SparcInstrInfo.td revision 4c15e3394671a87fbbbf21362079d11a4221654c
1//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{
47  // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48  return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
49}]>;
50
51def simm13  : PatLeaf<(imm), [{
52  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
53  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
54}]>;
55
56def LO10 : SDNodeXForm<imm, [{
57  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
58}]>;
59
60def HI22 : SDNodeXForm<imm, [{
61  // Transformation function: shift the immediate value down into the low bits.
62  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
70def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
71def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex]>;
72
73// Address operands
74def MEMrr : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let NumMIOperands = 2;
77  let MIOperandInfo = (ops IntRegs, IntRegs);
78}
79def MEMri : Operand<i32> {
80  let PrintMethod = "printMemOperand";
81  let NumMIOperands = 2;
82  let MIOperandInfo = (ops IntRegs, i32imm);
83}
84
85// Branch targets have OtherVT type.
86def brtarget : Operand<OtherVT>;
87def calltarget : Operand<i32>;
88
89// Operand for printing out a condition code.
90let PrintMethod = "printCCOperand" in
91  def CCOp : Operand<i32>;
92
93def SDTSPcmpfcc : 
94SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
95def SDTSPbrcc : 
96SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
97def SDTSPselectcc :
98SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
99def SDTSPFTOI :
100SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
101def SDTSPITOF :
102SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
103
104def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
105def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
106def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
107def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
108
109def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
110def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
111
112def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
113def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
114
115def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
116def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
117
118// These are target-independent nodes, but have target-specific formats.
119def SDT_SPCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
120def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeq, [SDNPHasChain]>;
121def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeq, [SDNPHasChain]>;
122
123def SDT_SPCall    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
124def call          : SDNode<"SPISD::CALL", SDT_SPCall,
125	                   [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
126
127def SDT_SPRetFlag : SDTypeProfile<0, 0, []>;
128def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRetFlag,
129	                   [SDNPHasChain, SDNPOptInFlag]>;
130
131//===----------------------------------------------------------------------===//
132// SPARC Flag Conditions
133//===----------------------------------------------------------------------===//
134
135// Note that these values must be kept in sync with the CCOp::CondCode enum
136// values.
137class ICC_VAL<int N> : PatLeaf<(i32 N)>;
138def ICC_NE  : ICC_VAL< 9>;  // Not Equal
139def ICC_E   : ICC_VAL< 1>;  // Equal
140def ICC_G   : ICC_VAL<10>;  // Greater
141def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
142def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
143def ICC_L   : ICC_VAL< 3>;  // Less
144def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
145def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
146def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
147def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
148def ICC_POS : ICC_VAL<14>;  // Positive
149def ICC_NEG : ICC_VAL< 6>;  // Negative
150def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
151def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
152
153class FCC_VAL<int N> : PatLeaf<(i32 N)>;
154def FCC_U   : FCC_VAL<23>;  // Unordered
155def FCC_G   : FCC_VAL<22>;  // Greater
156def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
157def FCC_L   : FCC_VAL<20>;  // Less
158def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
159def FCC_LG  : FCC_VAL<18>;  // Less or Greater
160def FCC_NE  : FCC_VAL<17>;  // Not Equal
161def FCC_E   : FCC_VAL<25>;  // Equal
162def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
163def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
164def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
165def FCC_LE  : FCC_VAL<27>;  // Less or Equal
166def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
167def FCC_O   : FCC_VAL<29>;  // Ordered
168
169
170//===----------------------------------------------------------------------===//
171// Instructions
172//===----------------------------------------------------------------------===//
173
174// Pseudo instructions.
175class Pseudo<dag ops, string asmstr, list<dag> pattern>
176   : InstSP<ops, asmstr, pattern>;
177
178def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
179                               "!ADJCALLSTACKDOWN $amt",
180                               [(callseq_start imm:$amt)]>;
181def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
182                            "!ADJCALLSTACKUP $amt",
183                            [(callseq_end imm:$amt)]>;
184def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
185                              "!IMPLICIT_DEF $dst",
186                              [(set IntRegs:$dst, (undef))]>;
187def IMPLICIT_DEF_FP  : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
188                              [(set FPRegs:$dst, (undef))]>;
189def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
190                              [(set DFPRegs:$dst, (undef))]>;
191                              
192// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
193// fpmover pass.
