SparcInstrInfo.td revision 3df04c58fcaccb8bd792cf2794921ab7a4bb8dc7
1//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SparcV8 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18class InstV8 : Instruction {          // SparcV8 instruction baseline
19  field bits<32> Inst;
20
21  let Namespace = "V8";
22
23  bits<2> op;
24  let Inst{31-30} = op;               // Top two bits are the 'op' field
25
26  // Bit attributes specific to SparcV8 instructions
27  bit isPasi       = 0; // Does this instruction affect an alternate addr space?
28  bit isPrivileged = 0; // Is this a privileged instruction?
29}
30
31include "SparcV8InstrFormats.td"
32
33//===----------------------------------------------------------------------===//
34// Instructions
35//===----------------------------------------------------------------------===//
36
37// Pseudo instructions.
38class PseudoInstV8<string nm> : InstV8  {
39  let Name = nm;
40}
41def PHI : PseudoInstV8<"PHI">;
42def ADJCALLSTACKDOWN : PseudoInstV8<"ADJCALLSTACKDOWN">;
43def ADJCALLSTACKUP : PseudoInstV8<"ADJCALLSTACKUP">;
44def IMPLICIT_USE : PseudoInstV8<"IMPLICIT_USE">;
45def IMPLICIT_DEF : PseudoInstV8<"IMPLICIT_DEF">;
46def FpMOVD : PseudoInstV8<"FpMOVD">; // pseudo 64-bit double move
47
48// Section A.3 - Synthetic Instructions, p. 85
49// special cases of JMPL:
50let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in {
51  let rd = I7.Num, rs1 = G0.Num, simm13 = 8 in
52    def RET : F3_2<2, 0b111000, "ret">;
53  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
54    def RETL: F3_2<2, 0b111000, "retl">;
55}
56// CMP is a special case of SUBCC where destination is ignored, by setting it to
57// %g0 (hardwired zero).
58// FIXME: should keep track of the fact that it defs the integer condition codes
59let rd = 0 in
60  def CMPri: F3_2<2, 0b010100, "cmp">;
61
62// Section B.1 - Load Integer Instructions, p. 90
63def LDSB: F3_2<3, 0b001001, "ldsb">;
64def LDSH: F3_2<3, 0b001010, "ldsh">;
65def LDUB: F3_2<3, 0b000001, "ldub">;
66def LDUH: F3_2<3, 0b000010, "lduh">;
67def LD  : F3_2<3, 0b000000, "ld">;
68def LDD : F3_2<3, 0b000011, "ldd">;
69
70// Section B.2 - Load Floating-point Instructions, p. 92
71def LDFrr  : F3_1<3, 0b100000, "ld">;
72def LDFri  : F3_2<3, 0b100000, "ld">;
73def LDDFrr : F3_1<3, 0b100011, "ldd">;
74def LDDFri : F3_2<3, 0b100011, "ldd">;
75def LDFSRrr: F3_1<3, 0b100001, "ld">;
76def LDFSRri: F3_2<3, 0b100001, "ld">;
77
78// Section B.4 - Store Integer Instructions, p. 95
79def STB : F3_2<3, 0b000101, "stb">;
80def STH : F3_2<3, 0b000110, "sth">;
81def ST  : F3_2<3, 0b000100, "st">;
82def STD : F3_2<3, 0b000111, "std">;
83
84// Section B.5 - Store Floating-point Instructions, p. 97
85def STFrr   : F3_1<3, 0b100100, "st">;
86def STFri   : F3_2<3, 0b100100, "st">;
87def STDFrr  : F3_1<3, 0b100111, "std">;
88def STDFri  : F3_2<3, 0b100111, "std">;
89def STFSRrr : F3_1<3, 0b100101, "st">;
90def STFSRri : F3_2<3, 0b100101, "st">;
91def STDFQrr : F3_1<3, 0b100110, "std">;
92def STDFQri : F3_2<3, 0b100110, "std">;
93
94// Section B.9 - SETHI Instruction, p. 104
95def SETHIi: F2_1<0b100, "sethi">;
96
97// Section B.10 - NOP Instruction, p. 105
