SparcInstrInfo.td revision 1cefde83ffcfe869e86ef1976667f47856087dd3
1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// True when generating 32-bit code.
25def Is32Bit : Predicate<"!Subtarget.is64Bit()">;
26
27// True when generating 64-bit code. This also implies HasV9.
28def Is64Bit : Predicate<"Subtarget.is64Bit()">;
29
30// HasV9 - This predicate is true when the target processor supports V9
31// instructions.  Note that the machine may be running in 32-bit mode.
32def HasV9   : Predicate<"Subtarget.isV9()">;
33
34// HasNoV9 - This predicate is true when the target doesn't have V9
35// instructions.  Use of this is just a hack for the isel not having proper
36// costs for V8 instructions that are more expensive than their V9 ones.
37def HasNoV9 : Predicate<"!Subtarget.isV9()">;
38
39// HasVIS - This is true when the target processor has VIS extensions.
40def HasVIS : Predicate<"Subtarget.isVIS()">;
41
42// HasHardQuad - This is true when the target processor supports quad floating
43// point instructions.
44def HasHardQuad : Predicate<"Subtarget.hasHardQuad()">;
45
46// UseDeprecatedInsts - This predicate is true when the target processor is a
47// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
48// to use when appropriate.  In either of these cases, the instruction selector
49// will pick deprecated instructions.
50def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
51
52//===----------------------------------------------------------------------===//
53// Instruction Pattern Stuff
54//===----------------------------------------------------------------------===//
55
56def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
57
58def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
59
60def LO10 : SDNodeXForm<imm, [{
61  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
62                                   MVT::i32);
63}]>;
64
65def HI22 : SDNodeXForm<imm, [{
66  // Transformation function: shift the immediate value down into the low bits.
67  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
68}]>;
69
70def SETHIimm : PatLeaf<(imm), [{
71  return isShiftedUInt<22, 10>(N->getZExtValue());
72}], HI22>;
73
74// Addressing modes.
75def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
76def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
77
78// Address operands
79def MEMrr : Operand<iPTR> {
80  let PrintMethod = "printMemOperand";
81  let MIOperandInfo = (ops ptr_rc, ptr_rc);
82}
83def MEMri : Operand<iPTR> {
84  let PrintMethod = "printMemOperand";
85  let MIOperandInfo = (ops ptr_rc, i32imm);
86}
87
88def TLSSym : Operand<iPTR>;
89
90// Branch targets have OtherVT type.
91def brtarget : Operand<OtherVT>;
92def calltarget : Operand<i32>;
93
94// Operand for printing out a condition code.
95let PrintMethod = "printCCOperand" in
96  def CCOp : Operand<i32>;
97
98def SDTSPcmpicc :
99SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
100def SDTSPcmpfcc :
101SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
102def SDTSPbrcc :
103SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
104def SDTSPselectcc :
105SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
106def SDTSPFTOI :
107SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
108def SDTSPITOF :
109SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
110def SDTSPFTOX :
111SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>;
112def SDTSPXTOF :
113SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>;
114
115def SDTSPtlsadd :
116SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
117def SDTSPtlsld :
118SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
119
120def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
121def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
122def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
123def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
124def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
125
126def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
127def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
128
129def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
130def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
131def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>;
132def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>;
133
134def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
135def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
136def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
137
138//  These are target-independent nodes, but have target-specific formats.
139def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
140def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
141                                        SDTCisVT<1, i32> ]>;
142
143def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
144                           [SDNPHasChain, SDNPOutGlue]>;
145def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
146                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
147
148def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
149def call          : SDNode<"SPISD::CALL", SDT_SPCall,
150                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
151                            SDNPVariadic]>;
152
153def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
154def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
155                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
156
157def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
158                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
159
160def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
161def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
162def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
163                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
164                             SDNPVariadic]>;
165
166def getPCX        : Operand<i32> {
167  let PrintMethod = "printGetPCX";
168}
169
170//===----------------------------------------------------------------------===//
171// SPARC Flag Conditions
172//===----------------------------------------------------------------------===//
173
174// Note that these values must be kept in sync with the CCOp::CondCode enum
175// values.
176class ICC_VAL<int N> : PatLeaf<(i32 N)>;
177def ICC_NE  : ICC_VAL< 9>;  // Not Equal
178def ICC_E   : ICC_VAL< 1>;  // Equal
179def ICC_G   : ICC_VAL<10>;  // Greater
180def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
181def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
182def ICC_L   : ICC_VAL< 3>;  // Less
183def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
184def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
185def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
186def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
187def ICC_POS : ICC_VAL<14>;  // Positive
188def ICC_NEG : ICC_VAL< 6>;  // Negative
189def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
190def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
191
192class FCC_VAL<int N> : PatLeaf<(i32 N)>;
193def FCC_U   : FCC_VAL<23>;  // Unordered
194def FCC_G   : FCC_VAL<22>;  // Greater
195def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
196def FCC_L   : FCC_VAL<20>;  // Less
197def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
198def FCC_LG  : FCC_VAL<18>;  // Less or Greater
199def FCC_NE  : FCC_VAL<17>;  // Not Equal
200def FCC_E   : FCC_VAL<25>;  // Equal
201def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
202def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
203def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
204def FCC_LE  : FCC_VAL<27>;  // Less or Equal
205def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
206def FCC_O   : FCC_VAL<29>;  // Ordered
207
208//===----------------------------------------------------------------------===//
209// Instruction Class Templates
210//===----------------------------------------------------------------------===//
211
212/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
213multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
214  def rr  : F3_1<2, Op3Val,
215                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
216                 !strconcat(OpcStr, " $b, $c, $dst"),
217                 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
218  def ri  : F3_2<2, Op3Val,
219                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
220                 !strconcat(OpcStr, " $b, $c, $dst"),
221                 [(set i32:$dst, (OpNode i32:$b, (i32 simm13:$c)))]>;
222}
223
224/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
225/// pattern.
226multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
227  def rr  : F3_1<2, Op3Val,
228                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
229                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
230  def ri  : F3_2<2, Op3Val,
231                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
232                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
233}
234
235//===----------------------------------------------------------------------===//
236// Instructions
237//===----------------------------------------------------------------------===//
238
239// Pseudo instructions.
240class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
241   : InstSP<outs, ins, asmstr, pattern>;
242
243// GETPCX for PIC
244let Defs = [O7] in {
245  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
246}
247
248let Defs = [O6], Uses = [O6] in {
249def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
250                               "!ADJCALLSTACKDOWN $amt",
251                               [(callseq_start timm:$amt)]>;
252def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
253                            "!ADJCALLSTACKUP $amt1",
254                            [(callseq_end timm:$amt1, timm:$amt2)]>;
255}
256
257let hasSideEffects = 1, mayStore = 1 in {
258  let rd = 0, rs1 = 0, rs2 = 0 in
259    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
260                      "flushw",
261                      [(flushw)]>, Requires<[HasV9]>;
262  let rd = 0, rs1 = 1, simm13 = 3 in
263    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
264                   "ta 3",
265                   [(flushw)]>;
266}
267
268let rd = 0 in
269  def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
270                  "unimp $val", []>;
271
272// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
273// instruction selection into a branch sequence.  This has to handle all
274// permutations of selection between i32/f32/f64 on ICC and FCC.
275// Expanded after instruction selection.
276let Uses = [ICC], usesCustomInserter = 1 in {
277  def SELECT_CC_Int_ICC
278   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
279            "; SELECT_CC_Int_ICC PSEUDO!",
280            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
281  def SELECT_CC_FP_ICC
282   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
283            "; SELECT_CC_FP_ICC PSEUDO!",
284            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
285
286  def SELECT_CC_DFP_ICC
287   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
288            "; SELECT_CC_DFP_ICC PSEUDO!",
289            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
290
291  def SELECT_CC_QFP_ICC
292   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
293            "; SELECT_CC_QFP_ICC PSEUDO!",
294            [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
295}
296
297let usesCustomInserter = 1, Uses = [FCC] in {
298
299  def SELECT_CC_Int_FCC
300   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
301            "; SELECT_CC_Int_FCC PSEUDO!",
302            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
303
304  def SELECT_CC_FP_FCC
305   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
306            "; SELECT_CC_FP_FCC PSEUDO!",
307            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
308  def SELECT_CC_DFP_FCC
309   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
310            "; SELECT_CC_DFP_FCC PSEUDO!",
311            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
312  def SELECT_CC_QFP_FCC
313   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
314            "; SELECT_CC_QFP_FCC PSEUDO!",
315            [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
316}
317
318
319// Section A.3 - Synthetic Instructions, p. 85
320// special cases of JMPL:
321let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
322  let rd = 0, rs1 = 15 in
323    def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
324                   "jmp %o7+$val", [(retflag simm13:$val)]>;
325
326  let rd = 0, rs1 = 31 in
327    def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
328                  "jmp %i7+$val", []>;
329}
330
331// Section B.1 - Load Integer Instructions, p. 90
332def LDSBrr : F3_1<3, 0b001001,
333                  (outs IntRegs:$dst), (ins MEMrr:$addr),
334                  "ldsb [$addr], $dst",
335                  [(set i32:$dst, (sextloadi8 ADDRrr:$addr))]>;
336def LDSBri : F3_2<3, 0b001001,
337                  (outs IntRegs:$dst), (ins MEMri:$addr),
338                  "ldsb [$addr], $dst",
339                  [(set i32:$dst, (sextloadi8 ADDRri:$addr))]>;
340def LDSHrr : F3_1<3, 0b001010,
