SparcInstrInfo.td revision 1799921672835c49f6a29fc27d1840b7c36beabd
1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// True when generating 32-bit code.
25def Is32Bit : Predicate<"!Subtarget.is64Bit()">;
26
27// True when generating 64-bit code. This also implies HasV9.
28def Is64Bit : Predicate<"Subtarget.is64Bit()">;
29
30// HasV9 - This predicate is true when the target processor supports V9
31// instructions.  Note that the machine may be running in 32-bit mode.
32def HasV9   : Predicate<"Subtarget.isV9()">;
33
34// HasNoV9 - This predicate is true when the target doesn't have V9
35// instructions.  Use of this is just a hack for the isel not having proper
36// costs for V8 instructions that are more expensive than their V9 ones.
37def HasNoV9 : Predicate<"!Subtarget.isV9()">;
38
39// HasVIS - This is true when the target processor has VIS extensions.
40def HasVIS : Predicate<"Subtarget.isVIS()">;
41
42// UseDeprecatedInsts - This predicate is true when the target processor is a
43// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
44// to use when appropriate.  In either of these cases, the instruction selector
45// will pick deprecated instructions.
46def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
47
48//===----------------------------------------------------------------------===//
49// Instruction Pattern Stuff
50//===----------------------------------------------------------------------===//
51
52def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
53
54def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
55
56def LO10 : SDNodeXForm<imm, [{
57  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
58                                   MVT::i32);
59}]>;
60
61def HI22 : SDNodeXForm<imm, [{
62  // Transformation function: shift the immediate value down into the low bits.
63  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
64}]>;
65
66def SETHIimm : PatLeaf<(imm), [{
67  return isShiftedUInt<22, 10>(N->getZExtValue());
68}], HI22>;
69
70// Addressing modes.
71def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
72def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
73
74// Address operands
75def MEMrr : Operand<iPTR> {
76  let PrintMethod = "printMemOperand";
77  let MIOperandInfo = (ops ptr_rc, ptr_rc);
78}
79def MEMri : Operand<iPTR> {
80  let PrintMethod = "printMemOperand";
81  let MIOperandInfo = (ops ptr_rc, i32imm);
82}
83
84// Branch targets have OtherVT type.
85def brtarget : Operand<OtherVT>;
86def calltarget : Operand<i32>;
87
88// Operand for printing out a condition code.
89let PrintMethod = "printCCOperand" in
90  def CCOp : Operand<i32>;
91
92def SDTSPcmpicc :
93SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
94def SDTSPcmpfcc :
95SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
96def SDTSPbrcc :
97SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
98def SDTSPselectcc :
99SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
100def SDTSPFTOI :
101SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
102def SDTSPITOF :
103SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
104
105def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
106def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
107def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
108def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
109def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
110
111def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
112def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
113
114def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
115def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
116
117def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
118def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
119def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
120
121//  These are target-independent nodes, but have target-specific formats.
122def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
123def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
124                                        SDTCisVT<1, i32> ]>;
125
126def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
127                           [SDNPHasChain, SDNPOutGlue]>;
128def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
129                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
130
131def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
132def call          : SDNode<"SPISD::CALL", SDT_SPCall,
133                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
134                            SDNPVariadic]>;
135
136def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
137def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
138                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
139
140def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
141                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
142
143def getPCX        : Operand<i32> {
144  let PrintMethod = "printGetPCX";
145}
146
147//===----------------------------------------------------------------------===//
148// SPARC Flag Conditions
149//===----------------------------------------------------------------------===//
150
151// Note that these values must be kept in sync with the CCOp::CondCode enum
152// values.