194let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
195  def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
196                      "!FpMOVD $src, $dst", []>;
197  def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
198                      "!FpNEGD $src, $dst",
199                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
200  def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
201                      "!FpABSD $src, $dst",
202                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
203}
204
205// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded by the
206// scheduler into a branch sequence.  This has to handle all permutations of
207// selection between i32/f32/f64 on ICC and FCC.
208let usesCustomDAGSchedInserter = 1 in {   // Expanded by the scheduler.
209  def SELECT_CC_Int_ICC
210   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
211            "; SELECT_CC_Int_ICC PSEUDO!",
212            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
213                                             imm:$Cond))]>;
214  def SELECT_CC_Int_FCC
215   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
216            "; SELECT_CC_Int_FCC PSEUDO!",
217            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
218                                             imm:$Cond))]>;
219  def SELECT_CC_FP_ICC
220   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
221            "; SELECT_CC_FP_ICC PSEUDO!",
222            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
223                                            imm:$Cond))]>;
224  def SELECT_CC_FP_FCC
225   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
226            "; SELECT_CC_FP_FCC PSEUDO!",
227            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
228                                            imm:$Cond))]>;
229  def SELECT_CC_DFP_ICC
230   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
231            "; SELECT_CC_DFP_ICC PSEUDO!",
232            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
233                                             imm:$Cond))]>;
234  def SELECT_CC_DFP_FCC
235   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
236            "; SELECT_CC_DFP_FCC PSEUDO!",
237            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
238                                             imm:$Cond))]>;
239}
240
241
242// Section A.3 - Synthetic Instructions, p. 85
243// special cases of JMPL:
244let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
245  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
246    def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
247}
248
249// Section B.1 - Load Integer Instructions, p. 90
250def LDSBrr : F3_1<3, 0b001001,
251                  (ops IntRegs:$dst, MEMrr:$addr),
252                  "ldsb [$addr], $dst",
253                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
254def LDSBri : F3_2<3, 0b001001,
255                  (ops IntRegs:$dst, MEMri:$addr),
256                  "ldsb [$addr], $dst",
257                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
258def LDSHrr : F3_1<3, 0b001010,
259                  (ops IntRegs:$dst, MEMrr:$addr),
260                  "ldsh [$addr], $dst",
261                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
262def LDSHri : F3_2<3, 0b001010,
263                  (ops IntRegs:$dst, MEMri:$addr),
264                  "ldsh [$addr], $dst",
265                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
266def LDUBrr : F3_1<3, 0b000001,
267                  (ops IntRegs:$dst, MEMrr:$addr),
268                  "ldub [$addr], $dst",
269                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
270def LDUBri : F3_2<3, 0b000001,
271                  (ops IntRegs:$dst, MEMri:$addr),
272                  "ldub [$addr], $dst",
273                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
274def LDUHrr : F3_1<3, 0b000010,
275                  (ops IntRegs:$dst, MEMrr:$addr),
276                  "lduh [$addr], $dst",
277                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
278def LDUHri : F3_2<3, 0b000010,
279                  (ops IntRegs:$dst, MEMri:$addr),
280                  "lduh [$addr], $dst",
281                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
282def LDrr   : F3_1<3, 0b000000,
283                  (ops IntRegs:$dst, MEMrr:$addr),
284                  "ld [$addr], $dst",
285                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
286def LDri   : F3_2<3, 0b000000,
287                  (ops IntRegs:$dst, MEMri:$addr),
288                  "ld [$addr], $dst",
289                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
290
291// Section B.2 - Load Floating-point Instructions, p. 92
292def LDFrr  : F3_1<3, 0b100000,
293                  (ops FPRegs:$dst, MEMrr:$addr),
294                  "ld [$addr], $dst",
295                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
296def LDFri  : F3_2<3, 0b100000,
297                  (ops FPRegs:$dst, MEMri:$addr),
298                  "ld [$addr], $dst",