341                  (outs IntRegs:$dst), (ins MEMrr:$addr),
342                  "ldsh [$addr], $dst",
343                  [(set i32:$dst, (sextloadi16 ADDRrr:$addr))]>;
344def LDSHri : F3_2<3, 0b001010,
345                  (outs IntRegs:$dst), (ins MEMri:$addr),
346                  "ldsh [$addr], $dst",
347                  [(set i32:$dst, (sextloadi16 ADDRri:$addr))]>;
348def LDUBrr : F3_1<3, 0b000001,
349                  (outs IntRegs:$dst), (ins MEMrr:$addr),
350                  "ldub [$addr], $dst",
351                  [(set i32:$dst, (zextloadi8 ADDRrr:$addr))]>;
352def LDUBri : F3_2<3, 0b000001,
353                  (outs IntRegs:$dst), (ins MEMri:$addr),
354                  "ldub [$addr], $dst",
355                  [(set i32:$dst, (zextloadi8 ADDRri:$addr))]>;
356def LDUHrr : F3_1<3, 0b000010,
357                  (outs IntRegs:$dst), (ins MEMrr:$addr),
358                  "lduh [$addr], $dst",
359                  [(set i32:$dst, (zextloadi16 ADDRrr:$addr))]>;
360def LDUHri : F3_2<3, 0b000010,
361                  (outs IntRegs:$dst), (ins MEMri:$addr),
362                  "lduh [$addr], $dst",
363                  [(set i32:$dst, (zextloadi16 ADDRri:$addr))]>;
364def LDrr   : F3_1<3, 0b000000,
365                  (outs IntRegs:$dst), (ins MEMrr:$addr),
366                  "ld [$addr], $dst",
367                  [(set i32:$dst, (load ADDRrr:$addr))]>;
368def LDri   : F3_2<3, 0b000000,
369                  (outs IntRegs:$dst), (ins MEMri:$addr),
370                  "ld [$addr], $dst",
371                  [(set i32:$dst, (load ADDRri:$addr))]>;
372
373// Section B.2 - Load Floating-point Instructions, p. 92
374def LDFrr  : F3_1<3, 0b100000,
375                  (outs FPRegs:$dst), (ins MEMrr:$addr),
376                  "ld [$addr], $dst",
377                  [(set f32:$dst, (load ADDRrr:$addr))]>;
378def LDFri  : F3_2<3, 0b100000,
379                  (outs FPRegs:$dst), (ins MEMri:$addr),
380                  "ld [$addr], $dst",
381                  [(set f32:$dst, (load ADDRri:$addr))]>;
382def LDDFrr : F3_1<3, 0b100011,
383                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
384                  "ldd [$addr], $dst",
385                  [(set f64:$dst, (load ADDRrr:$addr))]>;
386def LDDFri : F3_2<3, 0b100011,
387                  (outs DFPRegs:$dst), (ins MEMri:$addr),
388                  "ldd [$addr], $dst",
389                  [(set f64:$dst, (load ADDRri:$addr))]>;
390def LDQFrr : F3_1<3, 0b100010,
391                  (outs QFPRegs:$dst), (ins MEMrr:$addr),
392                  "ldq [$addr], $dst",
393                  [(set f128:$dst, (load ADDRrr:$addr))]>,
394                  Requires<[HasV9, HasHardQuad]>;
395def LDQFri : F3_2<3, 0b100010,
396                  (outs QFPRegs:$dst), (ins MEMri:$addr),
397                  "ldq [$addr], $dst",
398                  [(set f128:$dst, (load ADDRri:$addr))]>,
399                  Requires<[HasV9, HasHardQuad]>;
400
401// Section B.4 - Store Integer Instructions, p. 95
402def STBrr : F3_1<3, 0b000101,
403                 (outs), (ins MEMrr:$addr, IntRegs:$rd),
404                 "stb $rd, [$addr]",
405                 [(truncstorei8 i32:$rd, ADDRrr:$addr)]>;
406def STBri : F3_2<3, 0b000101,
407                 (outs), (ins MEMri:$addr, IntRegs:$rd),
408                 "stb $rd, [$addr]",
409                 [(truncstorei8 i32:$rd, ADDRri:$addr)]>;
410def STHrr : F3_1<3, 0b000110,
411                 (outs), (ins MEMrr:$addr, IntRegs:$rd),
412                 "sth $rd, [$addr]",
413                 [(truncstorei16 i32:$rd, ADDRrr:$addr)]>;
414def STHri : F3_2<3, 0b000110,
415                 (outs), (ins MEMri:$addr, IntRegs:$rd),
416                 "sth $rd, [$addr]",
417                 [(truncstorei16 i32:$rd, ADDRri:$addr)]>;
418def STrr  : F3_1<3, 0b000100,
419                 (outs), (ins MEMrr:$addr, IntRegs:$rd),
420                 "st $rd, [$addr]",
421                 [(store i32:$rd, ADDRrr:$addr)]>;
422def STri  : F3_2<3, 0b000100,
423                 (outs), (ins MEMri:$addr, IntRegs:$rd),
424                 "st $rd, [$addr]",
425                 [(store i32:$rd, ADDRri:$addr)]>;
426
427// Section B.5 - Store Floating-point Instructions, p. 97
428def STFrr   : F3_1<3, 0b100100,
429                   (outs), (ins MEMrr:$addr, FPRegs:$rd),
430                   "st $rd, [$addr]",
431                   [(store f32:$rd, ADDRrr:$addr)]>;
432def STFri   : F3_2<3, 0b100100,
433                   (outs), (ins MEMri:$addr, FPRegs:$rd),
434                   "st $rd, [$addr]",
435                   [(store f32:$rd, ADDRri:$addr)]>;
436def STDFrr  : F3_1<3, 0b100111,
437                   (outs), (ins MEMrr:$addr, DFPRegs:$rd),
438                   "std  $rd, [$addr]",
