SparcInstrInfo.td revision 1b8af84a8448b7803695f86785944fb3d0b75eb1
1//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SparcV8 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcV8InstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Instruction Pattern Stuff
22//===----------------------------------------------------------------------===//
23
24def simm13  : PatLeaf<(imm), [{
25  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
26  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
27}]>;
28
29def LO10 : SDNodeXForm<imm, [{
30  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
31}]>;
32
33def HI22 : SDNodeXForm<imm, [{
34  // Transformation function: shift the immediate value down into the low bits.
35  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
36}]>;
37
38def SETHIimm : PatLeaf<(imm), [{
39  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
40}], HI22>;
41
42// Addressing modes.
43def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
44def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", []>;
45
46// Address operands
47def MEMrr : Operand<i32> {
48  let PrintMethod = "printMemOperand";
49  let NumMIOperands = 2;
50  let MIOperandInfo = (ops IntRegs, IntRegs);
51}
52def MEMri : Operand<i32> {
53  let PrintMethod = "printMemOperand";
54  let NumMIOperands = 2;
55  let MIOperandInfo = (ops IntRegs, i32imm);
56}
57
58// Branch targets have OtherVT type.
59def brtarget : Operand<OtherVT>;
60def calltarget : Operand<i32>;
61
62def SDTV8cmpicc : 
63SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisInt<1>, SDTCisSameAs<1, 2>]>;
64def SDTV8cmpfcc : 
65SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisFP<1>, SDTCisSameAs<1, 2>]>;
66def SDTV8brcc : 
67SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, OtherVT>,
68                     SDTCisVT<2, FlagVT>]>;
69def SDTV8selectcc :
70SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, 
71                     SDTCisVT<3, i32>, SDTCisVT<4, FlagVT>]>;
72def SDTV8FTOI :
73SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
74def SDTV8ITOF :
75SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
76
77def V8cmpicc : SDNode<"V8ISD::CMPICC", SDTV8cmpicc>;
78def V8cmpfcc : SDNode<"V8ISD::CMPFCC", SDTV8cmpfcc>;
79def V8bricc : SDNode<"V8ISD::BRICC", SDTV8brcc, [SDNPHasChain]>;
80def V8brfcc : SDNode<"V8ISD::BRFCC", SDTV8brcc, [SDNPHasChain]>;
81
82def V8hi    : SDNode<"V8ISD::Hi", SDTIntUnaryOp>;
83def V8lo    : SDNode<"V8ISD::Lo", SDTIntUnaryOp>;
84
85def V8ftoi  : SDNode<"V8ISD::FTOI", SDTV8FTOI>;
86def V8itof  : SDNode<"V8ISD::ITOF", SDTV8ITOF>;
87
88def V8selecticc : SDNode<"V8ISD::SELECT_ICC", SDTV8selectcc>;
89def V8selectfcc : SDNode<"V8ISD::SELECT_FCC", SDTV8selectcc>;
90
91// These are target-independent nodes, but have target-specific formats.
92def SDT_V8CallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
93def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_V8CallSeq, [SDNPHasChain]>;
94def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_V8CallSeq, [SDNPHasChain]>;
95
96def SDT_V8Call    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
97def call          : SDNode<"ISD::CALL", SDT_V8Call,
98	                   [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
99
100def SDT_V8RetFlag : SDTypeProfile<0, 0, []>;
101def retflag       : SDNode<"V8ISD::RET_FLAG", SDT_V8RetFlag,
102	                   [SDNPHasChain, SDNPOptInFlag]>;
103
104//===----------------------------------------------------------------------===//
105// Instructions
106//===----------------------------------------------------------------------===//
107
108// Pseudo instructions.
