->OpInfo[Op].RegClass;
1440    if (isVSrc(RegClass) || isSSrc(RegClass)) {
1441      // Try to fold the immediates
1442      if (!foldImm(Ops[i], Immediate, ScalarSlotUsed)) {
1443        // Folding didn't work, make sure we don't hit the SReg limit.
1444        ensureSRegLimit(DAG, Ops[i], RegClass, ScalarSlotUsed);
1445      }
1446      continue;
1447    }
1448
1449    if (i == 1 && DescRev && fitsRegClass(DAG, Ops[0], RegClass)) {
1450
1451      unsigned OtherRegClass = Desc->OpInfo[NumDefs].RegClass;
1452      assert(isVSrc(OtherRegClass) || isSSrc(OtherRegClass));
1453
1454      // Test if it makes sense to swap operands
1455      if (foldImm(Ops[1], Immediate, ScalarSlotUsed) ||
1456          (!fitsRegClass(DAG, Ops[1], RegClass) &&
1457           fitsRegClass(DAG, Ops[1], OtherRegClass))) {
1458
1459        // Swap commutable operands
1460        std::swap(Ops[0], Ops[1]);
1461
1462        Desc = DescRev;
1463        DescRev = nullptr;
1464        continue;
1465      }
1466    }
1467
1468    if (Immediate)
1469      continue;
1470
1471    if (DescE64) {
1472      // Test if it makes sense to switch to e64 encoding
1473      unsigned OtherRegClass = DescE64->OpInfo[Op].RegClass;
1474      if (!isVSrc(OtherRegClass) && !isSSrc(OtherRegClass))
1475        continue;
1476
1477      int32_t TmpImm = -1;
1478      if (foldImm(Ops[i], TmpImm, ScalarSlotUsed) ||
1479          (!fitsRegClass(DAG, Ops[i], RegClass) &&
1480           fitsRegClass(DAG, Ops[1], OtherRegClass))) {
1481
1482        // Switch to e64 encoding
1483        Immediate = -1;
1484        Promote2e64 = true;
1485        Desc = DescE64;
1486        DescE64 = nullptr;
1487      }
1488    }
1489
1490    if (!DescE64 && !Promote2e64)
1491      continue;
1492    if (!Operand.isMachineOpcode())
1493      continue;
1494    if (Operand.getMachineOpcode() == AMDGPU::FNEG_SI) {
1495      Ops.pop_back();
1496      Ops.push_back(Operand.getOperand(0));
1497      InputModifiers[i] = 1;
1498      Promote2e64 = true;
1499      if (!DescE64)
1500        continue;
1501      Desc = DescE64;
1502      DescE64 = nullptr;
1503    }
1504    else if (Operand.getMachineOpcode() == AMDGPU::FABS_SI) {
1505      Ops.pop_back();
1506      Ops.push_back(Operand.getOperand(0));
1507      InputModifiers[i] = 2;
1508      Promote2e64 = true;
1509      if (!DescE64)
1510        continue;
1511      Desc = DescE64;
1512      DescE64 = nullptr;
1513    }
1514  }
1515
1516  if (Promote2e64) {
1517    std::vector<SDValue> OldOps(Ops);
1518    Ops.clear();
1519    for (unsigned i = 0; i < OldOps.size(); ++i) {
1520      // src_modifier
1521      Ops.push_back(DAG.getTargetConstant(InputModifiers[i], MVT::i32));
1522      Ops.push_back(OldOps[i]);
1523    }
1524    // Add the modifier flags while promoting
1525    for (unsigned i = 0; i < 2; ++i)
1526      Ops.push_back(DAG.getTargetConstant(0, MVT::i32));
1527  }
1528
1529  // Add optional chain and glue
1530  for (unsigned i = NumOps - NumDefs, e = Node->getNumOperands(); i < e; ++i)
1531    Ops.push_back(Node->getOperand(i));
1532
1533  // Nodes that have a glue result are not CSE'd by getMachineNode(), so in
1534  // this case a brand new node is always be created, even if the operands
1535  // are the same as before.  So, manually check if anything has been changed.
1536  if (Desc->Opcode == Opcode && !isNodeChanged(Node, Ops)) {
1537    return Node;
1538  }
1539
1540  // Create a complete new instruction
1541  return DAG.getMachineNode(Desc->Opcode, SDLoc(Node), Node->getVTList(), Ops);
1542}
1543
1544/// \brief Helper function for adjustWritemask
1545static unsigned SubIdx2Lane(unsigned Idx) {
1546  switch (Idx) {
1547  default: return 0;
1548  case AMDGPU::sub0: return 0;
1549  case AMDGPU::sub1: return 1;
1550  case AMDGPU::sub2: return 2;
1551  case AMDGPU::sub3: return 3;
1552  }
1553}
1554
1555/// \brief Adjust the writemask of MIMG instructions
1556void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
1557                                       SelectionDAG &DAG) const {
1558  SDNode *Users[4] = { };
1559  unsigned Lane = 0;
1560  unsigned OldDmask = Node->getConstantOperandVal(0);
1561  unsigned NewDmask = 0;
1562
1563  // Try to figure out the used register components
1564  for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
1565       I != E; ++I) {
1566
1567    // Abort if we can't understand the usage
1568    if (!I->isMachineOpcode() ||
1569        I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
1570      return;
1571
1572    // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
1573    // Note that subregs are packed, i.e. Lane==0 is the first bit set
1574    // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
1575    // set, etc.