299                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
300def LDDFrr : F3_1<3, 0b100011,
301                  (ops DFPRegs:$dst, MEMrr:$addr),
302                  "ldd [$addr], $dst",
303                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
304def LDDFri : F3_2<3, 0b100011,
305                  (ops DFPRegs:$dst, MEMri:$addr),
306                  "ldd [$addr], $dst",
307                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
308
309// Section B.4 - Store Integer Instructions, p. 95
310def STBrr : F3_1<3, 0b000101,
311                 (ops MEMrr:$addr, IntRegs:$src),
312                 "stb $src, [$addr]",
313                 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
314def STBri : F3_2<3, 0b000101,
315                 (ops MEMri:$addr, IntRegs:$src),
316                 "stb $src, [$addr]",
317                 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
318def STHrr : F3_1<3, 0b000110,
319                 (ops MEMrr:$addr, IntRegs:$src),
320                 "sth $src, [$addr]",
321                 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
322def STHri : F3_2<3, 0b000110,
323                 (ops MEMri:$addr, IntRegs:$src),
324                 "sth $src, [$addr]",
325                 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
326def STrr  : F3_1<3, 0b000100,
327                 (ops MEMrr:$addr, IntRegs:$src),
328                 "st $src, [$addr]",
329                 [(store IntRegs:$src, ADDRrr:$addr)]>;
330def STri  : F3_2<3, 0b000100,
331                 (ops MEMri:$addr, IntRegs:$src),
332                 "st $src, [$addr]",
333                 [(store IntRegs:$src, ADDRri:$addr)]>;
334
335// Section B.5 - Store Floating-point Instructions, p. 97
336def STFrr   : F3_1<3, 0b100100,
337                   (ops MEMrr:$addr, FPRegs:$src),
338                   "st $src, [$addr]",
339                   [(store FPRegs:$src, ADDRrr:$addr)]>;
340def STFri   : F3_2<3, 0b100100,
341                   (ops MEMri:$addr, FPRegs:$src),
342                   "st $src, [$addr]",
343                   [(store FPRegs:$src, ADDRri:$addr)]>;
344def STDFrr  : F3_1<3, 0b100111,
345                   (ops MEMrr:$addr, DFPRegs:$src),
346                   "std  $src, [$addr]",
347                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
348def STDFri  : F3_2<3, 0b100111,
349                   (ops MEMri:$addr, DFPRegs:$src),
350                   "std $src, [$addr]",
351                   [(store DFPRegs:$src, ADDRri:$addr)]>;
352
353// Section B.9 - SETHI Instruction, p. 104
354def SETHIi: F2_1<0b100,
355                 (ops IntRegs:$dst, i32imm:$src),
356                 "sethi $src, $dst",
357                 [(set IntRegs:$dst, SETHIimm:$src)]>;
358
359// Section B.10 - NOP Instruction, p. 105
360// (It's a special case of SETHI)
361let rd = 0, imm22 = 0 in
362  def NOP : F2_1<0b100, (ops), "nop", []>;
363
364// Section B.11 - Logical Instructions, p. 106
365def ANDrr   : F3_1<2, 0b000001,
366                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
367                   "and $b, $c, $dst",
368                   [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
369def ANDri   : F3_2<2, 0b000001,
370                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
371                   "and $b, $c, $dst",
372                   [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
373def ANDNrr  : F3_1<2, 0b000101,
374                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
375                   "andn $b, $c, $dst",
376                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
377def ANDNri  : F3_2<2, 0b000101,
378                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
379                   "andn $b, $c, $dst", []>;
380def ORrr    : F3_1<2, 0b000010,
381                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
382                   "or $b, $c, $dst",
383                   [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
384def ORri    : F3_2<2, 0b000010,
385                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
386                   "or $b, $c, $dst",
387                   [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
388def ORNrr   : F3_1<2, 0b000110,
389                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
390                   "orn $b, $c, $dst",
391                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
392def ORNri   : F3_2<2, 0b000110,
393                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
394                   "orn $b, $c, $dst", []>;
395def XORrr   : F3_1<2, 0b000011,
396                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
397                   "xor $b, $c, $dst",
398                   [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
399def XORri   : F3_2<2, 0b000011,
400                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
401                   "xor $b, $c, $dst",
402                   [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
403def XNORrr  : F3_1<2, 0b000111,
