SparcCallingConv.td revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- SparcCallingConv.td - Calling Conventions Sparc ----*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This describes the calling conventions for the Sparc architectures.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// SPARC v8 32-bit.
16//===----------------------------------------------------------------------===//
17
18def CC_Sparc32 : CallingConv<[
19  // Custom assign SRet to [sp+64].
20  CCIfSRet<CCCustom<"CC_Sparc_Assign_SRet">>,
21  // i32 f32 arguments get passed in integer registers if there is space.
22  CCIfType<[i32, f32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
23  // f64 arguments are split and passed through registers or through stack.
24  CCIfType<[f64], CCCustom<"CC_Sparc_Assign_f64">>,
25
26  // Alternatively, they are assigned to the stack in 4-byte aligned units.
27  CCAssignToStack<4, 4>
28]>;
29
30def RetCC_Sparc32 : CallingConv<[
31  CCIfType<[i32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
32  CCIfType<[f32], CCAssignToReg<[F0, F1, F2, F3]>>,
33  CCIfType<[f64], CCAssignToReg<[D0, D1]>>
34]>;
35
36
37//===----------------------------------------------------------------------===//
38// SPARC v9 64-bit.
39//===----------------------------------------------------------------------===//
40//
41// The 64-bit ABI conceptually assigns all function arguments to a parameter
42// array starting at [%fp+BIAS+128] in the callee's stack frame. All arguments
43// occupy a multiple of 8 bytes in the array. Integer arguments are extended to
44// 64 bits by the caller. Floats are right-aligned in their 8-byte slot, the
45// first 4 bytes in the slot are undefined.
46//
47// The integer registers %i0 to %i5 shadow the first 48 bytes of the parameter
48// array at fixed offsets. Integer arguments are promoted to registers when
49// possible.
50//
51// The floating point registers %f0 to %f31 shadow the first 128 bytes of the
52// parameter array at fixed offsets. Float and double parameters are promoted
53// to these registers when possible.
54//
55// Structs up to 16 bytes in size are passed by value. They are right-aligned
56// in one or two 8-byte slots in the parameter array. Struct members are
57// promoted to both floating point and integer registers when possible. A
58// struct containing two floats would thus be passed in %f0 and %f1, while two
59// float function arguments would occupy 8 bytes each, and be passed in %f1 and
60// %f3.
61//
62// When a struct { int, float } is passed by value, the int goes in the high
63// bits of an integer register while the float goes in a floating point
64// register.
65//
66// The difference is encoded in LLVM IR using the inreg atttribute on function
67// arguments:
68//
69//   C:   void f(float, float);
70//   IR:  declare void f(float %f1, float %f3)
71//
72//   C:   void f(struct { float f0, f1; });
73//   IR:  declare void f(float inreg %f0, float inreg %f1)
74//
75//   C:   void f(int, float);
76//   IR:  declare void f(int signext %i0, float %f3)
77//
78//   C:   void f(struct { int i0high; float f1; });
79//   IR:  declare void f(i32 inreg %i0high, float inreg %f1)
80//
81// Two ints in a struct are simply coerced to i64:
82//
83//   C:   void f(struct { int i0high, i0low; });
84//   IR:  declare void f(i64 %i0.coerced)
85//
86// The frontend and backend divide the task of producing ABI compliant code for
87// C functions. The C frontend will:
88//
89//  - Annotate integer arguments with zeroext or signext attributes.
90//
91//  - Split structs into one or two 64-bit sized chunks, or 32-bit chunks with
92//    inreg attributes.
93//
94//  - Pass structs larger than 16 bytes indirectly with an explicit pointer
95//    argument. The byval attribute is not used.
96//
97// The backend will:
98//
99//  - Assign all arguments to 64-bit aligned stack slots, 32-bits for inreg.
100//
101//  - Promote to integer or floating point registers depending on type.
102//
103// Function return values are passed exactly like function arguments, except a
104// struct up to 32 bytes in size can be returned in registers.
105
106// Function arguments AND most return values.
107def CC_Sparc64 : CallingConv<[
108  // The frontend uses the inreg flag to indicate i32 and float arguments from
109  // structs. These arguments are not promoted to 64 bits, but they can still
110  // be assigned to integer and float registers.
111  CCIfInReg<CCIfType<[i32, f32], CCCustom<"CC_Sparc64_Half">>>,
112
113  // All integers are promoted to i64 by the caller.
114  CCIfType<[i32], CCPromoteToType<i64>>,
115
116  // Custom assignment is required because stack space is reserved for all
117  // arguments whether they are passed in registers or not.
118  CCCustom<"CC_Sparc64_Full">
119]>;
120
121def RetCC_Sparc64 : CallingConv<[
122  // A single f32 return value always goes in %f0. The ABI doesn't specify what
123  // happens to multiple f32 return values outside a struct.
124  CCIfType<[f32], CCCustom<"CC_Sparc64_Half">>,
125
126  // Otherwise, return values are passed exactly like arguments.
127  CCDelegateTo<CC_Sparc64>
128]>;
129
130// Callee-saved registers are handled by the register window mechanism.
131def CSR : CalleeSavedRegs<(add)> {
132  let OtherPreserved = (add (sequence "I%u", 0, 7),
133                            (sequence "L%u", 0, 7));
134}
135
136// Callee-saved registers for calls with ReturnsTwice attribute.
137def RTCSR : CalleeSavedRegs<(add)> {
138  let OtherPreserved = (add I6, I7);
139}
140