SparcInstrInfo.td revision 466685d41a9ea4905b9486fea38e83802e46f196
1//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{
47  // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48  return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
49}]>;
50
51def simm13  : PatLeaf<(imm), [{
52  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
53  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
54}]>;
55
56def LO10 : SDNodeXForm<imm, [{
57  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
58}]>;
59
60def HI22 : SDNodeXForm<imm, [{
61  // Transformation function: shift the immediate value down into the low bits.
62  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
70def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
71def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex]>;
72
73// Address operands
74def MEMrr : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let NumMIOperands = 2;
77  let MIOperandInfo = (ops IntRegs, IntRegs);
78}
79def MEMri : Operand<i32> {
80  let PrintMethod = "printMemOperand";
81  let NumMIOperands = 2;
82  let MIOperandInfo = (ops IntRegs, i32imm);
83}
84
85// Branch targets have OtherVT type.
86def brtarget : Operand<OtherVT>;
87def calltarget : Operand<i32>;
88
89// Operand for printing out a condition code.
90let PrintMethod = "printCCOperand" in
91  def CCOp : Operand<i32>;
92
93def SDTSPcmpfcc : 
94SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
95def SDTSPbrcc : 
96SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
97def SDTSPselectcc :
98SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
99def SDTSPFTOI :
100SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
101def SDTSPITOF :
102SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
103
104def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
105def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
106def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
107def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
108
109def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
110def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
111
112def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
113def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
114
115def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
116def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
117
118// These are target-independent nodes, but have target-specific formats.
119def SDT_SPCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
120def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeq,
121                           [SDNPHasChain, SDNPOutFlag]>;
122def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeq,
123                           [SDNPHasChain, SDNPOutFlag]>;
124
125def SDT_SPCall    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
126def call          : SDNode<"SPISD::CALL", SDT_SPCall,
127	                   [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
128
129def SDT_SPRetFlag : SDTypeProfile<0, 0, []>;
130def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRetFlag,
131	                   [SDNPHasChain, SDNPOptInFlag]>;
132
133//===----------------------------------------------------------------------===//
134// SPARC Flag Conditions
135//===----------------------------------------------------------------------===//
136
137// Note that these values must be kept in sync with the CCOp::CondCode enum
138// values.
139class ICC_VAL<int N> : PatLeaf<(i32 N)>;
140def ICC_NE  : ICC_VAL< 9>;  // Not Equal
141def ICC_E   : ICC_VAL< 1>;  // Equal
142def ICC_G   : ICC_VAL<10>;  // Greater
143def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
144def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
145def ICC_L   : ICC_VAL< 3>;  // Less
146def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
147def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
148def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
149def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
150def ICC_POS : ICC_VAL<14>;  // Positive
151def ICC_NEG : ICC_VAL< 6>;  // Negative
152def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
153def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
154
155class FCC_VAL<int N> : PatLeaf<(i32 N)>;
156def FCC_U   : FCC_VAL<23>;  // Unordered
157def FCC_G   : FCC_VAL<22>;  // Greater
158def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
159def FCC_L   : FCC_VAL<20>;  // Less
160def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
161def FCC_LG  : FCC_VAL<18>;  // Less or Greater
162def FCC_NE  : FCC_VAL<17>;  // Not Equal
163def FCC_E   : FCC_VAL<25>;  // Equal
164def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
165def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
166def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
167def FCC_LE  : FCC_VAL<27>;  // Less or Equal
168def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
169def FCC_O   : FCC_VAL<29>;  // Ordered
170
171//===----------------------------------------------------------------------===//
172// Instruction Class Templates
173//===----------------------------------------------------------------------===//
174
175/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
176multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
177  def rr  : F3_1<2, Op3Val, 
178                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
179                 !strconcat(OpcStr, " $b, $c, $dst"),
180                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
181  def ri  : F3_2<2, Op3Val,
182                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
183                 !strconcat(OpcStr, " $b, $c, $dst"),
184                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
185}
186
187/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
188/// pattern.
189multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
190  def rr  : F3_1<2, Op3Val, 
191                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
192                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
193  def ri  : F3_2<2, Op3Val,
194                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
195                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
196}
197
198//===----------------------------------------------------------------------===//
199// Instructions
200//===----------------------------------------------------------------------===//
201
202// Pseudo instructions.