439                   [(store f64:$rd, ADDRrr:$addr)]>;
440def STDFri  : F3_2<3, 0b100111,
441                   (outs), (ins MEMri:$addr, DFPRegs:$rd),
442                   "std $rd, [$addr]",
443                   [(store f64:$rd, ADDRri:$addr)]>;
444def STQFrr  : F3_1<3, 0b100110,
445                   (outs), (ins MEMrr:$addr, QFPRegs:$rd),
446                   "stq  $rd, [$addr]",
447                   [(store f128:$rd, ADDRrr:$addr)]>,
448                   Requires<[HasV9, HasHardQuad]>;
449def STQFri  : F3_2<3, 0b100110,
450                   (outs), (ins MEMri:$addr, QFPRegs:$rd),
451                   "stq $rd, [$addr]",
452                   [(store f128:$rd, ADDRri:$addr)]>,
453                   Requires<[HasV9, HasHardQuad]>;
454
455// Section B.9 - SETHI Instruction, p. 104
456def SETHIi: F2_1<0b100,
457                 (outs IntRegs:$rd), (ins i32imm:$imm22),
458                 "sethi $imm22, $rd",
459                 [(set i32:$rd, SETHIimm:$imm22)]>;
460
461// Section B.10 - NOP Instruction, p. 105
462// (It's a special case of SETHI)
463let rd = 0, imm22 = 0 in
464  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
465
466// Section B.11 - Logical Instructions, p. 106
467defm AND    : F3_12<"and", 0b000001, and>;
468
469def ANDNrr  : F3_1<2, 0b000101,
470                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
471                   "andn $b, $c, $dst",
472                   [(set i32:$dst, (and i32:$b, (not i32:$c)))]>;
473def ANDNri  : F3_2<2, 0b000101,
474                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
475                   "andn $b, $c, $dst", []>;
476
477defm OR     : F3_12<"or", 0b000010, or>;
478
479def ORNrr   : F3_1<2, 0b000110,
480                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
481                   "orn $b, $c, $dst",
482                   [(set i32:$dst, (or i32:$b, (not i32:$c)))]>;
483def ORNri   : F3_2<2, 0b000110,
484                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
485                   "orn $b, $c, $dst", []>;
486defm XOR    : F3_12<"xor", 0b000011, xor>;
487
488def XNORrr  : F3_1<2, 0b000111,
489                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
490                   "xnor $b, $c, $dst",
491                   [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
492def XNORri  : F3_2<2, 0b000111,
493                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
494                   "xnor $b, $c, $dst", []>;
495
496// Section B.12 - Shift Instructions, p. 107
497defm SLL : F3_12<"sll", 0b100101, shl>;
498defm SRL : F3_12<"srl", 0b100110, srl>;
499defm SRA : F3_12<"sra", 0b100111, sra>;
500
501// Section B.13 - Add Instructions, p. 108
502defm ADD   : F3_12<"add", 0b000000, add>;
503
504// "LEA" forms of add (patterns to make tblgen happy)
505let Predicates = [Is32Bit] in
506  def LEA_ADDri   : F3_2<2, 0b000000,
507                     (outs IntRegs:$dst), (ins MEMri:$addr),
508                     "add ${addr:arith}, $dst",
509                     [(set iPTR:$dst, ADDRri:$addr)]>;
510
511let Defs = [ICC] in
512  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
513
514let Uses = [ICC], Defs = [ICC] in
515  defm ADDX  : F3_12<"addxcc", 0b011000, adde>;
516
517// Section B.15 - Subtract Instructions, p. 110
518defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
519let Uses = [ICC], Defs = [ICC] in
520  defm SUBX   : F3_12  <"subxcc" , 0b011100, sube>;
521
522let Defs = [ICC] in
523  defm SUBCC  : F3_12  <"subcc", 0b010100, subc>;
524
525let Defs = [ICC], rd = 0 in {
526  def CMPrr   : F3_1<2, 0b010100,
527                     (outs), (ins IntRegs:$b, IntRegs:$c),
528                     "cmp $b, $c",
529                     [(SPcmpicc i32:$b, i32:$c)]>;
530  def CMPri   : F3_2<2, 0b010100,
531                     (outs), (ins IntRegs:$b, i32imm:$c),
532                     "cmp $b, $c",
533                     [(SPcmpicc i32:$b, (i32 simm13:$c))]>;
534}
535
536let Uses = [ICC], Defs = [ICC] in
537  def SUBXCCrr: F3_1<2, 0b011100,
538                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
539                "subxcc $b, $c, $dst", []>;
540
541
542// Section B.18 - Multiply Instructions, p. 113
543let Defs = [Y] in {
544  defm UMUL : F3_12np<"umul", 0b001010>;
545  defm SMUL : F3_12  <"smul", 0b001011, mul>;
546}
547
548// Section B.19 - Divide Instructions, p. 115
549let Defs = [Y] in {
550  defm UDIV : F3_12np<"udiv", 0b001110>;
551  defm SDIV : F3_12np<"sdiv", 0b001111>;
552}
553
554// Section B.20 - SAVE and RESTORE, p. 117
555defm SAVE    : F3_12np<"save"   , 0b111100>;
556defm RESTORE : F3_12np<"restore", 0b111101>;
557
558// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
559
560// unconditional branch class.