109class Pseudo<dag ops, string asmstr, list<dag> pattern>
110   : InstV8<ops, asmstr, pattern>;
111
112def PHI : Pseudo<(ops variable_ops), "PHI", []>;
113def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
114                               "!ADJCALLSTACKDOWN $amt",
115                               [(callseq_start imm:$amt)]>;
116def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
117                            "!ADJCALLSTACKUP $amt",
118                            [(callseq_end imm:$amt)]>;
119def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
120                              "!IMPLICIT_DEF $dst",
121                              [(set IntRegs:$dst, (undef))]>;
122def IMPLICIT_DEF_FP  : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
123                              [(set FPRegs:$dst, (undef))]>;
124def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
125                              [(set DFPRegs:$dst, (undef))]>;
126                              
127// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
128// fpmover pass.
129def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
130                    "!FpMOVD $src, $dst", []>;   // pseudo 64-bit double move
131def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
132                    "!FpNEGD $src, $dst",
133                    [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
134def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
135                    "!FpABSD $src, $dst",
136                    [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
137
138// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded by the
139// scheduler into a branch sequence.  This has to handle all permutations of
140// selection between i32/f32/f64 on ICC and FCC.
141let usesCustomDAGSchedInserter = 1 in {  // Expanded by the scheduler.
142  def SELECT_CC_Int_ICC
143   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
144            "; SELECT_CC_Int_ICC PSEUDO!",
145            [(set IntRegs:$dst, (V8selecticc IntRegs:$T, IntRegs:$F,
146                                             imm:$Cond, ICC))]>;
147  def SELECT_CC_Int_FCC
148   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
149            "; SELECT_CC_Int_FCC PSEUDO!",
150            [(set IntRegs:$dst, (V8selectfcc IntRegs:$T, IntRegs:$F,
151                                             imm:$Cond, FCC))]>;
152  def SELECT_CC_FP_ICC
153   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
154            "; SELECT_CC_FP_ICC PSEUDO!",
155            [(set FPRegs:$dst, (V8selecticc FPRegs:$T, FPRegs:$F,
156                                            imm:$Cond, ICC))]>;
157  def SELECT_CC_FP_FCC
158   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
159            "; SELECT_CC_FP_FCC PSEUDO!",
160            [(set FPRegs:$dst, (V8selectfcc FPRegs:$T, FPRegs:$F,
161                                            imm:$Cond, FCC))]>;
162  def SELECT_CC_DFP_ICC
163   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
164            "; SELECT_CC_DFP_ICC PSEUDO!",
165            [(set DFPRegs:$dst, (V8selecticc DFPRegs:$T, DFPRegs:$F,
166                                             imm:$Cond, ICC))]>;
167  def SELECT_CC_DFP_FCC
168   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
169            "; SELECT_CC_DFP_FCC PSEUDO!",
170            [(set DFPRegs:$dst, (V8selectfcc DFPRegs:$T, DFPRegs:$F,
171                                             imm:$Cond, FCC))]>;
172}
173
174// Section A.3 - Synthetic Instructions, p. 85
175// special cases of JMPL:
176let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
177  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
178    def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
179}
180
181// Section B.1 - Load Integer Instructions, p. 90
182def LDSBrr : F3_1<3, 0b001001,
183                  (ops IntRegs:$dst, MEMrr:$addr),
184                  "ldsb [$addr], $dst",
185                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
186def LDSBri : F3_2<3, 0b001001,
187                  (ops IntRegs:$dst, MEMri:$addr),
188                  "ldsb [$addr], $dst",
189                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
190def LDSHrr : F3_1<3, 0b001010,
191                  (ops IntRegs:$dst, MEMrr:$addr),
192                  "ldsh [$addr], $dst",
193                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
194def LDSHri : F3_2<3, 0b001010,
195                  (ops IntRegs:$dst, MEMri:$addr),
196                  "ldsh [$addr], $dst",
197                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
198def LDUBrr : F3_1<3, 0b000001,
199                  (ops IntRegs:$dst, MEMrr:$addr),
200                  "ldub [$addr], $dst",