203class Pseudo<dag ops, string asmstr, list<dag> pattern>
204   : InstSP<ops, asmstr, pattern>;
205
206def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
207                               "!ADJCALLSTACKDOWN $amt",
208                               [(callseq_start imm:$amt)]>;
209def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
210                            "!ADJCALLSTACKUP $amt",
211                            [(callseq_end imm:$amt)]>;
212def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
213                              "!IMPLICIT_DEF $dst",
214                              [(set IntRegs:$dst, (undef))]>;
215def IMPLICIT_DEF_FP  : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
216                              [(set FPRegs:$dst, (undef))]>;
217def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
218                              [(set DFPRegs:$dst, (undef))]>;
219                              
220// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
221// fpmover pass.
222let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
223  def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
224                      "!FpMOVD $src, $dst", []>;
225  def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
226                      "!FpNEGD $src, $dst",
227                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
228  def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
229                      "!FpABSD $src, $dst",
230                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
231}
232
233// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded by the
234// scheduler into a branch sequence.  This has to handle all permutations of
235// selection between i32/f32/f64 on ICC and FCC.
236let usesCustomDAGSchedInserter = 1 in {   // Expanded by the scheduler.
237  def SELECT_CC_Int_ICC
238   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
239            "; SELECT_CC_Int_ICC PSEUDO!",
240            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
241                                             imm:$Cond))]>;
242  def SELECT_CC_Int_FCC
243   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
244            "; SELECT_CC_Int_FCC PSEUDO!",
245            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
246                                             imm:$Cond))]>;
247  def SELECT_CC_FP_ICC
248   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
249            "; SELECT_CC_FP_ICC PSEUDO!",
250            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
251                                            imm:$Cond))]>;
252  def SELECT_CC_FP_FCC
253   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
254            "; SELECT_CC_FP_FCC PSEUDO!",
255            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
256                                            imm:$Cond))]>;
257  def SELECT_CC_DFP_ICC
258   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
259            "; SELECT_CC_DFP_ICC PSEUDO!",
260            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
261                                             imm:$Cond))]>;
262  def SELECT_CC_DFP_FCC
263   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
264            "; SELECT_CC_DFP_FCC PSEUDO!",
265            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
266                                             imm:$Cond))]>;
267}
268
269
270// Section A.3 - Synthetic Instructions, p. 85
271// special cases of JMPL:
272let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
273  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
274    def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
275}
276
277// Section B.1 - Load Integer Instructions, p. 90
278def LDSBrr : F3_1<3, 0b001001,
279                  (ops IntRegs:$dst, MEMrr:$addr),
280                  "ldsb [$addr], $dst",
281                  [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
282def LDSBri : F3_2<3, 0b001001,
283                  (ops IntRegs:$dst, MEMri:$addr),
284                  "ldsb [$addr], $dst",
285                  [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
286def LDSHrr : F3_1<3, 0b001010,
287                  (ops IntRegs:$dst, MEMrr:$addr),
288                  "ldsh [$addr], $dst",
289                  [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
290def LDSHri : F3_2<3, 0b001010,
291                  (ops IntRegs:$dst, MEMri:$addr),
292                  "ldsh [$addr], $dst",
293                  [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
294def LDUBrr : F3_1<3, 0b000001,
295                  (ops IntRegs:$dst, MEMrr:$addr),
296                  "ldub [$addr], $dst",
297                  [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
298def LDUBri : F3_2<3, 0b000001,
299                  (ops IntRegs:$dst, MEMri:$addr),
300                  "ldub [$addr], $dst",
301                  [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