561class BranchAlways<dag ins, string asmstr, list<dag> pattern>
562  : F2_2<0b010, (outs), ins, asmstr, pattern> {
563  let isBranch     = 1;
564  let isTerminator = 1;
565  let hasDelaySlot = 1;
566  let isBarrier    = 1;
567}
568
569let cond = 8 in
570  def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>;
571
572// conditional branch class:
573class BranchSP<dag ins, string asmstr, list<dag> pattern>
574 : F2_2<0b010, (outs), ins, asmstr, pattern> {
575  let isBranch = 1;
576  let isTerminator = 1;
577  let hasDelaySlot = 1;
578}
579
580// Indirect branch instructions.
581let isTerminator = 1, isBarrier = 1,
582     hasDelaySlot = 1, isBranch =1,
583     isIndirectBranch = 1, rd = 0 in {
584  def BINDrr  : F3_1<2, 0b111000,
585                   (outs), (ins MEMrr:$ptr),
586                   "jmp $ptr",
587                   [(brind ADDRrr:$ptr)]>;
588  def BINDri  : F3_2<2, 0b111000,
589                   (outs), (ins MEMri:$ptr),
590                   "jmp $ptr",
591                   [(brind ADDRri:$ptr)]>;
592}
593
594let Uses = [ICC] in
595  def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond),
596                         "b$cond $imm22",
597                        [(SPbricc bb:$imm22, imm:$cond)]>;
598
599// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
600
601// floating-point conditional branch class:
602class FPBranchSP<dag ins, string asmstr, list<dag> pattern>
603 : F2_2<0b110, (outs), ins, asmstr, pattern> {
604  let isBranch = 1;
605  let isTerminator = 1;
606  let hasDelaySlot = 1;
607}
608
609let Uses = [FCC] in
610  def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond),
611                              "fb$cond $imm22",
612                              [(SPbrfcc bb:$imm22, imm:$cond)]>;
613
614
615// Section B.24 - Call and Link Instruction, p. 125
616// This is the only Format 1 instruction
617let Uses = [O6],
618    hasDelaySlot = 1, isCall = 1 in {
619  def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
620                    "call $dst", []> {
621    bits<30> disp;
622    let op = 1;
623    let Inst{29-0} = disp;
624  }
625
626  // indirect calls
627  def JMPLrr : F3_1<2, 0b111000,
628                    (outs), (ins MEMrr:$ptr, variable_ops),
629                    "call $ptr",
630                    [(call ADDRrr:$ptr)]> { let rd = 15; }
631  def JMPLri : F3_2<2, 0b111000,
632                    (outs), (ins MEMri:$ptr, variable_ops),
633                    "call $ptr",
634                    [(call ADDRri:$ptr)]> { let rd = 15; }
635}
636
637// Section B.28 - Read State Register Instructions
638let Uses = [Y], rs1 = 0, rs2 = 0 in
639  def RDY : F3_1<2, 0b101000,
640                 (outs IntRegs:$dst), (ins),
641                 "rd %y, $dst", []>;
642
643// Section B.29 - Write State Register Instructions
644let Defs = [Y], rd = 0 in {
645  def WRYrr : F3_1<2, 0b110000,
646                   (outs), (ins IntRegs:$b, IntRegs:$c),
647                   "wr $b, $c, %y", []>;
648  def WRYri : F3_2<2, 0b110000,
649                   (outs), (ins IntRegs:$b, i32imm:$c),
650                   "wr $b, $c, %y", []>;
651}
652// Convert Integer to Floating-point Instructions, p. 141
653def FITOS : F3_3u<2, 0b110100, 0b011000100,
654                 (outs FPRegs:$dst), (ins FPRegs:$src),
655                 "fitos $src, $dst",
656                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
657def FITOD : F3_3u<2, 0b110100, 0b011001000,
658                 (outs DFPRegs:$dst), (ins FPRegs:$src),
659                 "fitod $src, $dst",
660                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
661def FITOQ : F3_3u<2, 0b110100, 0b011001100,
662                 (outs QFPRegs:$dst), (ins FPRegs:$src),
663                 "fitoq $src, $dst",
664                 [(set QFPRegs:$dst, (SPitof FPRegs:$src))]>,
665                 Requires<[HasHardQuad]>;
666
667// Convert Floating-point to Integer Instructions, p. 142
668def FSTOI : F3_3u<2, 0b110100, 0b011010001,
669                 (outs FPRegs:$dst), (ins FPRegs:$src),
670                 "fstoi $src, $dst",
671                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
672def FDTOI : F3_3u<2, 0b110100, 0b011010010,
673                 (outs FPRegs:$dst), (ins DFPRegs:$src),
674                 "fdtoi $src, $dst",
675                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
676def FQTOI : F3_3u<2, 0b110100, 0b011010011,
677                 (outs FPRegs:$dst), (ins QFPRegs:$src),
678                 "fqtoi $src, $dst",
679                 [(set FPRegs:$dst, (SPftoi QFPRegs:$src))]>,
680                 Requires<[HasHardQuad]>;
681