404                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
405                   "xnor $b, $c, $dst",
406                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
407def XNORri  : F3_2<2, 0b000111,
408                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
409                   "xnor $b, $c, $dst", []>;
410
411// Section B.12 - Shift Instructions, p. 107
412def SLLrr : F3_1<2, 0b100101,
413                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
414                 "sll $b, $c, $dst",
415                 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
416def SLLri : F3_2<2, 0b100101,
417                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
418                 "sll $b, $c, $dst",
419                 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
420def SRLrr : F3_1<2, 0b100110, 
421                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
422                  "srl $b, $c, $dst",
423                  [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
424def SRLri : F3_2<2, 0b100110,
425                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
426                 "srl $b, $c, $dst", 
427                 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
428def SRArr : F3_1<2, 0b100111, 
429                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
430                  "sra $b, $c, $dst",
431                  [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
432def SRAri : F3_2<2, 0b100111,
433                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
434                 "sra $b, $c, $dst",
435                 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
436
437// Section B.13 - Add Instructions, p. 108
438def ADDrr   : F3_1<2, 0b000000, 
439                  (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
440                  "add $b, $c, $dst",
441                   [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
442def ADDri   : F3_2<2, 0b000000,
443                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
444                   "add $b, $c, $dst",
445                   [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
446
447// "LEA" forms of add (patterns to make tblgen happy)
448def LEA_ADDri   : F3_2<2, 0b000000,
449                   (ops IntRegs:$dst, MEMri:$addr),
450                   "add ${addr:arith}, $dst",
451                   [(set IntRegs:$dst, ADDRri:$addr)]>;
452                   
453def ADDCCrr : F3_1<2, 0b010000, 
454                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
455                   "addcc $b, $c, $dst",
456                   [(set IntRegs:$dst, (addc IntRegs:$b, IntRegs:$c))]>;
457def ADDCCri : F3_2<2, 0b010000,
458                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
459                   "addcc $b, $c, $dst", 
460                   [(set IntRegs:$dst, (addc IntRegs:$b, simm13:$c))]>;
461def ADDXrr  : F3_1<2, 0b001000, 
462                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
463                   "addx $b, $c, $dst",
464                   [(set IntRegs:$dst, (adde IntRegs:$b, IntRegs:$c))]>;
465def ADDXri  : F3_2<2, 0b001000,
466                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
467                   "addx $b, $c, $dst",
468                   [(set IntRegs:$dst, (adde IntRegs:$b, simm13:$c))]>;
469
470// Section B.15 - Subtract Instructions, p. 110
471def SUBrr   : F3_1<2, 0b000100, 
472                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
473                   "sub $b, $c, $dst",
474                   [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
475def SUBri   : F3_2<2, 0b000100,
476                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
477                   "sub $b, $c, $dst",
478                   [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
479def SUBXrr  : F3_1<2, 0b001100, 
480                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
481                   "subx $b, $c, $dst",
482                   [(set IntRegs:$dst, (sube IntRegs:$b, IntRegs:$c))]>;
483def SUBXri  : F3_2<2, 0b001100,
484                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
485                   "subx $b, $c, $dst",
486                   [(set IntRegs:$dst, (sube IntRegs:$b, simm13:$c))]>;
487def SUBCCrr : F3_1<2, 0b010100, 
488                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
489                   "subcc $b, $c, $dst",
490                   [(set IntRegs:$dst, (SPcmpicc IntRegs:$b, IntRegs:$c))]>;
491def SUBCCri : F3_2<2, 0b010100,
492                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
493                   "subcc $b, $c, $dst",
494                   [(set IntRegs:$dst, (SPcmpicc IntRegs:$b, simm13:$c))]>;
495def SUBXCCrr: F3_1<2, 0b011100, 
496                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
497                   "subxcc $b, $c, $dst", []>;
498
499// Section B.18 - Multiply Instructions, p. 113
500def UMULrr  : F3_1<2, 0b001010, 
501                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
