SparcInstr64Bit.td revision ec2aaad01bff4ba2dd5cee0cd0bfe723db2619d0
1//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains instruction definitions and patterns needed for 64-bit
11// code generation on SPARC v9.
12//
13// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can
14// also be used in 32-bit code running on a SPARC v9 CPU.
15//
16//===----------------------------------------------------------------------===//
17
18let Predicates = [Is64Bit] in {
19// The same integer registers are used for i32 and i64 values.
20// When registers hold i32 values, the high bits are don't care.
21// This give us free trunc and anyext.
22def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>;
23def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>;
24
25} // Predicates = [Is64Bit]
26
27
28//===----------------------------------------------------------------------===//
29// 64-bit Shift Instructions.
30//===----------------------------------------------------------------------===//
31//
32// The 32-bit shift instructions are still available. The left shift srl
33// instructions shift all 64 bits, but it only accepts a 5-bit shift amount.
34//
35// The srl instructions only shift the low 32 bits and clear the high 32 bits.
36// Finally, sra shifts the low 32 bits and sign-extends to 64 bits.
37
38let Predicates = [Is64Bit] in {
39
40def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>;
41def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>;
42
43def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>;
44def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>;
45
46defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>;
47defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>;
48defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>;
49
50} // Predicates = [Is64Bit]
51
52
53//===----------------------------------------------------------------------===//
54// 64-bit Immediates.
55//===----------------------------------------------------------------------===//
56//
57// All 32-bit immediates can be materialized with sethi+or, but 64-bit
58// immediates may require more code. There may be a point where it is
59// preferable to use a constant pool load instead, depending on the
60// microarchitecture.
61
62// Single-instruction patterns.
63
64// The ALU instructions want their simm13 operands as i32 immediates.
65def as_i32imm : SDNodeXForm<imm, [{
66  return CurDAG->getTargetConstant(N->getSExtValue(), MVT::i32);
67}]>;
68def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>;
69def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>;
70
71// Double-instruction patterns.
72
73// All unsigned i32 immediates can be handled by sethi+or.
74def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>;
75def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>,
76      Requires<[Is64Bit]>;
77
78// All negative i33 immediates can be handled by sethi+xor.
79def nimm33 : PatLeaf<(imm), [{
80  int64_t Imm = N->getSExtValue();
81  return Imm < 0 && isInt<33>(Imm);
82}]>;
83// Bits 10-31 inverted. Same as assembler's %hix.
84def HIX22 : SDNodeXForm<imm, [{
85  uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1);
86  return CurDAG->getTargetConstant(Val, MVT::i32);
87}]>;
88// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox.
89def LOX10 : SDNodeXForm<imm, [{
90  return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), MVT::i32);
91}]>;
92def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>,
93      Requires<[Is64Bit]>;
94
95// More possible patterns:
96//
97//   (sllx sethi, n)
98//   (sllx simm13, n)
99//
100// 3 instrs:
101//
102//   (xor (sllx sethi), simm13)
103//   (sllx (xor sethi, simm13))
104//
105// 4 instrs:
106//
107//   (or sethi, (sllx sethi))
108//   (xnor sethi, (sllx sethi))
109//
110// 5 instrs:
111//
112//   (or (sllx sethi), (or sethi, simm13))
113//   (xnor (sllx sethi), (or sethi, simm13))
114//   (or (sllx sethi), (sllx sethi))
115//   (xnor (sllx sethi), (sllx sethi))
116//
117// Worst case is 6 instrs:
118//
119//   (or (sllx (or sethi, simmm13)), (or sethi, simm13))
120
121// Bits 42-63, same as assembler's %hh.
122def HH22 : SDNodeXForm<imm, [{
123  uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1);
124  return CurDAG->getTargetConstant(Val, MVT::i32);
125}]>;
126// Bits 32-41, same as assembler's %hm.
127def HM10 : SDNodeXForm<imm, [{
128  uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1);
129  return CurDAG->getTargetConstant(Val, MVT::i32);
130}]>;
131def : Pat<(i64 imm:$val),
132          (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)),
133                (ORri (SETHIi (HI22 $val)), (LO10 $val)))>,
134      Requires<[Is64Bit]>;
135
136
137//===----------------------------------------------------------------------===//
138// 64-bit Integer Arithmetic and Logic.
139//===----------------------------------------------------------------------===//
140
141let Predicates = [Is64Bit] in {
142
143// Register-register instructions.