682// Convert between Floating-point Formats Instructions, p. 143
683def FSTOD : F3_3u<2, 0b110100, 0b011001001,
684                 (outs DFPRegs:$dst), (ins FPRegs:$src),
685                 "fstod $src, $dst",
686                 [(set f64:$dst, (fextend f32:$src))]>;
687def FSTOQ : F3_3u<2, 0b110100, 0b011001101,
688                 (outs QFPRegs:$dst), (ins FPRegs:$src),
689                 "fstoq $src, $dst",
690                 [(set f128:$dst, (fextend f32:$src))]>,
691                 Requires<[HasHardQuad]>;
692def FDTOS : F3_3u<2, 0b110100, 0b011000110,
693                 (outs FPRegs:$dst), (ins DFPRegs:$src),
694                 "fdtos $src, $dst",
695                 [(set f32:$dst, (fround f64:$src))]>;
696def FDTOQ : F3_3u<2, 0b110100, 0b01101110,
697                 (outs QFPRegs:$dst), (ins DFPRegs:$src),
698                 "fdtoq $src, $dst",
699                 [(set f128:$dst, (fextend f64:$src))]>,
700                 Requires<[HasHardQuad]>;
701def FQTOS : F3_3u<2, 0b110100, 0b011000111,
702                 (outs FPRegs:$dst), (ins QFPRegs:$src),
703                 "fqtos $src, $dst",
704                 [(set f32:$dst, (fround f128:$src))]>,
705                 Requires<[HasHardQuad]>;
706def FQTOD : F3_3u<2, 0b110100, 0b011001011,
707                 (outs DFPRegs:$dst), (ins QFPRegs:$src),
708                 "fqtod $src, $dst",
709                 [(set f64:$dst, (fround f128:$src))]>,
710                 Requires<[HasHardQuad]>;
711
712// Floating-point Move Instructions, p. 144
713def FMOVS : F3_3u<2, 0b110100, 0b000000001,
714                 (outs FPRegs:$dst), (ins FPRegs:$src),
715                 "fmovs $src, $dst", []>;
716def FNEGS : F3_3u<2, 0b110100, 0b000000101,
717                 (outs FPRegs:$dst), (ins FPRegs:$src),
718                 "fnegs $src, $dst",
719                 [(set f32:$dst, (fneg f32:$src))]>;
720def FABSS : F3_3u<2, 0b110100, 0b000001001,
721                 (outs FPRegs:$dst), (ins FPRegs:$src),
722                 "fabss $src, $dst",
723                 [(set f32:$dst, (fabs f32:$src))]>;
724
725
726// Floating-point Square Root Instructions, p.145
727def FSQRTS : F3_3u<2, 0b110100, 0b000101001,
728                  (outs FPRegs:$dst), (ins FPRegs:$src),
729                  "fsqrts $src, $dst",
730                  [(set f32:$dst, (fsqrt f32:$src))]>;
731def FSQRTD : F3_3u<2, 0b110100, 0b000101010,
732                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
733                  "fsqrtd $src, $dst",
734                  [(set f64:$dst, (fsqrt f64:$src))]>;
735def FSQRTQ : F3_3u<2, 0b110100, 0b000101011,
736                  (outs QFPRegs:$dst), (ins QFPRegs:$src),
737                  "fsqrtq $src, $dst",
738                  [(set f128:$dst, (fsqrt f128:$src))]>,
739                  Requires<[HasHardQuad]>;
740
741
742
743// Floating-point Add and Subtract Instructions, p. 146
744def FADDS  : F3_3<2, 0b110100, 0b001000001,
745                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
746                  "fadds $src1, $src2, $dst",
747                  [(set f32:$dst, (fadd f32:$src1, f32:$src2))]>;
748def FADDD  : F3_3<2, 0b110100, 0b001000010,
749                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
750                  "faddd $src1, $src2, $dst",
751                  [(set f64:$dst, (fadd f64:$src1, f64:$src2))]>;
752def FADDQ  : F3_3<2, 0b110100, 0b001000011,
753                  (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
754                  "faddq $src1, $src2, $dst",
755                  [(set f128:$dst, (fadd f128:$src1, f128:$src2))]>,
756                  Requires<[HasHardQuad]>;
757
758def FSUBS  : F3_3<2, 0b110100, 0b001000101,
759                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
760                  "fsubs $src1, $src2, $dst",
761                  [(set f32:$dst, (fsub f32:$src1, f32:$src2))]>;
762def FSUBD  : F3_3<2, 0b110100, 0b001000110,
763                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
764                  "fsubd $src1, $src2, $dst",
765                  [(set f64:$dst, (fsub f64:$src1, f64:$src2))]>;
766def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
767                  (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
768                  "fsubq $src1, $src2, $dst",
769                  [(set f128:$dst, (fsub f128:$src1, f128:$src2))]>,
770                  Requires<[HasHardQuad]>;
771
772
773// Floating-point Multiply and Divide Instructions, p. 147
774def FMULS  : F3_3<2, 0b110100, 0b001001001,
775                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