201                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
202def LDUBri : F3_2<3, 0b000001,
203                  (ops IntRegs:$dst, MEMri:$addr),
204                  "ldub [$addr], $dst",
205                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
206def LDUHrr : F3_1<3, 0b000010,
207                  (ops IntRegs:$dst, MEMrr:$addr),
208                  "lduh [$addr], $dst",
209                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
210def LDUHri : F3_2<3, 0b000010,
211                  (ops IntRegs:$dst, MEMri:$addr),
212                  "lduh [$addr], $dst",
213                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
214def LDrr   : F3_1<3, 0b000000,
215                  (ops IntRegs:$dst, MEMrr:$addr),
216                  "ld [$addr], $dst",
217                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
218def LDri   : F3_2<3, 0b000000,
219                  (ops IntRegs:$dst, MEMri:$addr),
220                  "ld [$addr], $dst",
221                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
222
223// Section B.2 - Load Floating-point Instructions, p. 92
224def LDFrr  : F3_1<3, 0b100000,
225                  (ops FPRegs:$dst, MEMrr:$addr),
226                  "ld [$addr], $dst",
227                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
228def LDFri  : F3_2<3, 0b100000,
229                  (ops FPRegs:$dst, MEMri:$addr),
230                  "ld [$addr], $dst",
231                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
232def LDDFrr : F3_1<3, 0b100011,
233                  (ops DFPRegs:$dst, MEMrr:$addr),
234                  "ldd [$addr], $dst",
235                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
236def LDDFri : F3_2<3, 0b100011,
237                  (ops DFPRegs:$dst, MEMri:$addr),
238                  "ldd [$addr], $dst",
239                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
240
241// Section B.4 - Store Integer Instructions, p. 95
242def STBrr : F3_1<3, 0b000101,
243                 (ops MEMrr:$addr, IntRegs:$src),
244                 "stb $src, [$addr]",
245                 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
246def STBri : F3_2<3, 0b000101,
247                 (ops MEMri:$addr, IntRegs:$src),
248                 "stb $src, [$addr]",
249                 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
250def STHrr : F3_1<3, 0b000110,
251                 (ops MEMrr:$addr, IntRegs:$src),
252                 "sth $src, [$addr]",
253                 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
254def STHri : F3_2<3, 0b000110,
255                 (ops MEMri:$addr, IntRegs:$src),
256                 "sth $src, [$addr]",
257                 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
258def STrr  : F3_1<3, 0b000100,
259                 (ops MEMrr:$addr, IntRegs:$src),
260                 "st $src, [$addr]",
261                 [(store IntRegs:$src, ADDRrr:$addr)]>;
262def STri  : F3_2<3, 0b000100,
263                 (ops MEMri:$addr, IntRegs:$src),
264                 "st $src, [$addr]",
265                 [(store IntRegs:$src, ADDRri:$addr)]>;
266
267// Section B.5 - Store Floating-point Instructions, p. 97
268def STFrr   : F3_1<3, 0b100100,
269                   (ops MEMrr:$addr, FPRegs:$src),
270                   "st $src, [$addr]",
271                   [(store FPRegs:$src, ADDRrr:$addr)]>;
272def STFri   : F3_2<3, 0b100100,
273                   (ops MEMri:$addr, FPRegs:$src),
274                   "st $src, [$addr]",
275                   [(store FPRegs:$src, ADDRri:$addr)]>;
276def STDFrr  : F3_1<3, 0b100111,
277                   (ops MEMrr:$addr, DFPRegs:$src),
278                   "std  $src, [$addr]",
279                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
280def STDFri  : F3_2<3, 0b100111,
281                   (ops MEMri:$addr, DFPRegs:$src),
282                   "std $src, [$addr]",
283                   [(store DFPRegs:$src, ADDRri:$addr)]>;
284
285// Section B.9 - SETHI Instruction, p. 104
286def SETHIi: F2_1<0b100,
287                 (ops IntRegs:$dst, i32imm:$src),
288                 "sethi $src, $dst",
289                 [(set IntRegs:$dst, SETHIimm:$src)]>;
290
291// Section B.10 - NOP Instruction, p. 105
292// (It's a special case of SETHI)
293let rd = 0, imm22 = 0 in
294  def NOP : F2_1<0b100, (ops), "nop", []>;
295
296// Section B.11 - Logical Instructions, p. 106
297def ANDrr   : F3_1<2, 0b000001,
298                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
299                   "and $b, $c, $dst",
300                   [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
301def ANDri   : F3_2<2, 0b000001,