153class ICC_VAL<int N> : PatLeaf<(i32 N)>;
154def ICC_NE  : ICC_VAL< 9>;  // Not Equal
155def ICC_E   : ICC_VAL< 1>;  // Equal
156def ICC_G   : ICC_VAL<10>;  // Greater
157def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
158def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
159def ICC_L   : ICC_VAL< 3>;  // Less
160def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
161def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
162def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
163def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
164def ICC_POS : ICC_VAL<14>;  // Positive
165def ICC_NEG : ICC_VAL< 6>;  // Negative
166def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
167def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
168
169class FCC_VAL<int N> : PatLeaf<(i32 N)>;
170def FCC_U   : FCC_VAL<23>;  // Unordered
171def FCC_G   : FCC_VAL<22>;  // Greater
172def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
173def FCC_L   : FCC_VAL<20>;  // Less
174def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
175def FCC_LG  : FCC_VAL<18>;  // Less or Greater
176def FCC_NE  : FCC_VAL<17>;  // Not Equal
177def FCC_E   : FCC_VAL<25>;  // Equal
178def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
179def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
180def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
181def FCC_LE  : FCC_VAL<27>;  // Less or Equal
182def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
183def FCC_O   : FCC_VAL<29>;  // Ordered
184
185//===----------------------------------------------------------------------===//
186// Instruction Class Templates
187//===----------------------------------------------------------------------===//
188
189/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
190multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
191  def rr  : F3_1<2, Op3Val,
192                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
193                 !strconcat(OpcStr, " $b, $c, $dst"),
194                 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
195  def ri  : F3_2<2, Op3Val,
196                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
197                 !strconcat(OpcStr, " $b, $c, $dst"),
198                 [(set i32:$dst, (OpNode i32:$b, (i32 simm13:$c)))]>;
199}
200
201/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
202/// pattern.
203multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
204  def rr  : F3_1<2, Op3Val,
205                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
206                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
207  def ri  : F3_2<2, Op3Val,
208                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
209                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
210}
211
212//===----------------------------------------------------------------------===//
213// Instructions
214//===----------------------------------------------------------------------===//
215
216// Pseudo instructions.
217class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
218   : InstSP<outs, ins, asmstr, pattern>;
219
220// GETPCX for PIC
221let Defs = [O7] in {
222  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
223}
224
225let Defs = [O6], Uses = [O6] in {
226def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
227                               "!ADJCALLSTACKDOWN $amt",
228                               [(callseq_start timm:$amt)]>;
229def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
230                            "!ADJCALLSTACKUP $amt1",
231                            [(callseq_end timm:$amt1, timm:$amt2)]>;
232}
233
234let hasSideEffects = 1, mayStore = 1 in {
235  let rd = 0, rs1 = 0, rs2 = 0 in
236    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
237                      "flushw",
238                      [(flushw)]>, Requires<[HasV9]>;
239  let rd = 0, rs1 = 1, simm13 = 3 in
240    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
241                   "ta 3",
242                   [(flushw)]>;
243}
244
245def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
246                "unimp $val", []>;
247
248// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
249// instruction selection into a branch sequence.  This has to handle all
250// permutations of selection between i32/f32/f64 on ICC and FCC.
251// Expanded after instruction selection.