776                  "fmuls $src1, $src2, $dst",
777                  [(set f32:$dst, (fmul f32:$src1, f32:$src2))]>;
778def FMULD  : F3_3<2, 0b110100, 0b001001010,
779                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
780                  "fmuld $src1, $src2, $dst",
781                  [(set f64:$dst, (fmul f64:$src1, f64:$src2))]>;
782def FMULQ  : F3_3<2, 0b110100, 0b001001011,
783                  (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
784                  "fmulq $src1, $src2, $dst",
785                  [(set f128:$dst, (fmul f128:$src1, f128:$src2))]>,
786                  Requires<[HasHardQuad]>;
787
788def FSMULD : F3_3<2, 0b110100, 0b001101001,
789                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
790                  "fsmuld $src1, $src2, $dst",
791                  [(set f64:$dst, (fmul (fextend f32:$src1),
792                                        (fextend f32:$src2)))]>;
793def FDMULQ : F3_3<2, 0b110100, 0b001101110,
794                  (outs QFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
795                  "fdmulq $src1, $src2, $dst",
796                  [(set f128:$dst, (fmul (fextend f64:$src1),
797                                         (fextend f64:$src2)))]>,
798                  Requires<[HasHardQuad]>;
799
800def FDIVS  : F3_3<2, 0b110100, 0b001001101,
801                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
802                 "fdivs $src1, $src2, $dst",
803                 [(set f32:$dst, (fdiv f32:$src1, f32:$src2))]>;
804def FDIVD  : F3_3<2, 0b110100, 0b001001110,
805                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
806                 "fdivd $src1, $src2, $dst",
807                 [(set f64:$dst, (fdiv f64:$src1, f64:$src2))]>;
808def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
809                 (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
810                 "fdivq $src1, $src2, $dst",
811                 [(set f128:$dst, (fdiv f128:$src1, f128:$src2))]>,
812                 Requires<[HasHardQuad]>;
813
814// Floating-point Compare Instructions, p. 148
815// Note: the 2nd template arg is different for these guys.
816// Note 2: the result of a FCMP is not available until the 2nd cycle
817// after the instr is retired, but there is no interlock in Sparc V8.
818// This behavior is modeled with a forced noop after the instruction in
819// DelaySlotFiller.
820
821let Defs = [FCC] in {
822  def FCMPS  : F3_3c<2, 0b110101, 0b001010001,
823                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
824                   "fcmps $src1, $src2",
825                   [(SPcmpfcc f32:$src1, f32:$src2)]>;
826  def FCMPD  : F3_3c<2, 0b110101, 0b001010010,
827                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
828                   "fcmpd $src1, $src2",
829                   [(SPcmpfcc f64:$src1, f64:$src2)]>;
830  def FCMPQ  : F3_3c<2, 0b110101, 0b001010011,
831                   (outs), (ins QFPRegs:$src1, QFPRegs:$src2),
832                   "fcmpq $src1, $src2",
833                   [(SPcmpfcc f128:$src1, f128:$src2)]>,
834                   Requires<[HasHardQuad]>;
835}
836
837//===----------------------------------------------------------------------===//
838// Instructions for Thread Local Storage(TLS).
839//===----------------------------------------------------------------------===//
840
841def TLS_ADDrr : F3_1<2, 0b000000,
842                    (outs IntRegs:$rd),
843                    (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
844                    "add $rs1, $rs2, $rd, $sym",
845                    [(set i32:$rd,
846                        (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
847
848let mayLoad = 1 in
849  def TLS_LDrr : F3_1<3, 0b000000,
850                      (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
851                      "ld [$addr], $dst, $sym",
852                      [(set i32:$dst,
853                          (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
854
855let Uses = [O6], isCall = 1, hasDelaySlot = 1 in
856  def TLS_CALL : InstSP<(outs),
857                        (ins calltarget:$disp, TLSSym:$sym, variable_ops),
858                        "call $disp, $sym",
859                        [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)]> {
860  bits<30> disp;
861  let op = 1;
862  let Inst{29-0} = disp;
863}
864
865//===----------------------------------------------------------------------===//
866// V9 Instructions
867//===----------------------------------------------------------------------===//
868
869// V9 Conditional Moves.
