SparcInstrInfo.td revision 3ff57516839433131dd537ed2708a3e23f88ae77
1//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SparcV8 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18class InstV8 : Instruction {          // SparcV8 instruction baseline
19  field bits<32> Inst;
20
21  let Namespace = "V8";
22
23  bits<2> op;
24  let Inst{31-30} = op;               // Top two bits are the 'op' field
25
26  // Bit attributes specific to SparcV8 instructions
27  bit isPasi       = 0; // Does this instruction affect an alternate addr space?
28  bit isPrivileged = 0; // Is this a privileged instruction?
29}
30
31include "SparcV8InstrFormats.td"
32
33//===----------------------------------------------------------------------===//
34// Instructions
35//===----------------------------------------------------------------------===//
36
37// Pseudo instructions.
38class PseudoInstV8<string nm, dag ops> : InstV8  {
39  let Name = nm;
40  dag OperandList = ops;
41}
42def PHI : PseudoInstV8<"PHI", (ops variable_ops)>;
43def ADJCALLSTACKDOWN : PseudoInstV8<"ADJCALLSTACKDOWN", (ops variable_ops)>;
44def ADJCALLSTACKUP : PseudoInstV8<"ADJCALLSTACKUP", (ops variable_ops)>;
45def IMPLICIT_USE : PseudoInstV8<"IMPLICIT_USE", (ops variable_ops)>;
46def IMPLICIT_DEF : PseudoInstV8<"IMPLICIT_DEF", (ops variable_ops)>;
47def FpMOVD : PseudoInstV8<"FpMOVD", (ops)>; // pseudo 64-bit double move
48
49// Section A.3 - Synthetic Instructions, p. 85
50// special cases of JMPL:
51let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in {
52  let rd = I7.Num, rs1 = G0.Num, simm13 = 8 in
53    def RET : F3_2<2, 0b111000, "ret">;
54  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
55    def RETL: F3_2<2, 0b111000, "retl">;
56}
57// CMP is a special case of SUBCC where destination is ignored, by setting it to
58// %g0 (hardwired zero).
59// FIXME: should keep track of the fact that it defs the integer condition codes
60let rd = 0 in
61  def CMPri: F3_2<2, 0b010100, "cmp">;
62
63// Section B.1 - Load Integer Instructions, p. 90
64def LDSB: F3_2<3, 0b001001, "ldsb">;
65def LDSH: F3_2<3, 0b001010, "ldsh">;
66def LDUB: F3_2<3, 0b000001, "ldub">;
67def LDUH: F3_2<3, 0b000010, "lduh">;
68def LD  : F3_2<3, 0b000000, "ld">;
69def LDD : F3_2<3, 0b000011, "ldd">;
70
71// Section B.2 - Load Floating-point Instructions, p. 92
72def LDFrr  : F3_1<3, 0b100000, "ld">;
73def LDFri  : F3_2<3, 0b100000, "ld">;
74def LDDFrr : F3_1<3, 0b100011, "ldd">;
75def LDDFri : F3_2<3, 0b100011, "ldd">;
76def LDFSRrr: F3_1<3, 0b100001, "ld">;
77def LDFSRri: F3_2<3, 0b100001, "ld">;
78
79// Section B.4 - Store Integer Instructions, p. 95
80def STB : F3_2<3, 0b000101, "stb">;
81def STH : F3_2<3, 0b000110, "sth">;
82def ST  : F3_2<3, 0b000100, "st">;
83def STD : F3_2<3, 0b000111, "std">;
84
85// Section B.5 - Store Floating-point Instructions, p. 97
86def STFrr   : F3_1<3, 0b100100, "st">;
