SparcInstrInfo.td revision 57ff2e3ee711c8d6ab908c6f03d5806b34d910f0
1//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SparcV8 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18class InstV8 : Instruction {          // SparcV8 instruction baseline
19  field bits<32> Inst;
20
21  let Namespace = "V8";
22
23  bits<2> op;
24  let Inst{31-30} = op;               // Top two bits are the 'op' field
25
26  // Bit attributes specific to SparcV8 instructions
27  bit isPasi       = 0; // Does this instruction affect an alternate addr space?
28  bit isPrivileged = 0; // Is this a privileged instruction?
29}
30
31include "SparcV8InstrInfo_F2.td"
32include "SparcV8InstrInfo_F3.td"
33
34//===----------------------------------------------------------------------===//
35// Instructions
36//===----------------------------------------------------------------------===//
37
38// Pseudo instructions.
39def PHI : InstV8 {
40  let Name = "PHI";
41}
42def ADJCALLSTACKDOWN : InstV8 {
43  let Name = "ADJCALLSTACKDOWN";
44}
45def ADJCALLSTACKUP : InstV8 {
46  let Name = "ADJCALLSTACKUP";
47}
48
49// Section A.3 - Synthetic Instructions, p. 85
50// special cases of JMPL:
51let isReturn = 1, isTerminator = 1, simm13 = 8 in
52  def RET : F3_2<2, 0b111000, "ret">;
53let isReturn = 1, isTerminator = 1, simm13 = 8 in
54  def RETL: F3_2<2, 0b111000, "retl">;
55// CMP is a special case of SUBCC where destination is ignored, by setting it to
56// %g0 (hardwired zero).
57// FIXME: should keep track of the fact that it defs the integer condition codes
58let rd = 0 in
59  def CMPri: F3_2<2, 0b010100, "cmp">;
60
61// Section B.1 - Load Integer Instructions, p. 90
62def LDSB: F3_2<3, 0b001001, "ldsb">;
63def LDSH: F3_2<3, 0b001010, "ldsh">;
64def LDUB: F3_2<3, 0b000001, "ldub">;
65def LDUH: F3_2<3, 0b000010, "lduh">;
66def LD  : F3_2<3, 0b000000, "ld">;
67def LDD : F3_2<3, 0b000011, "ldd">;
68
69// Section B.2 - Load Floating-point Instructions, p. 92
70def LDFrr  : F3_1<3, 0b100000, "ld">;
71def LDFri  : F3_2<3, 0b100000, "ld">;
72def LDDFrr : F3_1<3, 0b100011, "ldd">;
73def LDDFri : F3_2<3, 0b100011, "ldd">;
74def LDFSRrr: F3_1<3, 0b100001, "ld">;
75def LDFSRri: F3_2<3, 0b100001, "ld">;
76
77// Section B.4 - Store Integer Instructions, p. 95
78def STB : F3_2<3, 0b000101, "stb">;
79def STH : F3_2<3, 0b000110, "sth">;
80def ST  : F3_2<3, 0b000100, "st">;
81def STD : F3_2<3, 0b000111, "std">;
82
83// Section B.5 - Store Floating-point Instructions, p. 97
84def STFrr   : F3_1<3, 0b100100, "st">;
85def STFri   : F3_2<3, 0b100100, "st">;
86def STDFrr  : F3_1<3, 0b100111, "std">;
87def STDFri  : F3_2<3, 0b100111, "std">;
88def STFSRrr : F3_1<3, 0b100101, "st">;
89def STFSRri : F3_2<3, 0b100101, "st">;
90def STDFQrr : F3_1<3, 0b100110, "std">;
91def STDFQri : F3_2<3, 0b100110, "std">;
92
93// Section B.9 - SETHI Instruction, p. 104
94def SETHIi: F2_1<0b100, "sethi">;
95
96// Section B.10 - NOP Instruction, p. 105
97// (It's a special case of SETHI)
98let rd = 0, imm = 0 in
99  def NOP : F2_1<0b100, "nop">;
100
101// Section B.11 - Logical Instructions, p. 106
102def ANDrr : F3_1<2, 0b000001, "and">;
103def ANDri : F3_2<2, 0b000001, "and">;
104def ORrr  : F3_1<2, 0b000010, "or">;
105def ORri  : F3_2<2, 0b000010, "or">;
106def XORrr : F3_1<2, 0b000011, "xor">;
