SparcInstrInfo.td revision 5b2dfc7cc15d95678a1830485cc85a36e2190ce8
1//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SparcV8 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18class InstV8 : Instruction {          // SparcV8 instruction baseline
19  field bits<32> Inst;
20
21  let Namespace = "V8";
22
23  bits<2> op;
24  let Inst{31-30} = op;               // Top two bits are the 'op' field
25
26  // Bit attributes specific to SparcV8 instructions
27  bit isPasi       = 0; // Does this instruction affect an alternate addr space?
28  bit isPrivileged = 0; // Is this a privileged instruction?
29}
30
31include "SparcV8InstrFormats.td"
32
33//===----------------------------------------------------------------------===//
34// Instruction Pattern Stuff
35//===----------------------------------------------------------------------===//
36
37def simm13  : PatLeaf<(imm), [{
38  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
39  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
40}]>;
41
42def LO10 : SDNodeXForm<imm, [{
43  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
44}]>;
45
46def HI22 : SDNodeXForm<imm, [{
47  // Transformation function: shift the immediate value down into the low bits.
48  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
49}]>;
50
51def SETHIimm : PatLeaf<(imm), [{
52  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
53}], HI22>;
54
55// Addressing modes.
56def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
57def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", []>;
58
59// Address operands
60def MEMrr : Operand<i32> {
61  let PrintMethod = "printMemOperand";
62  let NumMIOperands = 2;
63  let MIOperandInfo = (ops IntRegs, IntRegs);
64}
65def MEMri : Operand<i32> {
66  let PrintMethod = "printMemOperand";
67  let NumMIOperands = 2;
68  let MIOperandInfo = (ops IntRegs, i32imm);
69}
70
71def SDTV8cmpicc : 
72SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisInt<1>, SDTCisSameAs<1, 2>]>;
73def SDTV8cmpfcc : 
74SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisFP<1>, SDTCisSameAs<1, 2>]>;
75def SDTV8brcc : 
76SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisVT<1, OtherVT>, SDTCisVT<2, FlagVT>]>;
77
78def V8cmpicc : SDNode<"V8ISD::CMPICC", SDTV8cmpicc>;
79def V8cmpfcc : SDNode<"V8ISD::CMPFCC", SDTV8cmpfcc>;
80def V8bricc : SDNode<"V8ISD::BRICC", SDTV8brcc, [SDNPHasChain]>;
81def V8brfcc : SDNode<"V8ISD::BRFCC", SDTV8brcc, [SDNPHasChain]>;
82
83
84//===----------------------------------------------------------------------===//
85// Instructions
86//===----------------------------------------------------------------------===//
87
88// Pseudo instructions.
89class PseudoInstV8<string asmstr, dag ops> : InstV8  {
90  let AsmString = asmstr;
91  dag OperandList = ops;
92}
93def PHI : PseudoInstV8<"PHI", (ops variable_ops)>;
94def ADJCALLSTACKDOWN : PseudoInstV8<"!ADJCALLSTACKDOWN $amt",
95                                    (ops i32imm:$amt)>;
96def ADJCALLSTACKUP : PseudoInstV8<"!ADJCALLSTACKUP $amt",
97                                  (ops i32imm:$amt)>;
98//def IMPLICIT_USE : PseudoInstV8<"!IMPLICIT_USE",(ops variable_ops)>;
99def IMPLICIT_DEF : PseudoInstV8<"!IMPLICIT_DEF $dst", 
100                                (ops IntRegs:$dst)>;
101def FpMOVD : PseudoInstV8<"!FpMOVD", (ops)>; // pseudo 64-bit double move
102
103// Section A.3 - Synthetic Instructions, p. 85
104// special cases of JMPL:
105let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in {
106  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
107    def RETL: F3_2<2, 0b111000, (ops),
108                   "retl", [(ret)]>;
109}
110
111// Section B.1 - Load Integer Instructions, p. 90
112def LDSBrr : F3_1<3, 0b001001,
113                  (ops IntRegs:$dst, MEMrr:$addr),
114                  "ldsb [$addr], $dst",
115                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
116def LDSBri : F3_2<3, 0b001001,
117                  (ops IntRegs:$dst, MEMri:$addr),
118                  "ldsb [$addr], $dst",
119                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
120def LDSHrr : F3_1<3, 0b001010,
121                  (ops IntRegs:$dst, MEMrr:$addr),
122                  "ldsh [$addr], $dst",
123                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
124def LDSHri : F3_2<3, 0b001010,
125                  (ops IntRegs:$dst, MEMri:$addr),
126                  "ldsh [$addr], $dst",
127                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
128def LDUBrr : F3_1<3, 0b000001,
129                  (ops IntRegs:$dst, MEMrr:$addr),
130                  "ldub [$addr], $dst",