87def STFri   : F3_2<3, 0b100100, "st">;
88def STDFrr  : F3_1<3, 0b100111, "std">;
89def STDFri  : F3_2<3, 0b100111, "std">;
90def STFSRrr : F3_1<3, 0b100101, "st">;
91def STFSRri : F3_2<3, 0b100101, "st">;
92def STDFQrr : F3_1<3, 0b100110, "std">;
93def STDFQri : F3_2<3, 0b100110, "std">;
94
95// Section B.9 - SETHI Instruction, p. 104
96def SETHIi: F2_1<0b100, "sethi">;
97
98// Section B.10 - NOP Instruction, p. 105
99// (It's a special case of SETHI)
100let rd = 0, imm22 = 0 in
101  def NOP : F2_1<0b100, "nop">;
102
103// Section B.11 - Logical Instructions, p. 106
104def ANDrr   : F3_1<2, 0b000001, "and">;
105def ANDri   : F3_2<2, 0b000001, "and">;
106def ANDCCrr : F3_1<2, 0b010001, "andcc">;
107def ANDCCri : F3_2<2, 0b010001, "andcc">;
108def ANDNrr  : F3_1<2, 0b000101, "andn">;
109def ANDNri  : F3_2<2, 0b000101, "andn">;
110def ANDNCCrr: F3_1<2, 0b010101, "andncc">;
111def ANDNCCri: F3_2<2, 0b010101, "andncc">;
112def ORrr    : F3_1<2, 0b000010, "or">;
113def ORri    : F3_2<2, 0b000010, "or">;
114def ORCCrr  : F3_1<2, 0b010010, "orcc">;
115def ORCCri  : F3_2<2, 0b010010, "orcc">;
116def ORNrr   : F3_1<2, 0b000110, "orn">;
117def ORNri   : F3_2<2, 0b000110, "orn">;
118def ORNCCrr : F3_1<2, 0b010110, "orncc">;
119def ORNCCri : F3_2<2, 0b010110, "orncc">;
120def XORrr   : F3_1<2, 0b000011, "xor">;
121def XORri   : F3_2<2, 0b000011, "xor">;
122def XORCCrr : F3_1<2, 0b010011, "xorcc">;
123def XORCCri : F3_2<2, 0b010011, "xorcc">;
124def XNORrr  : F3_1<2, 0b000111, "xnor">;
125def XNORri  : F3_2<2, 0b000111, "xnor">;
126def XNORCCrr: F3_1<2, 0b010111, "xnorcc">;
127def XNORCCri: F3_2<2, 0b010111, "xnorcc">;
128
129// Section B.12 - Shift Instructions, p. 107
130def SLLrr : F3_1<2, 0b100101, "sll">;
131def SLLri : F3_2<2, 0b100101, "sll">;
132def SRLrr : F3_1<2, 0b100110, "srl">;
133def SRLri : F3_2<2, 0b100110, "srl">;
134def SRArr : F3_1<2, 0b100111, "sra">;
135def SRAri : F3_2<2, 0b100111, "sra">;
136
137// Section B.13 - Add Instructions, p. 108
138def ADDrr   : F3_1<2, 0b000000, "add">;
139def ADDri   : F3_2<2, 0b000000, "add">;
140def ADDCCrr : F3_1<2, 0b010000, "addcc">;
141def ADDCCri : F3_2<2, 0b010000, "addcc">;
142def ADDXrr  : F3_1<2, 0b001000, "addx">;
143def ADDXri  : F3_2<2, 0b001000, "addx">;
144def ADDXCCrr: F3_1<2, 0b011000, "addxcc">;
145def ADDXCCri: F3_2<2, 0b011000, "addxcc">;
146
147// Section B.15 - Subtract Instructions, p. 110
148def SUBrr   : F3_1<2, 0b000100, "sub">;
149def SUBri   : F3_2<2, 0b000100, "sub">;
150def SUBCCrr : F3_1<2, 0b010100, "subcc">;
151def SUBCCri : F3_2<2, 0b010100, "subcc">;
152def SUBXrr  : F3_1<2, 0b001100, "subx">;
153def SUBXri  : F3_2<2, 0b001100, "subx">;
154def SUBXCCrr: F3_1<2, 0b011100, "subxcc">;
155def SUBXCCri: F3_2<2, 0b011100, "subxcc">;
156
157// Section B.18 - Multiply Instructions, p. 113
158def UMULrr  : F3_1<2, 0b001010, "umul">;