302def LDUHrr : F3_1<3, 0b000010,
303                  (ops IntRegs:$dst, MEMrr:$addr),
304                  "lduh [$addr], $dst",
305                  [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
306def LDUHri : F3_2<3, 0b000010,
307                  (ops IntRegs:$dst, MEMri:$addr),
308                  "lduh [$addr], $dst",
309                  [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
310def LDrr   : F3_1<3, 0b000000,
311                  (ops IntRegs:$dst, MEMrr:$addr),
312                  "ld [$addr], $dst",
313                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
314def LDri   : F3_2<3, 0b000000,
315                  (ops IntRegs:$dst, MEMri:$addr),
316                  "ld [$addr], $dst",
317                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
318
319// Section B.2 - Load Floating-point Instructions, p. 92
320def LDFrr  : F3_1<3, 0b100000,
321                  (ops FPRegs:$dst, MEMrr:$addr),
322                  "ld [$addr], $dst",
323                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
324def LDFri  : F3_2<3, 0b100000,
325                  (ops FPRegs:$dst, MEMri:$addr),
326                  "ld [$addr], $dst",
327                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
328def LDDFrr : F3_1<3, 0b100011,
329                  (ops DFPRegs:$dst, MEMrr:$addr),
330                  "ldd [$addr], $dst",
331                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
332def LDDFri : F3_2<3, 0b100011,
333                  (ops DFPRegs:$dst, MEMri:$addr),
334                  "ldd [$addr], $dst",
335                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
336
337// Section B.4 - Store Integer Instructions, p. 95
338def STBrr : F3_1<3, 0b000101,
339                 (ops MEMrr:$addr, IntRegs:$src),
340                 "stb $src, [$addr]",
341                 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
342def STBri : F3_2<3, 0b000101,
343                 (ops MEMri:$addr, IntRegs:$src),
344                 "stb $src, [$addr]",
345                 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
346def STHrr : F3_1<3, 0b000110,
347                 (ops MEMrr:$addr, IntRegs:$src),
348                 "sth $src, [$addr]",
349                 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
350def STHri : F3_2<3, 0b000110,
351                 (ops MEMri:$addr, IntRegs:$src),
352                 "sth $src, [$addr]",
353                 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
354def STrr  : F3_1<3, 0b000100,
355                 (ops MEMrr:$addr, IntRegs:$src),
356                 "st $src, [$addr]",
357                 [(store IntRegs:$src, ADDRrr:$addr)]>;
358def STri  : F3_2<3, 0b000100,
359                 (ops MEMri:$addr, IntRegs:$src),
360                 "st $src, [$addr]",
361                 [(store IntRegs:$src, ADDRri:$addr)]>;
362
363// Section B.5 - Store Floating-point Instructions, p. 97
364def STFrr   : F3_1<3, 0b100100,
365                   (ops MEMrr:$addr, FPRegs:$src),
366                   "st $src, [$addr]",
367                   [(store FPRegs:$src, ADDRrr:$addr)]>;
368def STFri   : F3_2<3, 0b100100,
369                   (ops MEMri:$addr, FPRegs:$src),
370                   "st $src, [$addr]",
371                   [(store FPRegs:$src, ADDRri:$addr)]>;
372def STDFrr  : F3_1<3, 0b100111,
373                   (ops MEMrr:$addr, DFPRegs:$src),
374                   "std  $src, [$addr]",
375                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
376def STDFri  : F3_2<3, 0b100111,
377                   (ops MEMri:$addr, DFPRegs:$src),
378                   "std $src, [$addr]",
379                   [(store DFPRegs:$src, ADDRri:$addr)]>;
380
381// Section B.9 - SETHI Instruction, p. 104
382def SETHIi: F2_1<0b100,
383                 (ops IntRegs:$dst, i32imm:$src),
384                 "sethi $src, $dst",
385                 [(set IntRegs:$dst, SETHIimm:$src)]>;
386
387// Section B.10 - NOP Instruction, p. 105
388// (It's a special case of SETHI)
389let rd = 0, imm22 = 0 in
390  def NOP : F2_1<0b100, (ops), "nop", []>;
391
392// Section B.11 - Logical Instructions, p. 106
393defm AND    : F3_12<"and", 0b000001, and>;
394
395def ANDNrr  : F3_1<2, 0b000101,
396                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
397                   "andn $b, $c, $dst",
398                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
399def ANDNri  : F3_2<2, 0b000101,
400                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
401                   "andn $b, $c, $dst", []>;
402
403defm OR     : F3_12<"or", 0b000010, or>;
404
405def ORNrr   : F3_1<2, 0b000110,
406                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
407                   "orn $b, $c, $dst",
408                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
409def ORNri   : F3_2<2, 0b000110,