302                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
303                   "and $b, $c, $dst",
304                   [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
305def ANDNrr  : F3_1<2, 0b000101,
306                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
307                   "andn $b, $c, $dst",
308                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
309def ANDNri  : F3_2<2, 0b000101,
310                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
311                   "andn $b, $c, $dst", []>;
312def ORrr    : F3_1<2, 0b000010,
313                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
314                   "or $b, $c, $dst",
315                   [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
316def ORri    : F3_2<2, 0b000010,
317                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
318                   "or $b, $c, $dst",
319                   [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
320def ORNrr   : F3_1<2, 0b000110,
321                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
322                   "orn $b, $c, $dst",
323                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
324def ORNri   : F3_2<2, 0b000110,
325                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
326                   "orn $b, $c, $dst", []>;
327def XORrr   : F3_1<2, 0b000011,
328                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
329                   "xor $b, $c, $dst",
330                   [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
331def XORri   : F3_2<2, 0b000011,
332                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
333                   "xor $b, $c, $dst",
334                   [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
335def XNORrr  : F3_1<2, 0b000111,
336                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
337                   "xnor $b, $c, $dst",
338                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
339def XNORri  : F3_2<2, 0b000111,
340                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
341                   "xnor $b, $c, $dst", []>;
342
343// Section B.12 - Shift Instructions, p. 107
344def SLLrr : F3_1<2, 0b100101,
345                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
346                 "sll $b, $c, $dst",
347                 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
348def SLLri : F3_2<2, 0b100101,
349                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
350                 "sll $b, $c, $dst",
351                 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
352def SRLrr : F3_1<2, 0b100110, 
353                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
354                  "srl $b, $c, $dst",
355                  [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
356def SRLri : F3_2<2, 0b100110,
357                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
358                 "srl $b, $c, $dst", 
359                 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
360def SRArr : F3_1<2, 0b100111, 
361                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
362                  "sra $b, $c, $dst",
363                  [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
364def SRAri : F3_2<2, 0b100111,
365                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
366                 "sra $b, $c, $dst",
367                 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
368
369// Section B.13 - Add Instructions, p. 108
370def ADDrr   : F3_1<2, 0b000000, 
371                  (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
372                  "add $b, $c, $dst",
373                   [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
374def ADDri   : F3_2<2, 0b000000,
375                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
376                   "add $b, $c, $dst",
377                   [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
378def ADDCCrr : F3_1<2, 0b010000, 
379                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
380                   "addcc $b, $c, $dst", []>;
381def ADDCCri : F3_2<2, 0b010000,
382                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
383                   "addcc $b, $c, $dst", []>;
384def ADDXrr  : F3_1<2, 0b001000, 
385                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
386                   "addx $b, $c, $dst", []>;
387def ADDXri  : F3_2<2, 0b001000,
388                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
389                   "addx $b, $c, $dst", []>;
390