98// (It's a special case of SETHI)
99let rd = 0, imm = 0 in
100  def NOP : F2_1<0b100, "nop">;
101
102// Section B.11 - Logical Instructions, p. 106
103def ANDrr : F3_1<2, 0b000001, "and">;
104def ANDri : F3_2<2, 0b000001, "and">;
105def ORrr  : F3_1<2, 0b000010, "or">;
106def ORri  : F3_2<2, 0b000010, "or">;
107def XORrr : F3_1<2, 0b000011, "xor">;
108def XORri : F3_2<2, 0b000011, "xor">;
109
110// Section B.12 - Shift Instructions, p. 107
111def SLLrr : F3_1<2, 0b100101, "sll">;
112def SLLri : F3_2<2, 0b100101, "sll">;
113def SRLrr : F3_1<2, 0b100110, "srl">;
114def SRLri : F3_2<2, 0b100110, "srl">;
115def SRArr : F3_1<2, 0b100111, "sra">;
116def SRAri : F3_2<2, 0b100111, "sra">;
117
118// Section B.13 - Add Instructions, p. 108
119def ADDrr : F3_1<2, 0b000000, "add">;
120def ADDri : F3_2<2, 0b000000, "add">;
121
122// Section B.15 - Subtract Instructions, p. 110
123def SUBrr   : F3_1<2, 0b000100, "sub">;
124def SUBCCrr : F3_1<2, 0b010100, "subcc">;
125def SUBCCri : F3_2<2, 0b010100, "subcc">;
126
127// Section B.18 - Multiply Instructions, p. 113
128def UMULrr : F3_1<2, 0b001010, "umul">;
129def SMULrr : F3_1<2, 0b001011, "smul">;
130
131// Section B.19 - Divide Instructions, p. 115
132def UDIVrr   : F3_1<2, 0b001110, "udiv">;
133def UDIVri   : F3_2<2, 0b001110, "udiv">;
134def SDIVrr   : F3_1<2, 0b001111, "sdiv">;
135def SDIVri   : F3_2<2, 0b001111, "sdiv">;
136def UDIVCCrr : F3_1<2, 0b011110, "udivcc">;
137def UDIVCCri : F3_2<2, 0b011110, "udivcc">;
138def SDIVCCrr : F3_1<2, 0b011111, "sdivcc">;
139def SDIVCCri : F3_2<2, 0b011111, "sdivcc">;
140
141// Section B.20 - SAVE and RESTORE, p. 117
142def SAVErr    : F3_1<2, 0b111100, "save">;           // save    r, r, r
143def SAVEri    : F3_2<2, 0b111100, "save">;           // save    r, i, r
144def RESTORErr : F3_1<2, 0b111101, "restore">;        // restore r, r, r
145def RESTOREri : F3_2<2, 0b111101, "restore">;        // restore r, i, r
146
147// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
148
149// conditional branch class:
150class BranchV8<bits<4> cc, string nm> : F2_2<cc, 0b010, nm> {
151  let isBranch = 1;
152  let isTerminator = 1;
153  let hasDelaySlot = 1;
154}
155
156let isBarrier = 1 in
157  def BA   : BranchV8<0b1000, "ba">;
158def BN   : BranchV8<0b0000, "bn">;
159def BNE  : BranchV8<0b1001, "bne">;
160def BE   : BranchV8<0b0001, "be">;
161def BG   : BranchV8<0b1010, "bg">;
162def BLE  : BranchV8<0b0010, "ble">;
163def BGE  : BranchV8<0b1011, "bge">;
164def BL   : BranchV8<0b0011, "bl">;
165def BGU  : BranchV8<0b1100, "bgu">;
166def BLEU : BranchV8<0b0100, "bleu">;
167def BCC  : BranchV8<0b1101, "bcc">;
168def BCS  : BranchV8<0b0101, "bcs">;
169
170// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
171
172// floating-point conditional branch class:
173class FPBranchV8<bits<4> cc, string nm> : F2_2<cc, 0b110, nm> {
174  let isBranch = 1;
175  let isTerminator = 1;
176  let hasDelaySlot = 1;
177}
178
179def FBA  : FPBranchV8<0b1000, "fba">;
180def FBN  : FPBranchV8<0b0000, "fbn">;
181def FBU  : FPBranchV8<0b0111, "fbu">;
182def FBG  : FPBranchV8<0b0110, "fbg">;
183def FBUG : FPBranchV8<0b0101, "fbug">;