159def UMULri  : F3_2<2, 0b001010, "umul">;
160def SMULrr  : F3_1<2, 0b001011, "smul">;
161def SMULri  : F3_2<2, 0b001011, "smul">;
162def UMULCCrr: F3_1<2, 0b011010, "umulcc">;
163def UMULCCri: F3_2<2, 0b011010, "umulcc">;
164def SMULCCrr: F3_1<2, 0b011011, "smulcc">;
165def SMULCCri: F3_2<2, 0b011011, "smulcc">;
166
167// Section B.19 - Divide Instructions, p. 115
168def UDIVrr   : F3_1<2, 0b001110, "udiv">;
169def UDIVri   : F3_2<2, 0b001110, "udiv">;
170def SDIVrr   : F3_1<2, 0b001111, "sdiv">;
171def SDIVri   : F3_2<2, 0b001111, "sdiv">;
172def UDIVCCrr : F3_1<2, 0b011110, "udivcc">;
173def UDIVCCri : F3_2<2, 0b011110, "udivcc">;
174def SDIVCCrr : F3_1<2, 0b011111, "sdivcc">;
175def SDIVCCri : F3_2<2, 0b011111, "sdivcc">;
176
177// Section B.20 - SAVE and RESTORE, p. 117
178def SAVErr    : F3_1<2, 0b111100, "save">;           // save    r, r, r
179def SAVEri    : F3_2<2, 0b111100, "save">;           // save    r, i, r
180def RESTORErr : F3_1<2, 0b111101, "restore">;        // restore r, r, r
181def RESTOREri : F3_2<2, 0b111101, "restore">;        // restore r, i, r
182
183// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
184
185// conditional branch class:
186class BranchV8<bits<4> cc, string nm> : F2_2<cc, 0b010, nm> {
187  let isBranch = 1;
188  let isTerminator = 1;
189  let hasDelaySlot = 1;
190}
191
192let isBarrier = 1 in
193  def BA   : BranchV8<0b1000, "ba">;
194def BN   : BranchV8<0b0000, "bn">;
195def BNE  : BranchV8<0b1001, "bne">;
196def BE   : BranchV8<0b0001, "be">;
197def BG   : BranchV8<0b1010, "bg">;
198def BLE  : BranchV8<0b0010, "ble">;
199def BGE  : BranchV8<0b1011, "bge">;
200def BL   : BranchV8<0b0011, "bl">;
201def BGU  : BranchV8<0b1100, "bgu">;
202def BLEU : BranchV8<0b0100, "bleu">;
203def BCC  : BranchV8<0b1101, "bcc">;
204def BCS  : BranchV8<0b0101, "bcs">;
205
206// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
207
208// floating-point conditional branch class:
209class FPBranchV8<bits<4> cc, string nm> : F2_2<cc, 0b110, nm> {
210  let isBranch = 1;
211  let isTerminator = 1;
212  let hasDelaySlot = 1;
213}
214
215def FBA  : FPBranchV8<0b1000, "fba">;
216def FBN  : FPBranchV8<0b0000, "fbn">;
217def FBU  : FPBranchV8<0b0111, "fbu">;
218def FBG  : FPBranchV8<0b0110, "fbg">;
219def FBUG : FPBranchV8<0b0101, "fbug">;
220def FBL  : FPBranchV8<0b0100, "fbl">;
221def FBUL : FPBranchV8<0b0011, "fbul">;
222def FBLG : FPBranchV8<0b0010, "fblg">;
223def FBNE : FPBranchV8<0b0001, "fbne">;
224def FBE  : FPBranchV8<0b1001, "fbe">;
225def FBUE : FPBranchV8<0b1010, "fbue">;
226def FBGE : FPBranchV8<0b1011, "fbge">;
227def FBUGE: FPBranchV8<0b1100, "fbuge">;
228def FBLE : FPBranchV8<0b1101, "fble">;
229def FBULE: FPBranchV8<0b1110, "fbule">;
230def FBO  : FPBranchV8<0b1111, "fbo">;
231
232
233
234// Section B.24 - Call and Link Instruction, p. 125
235// This is the only Format 1 instruction