391// Section B.15 - Subtract Instructions, p. 110
392def SUBrr   : F3_1<2, 0b000100, 
393                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
394                   "sub $b, $c, $dst",
395                   [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
396def SUBri   : F3_2<2, 0b000100,
397                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
398                   "sub $b, $c, $dst",
399                   [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
400def SUBXrr  : F3_1<2, 0b001100, 
401                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
402                   "subx $b, $c, $dst", []>;
403def SUBXri  : F3_2<2, 0b001100,
404                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
405                   "subx $b, $c, $dst", []>;
406def SUBCCrr : F3_1<2, 0b010100, 
407                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
408                   "subcc $b, $c, $dst", []>;
409def SUBCCri : F3_2<2, 0b010100,
410                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
411                   "subcc $b, $c, $dst", []>;
412def SUBXCCrr: F3_1<2, 0b011100, 
413                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
414                   "subxcc $b, $c, $dst", []>;
415
416// Section B.18 - Multiply Instructions, p. 113
417def UMULrr  : F3_1<2, 0b001010, 
418                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
419                   "umul $b, $c, $dst", []>;
420def UMULri  : F3_2<2, 0b001010,
421                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
422                   "umul $b, $c, $dst", []>;
423def SMULrr  : F3_1<2, 0b001011, 
424                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
425                   "smul $b, $c, $dst",
426                   [(set IntRegs:$dst, (mul IntRegs:$b, IntRegs:$c))]>;
427def SMULri  : F3_2<2, 0b001011,
428                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
429                   "smul $b, $c, $dst",
430                   [(set IntRegs:$dst, (mul IntRegs:$b, simm13:$c))]>;
431
432// Section B.19 - Divide Instructions, p. 115
433def UDIVrr   : F3_1<2, 0b001110, 
434                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
435                    "udiv $b, $c, $dst", []>;
436def UDIVri   : F3_2<2, 0b001110,
437                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
438                    "udiv $b, $c, $dst", []>;
439def SDIVrr   : F3_1<2, 0b001111,
440                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
441                    "sdiv $b, $c, $dst", []>;
442def SDIVri   : F3_2<2, 0b001111,
443                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
444                    "sdiv $b, $c, $dst", []>;
445
446// Section B.20 - SAVE and RESTORE, p. 117
447def SAVErr    : F3_1<2, 0b111100,
448                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
449                     "save $b, $c, $dst", []>;
450def SAVEri    : F3_2<2, 0b111100,
451                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
452                     "save $b, $c, $dst", []>;
453def RESTORErr : F3_1<2, 0b111101,
454                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
455                     "restore $b, $c, $dst", []>;
456def RESTOREri : F3_2<2, 0b111101,
457                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
458                     "restore $b, $c, $dst", []>;
459
460// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
461
462// conditional branch class:
463class BranchV8<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
464 : F2_2<cc, 0b010, ops, asmstr, pattern> {
465  let isBranch = 1;
466  let isTerminator = 1;
467  let hasDelaySlot = 1;
468  let noResults = 1;
469}
470
471let isBarrier = 1 in
472  def BA   : BranchV8<0b1000, (ops brtarget:$dst),
473                      "ba $dst",
474                      [(br bb:$dst)]>;
475def BNE  : BranchV8<0b1001, (ops brtarget:$dst),
476                    "bne $dst",
477                    [(V8bricc bb:$dst, SETNE, ICC)]>;
478def BE   : BranchV8<0b0001, (ops brtarget:$dst),
479                    "be $dst",
480                    [(V8bricc bb:$dst, SETEQ, ICC)]>;
481def BG   : BranchV8<0b1010, (ops brtarget:$dst),
482                    "bg $dst",
483                    [(V8bricc bb:$dst, SETGT, ICC)]>;
484def BLE  : BranchV8<0b0010, (ops brtarget:$dst),
485                    "ble $dst",
486                    [(V8bricc bb:$dst, SETLE, ICC)]>;
487def BGE  : BranchV8<0b1011, (ops brtarget:$dst),
488                    "bge $dst",
489                    [(V8bricc bb:$dst, SETGE, ICC)]>;
490def BL   : BranchV8<0b0011, (ops brtarget:$dst),
491                    "bl $dst",