252let Uses = [ICC], usesCustomInserter = 1 in {
253  def SELECT_CC_Int_ICC
254   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
255            "; SELECT_CC_Int_ICC PSEUDO!",
256            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
257  def SELECT_CC_FP_ICC
258   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
259            "; SELECT_CC_FP_ICC PSEUDO!",
260            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
261
262  def SELECT_CC_DFP_ICC
263   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
264            "; SELECT_CC_DFP_ICC PSEUDO!",
265            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
266}
267
268let usesCustomInserter = 1, Uses = [FCC] in {
269
270  def SELECT_CC_Int_FCC
271   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
272            "; SELECT_CC_Int_FCC PSEUDO!",
273            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
274
275  def SELECT_CC_FP_FCC
276   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
277            "; SELECT_CC_FP_FCC PSEUDO!",
278            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
279  def SELECT_CC_DFP_FCC
280   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
281            "; SELECT_CC_DFP_FCC PSEUDO!",
282            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
283}
284
285
286// Section A.3 - Synthetic Instructions, p. 85
287// special cases of JMPL:
288let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
289  let rd = O7.Num, rs1 = G0.Num in
290    def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
291                   "jmp %o7+$val", [(retflag simm13:$val)]>;
292
293  let rd = I7.Num, rs1 = G0.Num in
294    def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
295                  "jmp %i7+$val", []>;
296}
297
298// Section B.1 - Load Integer Instructions, p. 90
299def LDSBrr : F3_1<3, 0b001001,
300                  (outs IntRegs:$dst), (ins MEMrr:$addr),
301                  "ldsb [$addr], $dst",
302                  [(set i32:$dst, (sextloadi8 ADDRrr:$addr))]>;
303def LDSBri : F3_2<3, 0b001001,
304                  (outs IntRegs:$dst), (ins MEMri:$addr),
305                  "ldsb [$addr], $dst",
306                  [(set i32:$dst, (sextloadi8 ADDRri:$addr))]>;
307def LDSHrr : F3_1<3, 0b001010,
308                  (outs IntRegs:$dst), (ins MEMrr:$addr),
309                  "ldsh [$addr], $dst",
310                  [(set i32:$dst, (sextloadi16 ADDRrr:$addr))]>;
311def LDSHri : F3_2<3, 0b001010,
312                  (outs IntRegs:$dst), (ins MEMri:$addr),
313                  "ldsh [$addr], $dst",
314                  [(set i32:$dst, (sextloadi16 ADDRri:$addr))]>;
315def LDUBrr : F3_1<3, 0b000001,
316                  (outs IntRegs:$dst), (ins MEMrr:$addr),
317                  "ldub [$addr], $dst",
318                  [(set i32:$dst, (zextloadi8 ADDRrr:$addr))]>;
319def LDUBri : F3_2<3, 0b000001,
320                  (outs IntRegs:$dst), (ins MEMri:$addr),
321                  "ldub [$addr], $dst",
322                  [(set i32:$dst, (zextloadi8 ADDRri:$addr))]>;
323def LDUHrr : F3_1<3, 0b000010,
324                  (outs IntRegs:$dst), (ins MEMrr:$addr),
325                  "lduh [$addr], $dst",
326                  [(set i32:$dst, (zextloadi16 ADDRrr:$addr))]>;
327def LDUHri : F3_2<3, 0b000010,
328                  (outs IntRegs:$dst), (ins MEMri:$addr),
329                  "lduh [$addr], $dst",
330                  [(set i32:$dst, (zextloadi16 ADDRri:$addr))]>;
331def LDrr   : F3_1<3, 0b000000,
332                  (outs IntRegs:$dst), (ins MEMrr:$addr),
333                  "ld [$addr], $dst",
334                  [(set i32:$dst, (load ADDRrr:$addr))]>;
335def LDri   : F3_2<3, 0b000000,
336                  (outs IntRegs:$dst), (ins MEMri:$addr),
337                  "ld [$addr], $dst",
338                  [(set i32:$dst, (load ADDRri:$addr))]>;
339
340// Section B.2 - Load Floating-point Instructions, p. 92
341def LDFrr  : F3_1<3, 0b100000,
342                  (outs FPRegs:$dst), (ins MEMrr:$addr),
343                  "ld [$addr], $dst",