410                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
411                   "orn $b, $c, $dst", []>;
412defm XOR    : F3_12<"xor", 0b000011, xor>;
413
414def XNORrr  : F3_1<2, 0b000111,
415                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
416                   "xnor $b, $c, $dst",
417                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
418def XNORri  : F3_2<2, 0b000111,
419                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
420                   "xnor $b, $c, $dst", []>;
421
422// Section B.12 - Shift Instructions, p. 107
423defm SLL : F3_12<"sll", 0b100101, shl>;
424defm SRL : F3_12<"srl", 0b100110, srl>;
425defm SRA : F3_12<"sra", 0b100111, sra>;
426
427// Section B.13 - Add Instructions, p. 108
428defm ADD   : F3_12<"add", 0b000000, add>;
429
430// "LEA" forms of add (patterns to make tblgen happy)
431def LEA_ADDri   : F3_2<2, 0b000000,
432                   (ops IntRegs:$dst, MEMri:$addr),
433                   "add ${addr:arith}, $dst",
434                   [(set IntRegs:$dst, ADDRri:$addr)]>;
435                   
436defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
437defm ADDX  : F3_12<"addx", 0b001000, adde>;
438
439// Section B.15 - Subtract Instructions, p. 110
440defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
441defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
442defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
443
444def SUBXCCrr: F3_1<2, 0b011100, 
445                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
446                   "subxcc $b, $c, $dst", []>;
447
448// Section B.18 - Multiply Instructions, p. 113
449defm UMUL : F3_12np<"umul", 0b001010>;
450defm SMUL : F3_12  <"smul", 0b001011, mul>;
451
452
453// Section B.19 - Divide Instructions, p. 115
454defm UDIV : F3_12np<"udiv", 0b001110>;
455defm SDIV : F3_12np<"sdiv", 0b001111>;
456
457// Section B.20 - SAVE and RESTORE, p. 117
458defm SAVE    : F3_12np<"save"   , 0b111100>;
459defm RESTORE : F3_12np<"restore", 0b111101>;
460
461// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
462
463// conditional branch class:
464class BranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
465 : F2_2<cc, 0b010, ops, asmstr, pattern> {
466  let isBranch = 1;
467  let isTerminator = 1;
468  let hasDelaySlot = 1;
469  let noResults = 1;
470}
471
472let isBarrier = 1 in
473  def BA   : BranchSP<0b1000, (ops brtarget:$dst),
474                      "ba $dst",
475                      [(br bb:$dst)]>;
476                      
477// FIXME: the encoding for the JIT should look at the condition field.
478def BCOND : BranchSP<0, (ops brtarget:$dst, CCOp:$cc),
479                     "b$cc $dst",
480                     [(SPbricc bb:$dst, imm:$cc)]>;
481
482
483// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
484
485// floating-point conditional branch class:
486class FPBranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
487 : F2_2<cc, 0b110, ops, asmstr, pattern> {
488  let isBranch = 1;
489  let isTerminator = 1;
490  let hasDelaySlot = 1;
491  let noResults = 1;
492}
493
494// FIXME: the encoding for the JIT should look at the condition field.
495def FBCOND  : FPBranchSP<0, (ops brtarget:$dst, CCOp:$cc),
496                      "fb$cc $dst",
497                      [(SPbrfcc bb:$dst, imm:$cc)]>;
498
499
500// Section B.24 - Call and Link Instruction, p. 125
501// This is the only Format 1 instruction
502let Uses = [O0, O1, O2, O3, O4, O5],
503    hasDelaySlot = 1, isCall = 1, noResults = 1,
504    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
505    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
506  def CALL : InstSP<(ops calltarget:$dst),
507                    "call $dst", []> {
508    bits<30> disp;
509    let op = 1;
510    let Inst{29-0} = disp;
511  }
512  
513  // indirect calls
514  def JMPLrr : F3_1<2, 0b111000,
515                    (ops MEMrr:$ptr),
516                    "call $ptr",
517                    [(call  ADDRrr:$ptr)]>;
518  def JMPLri : F3_2<2, 0b111000,
519                    (ops MEMri:$ptr),
520                    "call $ptr",
521                    [(call  ADDRri:$ptr)]>;
522}
523
524// Section B.28 - Read State Register Instructions
525def RDY : F3_1<2, 0b101000,
526               (ops IntRegs:$dst),
527               "rd %y, $dst", []>;
528
529// Section B.29 - Write State Register Instructions
530def WRYrr : F3_1<2, 0b110000,
531                 (ops IntRegs:$b, IntRegs:$c),
532                 "wr $b, $c, %y", []>;
533def WRYri : F3_2<2, 0b110000,
534                 (ops IntRegs:$b, i32imm:$c),
535                 "wr $b, $c, %y", []>;
536
537// Convert Integer to Floating-point Instructions, p. 141
538def FITOS : F3_3<2, 0b110100, 0b011000100,
539                 (ops FPRegs:$dst, FPRegs:$src),
540                 "fitos $src, $dst",
541                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
542def FITOD : F3_3<2, 0b110100, 0b011001000, 