144
145def : Pat<(and i64:$a, i64:$b), (ANDrr $a, $b)>;
146def : Pat<(or  i64:$a, i64:$b), (ORrr  $a, $b)>;
147def : Pat<(xor i64:$a, i64:$b), (XORrr $a, $b)>;
148
149def : Pat<(and i64:$a, (not i64:$b)), (ANDNrr $a, $b)>;
150def : Pat<(or  i64:$a, (not i64:$b)), (ORNrr  $a, $b)>;
151def : Pat<(xor i64:$a, (not i64:$b)), (XNORrr $a, $b)>;
152
153def : Pat<(add i64:$a, i64:$b), (ADDrr $a, $b)>;
154def : Pat<(sub i64:$a, i64:$b), (SUBrr $a, $b)>;
155
156// Add/sub with carry were renamed to addc/subc in SPARC v9.
157def : Pat<(adde i64:$a, i64:$b), (ADDXrr $a, $b)>;
158def : Pat<(sube i64:$a, i64:$b), (SUBXrr $a, $b)>;
159
160def : Pat<(addc i64:$a, i64:$b), (ADDCCrr $a, $b)>;
161def : Pat<(subc i64:$a, i64:$b), (SUBCCrr $a, $b)>;
162
163def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>;
164
165// Register-immediate instructions.
166
167def : Pat<(and i64:$a, (i64 simm13:$b)), (ANDri $a, (as_i32imm $b))>;
168def : Pat<(or  i64:$a, (i64 simm13:$b)), (ORri  $a, (as_i32imm $b))>;
169def : Pat<(xor i64:$a, (i64 simm13:$b)), (XORri $a, (as_i32imm $b))>;
170
171def : Pat<(add i64:$a, (i64 simm13:$b)), (ADDri $a, (as_i32imm $b))>;
172def : Pat<(sub i64:$a, (i64 simm13:$b)), (SUBri $a, (as_i32imm $b))>;
173
174def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>;
175
176} // Predicates = [Is64Bit]
177
178
179//===----------------------------------------------------------------------===//
180// 64-bit Integer Multiply and Divide.
181//===----------------------------------------------------------------------===//
182
183let Predicates = [Is64Bit] in {
184
185def MULXrr : F3_1<2, 0b001001,
186                  (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
187                  "mulx $rs1, $rs2, $rd",
188                  [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>;
189def MULXri : F3_2<2, 0b001001,
190                  (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
191                  "mulx $rs1, $i, $rd",
192                  [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$i)))]>;
193
194// Division can trap.
195let hasSideEffects = 1 in {
196def SDIVXrr : F3_1<2, 0b101101,
197                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
198                   "sdivx $rs1, $rs2, $rd",
199                   [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>;
200def SDIVXri : F3_2<2, 0b101101,
201                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
202                   "sdivx $rs1, $i, $rd",
203                   [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$i)))]>;
204
205def UDIVXrr : F3_1<2, 0b001101,
206                   (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2),
207                   "udivx $rs1, $rs2, $rd",
208                   [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>;
209def UDIVXri : F3_2<2, 0b001101,
210                   (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$i),
211                   "udivx $rs1, $i, $rd",
212                   [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$i)))]>;
213} // hasSideEffects = 1
214
215} // Predicates = [Is64Bit]
216
217
218//===----------------------------------------------------------------------===//
219// 64-bit Loads and Stores.
220//===----------------------------------------------------------------------===//
221//
222// All the 32-bit loads and stores are available. The extending loads are sign
223// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits
224// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned
225// Word).
226//
227// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads.
228
229let Predicates = [Is64Bit] in {
230
231// 64-bit loads.
232def LDXrr  : F3_1<3, 0b001011,
233                  (outs I64Regs:$dst), (ins MEMrr:$addr),
234                  "ldx [$addr], $dst",
235                  [(set i64:$dst, (load ADDRrr:$addr))]>;
236def LDXri  : F3_2<3, 0b001011,
237                  (outs I64Regs:$dst), (ins MEMri:$addr),
238                  "ldx [$addr], $dst",
239                  [(set i64:$dst, (load ADDRri:$addr))]>;
240
241// Extending loads to i64.