492                    [(V8bricc bb:$dst, SETLT, ICC)]>;
493def BGU  : BranchV8<0b1100, (ops brtarget:$dst),
494                    "bgu $dst",
495                    [(V8bricc bb:$dst, SETUGT, ICC)]>;
496def BLEU : BranchV8<0b0100, (ops brtarget:$dst),
497                    "bleu $dst",
498                    [(V8bricc bb:$dst, SETULE, ICC)]>;
499def BCC  : BranchV8<0b1101, (ops brtarget:$dst),
500                    "bcc $dst",
501                    [(V8bricc bb:$dst, SETUGE, ICC)]>;
502def BCS  : BranchV8<0b0101, (ops brtarget:$dst),
503                    "bcs $dst",
504                    [(V8bricc bb:$dst, SETULT, ICC)]>;
505
506// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
507
508// floating-point conditional branch class:
509class FPBranchV8<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
510 : F2_2<cc, 0b110, ops, asmstr, pattern> {
511  let isBranch = 1;
512  let isTerminator = 1;
513  let hasDelaySlot = 1;
514  let noResults = 1;
515}
516
517def FBU  : FPBranchV8<0b0111, (ops brtarget:$dst),
518                      "fbu $dst",
519                      [(V8brfcc bb:$dst, SETUO, FCC)]>;
520def FBG  : FPBranchV8<0b0110, (ops brtarget:$dst),
521                      "fbg $dst",
522                      [(V8brfcc bb:$dst, SETGT, FCC)]>;
523def FBUG : FPBranchV8<0b0101, (ops brtarget:$dst),
524                      "fbug $dst",
525                      [(V8brfcc bb:$dst, SETUGT, FCC)]>;
526def FBL  : FPBranchV8<0b0100, (ops brtarget:$dst),
527                      "fbl $dst",
528                      [(V8brfcc bb:$dst, SETLT, FCC)]>;
529def FBUL : FPBranchV8<0b0011, (ops brtarget:$dst),
530                      "fbul $dst",
531                      [(V8brfcc bb:$dst, SETULT, FCC)]>;
532def FBLG : FPBranchV8<0b0010, (ops brtarget:$dst),
533                      "fblg $dst",
534                      [(V8brfcc bb:$dst, SETONE, FCC)]>;
535def FBNE : FPBranchV8<0b0001, (ops brtarget:$dst),
536                      "fbne $dst",
537                      [(V8brfcc bb:$dst, SETNE, FCC)]>;
538def FBE  : FPBranchV8<0b1001, (ops brtarget:$dst),
539                      "fbe $dst",
540                      [(V8brfcc bb:$dst, SETEQ, FCC)]>;
541def FBUE : FPBranchV8<0b1010, (ops brtarget:$dst),
542                      "fbue $dst",
543                      [(V8brfcc bb:$dst, SETUEQ, FCC)]>;
544def FBGE : FPBranchV8<0b1011, (ops brtarget:$dst),
545                      "fbge $dst",
546                      [(V8brfcc bb:$dst, SETGE, FCC)]>;
547def FBUGE: FPBranchV8<0b1100, (ops brtarget:$dst),
548                      "fbuge $dst",
549                      [(V8brfcc bb:$dst, SETUGE, FCC)]>;
550def FBLE : FPBranchV8<0b1101, (ops brtarget:$dst),
551                      "fble $dst",
552                      [(V8brfcc bb:$dst, SETLE, FCC)]>;
553def FBULE: FPBranchV8<0b1110, (ops brtarget:$dst),
554                      "fbule $dst",
555                      [(V8brfcc bb:$dst, SETULE, FCC)]>;
556def FBO  : FPBranchV8<0b1111, (ops brtarget:$dst),
557                      "fbo $dst",
558                      [(V8brfcc bb:$dst, SETO, FCC)]>;
559
560
561
562// Section B.24 - Call and Link Instruction, p. 125
563// This is the only Format 1 instruction
564let Uses = [O0, O1, O2, O3, O4, O5],
565    hasDelaySlot = 1, isCall = 1, noResults = 1,
566    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
567    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
568  def CALL : InstV8<(ops calltarget:$dst),
569                    "call $dst", []> {
570    bits<30> disp;
571    let op = 1;
572    let Inst{29-0} = disp;
573  }
574  
575  // indirect calls
576  def JMPLrr : F3_1<2, 0b111000,
577                    (ops MEMrr:$ptr),
578                    "call $ptr",
579                    [(call  ADDRrr:$ptr)]>;
580  def JMPLri : F3_2<2, 0b111000,
581                    (ops MEMri:$ptr),
582                    "call $ptr",
583                    [(call  ADDRri:$ptr)]>;
584}
585
586// Section B.28 - Read State Register Instructions
587def RDY : F3_1<2, 0b101000,
588               (ops IntRegs:$dst),
589               "rd %y, $dst", []>;
590
591// Section B.29 - Write State Register Instructions
592def WRYrr : F3_1<2, 0b110000,
593                 (ops IntRegs:$b, IntRegs:$c),
594                 "wr $b, $c, %y", []>;
595def WRYri : F3_2<2, 0b110000,
596                 (ops IntRegs:$b, i32imm:$c),
597                 "wr $b, $c, %y", []>;
598
599// Convert Integer to Floating-point Instructions, p. 141
600def FITOS : F3_3<2, 0b110100, 0b011000100,
601                 (ops FPRegs:$dst, FPRegs:$src),
602                 "fitos $src, $dst",
603                 [(set FPRegs:$dst, (V8itof FPRegs:$src))]>;
604def FITOD : F3_3<2, 0b110100, 0b011001000, 