344                  [(set f32:$dst, (load ADDRrr:$addr))]>;
345def LDFri  : F3_2<3, 0b100000,
346                  (outs FPRegs:$dst), (ins MEMri:$addr),
347                  "ld [$addr], $dst",
348                  [(set f32:$dst, (load ADDRri:$addr))]>;
349def LDDFrr : F3_1<3, 0b100011,
350                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
351                  "ldd [$addr], $dst",
352                  [(set f64:$dst, (load ADDRrr:$addr))]>;
353def LDDFri : F3_2<3, 0b100011,
354                  (outs DFPRegs:$dst), (ins MEMri:$addr),
355                  "ldd [$addr], $dst",
356                  [(set f64:$dst, (load ADDRri:$addr))]>;
357
358// Section B.4 - Store Integer Instructions, p. 95
359def STBrr : F3_1<3, 0b000101,
360                 (outs), (ins MEMrr:$addr, IntRegs:$src),
361                 "stb $src, [$addr]",
362                 [(truncstorei8 i32:$src, ADDRrr:$addr)]>;
363def STBri : F3_2<3, 0b000101,
364                 (outs), (ins MEMri:$addr, IntRegs:$src),
365                 "stb $src, [$addr]",
366                 [(truncstorei8 i32:$src, ADDRri:$addr)]>;
367def STHrr : F3_1<3, 0b000110,
368                 (outs), (ins MEMrr:$addr, IntRegs:$src),
369                 "sth $src, [$addr]",
370                 [(truncstorei16 i32:$src, ADDRrr:$addr)]>;
371def STHri : F3_2<3, 0b000110,
372                 (outs), (ins MEMri:$addr, IntRegs:$src),
373                 "sth $src, [$addr]",
374                 [(truncstorei16 i32:$src, ADDRri:$addr)]>;
375def STrr  : F3_1<3, 0b000100,
376                 (outs), (ins MEMrr:$addr, IntRegs:$src),
377                 "st $src, [$addr]",
378                 [(store i32:$src, ADDRrr:$addr)]>;
379def STri  : F3_2<3, 0b000100,
380                 (outs), (ins MEMri:$addr, IntRegs:$src),
381                 "st $src, [$addr]",
382                 [(store i32:$src, ADDRri:$addr)]>;
383
384// Section B.5 - Store Floating-point Instructions, p. 97
385def STFrr   : F3_1<3, 0b100100,
386                   (outs), (ins MEMrr:$addr, FPRegs:$src),
387                   "st $src, [$addr]",
388                   [(store f32:$src, ADDRrr:$addr)]>;
389def STFri   : F3_2<3, 0b100100,
390                   (outs), (ins MEMri:$addr, FPRegs:$src),
391                   "st $src, [$addr]",
392                   [(store f32:$src, ADDRri:$addr)]>;
393def STDFrr  : F3_1<3, 0b100111,
394                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
395                   "std  $src, [$addr]",
396                   [(store f64:$src, ADDRrr:$addr)]>;
397def STDFri  : F3_2<3, 0b100111,
398                   (outs), (ins MEMri:$addr, DFPRegs:$src),
399                   "std $src, [$addr]",
400                   [(store f64:$src, ADDRri:$addr)]>;
401
402// Section B.9 - SETHI Instruction, p. 104
403def SETHIi: F2_1<0b100,
404                 (outs IntRegs:$dst), (ins i32imm:$src),
405                 "sethi $src, $dst",
406                 [(set i32:$dst, SETHIimm:$src)]>;
407
408// Section B.10 - NOP Instruction, p. 105
409// (It's a special case of SETHI)
410let rd = 0, imm22 = 0 in
411  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
412
413// Section B.11 - Logical Instructions, p. 106
414defm AND    : F3_12<"and", 0b000001, and>;
415
416def ANDNrr  : F3_1<2, 0b000101,
417                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
418                   "andn $b, $c, $dst",
419                   [(set i32:$dst, (and i32:$b, (not i32:$c)))]>;
420def ANDNri  : F3_2<2, 0b000101,
421                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
422                   "andn $b, $c, $dst", []>;
423
424defm OR     : F3_12<"or", 0b000010, or>;
425
426def ORNrr   : F3_1<2, 0b000110,
427                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
428                   "orn $b, $c, $dst",
429                   [(set i32:$dst, (or i32:$b, (not i32:$c)))]>;
430def ORNri   : F3_2<2, 0b000110,
431                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
432                   "orn $b, $c, $dst", []>;
433defm XOR    : F3_12<"xor", 0b000011, xor>;