131                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
132def LDUBri : F3_2<3, 0b000001,
133                  (ops IntRegs:$dst, MEMri:$addr),
134                  "ldub [$addr], $dst",
135                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
136def LDUHrr : F3_1<3, 0b000010,
137                  (ops IntRegs:$dst, MEMrr:$addr),
138                  "lduh [$addr], $dst",
139                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
140def LDUHri : F3_2<3, 0b000010,
141                  (ops IntRegs:$dst, MEMri:$addr),
142                  "lduh [$addr], $dst",
143                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
144def LDrr   : F3_1<3, 0b000000,
145                  (ops IntRegs:$dst, MEMrr:$addr),
146                  "ld [$addr], $dst",
147                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
148def LDri   : F3_2<3, 0b000000,
149                  (ops IntRegs:$dst, MEMri:$addr),
150                  "ld [$addr], $dst",
151                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
152def LDDrr  : F3_1<3, 0b000011,
153                  (ops IntRegs:$dst, MEMrr:$addr),
154                  "ldd [$addr], $dst", []>;
155def LDDri  : F3_2<3, 0b000011,
156                  (ops IntRegs:$dst, MEMri:$addr),
157                  "ldd [$addr], $dst", []>;
158
159// Section B.2 - Load Floating-point Instructions, p. 92
160def LDFrr  : F3_1<3, 0b100000,
161                  (ops FPRegs:$dst, MEMrr:$addr),
162                  "ld [$addr], $dst",
163                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
164def LDFri  : F3_2<3, 0b100000,
165                  (ops FPRegs:$dst, MEMri:$addr),
166                  "ld [$addr], $dst",
167                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
168def LDDFrr : F3_1<3, 0b100011,
169                  (ops DFPRegs:$dst, MEMrr:$addr),
170                  "ldd [$addr], $dst",
171                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
172def LDDFri : F3_2<3, 0b100011,
173                  (ops DFPRegs:$dst, MEMri:$addr),
174                  "ldd [$addr], $dst",
175                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
176
177// Section B.4 - Store Integer Instructions, p. 95
178def STBrr : F3_1<3, 0b000101,
179                 (ops MEMrr:$addr, IntRegs:$src),
180                 "stb $src, [$addr]",
181                 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
182def STBri : F3_2<3, 0b000101,
183                 (ops MEMri:$addr, IntRegs:$src),
184                 "stb $src, [$addr]",
185                 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
186def STHrr : F3_1<3, 0b000110,
187                 (ops MEMrr:$addr, IntRegs:$src),
188                 "sth $src, [$addr]",
189                 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
190def STHri : F3_2<3, 0b000110,
191                 (ops MEMri:$addr, IntRegs:$src),
192                 "sth $src, [$addr]",
193                 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
194def STrr  : F3_1<3, 0b000100,
195                 (ops MEMrr:$addr, IntRegs:$src),
196                 "st $src, [$addr]",
197                 [(store IntRegs:$src, ADDRrr:$addr)]>;
198def STri  : F3_2<3, 0b000100,
199                 (ops MEMri:$addr, IntRegs:$src),
200                 "st $src, [$addr]",
201                 [(store IntRegs:$src, ADDRri:$addr)]>;
202def STDrr : F3_1<3, 0b000111,
203                 (ops MEMrr:$addr, IntRegs:$src),
204                 "std $src, [$addr]", []>;
205def STDri : F3_2<3, 0b000111,
206                 (ops MEMri:$addr, IntRegs:$src),
207                 "std $src, [$addr]", []>;
208
209// Section B.5 - Store Floating-point Instructions, p. 97
210def STFrr   : F3_1<3, 0b100100,
211                   (ops MEMrr:$addr, FPRegs:$src),
212                   "st $src, [$addr]",
213                   [(store FPRegs:$src, ADDRrr:$addr)]>;
214def STFri   : F3_2<3, 0b100100,
215                   (ops MEMri:$addr, FPRegs:$src),
216                   "st $src, [$addr]",
217                   [(store FPRegs:$src, ADDRri:$addr)]>;
218def STDFrr  : F3_1<3, 0b100111,
219                   (ops MEMrr:$addr, DFPRegs:$src),
220                   "std  $src, [$addr]",
221                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
222def STDFri  : F3_2<3, 0b100111,
223                   (ops MEMri:$addr, DFPRegs:$src),
224                   "std $src, [$addr]",
225                   [(store DFPRegs:$src, ADDRri:$addr)]>;
226
227// Section B.9 - SETHI Instruction, p. 104
228def SETHIi: F2_1<0b100,