1576    Lane = SubIdx2Lane(I->getConstantOperandVal(1));
1577
1578    // Set which texture component corresponds to the lane.
1579    unsigned Comp;
1580    for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
1581      assert(Dmask);
1582      Comp = countTrailingZeros(Dmask);
1583      Dmask &= ~(1 << Comp);
1584    }
1585
1586    // Abort if we have more than one user per component
1587    if (Users[Lane])
1588      return;
1589
1590    Users[Lane] = *I;
1591    NewDmask |= 1 << Comp;
1592  }
1593
1594  // Abort if there's no change
1595  if (NewDmask == OldDmask)
1596    return;
1597
1598  // Adjust the writemask in the node
1599  std::vector<SDValue> Ops;
1600  Ops.push_back(DAG.getTargetConstant(NewDmask, MVT::i32));
1601  for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
1602    Ops.push_back(Node->getOperand(i));
1603  Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
1604
1605  // If we only got one lane, replace it with a copy
1606  // (if NewDmask has only one bit set...)
1607  if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
1608    SDValue RC = DAG.getTargetConstant(AMDGPU::VReg_32RegClassID, MVT::i32);
1609    SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1610                                      SDLoc(), Users[Lane]->getValueType(0),
1611                                      SDValue(Node, 0), RC);
1612    DAG.ReplaceAllUsesWith(Users[Lane], Copy);
1613    return;
1614  }
1615
1616  // Update the users of the node with the new indices
1617  for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
1618
1619    SDNode *User = Users[i];
1620    if (!User)
1621      continue;
1622
1623    SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
1624    DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
1625
1626    switch (Idx) {
1627    default: break;
1628    case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
1629    case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
1630    case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
1631    }
1632  }
1633}
1634
1635/// \brief Fold the instructions after selecting them.
1636SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
1637                                          SelectionDAG &DAG) const {
1638  const SIInstrInfo *TII =
1639      static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
1640  Node = AdjustRegClass(Node, DAG);
1641
1642  if (TII->isMIMG(Node->getMachineOpcode()))
1643    adjustWritemask(Node, DAG);
1644
1645  return foldOperands(Node, DAG);
1646}
1647
1648/// \brief Assign the register class depending on the number of
1649/// bits set in the writemask
1650void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
1651                                                     SDNode *Node) const {
1652  const SIInstrInfo *TII =
1653      static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
1654  if (!TII->isMIMG(MI->getOpcode()))
1655    return;
1656
1657  unsigned VReg = MI->getOperand(0).getReg();
1658  unsigned Writemask = MI->getOperand(1).getImm();
1659  unsigned BitsSet = 0;
1660  for (unsigned i = 0; i < 4; ++i)
1661    BitsSet += Writemask & (1 << i) ? 1 : 0;
1662
1663  const TargetRegisterClass *RC;
1664  switch (BitsSet) {
1665  default: return;
1666  case 1:  RC = &AMDGPU::VReg_32RegClass; break;
1667  case 2:  RC = &AMDGPU::VReg_64RegClass; break;
1668  case 3:  RC = &AMDGPU::VReg_96RegClass; break;
1669  }
1670
1671  unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
1672  MI->setDesc(TII->get(NewOpcode));
1673  MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
1674  MRI.setRegClass(VReg, RC);
1675}
1676
1677MachineSDNode *SITargetLowering::AdjustRegClass(MachineSDNode *N,
1678                                                SelectionDAG &DAG) const {
1679
1680  SDLoc DL(N);
1681  unsigned NewOpcode = N->getMachineOpcode();
1682
1683  switch (N->getMachineOpcode()) {
1684  default: return N;
1685  case AMDGPU::S_LOAD_DWORD_IMM:
1686    NewOpcode = AMDGPU::BUFFER_LOAD_DWORD_ADDR64;
1687    // Fall-through
1688  case AMDGPU::S_LOAD_DWORDX2_SGPR:
1689    if (NewOpcode == N->getMachineOpcode()) {
1690      NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
1691    }
1692    // Fall-through
1693  case AMDGPU::S_LOAD_DWORDX4_IMM:
1694  case AMDGPU::S_LOAD_DWORDX4_SGPR: {
1695    if (NewOpcode == N->getMachineOpcode()) {
1696      NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
1697    }
1698    if (fitsRegClass(DAG, N->getOperand(0), AMDGPU::SReg_64RegClassID)) {
1699      return N;
1700    }
1701    ConstantSDNode *Offset = cast<ConstantSDNode>(N->getOperand(1));
1702    SDValue Ops[] = {
1703      SDValue(DAG.getMachineNode(AMDGPU::SI_ADDR64_RSRC, DL, MVT::i128,
1704                                 DAG.getConstant(0, MVT::i64)), 0),
1705      N->getOperand(0),
1706      DAG.getConstant(Offset->getSExtValue() << 2, MVT::i32)
1707    };
1708    return DAG.getMachineNode(NewOpcode, DL, N->getVTList(), Ops);
1709  }
1710  }
1711}
1712
1713SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
1714                                               const TargetRegisterClass *RC,
1715                                               unsigned Reg, EVT VT) const {
1716  SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
1717
1718  return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
1719                            cast<RegisterSDNode>(VReg)->getReg(), VT);
1720}
1721