605                 (ops DFPRegs:$dst, FPRegs:$src),
606                 "fitod $src, $dst",
607                 [(set DFPRegs:$dst, (V8itof FPRegs:$src))]>;
608
609// Convert Floating-point to Integer Instructions, p. 142
610def FSTOI : F3_3<2, 0b110100, 0b011010001,
611                 (ops FPRegs:$dst, FPRegs:$src),
612                 "fstoi $src, $dst",
613                 [(set FPRegs:$dst, (V8ftoi FPRegs:$src))]>;
614def FDTOI : F3_3<2, 0b110100, 0b011010010,
615                 (ops FPRegs:$dst, DFPRegs:$src),
616                 "fdtoi $src, $dst",
617                 [(set FPRegs:$dst, (V8ftoi DFPRegs:$src))]>;
618
619// Convert between Floating-point Formats Instructions, p. 143
620def FSTOD : F3_3<2, 0b110100, 0b011001001, 
621                 (ops DFPRegs:$dst, FPRegs:$src),
622                 "fstod $src, $dst",
623                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
624def FDTOS : F3_3<2, 0b110100, 0b011000110,
625                 (ops FPRegs:$dst, DFPRegs:$src),
626                 "fdtos $src, $dst",
627                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
628
629// Floating-point Move Instructions, p. 144
630def FMOVS : F3_3<2, 0b110100, 0b000000001,
631                 (ops FPRegs:$dst, FPRegs:$src),
632                 "fmovs $src, $dst", []>;
633def FNEGS : F3_3<2, 0b110100, 0b000000101, 
634                 (ops FPRegs:$dst, FPRegs:$src),
635                 "fnegs $src, $dst",
636                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
637def FABSS : F3_3<2, 0b110100, 0b000001001, 
638                 (ops FPRegs:$dst, FPRegs:$src),
639                 "fabss $src, $dst",
640                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
641
642
643// Floating-point Square Root Instructions, p.145
644def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
645                  (ops FPRegs:$dst, FPRegs:$src),
646                  "fsqrts $src, $dst",
647                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
648def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
649                  (ops DFPRegs:$dst, DFPRegs:$src),
650                  "fsqrtd $src, $dst",
651                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
652
653
654
655// Floating-point Add and Subtract Instructions, p. 146
656def FADDS  : F3_3<2, 0b110100, 0b001000001,
657                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
658                  "fadds $src1, $src2, $dst",
659                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
660def FADDD  : F3_3<2, 0b110100, 0b001000010,
661                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
662                  "faddd $src1, $src2, $dst",
663                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
664def FSUBS  : F3_3<2, 0b110100, 0b001000101,
665                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
666                  "fsubs $src1, $src2, $dst",
667                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
668def FSUBD  : F3_3<2, 0b110100, 0b001000110,
669                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
670                  "fsubd $src1, $src2, $dst",
671                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
672
673// Floating-point Multiply and Divide Instructions, p. 147
674def FMULS  : F3_3<2, 0b110100, 0b001001001,
675                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
676                  "fmuls $src1, $src2, $dst",
677                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
678def FMULD  : F3_3<2, 0b110100, 0b001001010,
679                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
680                  "fmuld $src1, $src2, $dst",
681                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
682def FSMULD : F3_3<2, 0b110100, 0b001101001,
683                  (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
684                  "fsmuld $src1, $src2, $dst",
685                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
686                                            (fextend FPRegs:$src2)))]>;
687def FDIVS  : F3_3<2, 0b110100, 0b001001101,
688                 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
689                 "fdivs $src1, $src2, $dst",
690                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
691def FDIVD  : F3_3<2, 0b110100, 0b001001110,
692                 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
693                 "fdivd $src1, $src2, $dst",
694                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
695
696// Floating-point Compare Instructions, p. 148
697// Note: the 2nd template arg is different for these guys.