870let Predicates = [HasV9], Constraints = "$f = $rd" in {
871  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
872  let Uses = [ICC], cc = 0b100 in {
873    def MOVICCrr
874      : F4_1<0b101100, (outs IntRegs:$rd),
875             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
876             "mov$cond %icc, $rs2, $rd",
877             [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>;
878
879    def MOVICCri
880      : F4_2<0b101100, (outs IntRegs:$rd),
881             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
882             "mov$cond %icc, $simm11, $rd",
883             [(set i32:$rd,
884                    (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>;
885  }
886
887  let Uses = [FCC], cc = 0b000 in {
888    def MOVFCCrr
889      : F4_1<0b101100, (outs IntRegs:$rd),
890             (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond),
891             "mov$cond %fcc0, $rs2, $rd",
892             [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>;
893    def MOVFCCri
894      : F4_2<0b101100, (outs IntRegs:$rd),
895             (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond),
896             "mov$cond %fcc0, $simm11, $rd",
897             [(set i32:$rd,
898                    (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>;
899  }
900
901  let Uses = [ICC], opf_cc = 0b100 in {
902    def FMOVS_ICC
903      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
904             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
905             "fmovs$cond %icc, $rs2, $rd",
906             [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>;
907    def FMOVD_ICC
908      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
909               (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
910               "fmovd$cond %icc, $rs2, $rd",
911               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>;
912    def FMOVQ_ICC
913      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
914               (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
915               "fmovd$cond %icc, $rs2, $rd",
916               [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>;
917  }
918
919  let Uses = [FCC], opf_cc = 0b000 in {
920    def FMOVS_FCC
921      : F4_3<0b110101, 0b000001, (outs FPRegs:$rd),
922             (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond),
923             "fmovs$cond %fcc0, $rs2, $rd",
924             [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>;
925    def FMOVD_FCC
926      : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd),
927             (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond),
928             "fmovd$cond %fcc0, $rs2, $rd",
929             [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>;
930    def FMOVQ_FCC
931      : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd),
932             (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond),
933             "fmovd$cond %fcc0, $rs2, $rd",
934             [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>;
935  }
936
937}
938
939// Floating-Point Move Instructions, p. 164 of the V9 manual.
940let Predicates = [HasV9] in {
941  def FMOVD : F3_3u<2, 0b110100, 0b000000010,
942                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
943                   "fmovd $src, $dst", []>;
944  def FMOVQ : F3_3u<2, 0b110100, 0b000000011,
945                   (outs QFPRegs:$dst), (ins QFPRegs:$src),
946                   "fmovq $src, $dst", []>,
947                   Requires<[HasHardQuad]>;
948  def FNEGD : F3_3u<2, 0b110100, 0b000000110,
949                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
950                   "fnegd $src, $dst",
951                   [(set f64:$dst, (fneg f64:$src))]>;
952  def FNEGQ : F3_3u<2, 0b110100, 0b000000111,
953                   (outs QFPRegs:$dst), (ins QFPRegs:$src),
954                   "fnegq $src, $dst",
955                   [(set f128:$dst, (fneg f128:$src))]>,
956                   Requires<[HasHardQuad]>;
957  def FABSD : F3_3u<2, 0b110100, 0b000001010,
958                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
959                   "fabsd $src, $dst",
960                   [(set f64:$dst, (fabs f64:$src))]>;
961  def FABSQ : F3_3u<2, 0b110100, 0b000001011,
962                   (outs QFPRegs:$dst), (ins QFPRegs:$src),
963                   "fabsq $src, $dst",
964                   [(set f128:$dst, (fabs f128:$src))]>,
965                   Requires<[HasHardQuad]>;
966}
967
968// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
969// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
970let rs1 = 0 in
971  def POPCrr : F3_1<2, 0b101110,
972                    (outs IntRegs:$dst), (ins IntRegs:$src),
973                    "popc $src, $dst", []>, Requires<[HasV9]>;
974def : Pat<(ctpop i32:$src),
975          (POPCrr (SLLri $src, 0))>;
976
977//===----------------------------------------------------------------------===//
978// Non-Instruction Patterns
979//===----------------------------------------------------------------------===//
980
981// Small immediates.
982def : Pat<(i32 simm13:$val),
983          (ORri (i32 G0), imm:$val)>;
984// Arbitrary immediates.
985def : Pat<(i32 imm:$val),
986          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
987
988
989// Global addresses, constant pool entries
990def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
991def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
992def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
993def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
994
995// GlobalTLS addresses
996def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
997def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
998def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
999          (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1000def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
1001          (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
1002
1003// Blockaddress
1004def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
1005def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
1006
1007// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
1008def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
1009def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
1010def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
1011                        (ADDri $r, tblockaddress:$in)>;
1012
1013// Calls:
1014def : Pat<(call tglobaladdr:$dst),
1015          (CALL tglobaladdr:$dst)>;
1016def : Pat<(call texternalsym:$dst),
1017          (CALL texternalsym:$dst)>;
1018
1019// Map integer extload's to zextloads.
1020def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1021def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1022def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1023def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1024def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
1025def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
1026
1027// zextload bool -> zextload byte
1028def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
1029def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
1030
1031// store 0, addr -> store %g0, addr
1032def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
1033def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
1034
1035include "SparcInstr64Bit.td"
1036