434
435def XNORrr  : F3_1<2, 0b000111,
436                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
437                   "xnor $b, $c, $dst",
438                   [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
439def XNORri  : F3_2<2, 0b000111,
440                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
441                   "xnor $b, $c, $dst", []>;
442
443// Section B.12 - Shift Instructions, p. 107
444defm SLL : F3_12<"sll", 0b100101, shl>;
445defm SRL : F3_12<"srl", 0b100110, srl>;
446defm SRA : F3_12<"sra", 0b100111, sra>;
447
448// Section B.13 - Add Instructions, p. 108
449defm ADD   : F3_12<"add", 0b000000, add>;
450
451// "LEA" forms of add (patterns to make tblgen happy)
452def LEA_ADDri   : F3_2<2, 0b000000,
453                   (outs IntRegs:$dst), (ins MEMri:$addr),
454                   "add ${addr:arith}, $dst",
455                   [(set iPTR:$dst, ADDRri:$addr)]>;
456
457let Defs = [ICC] in
458  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
459
460let Uses = [ICC] in
461  defm ADDX  : F3_12<"addx", 0b001000, adde>;
462
463// Section B.15 - Subtract Instructions, p. 110
464defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
465let Uses = [ICC] in
466  defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
467
468let Defs = [ICC] in {
469  defm SUBCC  : F3_12  <"subcc", 0b010100, subc>;
470
471  def CMPrr   : F3_1<2, 0b010100,
472                     (outs), (ins IntRegs:$b, IntRegs:$c),
473                     "cmp $b, $c",
474                     [(SPcmpicc i32:$b, i32:$c)]>;
475  def CMPri   : F3_1<2, 0b010100,
476                     (outs), (ins IntRegs:$b, i32imm:$c),
477                     "cmp $b, $c",
478                     [(SPcmpicc i32:$b, (i32 simm13:$c))]>;
479}
480
481let Uses = [ICC], Defs = [ICC] in
482  def SUBXCCrr: F3_1<2, 0b011100,
483                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
484                "subxcc $b, $c, $dst", []>;
485
486
487// Section B.18 - Multiply Instructions, p. 113
488let Defs = [Y] in {
489  defm UMUL : F3_12np<"umul", 0b001010>;
490  defm SMUL : F3_12  <"smul", 0b001011, mul>;
491}
492
493// Section B.19 - Divide Instructions, p. 115
494let Defs = [Y] in {
495  defm UDIV : F3_12np<"udiv", 0b001110>;
496  defm SDIV : F3_12np<"sdiv", 0b001111>;
497}
498
499// Section B.20 - SAVE and RESTORE, p. 117
500defm SAVE    : F3_12np<"save"   , 0b111100>;
501defm RESTORE : F3_12np<"restore", 0b111101>;
502
503// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
504
505// conditional branch class:
506class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
507 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
508  let isBranch = 1;
509  let isTerminator = 1;
510  let hasDelaySlot = 1;
511}
512
513let isBarrier = 1 in
514  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
515                      "ba $dst",
516                      [(br bb:$dst)]>;
517
518// Indirect branch instructions.
519let isTerminator = 1, isBarrier = 1,
520     hasDelaySlot = 1, isBranch =1,
521     isIndirectBranch = 1 in {
522  def BINDrr  : F3_1<2, 0b111000,
523                   (outs), (ins MEMrr:$ptr),
524                   "jmp $ptr",
525                   [(brind ADDRrr:$ptr)]>;
526  def BINDri  : F3_2<2, 0b111000,
527                   (outs), (ins MEMri:$ptr),
528                   "jmp $ptr",
529                   [(brind ADDRri:$ptr)]>;
530}
531
532// FIXME: the encoding for the JIT should look at the condition field.
533let Uses = [ICC] in
534  def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
535                         "b$cc $dst",
536                        [(SPbricc bb:$dst, imm:$cc)]>;
537
538
539// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
540
541// floating-point conditional branch class:
542class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
543 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
544  let isBranch = 1;
545  let isTerminator = 1;
546  let hasDelaySlot = 1;
547}
548
549// FIXME: the encoding for the JIT should look at the condition field.