502                   "umul $b, $c, $dst", []>;
503def UMULri  : F3_2<2, 0b001010,
504                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
505                   "umul $b, $c, $dst", []>;
506                   
507def SMULrr  : F3_1<2, 0b001011, 
508                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
509                   "smul $b, $c, $dst",
510                   [(set IntRegs:$dst, (mul IntRegs:$b, IntRegs:$c))]>;
511def SMULri  : F3_2<2, 0b001011,
512                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
513                   "smul $b, $c, $dst",
514                   [(set IntRegs:$dst, (mul IntRegs:$b, simm13:$c))]>;
515
516/*
517//===-------------------------
518// Sparc Example
519defm intinst{OPC1, OPC2}<bits Opc, string asmstr, SDNode code> {
520  def OPC1 : F3_1<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
521                  [(set IntRegs:$dst, (code IntRegs:$b, IntRegs:$c))]>;
522  def OPC2 : F3_2<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
523                  [(set IntRegs:$dst, (code IntRegs:$b, simm13:$c))]>;
524}
525defm intinst_np{OPC1, OPC2}<bits Opc, string asmstr> {
526  def OPC1 : F3_1<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
527                  []>;
528  def OPC2 : F3_2<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
529                  []>;
530}
531
532def { ADDXrr,  ADDXri} : intinstnp<0b001000,  "addx $b, $c, $dst">;
533def {  SUBrr,   SUBri} : intinst  <0b000100,   "sub $b, $c, $dst",  sub>;
534def intinstnp{ SUBXrr,  SUBXri}<0b001100,  "subx $b, $c, $dst">;
535def intinst  {SUBCCrr, SUBCCri}<0b010100, "subcc $b, $c, $dst",  SPcmpicc>;
536def intinst  { SMULrr,  SMULri}<0b001011,  "smul $b, $c, $dst",  mul>;
537
538//===-------------------------
539// X86 Example
540defm cmov32<id OPC1, id OPC2, int opc, string asmstr, PatLeaf cond> {
541  def OPC1 : I<opc, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
542               asmstr+" {$src2, $dst|$dst, $src2}",
543               [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, cond))]>, TB;
544  def OPC2 : I<opc, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
545               asmstr+" {$src2, $dst|$dst, $src2}",
546               [(set R32:$dst, (X86cmov R32:$src1,
547                                        (loadi32 addr:$src2), cond))]>, TB;
548}
549
550def cmov<CMOVL32rr, CMOVL32rm, 0x4C, "cmovl", X86_COND_L>;
551def cmov<CMOVB32rr, CMOVB32rm, 0x4C, "cmovb", X86_COND_B>;
552
553//===-------------------------
554// PPC Example
555
556def fpunop<id OPC1, id OPC2, id FORM, int op1, int op2, int op3, string asmstr, 
557           SDNode code> {
558  def OPC1 : FORM<op1, op3, (ops F4RC:$frD, F4RC:$frB),
559                  asmstr+" $frD, $frB", FPGeneral,
560                  [(set F4RC:$frD, (code F4RC:$frB))]>;
561  def OPC2 : FORM<op2, op3, (ops F8RC:$frD, F8RC:$frB),
562                  asmstr+" $frD, $frB", FPGeneral,
563                  [(set F8RC:$frD, (code F8RC:$frB))]>;
564}
565
566def fpunop< FABSS,  FABSD, XForm_26, 63, 63, 264,  "fabs",  fabs>;
567def fpunop<FNABSS, FNABSD, XForm_26, 63, 63, 136, "fnabs", fnabs>;
568def fpunop< FNEGS,  FNEGD, XForm_26, 63, 63,  40,  "fneg",  fneg>;
569*/
570
571// Section B.19 - Divide Instructions, p. 115
572def UDIVrr   : F3_1<2, 0b001110, 
573                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
574                    "udiv $b, $c, $dst", []>;
575def UDIVri   : F3_2<2, 0b001110,
576                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
577                    "udiv $b, $c, $dst", []>;
578def SDIVrr   : F3_1<2, 0b001111,
579                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
580                    "sdiv $b, $c, $dst", []>;
581def SDIVri   : F3_2<2, 0b001111,
582                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
583                    "sdiv $b, $c, $dst", []>;
584
585// Section B.20 - SAVE and RESTORE, p. 117
586def SAVErr    : F3_1<2, 0b111100,
587                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
588                     "save $b, $c, $dst", []>;
589def SAVEri    : F3_2<2, 0b111100,
590                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
591                     "save $b, $c, $dst", []>;
592def RESTORErr : F3_1<2, 0b111101,
593                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
594                     "restore $b, $c, $dst", []>;
595def RESTOREri : F3_2<2, 0b111101,
596                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
597                     "restore $b, $c, $dst", []>;
598
599// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
600
601// conditional branch class:
602class BranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
603 : F2_2<cc, 0b010, ops, asmstr, pattern> {
604  let isBranch = 1;
605  let isTerminator = 1;
606  let hasDelaySlot = 1;
607  let noResults = 1;
608}
609
610let isBarrier = 1 in
611  def BA   : BranchSP<0b1000, (ops brtarget:$dst),
612                      "ba $dst",
613                      [(br bb:$dst)]>;
614                      
615// FIXME: the encoding for the JIT should look at the condition field.