543                 (ops DFPRegs:$dst, FPRegs:$src),
544                 "fitod $src, $dst",
545                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
546
547// Convert Floating-point to Integer Instructions, p. 142
548def FSTOI : F3_3<2, 0b110100, 0b011010001,
549                 (ops FPRegs:$dst, FPRegs:$src),
550                 "fstoi $src, $dst",
551                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
552def FDTOI : F3_3<2, 0b110100, 0b011010010,
553                 (ops FPRegs:$dst, DFPRegs:$src),
554                 "fdtoi $src, $dst",
555                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
556
557// Convert between Floating-point Formats Instructions, p. 143
558def FSTOD : F3_3<2, 0b110100, 0b011001001, 
559                 (ops DFPRegs:$dst, FPRegs:$src),
560                 "fstod $src, $dst",
561                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
562def FDTOS : F3_3<2, 0b110100, 0b011000110,
563                 (ops FPRegs:$dst, DFPRegs:$src),
564                 "fdtos $src, $dst",
565                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
566
567// Floating-point Move Instructions, p. 144
568def FMOVS : F3_3<2, 0b110100, 0b000000001,
569                 (ops FPRegs:$dst, FPRegs:$src),
570                 "fmovs $src, $dst", []>;
571def FNEGS : F3_3<2, 0b110100, 0b000000101, 
572                 (ops FPRegs:$dst, FPRegs:$src),
573                 "fnegs $src, $dst",
574                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
575def FABSS : F3_3<2, 0b110100, 0b000001001, 
576                 (ops FPRegs:$dst, FPRegs:$src),
577                 "fabss $src, $dst",
578                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
579
580
581// Floating-point Square Root Instructions, p.145
582def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
583                  (ops FPRegs:$dst, FPRegs:$src),
584                  "fsqrts $src, $dst",
585                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
586def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
587                  (ops DFPRegs:$dst, DFPRegs:$src),
588                  "fsqrtd $src, $dst",
589                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
590
591
592
593// Floating-point Add and Subtract Instructions, p. 146
594def FADDS  : F3_3<2, 0b110100, 0b001000001,
595                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
596                  "fadds $src1, $src2, $dst",
597                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
598def FADDD  : F3_3<2, 0b110100, 0b001000010,
599                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
600                  "faddd $src1, $src2, $dst",
601                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
602def FSUBS  : F3_3<2, 0b110100, 0b001000101,
603                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
604                  "fsubs $src1, $src2, $dst",
605                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
606def FSUBD  : F3_3<2, 0b110100, 0b001000110,
607                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
608                  "fsubd $src1, $src2, $dst",
609                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
610
611// Floating-point Multiply and Divide Instructions, p. 147
612def FMULS  : F3_3<2, 0b110100, 0b001001001,
613                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
614                  "fmuls $src1, $src2, $dst",
615                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
616def FMULD  : F3_3<2, 0b110100, 0b001001010,
617                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
618                  "fmuld $src1, $src2, $dst",
619                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
620def FSMULD : F3_3<2, 0b110100, 0b001101001,
621                  (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
622                  "fsmuld $src1, $src2, $dst",
623                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
624                                            (fextend FPRegs:$src2)))]>;
625def FDIVS  : F3_3<2, 0b110100, 0b001001101,
626                 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
627                 "fdivs $src1, $src2, $dst",
628                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
629def FDIVD  : F3_3<2, 0b110100, 0b001001110,
630                 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
631                 "fdivd $src1, $src2, $dst",
632                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
633
634// Floating-point Compare Instructions, p. 148
635// Note: the 2nd template arg is different for these guys.
636// Note 2: the result of a FCMP is not available until the 2nd cycle
637// after the instr is retired, but there is no interlock. This behavior
638// is modelled with a forced noop after the instruction.