550let Uses = [FCC] in
551  def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
552                              "fb$cc $dst",
553                              [(SPbrfcc bb:$dst, imm:$cc)]>;
554
555
556// Section B.24 - Call and Link Instruction, p. 125
557// This is the only Format 1 instruction
558let Uses = [O6],
559    hasDelaySlot = 1, isCall = 1,
560    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
561    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
562        ICC, FCC, Y] in {
563  def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
564                    "call $dst", []> {
565    bits<30> disp;
566    let op = 1;
567    let Inst{29-0} = disp;
568  }
569
570  // indirect calls
571  def JMPLrr : F3_1<2, 0b111000,
572                    (outs), (ins MEMrr:$ptr, variable_ops),
573                    "call $ptr",
574                    [(call ADDRrr:$ptr)]>;
575  def JMPLri : F3_2<2, 0b111000,
576                    (outs), (ins MEMri:$ptr, variable_ops),
577                    "call $ptr",
578                    [(call ADDRri:$ptr)]>;
579}
580
581// Section B.28 - Read State Register Instructions
582let Uses = [Y] in
583  def RDY : F3_1<2, 0b101000,
584                 (outs IntRegs:$dst), (ins),
585                 "rd %y, $dst", []>;
586
587// Section B.29 - Write State Register Instructions
588let Defs = [Y] in {
589  def WRYrr : F3_1<2, 0b110000,
590                   (outs), (ins IntRegs:$b, IntRegs:$c),
591                   "wr $b, $c, %y", []>;
592  def WRYri : F3_2<2, 0b110000,
593                   (outs), (ins IntRegs:$b, i32imm:$c),
594                   "wr $b, $c, %y", []>;
595}
596// Convert Integer to Floating-point Instructions, p. 141
597def FITOS : F3_3<2, 0b110100, 0b011000100,
598                 (outs FPRegs:$dst), (ins FPRegs:$src),
599                 "fitos $src, $dst",
600                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
601def FITOD : F3_3<2, 0b110100, 0b011001000,
602                 (outs DFPRegs:$dst), (ins FPRegs:$src),
603                 "fitod $src, $dst",
604                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
605
606// Convert Floating-point to Integer Instructions, p. 142
607def FSTOI : F3_3<2, 0b110100, 0b011010001,
608                 (outs FPRegs:$dst), (ins FPRegs:$src),
609                 "fstoi $src, $dst",
610                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
611def FDTOI : F3_3<2, 0b110100, 0b011010010,
612                 (outs FPRegs:$dst), (ins DFPRegs:$src),
613                 "fdtoi $src, $dst",
614                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
615
616// Convert between Floating-point Formats Instructions, p. 143
617def FSTOD : F3_3<2, 0b110100, 0b011001001,
618                 (outs DFPRegs:$dst), (ins FPRegs:$src),
619                 "fstod $src, $dst",
620                 [(set f64:$dst, (fextend f32:$src))]>;
621def FDTOS : F3_3<2, 0b110100, 0b011000110,
622                 (outs FPRegs:$dst), (ins DFPRegs:$src),
623                 "fdtos $src, $dst",
624                 [(set f32:$dst, (fround f64:$src))]>;
625
626// Floating-point Move Instructions, p. 144
627def FMOVS : F3_3<2, 0b110100, 0b000000001,
628                 (outs FPRegs:$dst), (ins FPRegs:$src),
629                 "fmovs $src, $dst", []>;
630def FNEGS : F3_3<2, 0b110100, 0b000000101,
631                 (outs FPRegs:$dst), (ins FPRegs:$src),
632                 "fnegs $src, $dst",
633                 [(set f32:$dst, (fneg f32:$src))]>;
634def FABSS : F3_3<2, 0b110100, 0b000001001,
635                 (outs FPRegs:$dst), (ins FPRegs:$src),
636                 "fabss $src, $dst",
637                 [(set f32:$dst, (fabs f32:$src))]>;
638
639
640// Floating-point Square Root Instructions, p.145
641def FSQRTS : F3_3<2, 0b110100, 0b000101001,
642                  (outs FPRegs:$dst), (ins FPRegs:$src),