229                 (ops IntRegs:$dst, i32imm:$src),
230                 "sethi $src, $dst",
231                 [(set IntRegs:$dst, SETHIimm:$src)]>;
232
233// Section B.10 - NOP Instruction, p. 105
234// (It's a special case of SETHI)
235let rd = 0, imm22 = 0 in
236  def NOP : F2_1<0b100, (ops), "nop", []>;
237
238// Section B.11 - Logical Instructions, p. 106
239def ANDrr   : F3_1<2, 0b000001,
240                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
241                   "and $b, $c, $dst",
242                   [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
243def ANDri   : F3_2<2, 0b000001,
244                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
245                   "and $b, $c, $dst",
246                   [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
247def ANDNrr  : F3_1<2, 0b000101,
248                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
249                   "andn $b, $c, $dst",
250                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
251def ANDNri  : F3_2<2, 0b000101,
252                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
253                   "andn $b, $c, $dst", []>;
254def ORrr    : F3_1<2, 0b000010,
255                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
256                   "or $b, $c, $dst",
257                   [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
258def ORri    : F3_2<2, 0b000010,
259                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
260                   "or $b, $c, $dst",
261                   [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
262def ORNrr   : F3_1<2, 0b000110,
263                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
264                   "orn $b, $c, $dst",
265                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
266def ORNri   : F3_2<2, 0b000110,
267                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
268                   "orn $b, $c, $dst", []>;
269def XORrr   : F3_1<2, 0b000011,
270                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
271                   "xor $b, $c, $dst",
272                   [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
273def XORri   : F3_2<2, 0b000011,
274                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
275                   "xor $b, $c, $dst",
276                   [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
277def XNORrr  : F3_1<2, 0b000111,
278                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
279                   "xnor $b, $c, $dst",
280                   [(set IntRegs:$dst, (xor IntRegs:$b, (not IntRegs:$c)))]>;
281def XNORri  : F3_2<2, 0b000111,
282                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
283                   "xnor $b, $c, $dst", []>;
284
285// Section B.12 - Shift Instructions, p. 107
286def SLLrr : F3_1<2, 0b100101,
287                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
288                 "sll $b, $c, $dst",
289                 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
290def SLLri : F3_2<2, 0b100101,
291                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
292                 "sll $b, $c, $dst",
293                 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
294def SRLrr : F3_1<2, 0b100110, 
295                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
296                  "srl $b, $c, $dst",
297                  [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
298def SRLri : F3_2<2, 0b100110,
299                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
300                 "srl $b, $c, $dst", 
301                 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
302def SRArr : F3_1<2, 0b100111, 
303                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
304                  "sra $b, $c, $dst",
305                  [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
306def SRAri : F3_2<2, 0b100111,
307                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
308                 "sra $b, $c, $dst",
309                 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
310
311// Section B.13 - Add Instructions, p. 108
312def ADDrr   : F3_1<2, 0b000000, 
313                  (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
314                  "add $b, $c, $dst",
315                   [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
316def ADDri   : F3_2<2, 0b000000,
317                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
318                   "add $b, $c, $dst",