616def BCOND : BranchSP<0, (ops brtarget:$dst, CCOp:$cc),
617                     "b$cc $dst",
618                     [(SPbricc bb:$dst, imm:$cc)]>;
619
620
621// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
622
623// floating-point conditional branch class:
624class FPBranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
625 : F2_2<cc, 0b110, ops, asmstr, pattern> {
626  let isBranch = 1;
627  let isTerminator = 1;
628  let hasDelaySlot = 1;
629  let noResults = 1;
630}
631
632// FIXME: the encoding for the JIT should look at the condition field.
633def FBCOND  : FPBranchSP<0, (ops brtarget:$dst, CCOp:$cc),
634                      "fb$cc $dst",
635                      [(SPbrfcc bb:$dst, imm:$cc)]>;
636
637
638// Section B.24 - Call and Link Instruction, p. 125
639// This is the only Format 1 instruction
640let Uses = [O0, O1, O2, O3, O4, O5],
641    hasDelaySlot = 1, isCall = 1, noResults = 1,
642    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
643    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
644  def CALL : InstSP<(ops calltarget:$dst),
645                    "call $dst", []> {
646    bits<30> disp;
647    let op = 1;
648    let Inst{29-0} = disp;
649  }
650  
651  // indirect calls
652  def JMPLrr : F3_1<2, 0b111000,
653                    (ops MEMrr:$ptr),
654                    "call $ptr",
655                    [(call  ADDRrr:$ptr)]>;
656  def JMPLri : F3_2<2, 0b111000,
657                    (ops MEMri:$ptr),
658                    "call $ptr",
659                    [(call  ADDRri:$ptr)]>;
660}
661
662// Section B.28 - Read State Register Instructions
663def RDY : F3_1<2, 0b101000,
664               (ops IntRegs:$dst),
665               "rd %y, $dst", []>;
666
667// Section B.29 - Write State Register Instructions
668def WRYrr : F3_1<2, 0b110000,
669                 (ops IntRegs:$b, IntRegs:$c),
670                 "wr $b, $c, %y", []>;
671def WRYri : F3_2<2, 0b110000,
672                 (ops IntRegs:$b, i32imm:$c),
673                 "wr $b, $c, %y", []>;
674
675// Convert Integer to Floating-point Instructions, p. 141
676def FITOS : F3_3<2, 0b110100, 0b011000100,
677                 (ops FPRegs:$dst, FPRegs:$src),
678                 "fitos $src, $dst",
679                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
680def FITOD : F3_3<2, 0b110100, 0b011001000, 
681                 (ops DFPRegs:$dst, FPRegs:$src),
682                 "fitod $src, $dst",
683                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
684
685// Convert Floating-point to Integer Instructions, p. 142
686def FSTOI : F3_3<2, 0b110100, 0b011010001,
687                 (ops FPRegs:$dst, FPRegs:$src),
688                 "fstoi $src, $dst",
689                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
690def FDTOI : F3_3<2, 0b110100, 0b011010010,
691                 (ops FPRegs:$dst, DFPRegs:$src),
692                 "fdtoi $src, $dst",
693                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
694
695// Convert between Floating-point Formats Instructions, p. 143
696def FSTOD : F3_3<2, 0b110100, 0b011001001, 
697                 (ops DFPRegs:$dst, FPRegs:$src),
698                 "fstod $src, $dst",
699                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
700def FDTOS : F3_3<2, 0b110100, 0b011000110,
701                 (ops FPRegs:$dst, DFPRegs:$src),
702                 "fdtos $src, $dst",
703                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
704
705// Floating-point Move Instructions, p. 144
706def FMOVS : F3_3<2, 0b110100, 0b000000001,
707                 (ops FPRegs:$dst, FPRegs:$src),
708                 "fmovs $src, $dst", []>;
709def FNEGS : F3_3<2, 0b110100, 0b000000101, 
710                 (ops FPRegs:$dst, FPRegs:$src),
711                 "fnegs $src, $dst",
712                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
713def FABSS : F3_3<2, 0b110100, 0b000001001, 
714                 (ops FPRegs:$dst, FPRegs:$src),
715                 "fabss $src, $dst",
716                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