643                  "fsqrts $src, $dst",
644                  [(set f32:$dst, (fsqrt f32:$src))]>;
645def FSQRTD : F3_3<2, 0b110100, 0b000101010,
646                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
647                  "fsqrtd $src, $dst",
648                  [(set f64:$dst, (fsqrt f64:$src))]>;
649
650
651
652// Floating-point Add and Subtract Instructions, p. 146
653def FADDS  : F3_3<2, 0b110100, 0b001000001,
654                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
655                  "fadds $src1, $src2, $dst",
656                  [(set f32:$dst, (fadd f32:$src1, f32:$src2))]>;
657def FADDD  : F3_3<2, 0b110100, 0b001000010,
658                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
659                  "faddd $src1, $src2, $dst",
660                  [(set f64:$dst, (fadd f64:$src1, f64:$src2))]>;
661def FSUBS  : F3_3<2, 0b110100, 0b001000101,
662                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
663                  "fsubs $src1, $src2, $dst",
664                  [(set f32:$dst, (fsub f32:$src1, f32:$src2))]>;
665def FSUBD  : F3_3<2, 0b110100, 0b001000110,
666                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
667                  "fsubd $src1, $src2, $dst",
668                  [(set f64:$dst, (fsub f64:$src1, f64:$src2))]>;
669
670// Floating-point Multiply and Divide Instructions, p. 147
671def FMULS  : F3_3<2, 0b110100, 0b001001001,
672                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
673                  "fmuls $src1, $src2, $dst",
674                  [(set f32:$dst, (fmul f32:$src1, f32:$src2))]>;
675def FMULD  : F3_3<2, 0b110100, 0b001001010,
676                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
677                  "fmuld $src1, $src2, $dst",
678                  [(set f64:$dst, (fmul f64:$src1, f64:$src2))]>;
679def FSMULD : F3_3<2, 0b110100, 0b001101001,
680                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
681                  "fsmuld $src1, $src2, $dst",
682                  [(set f64:$dst, (fmul (fextend f32:$src1),
683                                        (fextend f32:$src2)))]>;
684def FDIVS  : F3_3<2, 0b110100, 0b001001101,
685                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
686                 "fdivs $src1, $src2, $dst",
687                 [(set f32:$dst, (fdiv f32:$src1, f32:$src2))]>;
688def FDIVD  : F3_3<2, 0b110100, 0b001001110,
689                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
690                 "fdivd $src1, $src2, $dst",
691                 [(set f64:$dst, (fdiv f64:$src1, f64:$src2))]>;
692
693// Floating-point Compare Instructions, p. 148
694// Note: the 2nd template arg is different for these guys.
695// Note 2: the result of a FCMP is not available until the 2nd cycle
696// after the instr is retired, but there is no interlock. This behavior
697// is modelled with a forced noop after the instruction.
698let Defs = [FCC] in {
699  def FCMPS  : F3_3<2, 0b110101, 0b001010001,
700                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
701                   "fcmps $src1, $src2\n\tnop",
702                   [(SPcmpfcc f32:$src1, f32:$src2)]>;
703  def FCMPD  : F3_3<2, 0b110101, 0b001010010,
704                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
705                   "fcmpd $src1, $src2\n\tnop",
706                   [(SPcmpfcc f64:$src1, f64:$src2)]>;
707}
708
709//===----------------------------------------------------------------------===//
710// V9 Instructions
711//===----------------------------------------------------------------------===//
712
713// V9 Conditional Moves.
714let Predicates = [HasV9], Constraints = "$f = $rd" in {
715  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
716  // FIXME: Add instruction encodings for the JIT some day.