698// Note 2: the result of a FCMP is not available until the 2nd cycle
699// after the instr is retired, but there is no interlock. This behavior
700// is modelled with a forced noop after the instruction.
701def FCMPS  : F3_3<2, 0b110101, 0b001010001,
702                  (ops FPRegs:$src1, FPRegs:$src2),
703                  "fcmps $src1, $src2\n\tnop",
704                  [(set FCC, (V8cmpfcc FPRegs:$src1, FPRegs:$src2))]>;
705def FCMPD  : F3_3<2, 0b110101, 0b001010010,
706                  (ops DFPRegs:$src1, DFPRegs:$src2),
707                  "fcmpd $src1, $src2\n\tnop",
708                  [(set FCC, (V8cmpfcc DFPRegs:$src1, DFPRegs:$src2))]>;
709
710//===----------------------------------------------------------------------===//
711// Non-Instruction Patterns
712//===----------------------------------------------------------------------===//
713
714// Small immediates.
715def : Pat<(i32 simm13:$val),
716          (ORri G0, imm:$val)>;
717// Arbitrary immediates.
718def : Pat<(i32 imm:$val),
719          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
720
721// Global addresses, constant pool entries
722def : Pat<(V8hi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
723def : Pat<(V8lo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
724def : Pat<(V8hi tconstpool:$in), (SETHIi tconstpool:$in)>;
725def : Pat<(V8lo tconstpool:$in), (ORri G0, tconstpool:$in)>;
726
727// Calls: 
728def : Pat<(call tglobaladdr:$dst),
729          (CALL tglobaladdr:$dst)>;
730def : Pat<(call externalsym:$dst),
731          (CALL externalsym:$dst)>;
732
733def : Pat<(ret), (RETL)>;
734
735// Map integer extload's to zextloads.
736def : Pat<(i32 (extload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
737def : Pat<(i32 (extload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
738def : Pat<(i32 (extload ADDRrr:$src, i8)), (LDUBrr ADDRrr:$src)>;
739def : Pat<(i32 (extload ADDRri:$src, i8)), (LDUBri ADDRri:$src)>;
740def : Pat<(i32 (extload ADDRrr:$src, i16)), (LDUHrr ADDRrr:$src)>;
741def : Pat<(i32 (extload ADDRri:$src, i16)), (LDUHri ADDRri:$src)>;
742
743// zextload bool -> zextload byte
744def : Pat<(i32 (zextload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
745def : Pat<(i32 (zextload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
746
747// truncstore bool -> truncstore byte.
748def : Pat<(truncstore IntRegs:$src, ADDRrr:$addr, i1), 
749          (STBrr ADDRrr:$addr, IntRegs:$src)>;
750def : Pat<(truncstore IntRegs:$src, ADDRri:$addr, i1), 
751          (STBri ADDRri:$addr, IntRegs:$src)>;
752