184def FBL  : FPBranchV8<0b0100, "fbl">;
185def FBUL : FPBranchV8<0b0011, "fbul">;
186def FBLG : FPBranchV8<0b0010, "fblg">;
187def FBNE : FPBranchV8<0b0001, "fbne">;
188def FBE  : FPBranchV8<0b1001, "fbe">;
189def FBUE : FPBranchV8<0b1010, "fbue">;
190def FBGE : FPBranchV8<0b1011, "fbge">;
191def FBUGE: FPBranchV8<0b1100, "fbuge">;
192def FBLE : FPBranchV8<0b1101, "fble">;
193def FBULE: FPBranchV8<0b1110, "fbule">;
194def FBO  : FPBranchV8<0b1111, "fbo">;
195
196// Section B.24 - Call and Link Instruction, p. 125
197// This is the only Format 1 instruction
198let Uses = [O0, O1, O2, O3, O4, O5], Defs = [O0, O1, O2, O3, O4, O5],
199    hasDelaySlot = 1, isCall = 1 in { 
200  // pc-relative call:
201  def CALL : InstV8 {
202    bits<30> disp;
203    let op = 1;
204    let Inst{29-0} = disp;
205    let Name = "call";
206  }
207  // indirect call:
208  def JMPLrr : F3_1<2, 0b111000, "jmpl">;              // jmpl [rs1+rs2], rd
209}
210
211// Section B.29 - Write State Register Instructions
212def WRrr : F3_1<2, 0b110000, "wr">;                    // wr rs1, rs2, rd
213def WRri : F3_2<2, 0b110000, "wr">;                    // wr rs1, imm, rd
214
215// Convert Integer to Floating-point Instructions, p. 141
216def FITOS : F3_3<2, 0b110100, 0b011000100, "fitos">;
217def FITOD : F3_3<2, 0b110100, 0b011001000, "fitod">;
218
219// Convert Floating-point to Integer Instructions, p. 142
220def FSTOI : F3_3<2, 0b110100, 0b011010001, "fstoi">;
221def FDTOI : F3_3<2, 0b110100, 0b011010010, "fdtoi">;
222
223// Convert between Floating-point Formats Instructions, p. 143
224def FSTOD : F3_3<2, 0b110100, 0b011001001, "fstod">;
225def FDTOS : F3_3<2, 0b110100, 0b011000110, "fdtos">;
226
227// Floating-point Move Instructions, p. 144
228def FMOVS : F3_3<2, 0b110100, 0b000000001, "fmovs">;
229def FNEGS : F3_3<2, 0b110100, 0b000000101, "fnegs">;
230def FABSS : F3_3<2, 0b110100, 0b000001001, "fabss">;
231
232// Floating-point Add and Subtract Instructions, p. 146
233def FADDS  : F3_3<2, 0b110100, 0b001000001, "fadds">;
234def FADDD  : F3_3<2, 0b110100, 0b001000010, "faddd">;
235def FSUBS  : F3_3<2, 0b110100, 0b001000101, "fsubs">;
236def FSUBD  : F3_3<2, 0b110100, 0b001000110, "fsubd">;
237
238// Floating-point Multiply and Divide Instructions, p. 147
239def FMULS  : F3_3<2, 0b110100, 0b001001001, "fmuls">;
240def FMULD  : F3_3<2, 0b110100, 0b001001010, "fmuld">;
241def FSMULD : F3_3<2, 0b110100, 0b001101001, "fsmuld">;
242def FDIVS  : F3_3<2, 0b110100, 0b001001101, "fdivs">;
243def FDIVD  : F3_3<2, 0b110100, 0b001001110, "fdivd">;
244
245// Floating-point Compare Instructions, p. 148
246// Note: the 2nd template arg is different for these guys.
247// Note 2: the result of a FCMP is not available until the 2nd cycle
248// after the instr is retired, but there is no interlock. This behavior
249// is modelled as a delay slot.
250let hasDelaySlot = 1 in {
251  def FCMPS  : F3_3<2, 0b110101, 0b001010001, "fcmps">;
252  def FCMPD  : F3_3<2, 0b110101, 0b001010010, "fcmpd">;
253  def FCMPES : F3_3<2, 0b110101, 0b001010101, "fcmpes">;
254  def FCMPED : F3_3<2, 0b110101, 0b001010110, "fcmped">;
255}
256
257