717  let Uses = [ICC] in {
718    def MOVICCrr
719      : Pseudo<(outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cc),
720               "mov$cc %icc, $rs2, $rd",
721               [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cc))]>;
722    def MOVICCri
723      : Pseudo<(outs IntRegs:$rd), (ins i32imm:$i, IntRegs:$f, CCOp:$cc),
724               "mov$cc %icc, $i, $rd",
725               [(set i32:$rd, (SPselecticc simm11:$i, i32:$f, imm:$cc))]>;
726  }
727
728  let Uses = [FCC] in {
729    def MOVFCCrr
730      : Pseudo<(outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cc),
731               "mov$cc %fcc0, $rs2, $rd",
732               [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cc))]>;
733    def MOVFCCri
734      : Pseudo<(outs IntRegs:$rd), (ins i32imm:$i, IntRegs:$f, CCOp:$cc),
735               "mov$cc %fcc0, $i, $rd",
736               [(set i32:$rd, (SPselectfcc simm11:$i, i32:$f, imm:$cc))]>;
737  }
738
739  let Uses = [ICC] in {
740    def FMOVS_ICC
741      : Pseudo<(outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cc),
742               "fmovs$cc %icc, $rs2, $rd",
743               [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cc))]>;
744    def FMOVD_ICC
745      : Pseudo<(outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cc),
746               "fmovd$cc %icc, $rs2, $rd",
747               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cc))]>;
748  }
749
750  let Uses = [FCC] in {
751    def FMOVS_FCC
752      : Pseudo<(outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cc),
753               "fmovs$cc %fcc0, $rs2, $rd",
754               [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cc))]>;
755    def FMOVD_FCC
756      : Pseudo<(outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cc),
757               "fmovd$cc %fcc0, $rs2, $rd",
758               [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cc))]>;
759  }
760
761}
762
763// Floating-Point Move Instructions, p. 164 of the V9 manual.
764let Predicates = [HasV9] in {
765  def FMOVD : F3_3<2, 0b110100, 0b000000010,
766                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
767                   "fmovd $src, $dst", []>;
768  def FNEGD : F3_3<2, 0b110100, 0b000000110,
769                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
770                   "fnegd $src, $dst",
771                   [(set f64:$dst, (fneg f64:$src))]>;
772  def FABSD : F3_3<2, 0b110100, 0b000001010,
773                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
774                   "fabsd $src, $dst",
775                   [(set f64:$dst, (fabs f64:$src))]>;
776}
777
778// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
779// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
780def POPCrr : F3_1<2, 0b101110,
781                  (outs IntRegs:$dst), (ins IntRegs:$src),
782                  "popc $src, $dst", []>, Requires<[HasV9]>;
783def : Pat<(ctpop i32:$src),
784          (POPCrr (SLLri $src, 0))>;
785
786//===----------------------------------------------------------------------===//
787// Non-Instruction Patterns
788//===----------------------------------------------------------------------===//
789
790// Small immediates.
791def : Pat<(i32 simm13:$val),
792          (ORri (i32 G0), imm:$val)>;
793// Arbitrary immediates.
794def : Pat<(i32 imm:$val),
795          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
796
797
798// Global addresses, constant pool entries
799def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
800def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
801def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
802def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
803
804// Blockaddress
805def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
806def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
807
808// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
809def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
810def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
811def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
812                        (ADDri $r, tblockaddress:$in)>;
813
814// Calls:
815def : Pat<(call tglobaladdr:$dst),
816          (CALL tglobaladdr:$dst)>;
817def : Pat<(call texternalsym:$dst),
818          (CALL texternalsym:$dst)>;
819
820// Map integer extload's to zextloads.
821def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
822def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
823def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
824def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
825def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
826def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
827
828// zextload bool -> zextload byte
829def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
830def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
831
832// store 0, addr -> store %g0, addr
833def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
834def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
835
836include "SparcInstr64Bit.td"
837