319                   [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
320def ADDCCrr : F3_1<2, 0b010000, 
321                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
322                   "addcc $b, $c, $dst", []>;
323def ADDCCri : F3_2<2, 0b010000,
324                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
325                   "addcc $b, $c, $dst", []>;
326def ADDXrr  : F3_1<2, 0b001000, 
327                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
328                   "addx $b, $c, $dst", []>;
329def ADDXri  : F3_2<2, 0b001000,
330                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
331                   "addx $b, $c, $dst", []>;
332
333// Section B.15 - Subtract Instructions, p. 110
334def SUBrr   : F3_1<2, 0b000100, 
335                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
336                   "sub $b, $c, $dst",
337                   [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
338def SUBri   : F3_2<2, 0b000100,
339                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
340                   "sub $b, $c, $dst",
341                   [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
342def SUBXrr  : F3_1<2, 0b001100, 
343                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
344                   "subx $b, $c, $dst", []>;
345def SUBXri  : F3_2<2, 0b001100,
346                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
347                   "subx $b, $c, $dst", []>;
348def SUBCCrr : F3_1<2, 0b010100, 
349                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
350                   "subcc $b, $c, $dst", []>;
351def SUBCCri : F3_2<2, 0b010100,
352                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
353                   "subcc $b, $c, $dst", []>;
354def SUBXCCrr: F3_1<2, 0b011100, 
355                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
356                   "subxcc $b, $c, $dst", []>;
357
358// Section B.18 - Multiply Instructions, p. 113
359def UMULrr  : F3_1<2, 0b001010, 
360                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
361                   "umul $b, $c, $dst", []>;
362def UMULri  : F3_2<2, 0b001010,
363                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
364                   "umul $b, $c, $dst", []>;
365def SMULrr  : F3_1<2, 0b001011, 
366                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
367                   "smul $b, $c, $dst",
368                   [(set IntRegs:$dst, (mul IntRegs:$b, IntRegs:$c))]>;
369def SMULri  : F3_2<2, 0b001011,
370                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
371                   "smul $b, $c, $dst",
372                   [(set IntRegs:$dst, (mul IntRegs:$b, simm13:$c))]>;
373
374// Section B.19 - Divide Instructions, p. 115
375def UDIVrr   : F3_1<2, 0b001110, 
376                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
377                    "udiv $b, $c, $dst", []>;
378def UDIVri   : F3_2<2, 0b001110,
379                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
380                    "udiv $b, $c, $dst", []>;
381def SDIVrr   : F3_1<2, 0b001111,
382                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
383                    "sdiv $b, $c, $dst", []>;
384def SDIVri   : F3_2<2, 0b001111,
385                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
386                    "sdiv $b, $c, $dst", []>;
387
388// Section B.20 - SAVE and RESTORE, p. 117
389def SAVErr    : F3_1<2, 0b111100,
390                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
391                     "save $b, $c, $dst", []>;
392def SAVEri    : F3_2<2, 0b111100,
393                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
394                     "save $b, $c, $dst", []>;
395def RESTORErr : F3_1<2, 0b111101,
396                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
397                     "restore $b, $c, $dst", []>;
398def RESTOREri : F3_2<2, 0b111101,
399                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
400                     "restore $b, $c, $dst", []>;
401
402// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
403
404// conditional branch class:
405class BranchV8<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
406 : F2_2<cc, 0b010, ops, asmstr, pattern> {
407  let isBranch = 1;
408  let isTerminator = 1;
409  let hasDelaySlot = 1;
410}
411
412let isBarrier = 1 in
413  def BA   : BranchV8<0b1000, (ops IntRegs:$dst),
414                      "ba $dst", []>;