107def XORri : F3_2<2, 0b000011, "xor">;
108
109// Section B.12 - Shift Instructions, p. 107
110def SLLrr : F3_1<2, 0b100101, "sll">;
111def SLLri : F3_2<2, 0b100101, "sll">;
112def SRLrr : F3_1<2, 0b100110, "srl">;
113def SRLri : F3_2<2, 0b100110, "srl">;
114def SRArr : F3_1<2, 0b100111, "sra">;
115def SRAri : F3_2<2, 0b100111, "sra">;
116
117// Section B.13 - Add Instructions, p. 108
118def ADDrr : F3_1<2, 0b000000, "add">;
119def ADDri : F3_2<2, 0b000000, "add">;
120
121// Section B.15 - Subtract Instructions, p. 110
122def SUBrr   : F3_1<2, 0b000100, "sub">;
123def SUBCCrr : F3_1<2, 0b010100, "subcc">;
124def SUBCCri : F3_2<2, 0b010100, "subcc">;
125
126// Section B.18 - Multiply Instructions, p. 113
127def UMULrr : F3_1<2, 0b001010, "umul">;
128def SMULrr : F3_1<2, 0b001011, "smul">;
129
130// Section B.19 - Divide Instructions, p. 115
131def UDIVrr   : F3_1<2, 0b001110, "udiv">;
132def UDIVri   : F3_2<2, 0b001110, "udiv">;
133def SDIVrr   : F3_1<2, 0b001111, "sdiv">;
134def SDIVri   : F3_2<2, 0b001111, "sdiv">;
135def UDIVCCrr : F3_1<2, 0b011110, "udivcc">;
136def UDIVCCri : F3_2<2, 0b011110, "udivcc">;
137def SDIVCCrr : F3_1<2, 0b011111, "sdivcc">;
138def SDIVCCri : F3_2<2, 0b011111, "sdivcc">;
139
140// Section B.20 - SAVE and RESTORE, p. 117
141def SAVErr    : F3_1<2, 0b111100, "save">;           // save    r, r, r
142def SAVEri    : F3_2<2, 0b111100, "save">;           // save    r, i, r
143def RESTORErr : F3_1<2, 0b111101, "restore">;        // restore r, r, r
144def RESTOREri : F3_2<2, 0b111101, "restore">;        // restore r, i, r
145
146// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
147
148// conditional branch class:
149class BranchV8<bits<4> cc, string nm> : F2_2<cc, 0b010, nm> {
150  let isBranch = 1;
151  let isTerminator = 1;
152}
153def BA   : BranchV8<0b1000, "ba">;
154def BN   : BranchV8<0b0000, "bn">;
155def BNE  : BranchV8<0b1001, "bne">;
156def BE   : BranchV8<0b0001, "be">;
157def BG   : BranchV8<0b1010, "bg">;
158def BLE  : BranchV8<0b0010, "ble">;
159def BGE  : BranchV8<0b1011, "bge">;
160def BL   : BranchV8<0b0011, "bl">;
161def BGU  : BranchV8<0b1100, "bgu">;
162def BLEU : BranchV8<0b0100, "bleu">;
163def BCC  : BranchV8<0b1101, "bcc">;
164def BCS  : BranchV8<0b0101, "bcs">;
165
166// Section B.24 - Call and Link Instruction, p. 125
167// This is the only Format 1 instruction
168def CALL : InstV8 {
169  bits<30> disp;
170  let op = 1;
171  let Inst{29-0} = disp;
172  let Name = "call";
173  let isCall = 1;
174}
175
176// Section B.25 - Jump and Link, p. 126
177let isCall = 1 in
178  def JMPLrr : F3_1<2, 0b111000, "jmpl">;              // jmpl [rs1+rs2], rd
179
180// Section B.29 - Write State Register Instructions
181def WRrr : F3_1<2, 0b110000, "wr">;                    // wr rs1, rs2, rd
182def WRri : F3_2<2, 0b110000, "wr">;                    // wr rs1, imm, rd
183
184// Convert between Floating-point Formats Instructions, p. 143
185def FSTOD : F3_3<2, 0b110100, 0b011001001, "fstod">;
186def FDTOS : F3_3<2, 0b110100, 0b011000110, "fdtos">;
187
188// Floating-point Move Instructions, p. 144
189def FMOVS : F3_3<2, 0b110100, 0b000000001, "fmovs">;
190def FNEGS : F3_3<2, 0b110100, 0b000000101, "fnegs">;
191def FABSS : F3_3<2, 0b110100, 0b000001001, "fabss">;
192
193
194