242def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
243def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
244def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
245def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
246
247def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>;
248def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>;
249def : Pat<(i64 (extloadi8 ADDRrr:$addr)),  (LDUBrr ADDRrr:$addr)>;
250def : Pat<(i64 (extloadi8 ADDRri:$addr)),  (LDUBri ADDRri:$addr)>;
251def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>;
252def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>;
253
254def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>;
255def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>;
256def : Pat<(i64 (extloadi16 ADDRrr:$addr)),  (LDUHrr ADDRrr:$addr)>;
257def : Pat<(i64 (extloadi16 ADDRri:$addr)),  (LDUHri ADDRri:$addr)>;
258def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>;
259def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>;
260
261def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>;
262def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>;
263def : Pat<(i64 (extloadi32 ADDRrr:$addr)),  (LDrr ADDRrr:$addr)>;
264def : Pat<(i64 (extloadi32 ADDRri:$addr)),  (LDri ADDRri:$addr)>;
265
266// Sign-extending load of i32 into i64 is a new SPARC v9 instruction.
267def LDSWrr : F3_1<3, 0b001011,
268                 (outs I64Regs:$dst), (ins MEMrr:$addr),
269                 "ldsw [$addr], $dst",
270                 [(set i64:$dst, (sextloadi32 ADDRrr:$addr))]>;
271def LDSWri : F3_2<3, 0b001011,
272                 (outs I64Regs:$dst), (ins MEMri:$addr),
273                 "ldsw [$addr], $dst",
274                 [(set i64:$dst, (sextloadi32 ADDRri:$addr))]>;
275
276// 64-bit stores.
277def STXrr  : F3_1<3, 0b001110,
278                 (outs), (ins MEMrr:$addr, I64Regs:$src),
279                 "stx $src, [$addr]",
280                 [(store i64:$src, ADDRrr:$addr)]>;
281def STXri  : F3_2<3, 0b001110,
282                 (outs), (ins MEMri:$addr, I64Regs:$src),
283                 "stx $src, [$addr]",
284                 [(store i64:$src, ADDRri:$addr)]>;
285
286// Truncating stores from i64 are identical to the i32 stores.
287def : Pat<(truncstorei8  i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>;
288def : Pat<(truncstorei8  i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>;
289def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>;
290def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>;
291def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr  ADDRrr:$addr, $src)>;
292def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri  ADDRri:$addr, $src)>;
293
294// store 0, addr -> store %g0, addr
295def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>;
296def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>;
297
298} // Predicates = [Is64Bit]
299
300
301//===----------------------------------------------------------------------===//
302// 64-bit Conditionals.
303//===----------------------------------------------------------------------===//
304//
305// Flag-setting instructions like subcc and addcc set both icc and xcc flags.
306// The icc flags correspond to the 32-bit result, and the xcc are for the
307// full 64-bit result.
308//
309// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for
310// 64-bit compares. See LowerBR_CC.
311
312let Predicates = [Is64Bit] in {
313
314let Uses = [ICC] in
315def BPXCC : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
316                     "b$cc %xcc, $dst",
317                     [(SPbrxcc bb:$dst, imm:$cc)]>;
318
319// Conditional moves on %xcc.
320let Uses = [ICC], Constraints = "$f = $rd" in {
321def MOVXCCrr : Pseudo<(outs IntRegs:$rd),
322                      (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
323                      "mov$cond %xcc, $rs2, $rd",
324                      [(set i32:$rd,
325                       (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>;
326def MOVXCCri : Pseudo<(outs IntRegs:$rd),
327                      (ins i32imm:$i, IntRegs:$f, CCOp:$cond),
328                      "mov$cond %xcc, $i, $rd",
329                      [(set i32:$rd,
330                       (SPselectxcc simm11:$i, i32:$f, imm:$cond))]>;
331def FMOVS_XCC : Pseudo<(outs FPRegs:$rd),
332                      (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
333                      "fmovs$cond %xcc, $rs2, $rd",
334                      [(set f32:$rd,
335                       (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>;
336def FMOVD_XCC : Pseudo<(outs DFPRegs:$rd),
337                      (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
338                      "fmovd$cond %xcc, $rs2, $rd",
339                      [(set f64:$rd,
340                       (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>;
341} // Uses, Constraints
342
343def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond),
344          (MOVXCCrr $t, $f, imm:$cond)>;
345def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond),
346          (MOVXCCri (as_i32imm $t), $f, imm:$cond)>;
347
348def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond),
349          (MOVICCrr $t, $f, imm:$cond)>;
350def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond),
351          (MOVICCri (as_i32imm $t), $f, imm:$cond)>;
352
353def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond),
354          (MOVFCCrr $t, $f, imm:$cond)>;
355def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond),
356          (MOVFCCri (as_i32imm $t), $f, imm:$cond)>;
357
358} // Predicates = [Is64Bit]
359