415def BN   : BranchV8<0b0000, (ops IntRegs:$dst),
416                    "bn $dst", []>;
417def BNE  : BranchV8<0b1001, (ops IntRegs:$dst),
418                    "bne $dst",
419                    [(V8bricc IntRegs:$dst, SETNE, ICC)]>;
420def BE   : BranchV8<0b0001, (ops IntRegs:$dst),
421                    "be $dst",
422                    [(V8bricc IntRegs:$dst, SETEQ, ICC)]>;
423def BG   : BranchV8<0b1010, (ops IntRegs:$dst),
424                    "bg $dst",
425                    [(V8bricc IntRegs:$dst, SETGT, ICC)]>;
426def BLE  : BranchV8<0b0010, (ops IntRegs:$dst),
427                    "ble $dst",
428                    [(V8bricc IntRegs:$dst, SETLE, ICC)]>;
429def BGE  : BranchV8<0b1011, (ops IntRegs:$dst),
430                    "bge $dst",
431                    [(V8bricc IntRegs:$dst, SETGE, ICC)]>;
432def BL   : BranchV8<0b0011, (ops IntRegs:$dst),
433                    "bl $dst",
434                    [(V8bricc IntRegs:$dst, SETLT, ICC)]>;
435def BGU  : BranchV8<0b1100, (ops IntRegs:$dst),
436                    "bgu $dst",
437                    [(V8bricc IntRegs:$dst, SETUGT, ICC)]>;
438def BLEU : BranchV8<0b0100, (ops IntRegs:$dst),
439                    "bleu $dst",
440                    [(V8bricc IntRegs:$dst, SETULE, ICC)]>;
441def BCC  : BranchV8<0b1101, (ops IntRegs:$dst),
442                    "bcc $dst",
443                    [(V8bricc IntRegs:$dst, SETUGE, ICC)]>;
444def BCS  : BranchV8<0b0101, (ops IntRegs:$dst),
445                    "bcs $dst",
446                    [(V8bricc IntRegs:$dst, SETULT, ICC)]>;
447
448// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
449
450// floating-point conditional branch class:
451class FPBranchV8<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
452 : F2_2<cc, 0b110, ops, asmstr, pattern> {
453  let isBranch = 1;
454  let isTerminator = 1;
455  let hasDelaySlot = 1;
456}
457
458def FBN  : FPBranchV8<0b0000, (ops IntRegs:$dst),
459                      "fbn $dst",
460                      []>;
461def FBU  : FPBranchV8<0b0111, (ops IntRegs:$dst),
462                      "fbu $dst",
463                      []>;
464def FBG  : FPBranchV8<0b0110, (ops IntRegs:$dst),
465                      "fbg $dst",
466                      [(V8brfcc IntRegs:$dst, SETGT, FCC)]>;
467def FBUG : FPBranchV8<0b0101, (ops IntRegs:$dst),
468                      "fbug $dst",
469                      []>;
470def FBL  : FPBranchV8<0b0100, (ops IntRegs:$dst),
471                      "fbl $dst",
472                      [(V8brfcc IntRegs:$dst, SETLT, FCC)]>;
473def FBUL : FPBranchV8<0b0011, (ops IntRegs:$dst),
474                      "fbul $dst",
475                      []>;
476def FBLG : FPBranchV8<0b0010, (ops IntRegs:$dst),
477                      "fblg $dst",
478                      []>;
479def FBNE : FPBranchV8<0b0001, (ops IntRegs:$dst),
480                      "fbne $dst",
481                      [(V8brfcc IntRegs:$dst, SETNE, FCC)]>;
482def FBE  : FPBranchV8<0b1001, (ops IntRegs:$dst),
483                      "fbe $dst",
484                      [(V8brfcc IntRegs:$dst, SETEQ, FCC)]>;
485def FBUE : FPBranchV8<0b1010, (ops IntRegs:$dst),
486                      "fbue $dst",
487                      []>;
488def FBGE : FPBranchV8<0b1011, (ops IntRegs:$dst),
489                      "fbge $dst",
490                      [(V8brfcc IntRegs:$dst, SETGE, FCC)]>;
491def FBUGE: FPBranchV8<0b1100, (ops IntRegs:$dst),
492                      "fbuge $dst",
493                      []>;
494def FBLE : FPBranchV8<0b1101, (ops IntRegs:$dst),
495                      "fble $dst",
496                      [(V8brfcc IntRegs:$dst, SETLE, FCC)]>;
497def FBULE: FPBranchV8<0b1110, (ops IntRegs:$dst),
498                      "fbule $dst",
499                      []>;
500def FBO  : FPBranchV8<0b1111, (ops IntRegs:$dst),
501                      "fbo $dst",
502                      []>;
503
504
505
506// Section B.24 - Call and Link Instruction, p. 125
507// This is the only Format 1 instruction
508let Uses = [O0, O1, O2, O3, O4, O5], hasDelaySlot = 1, isCall = 1 in { 
509  // pc-relative call:
510  let Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
511    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in
512  def CALL : InstV8 {
513    let OperandList = (ops IntRegs:$dst);
514    bits<30> disp;
515    let op = 1;
516    let Inst{29-0} = disp;
517    let AsmString = "call $dst";
518  }
519
520  // indirect call (O7 is an EXPLICIT def in indirect calls, so it cannot also
521  // be an implicit def):
522  let Defs = [O0, O1, O2, O3, O4, O5, G1, G2, G3, G4, G5, G6, G7,
523    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in