717
718
719// Floating-point Square Root Instructions, p.145
720def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
721                  (ops FPRegs:$dst, FPRegs:$src),
722                  "fsqrts $src, $dst",
723                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
724def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
725                  (ops DFPRegs:$dst, DFPRegs:$src),
726                  "fsqrtd $src, $dst",
727                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
728
729
730
731// Floating-point Add and Subtract Instructions, p. 146
732def FADDS  : F3_3<2, 0b110100, 0b001000001,
733                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
734                  "fadds $src1, $src2, $dst",
735                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
736def FADDD  : F3_3<2, 0b110100, 0b001000010,
737                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
738                  "faddd $src1, $src2, $dst",
739                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
740def FSUBS  : F3_3<2, 0b110100, 0b001000101,
741                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
742                  "fsubs $src1, $src2, $dst",
743                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
744def FSUBD  : F3_3<2, 0b110100, 0b001000110,
745                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
746                  "fsubd $src1, $src2, $dst",
747                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
748
749// Floating-point Multiply and Divide Instructions, p. 147
750def FMULS  : F3_3<2, 0b110100, 0b001001001,
751                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
752                  "fmuls $src1, $src2, $dst",
753                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
754def FMULD  : F3_3<2, 0b110100, 0b001001010,
755                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
756                  "fmuld $src1, $src2, $dst",
757                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
758def FSMULD : F3_3<2, 0b110100, 0b001101001,
759                  (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
760                  "fsmuld $src1, $src2, $dst",
761                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
762                                            (fextend FPRegs:$src2)))]>;
763def FDIVS  : F3_3<2, 0b110100, 0b001001101,
764                 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
765                 "fdivs $src1, $src2, $dst",
766                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
767def FDIVD  : F3_3<2, 0b110100, 0b001001110,
768                 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
769                 "fdivd $src1, $src2, $dst",
770                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
771
772// Floating-point Compare Instructions, p. 148
773// Note: the 2nd template arg is different for these guys.
774// Note 2: the result of a FCMP is not available until the 2nd cycle
775// after the instr is retired, but there is no interlock. This behavior
776// is modelled with a forced noop after the instruction.
777def FCMPS  : F3_3<2, 0b110101, 0b001010001,
778                  (ops FPRegs:$src1, FPRegs:$src2),
779                  "fcmps $src1, $src2\n\tnop",
780                  [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
781def FCMPD  : F3_3<2, 0b110101, 0b001010010,
782                  (ops DFPRegs:$src1, DFPRegs:$src2),
783                  "fcmpd $src1, $src2\n\tnop",
784                  [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
785
786
787//===----------------------------------------------------------------------===//
788// V9 Instructions
789//===----------------------------------------------------------------------===//
790
791// V9 Conditional Moves.
792let Predicates = [HasV9], isTwoAddress = 1 in {
793  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
794  // FIXME: Add instruction encodings for the JIT some day.