639def FCMPS  : F3_3<2, 0b110101, 0b001010001,
640                  (ops FPRegs:$src1, FPRegs:$src2),
641                  "fcmps $src1, $src2\n\tnop",
642                  [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
643def FCMPD  : F3_3<2, 0b110101, 0b001010010,
644                  (ops DFPRegs:$src1, DFPRegs:$src2),
645                  "fcmpd $src1, $src2\n\tnop",
646                  [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
647
648
649//===----------------------------------------------------------------------===//
650// V9 Instructions
651//===----------------------------------------------------------------------===//
652
653// V9 Conditional Moves.
654let Predicates = [HasV9], isTwoAddress = 1 in {
655  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
656  // FIXME: Add instruction encodings for the JIT some day.
657  def MOVICCrr
658    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
659             "mov$cc %icc, $F, $dst",
660             [(set IntRegs:$dst,
661                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
662  def MOVICCri
663    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
664             "mov$cc %icc, $F, $dst",
665             [(set IntRegs:$dst,
666                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
667
668  def MOVFCCrr
669    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
670             "mov$cc %fcc0, $F, $dst",
671             [(set IntRegs:$dst,
672                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
673  def MOVFCCri
674    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
675             "mov$cc %fcc0, $F, $dst",
676             [(set IntRegs:$dst,
677                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
678
679  def FMOVS_ICC
680    : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
681             "fmovs$cc %icc, $F, $dst",
682             [(set FPRegs:$dst,
683                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
684  def FMOVD_ICC
685    : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
686             "fmovd$cc %icc, $F, $dst",
687             [(set DFPRegs:$dst,
688                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
689  def FMOVS_FCC
690    : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
691             "fmovs$cc %fcc0, $F, $dst",
692             [(set FPRegs:$dst,
693                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
694  def FMOVD_FCC
695    : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
696             "fmovd$cc %fcc0, $F, $dst",
697             [(set DFPRegs:$dst,
698                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
699
700}
701
702// Floating-Point Move Instructions, p. 164 of the V9 manual.
703let Predicates = [HasV9] in {
704  def FMOVD : F3_3<2, 0b110100, 0b000000010,
705                   (ops DFPRegs:$dst, DFPRegs:$src),
706                   "fmovd $src, $dst", []>;
707  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
708                   (ops DFPRegs:$dst, DFPRegs:$src),
709                   "fnegd $src, $dst",
710                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
711  def FABSD : F3_3<2, 0b110100, 0b000001010, 
712                   (ops DFPRegs:$dst, DFPRegs:$src),
713                   "fabsd $src, $dst",
714                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
715}
716
717// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
718// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
719def POPCrr : F3_1<2, 0b101110, 
720                  (ops IntRegs:$dst, IntRegs:$src),
721                  "popc $src, $dst", []>, Requires<[HasV9]>;
722def : Pat<(ctpop IntRegs:$src),
723          (POPCrr (SLLri IntRegs:$src, 0))>;
724
725//===----------------------------------------------------------------------===//
726// Non-Instruction Patterns
727//===----------------------------------------------------------------------===//
728
729// Small immediates.
730def : Pat<(i32 simm13:$val),
731          (ORri G0, imm:$val)>;
732// Arbitrary immediates.
733def : Pat<(i32 imm:$val),
734          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
735
736// subc
737def : Pat<(subc IntRegs:$b, IntRegs:$c),
738          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
739def : Pat<(subc IntRegs:$b, simm13:$val),
740          (SUBCCri IntRegs:$b, imm:$val)>;
741
742// Global addresses, constant pool entries
743def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
744def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
745def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
746def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
747
748// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
749def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
750          (ADDri IntRegs:$r, tglobaladdr:$in)>;
751def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
752          (ADDri IntRegs:$r, tconstpool:$in)>;
753
754// Calls: 
755def : Pat<(call tglobaladdr:$dst),
756          (CALL tglobaladdr:$dst)>;
757def : Pat<(call texternalsym:$dst),
758          (CALL texternalsym:$dst)>;
759
760def : Pat<(ret), (RETL)>;
761
762// Map integer extload's to zextloads.
763def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
764def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
765def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
766def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
767def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
768def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
769
770// zextload bool -> zextload byte
771def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
772def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
773
774// truncstore bool -> truncstore byte.
775def : Pat<(truncstore IntRegs:$src, ADDRrr:$addr, i1), 
776          (STBrr ADDRrr:$addr, IntRegs:$src)>;
777def : Pat<(truncstore IntRegs:$src, ADDRri:$addr, i1), 
778          (STBri ADDRri:$addr, IntRegs:$src)>;
779