236let Uses = [O0, O1, O2, O3, O4, O5], hasDelaySlot = 1, isCall = 1 in { 
237  // pc-relative call:
238  let Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
239    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in
240  def CALL : InstV8 {
241    bits<30> disp;
242    let op = 1;
243    let Inst{29-0} = disp;
244    let Name = "call";
245  }
246
247  // indirect call (O7 is an EXPLICIT def in indirect calls, so it cannot also
248  // be an implicit def):
249  let Defs = [O0, O1, O2, O3, O4, O5, G1, G2, G3, G4, G5, G6, G7,
250    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in
251  def JMPLrr : F3_1<2, 0b111000, "jmpl">;              // jmpl [rs1+rs2], rd
252}
253
254// Section B.29 - Write State Register Instructions
255def WRrr : F3_1<2, 0b110000, "wr">;                    // wr rs1, rs2, rd
256def WRri : F3_2<2, 0b110000, "wr">;                    // wr rs1, imm, rd
257
258// Convert Integer to Floating-point Instructions, p. 141
259def FITOS : F3_3<2, 0b110100, 0b011000100, "fitos">;
260def FITOD : F3_3<2, 0b110100, 0b011001000, "fitod">;
261
262// Convert Floating-point to Integer Instructions, p. 142
263def FSTOI : F3_3<2, 0b110100, 0b011010001, "fstoi">;
264def FDTOI : F3_3<2, 0b110100, 0b011010010, "fdtoi">;
265
266// Convert between Floating-point Formats Instructions, p. 143
267def FSTOD : F3_3<2, 0b110100, 0b011001001, "fstod">;
268def FDTOS : F3_3<2, 0b110100, 0b011000110, "fdtos">;
269
270// Floating-point Move Instructions, p. 144
271def FMOVS : F3_3<2, 0b110100, 0b000000001, "fmovs">;
272def FNEGS : F3_3<2, 0b110100, 0b000000101, "fnegs">;
273def FABSS : F3_3<2, 0b110100, 0b000001001, "fabss">;
274
275// Floating-point Add and Subtract Instructions, p. 146
276def FADDS  : F3_3<2, 0b110100, 0b001000001, "fadds">;
277def FADDD  : F3_3<2, 0b110100, 0b001000010, "faddd">;
278def FSUBS  : F3_3<2, 0b110100, 0b001000101, "fsubs">;
279def FSUBD  : F3_3<2, 0b110100, 0b001000110, "fsubd">;
280
281// Floating-point Multiply and Divide Instructions, p. 147
282def FMULS  : F3_3<2, 0b110100, 0b001001001, "fmuls">;
283def FMULD  : F3_3<2, 0b110100, 0b001001010, "fmuld">;
284def FSMULD : F3_3<2, 0b110100, 0b001101001, "fsmuld">;
285def FDIVS  : F3_3<2, 0b110100, 0b001001101, "fdivs">;
286def FDIVD  : F3_3<2, 0b110100, 0b001001110, "fdivd">;
287
288// Floating-point Compare Instructions, p. 148
289// Note: the 2nd template arg is different for these guys.
290// Note 2: the result of a FCMP is not available until the 2nd cycle
291// after the instr is retired, but there is no interlock. This behavior
292// is modelled as a delay slot.
293let hasDelaySlot = 1 in {
294  def FCMPS  : F3_3<2, 0b110101, 0b001010001, "fcmps">;
295  def FCMPD  : F3_3<2, 0b110101, 0b001010010, "fcmpd">;
296  def FCMPES : F3_3<2, 0b110101, 0b001010101, "fcmpes">;
297  def FCMPED : F3_3<2, 0b110101, 0b001010110, "fcmped">;
298}
299
300