795  def MOVICCrr
796    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
797             "mov$cc %icc, $F, $dst",
798             [(set IntRegs:$dst,
799                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
800  def MOVICCri
801    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
802             "mov$cc %icc, $F, $dst",
803             [(set IntRegs:$dst,
804                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
805
806  def MOVFCCrr
807    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
808             "mov$cc %fcc0, $F, $dst",
809             [(set IntRegs:$dst,
810                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
811  def MOVFCCri
812    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
813             "mov$cc %fcc0, $F, $dst",
814             [(set IntRegs:$dst,
815                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
816
817  def FMOVS_ICC
818    : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
819             "fmovs$cc %icc, $F, $dst",
820             [(set FPRegs:$dst,
821                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
822  def FMOVD_ICC
823    : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
824             "fmovd$cc %icc, $F, $dst",
825             [(set DFPRegs:$dst,
826                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
827  def FMOVS_FCC
828    : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
829             "fmovs$cc %fcc0, $F, $dst",
830             [(set FPRegs:$dst,
831                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
832  def FMOVD_FCC
833    : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
834             "fmovd$cc %fcc0, $F, $dst",
835             [(set DFPRegs:$dst,
836                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
837
838}
839
840// Floating-Point Move Instructions, p. 164 of the V9 manual.
841let Predicates = [HasV9] in {
842  def FMOVD : F3_3<2, 0b110100, 0b000000010,
843                   (ops DFPRegs:$dst, DFPRegs:$src),
844                   "fmovd $src, $dst", []>;
845  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
846                   (ops DFPRegs:$dst, DFPRegs:$src),
847                   "fnegd $src, $dst",
848                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
849  def FABSD : F3_3<2, 0b110100, 0b000001010, 
850                   (ops DFPRegs:$dst, DFPRegs:$src),
851                   "fabsd $src, $dst",
852                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
853}
854
855// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
856// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
857def POPCrr : F3_1<2, 0b101110, 
858                  (ops IntRegs:$dst, IntRegs:$src),
859                  "popc $src, $dst", []>, Requires<[HasV9]>;
860def : Pat<(ctpop IntRegs:$src),
861          (POPCrr (SLLri IntRegs:$src, 0))>;
862
863//===----------------------------------------------------------------------===//
864// Non-Instruction Patterns
865//===----------------------------------------------------------------------===//
866
867// Small immediates.
868def : Pat<(i32 simm13:$val),
869          (ORri G0, imm:$val)>;
870// Arbitrary immediates.
871def : Pat<(i32 imm:$val),
872          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
873
874// subc
875def : Pat<(subc IntRegs:$b, IntRegs:$c),
876          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
877def : Pat<(subc IntRegs:$b, simm13:$val),
878          (SUBCCri IntRegs:$b, imm:$val)>;
879
880// Global addresses, constant pool entries
881def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
882def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
883def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
884def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
885
886// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
887def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
888          (ADDri IntRegs:$r, tglobaladdr:$in)>;
889def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
890          (ADDri IntRegs:$r, tconstpool:$in)>;
891
892// Calls: 
893def : Pat<(call tglobaladdr:$dst),
894          (CALL tglobaladdr:$dst)>;
895def : Pat<(call texternalsym:$dst),
896          (CALL texternalsym:$dst)>;
897
898def : Pat<(ret), (RETL)>;
899
900// Map integer extload's to zextloads.
901def : Pat<(i32 (extload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
902def : Pat<(i32 (extload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
903def : Pat<(i32 (extload ADDRrr:$src, i8)), (LDUBrr ADDRrr:$src)>;
904def : Pat<(i32 (extload ADDRri:$src, i8)), (LDUBri ADDRri:$src)>;
905def : Pat<(i32 (extload ADDRrr:$src, i16)), (LDUHrr ADDRrr:$src)>;
906def : Pat<(i32 (extload ADDRri:$src, i16)), (LDUHri ADDRri:$src)>;
907
908// zextload bool -> zextload byte
909def : Pat<(i32 (zextload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
910def : Pat<(i32 (zextload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
911
912// truncstore bool -> truncstore byte.
913def : Pat<(truncstore IntRegs:$src, ADDRrr:$addr, i1), 
914          (STBrr ADDRrr:$addr, IntRegs:$src)>;
915def : Pat<(truncstore IntRegs:$src, ADDRri:$addr, i1), 
916          (STBri ADDRri:$addr, IntRegs:$src)>;
917