524  def JMPLrr : F3_1<2, 0b111000,
525                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
526                    "jmpl $b+$c, $dst", []>;
527}
528
529// Section B.28 - Read State Register Instructions
530def RDY : F3_1<2, 0b101000,
531               (ops IntRegs:$dst),
532               "rdy $dst", []>;
533
534// Section B.29 - Write State Register Instructions
535def WRYrr : F3_1<2, 0b110000,
536                 (ops IntRegs:$b, IntRegs:$c),
537                 "wr $b, $c, %y", []>;
538def WRYri : F3_2<2, 0b110000,
539                 (ops IntRegs:$b, i32imm:$c),
540                 "wr $b, $c, %y", []>;
541
542// Convert Integer to Floating-point Instructions, p. 141
543def FITOS : F3_3<2, 0b110100, 0b011000100,
544                 (ops FPRegs:$dst, FPRegs:$src),
545                 "fitos $src, $dst", []>;
546def FITOD : F3_3<2, 0b110100, 0b011001000, 
547                 (ops DFPRegs:$dst, DFPRegs:$src),
548                 "fitod $src, $dst", []>;
549
550// Convert Floating-point to Integer Instructions, p. 142
551def FSTOI : F3_3<2, 0b110100, 0b011010001,
552                 (ops FPRegs:$dst, FPRegs:$src),
553                 "fstoi $src, $dst", []>;
554def FDTOI : F3_3<2, 0b110100, 0b011010010,
555                 (ops DFPRegs:$dst, DFPRegs:$src),
556                 "fdtoi $src, $dst", []>;
557
558// Convert between Floating-point Formats Instructions, p. 143
559def FSTOD : F3_3<2, 0b110100, 0b011001001, 
560                 (ops DFPRegs:$dst, FPRegs:$src),
561                 "fstod $src, $dst",
562                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
563def FDTOS : F3_3<2, 0b110100, 0b011000110,
564                 (ops FPRegs:$dst, DFPRegs:$src),
565                 "fdtos $src, $dst",
566                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
567
568// Floating-point Move Instructions, p. 144
569def FMOVS : F3_3<2, 0b110100, 0b000000001,
570                 (ops FPRegs:$dst, FPRegs:$src),
571                 "fmovs $src, $dst", []>;
572def FNEGS : F3_3<2, 0b110100, 0b000000101, 
573                 (ops FPRegs:$dst, FPRegs:$src),
574                 "fnegs $src, $dst",
575                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
576def FABSS : F3_3<2, 0b110100, 0b000001001, 
577                 (ops FPRegs:$dst, FPRegs:$src),
578                 "fabss $src, $dst",
579                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
580// FIXME: ADD FNEGD/FABSD pseudo instructions.
581
582
583// Floating-point Square Root Instructions, p.145
584def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
585                  (ops FPRegs:$dst, FPRegs:$src),
586                  "fsqrts $src, $dst",
587                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
588def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
589                  (ops DFPRegs:$dst, DFPRegs:$src),
590                  "fsqrtd $src, $dst",
591                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
592
593
594
595// Floating-point Add and Subtract Instructions, p. 146
596def FADDS  : F3_3<2, 0b110100, 0b001000001,
597                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
598                  "fadds $src1, $src2, $dst",
599                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
600def FADDD  : F3_3<2, 0b110100, 0b001000010,
601                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
602                  "faddd $src1, $src2, $dst",
603                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
604def FSUBS  : F3_3<2, 0b110100, 0b001000101,
605                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
606                  "fsubs $src1, $src2, $dst",
607                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
608def FSUBD  : F3_3<2, 0b110100, 0b001000110,
609                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
610                  "fsubd $src1, $src2, $dst",
611                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
612
613// Floating-point Multiply and Divide Instructions, p. 147
614def FMULS  : F3_3<2, 0b110100, 0b001001001,
615                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
616                  "fmuls $src1, $src2, $dst",
617                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
618def FMULD  : F3_3<2, 0b110100, 0b001001010,
619                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
620                  "fmuld $src1, $src2, $dst",
621                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
622def FSMULD : F3_3<2, 0b110100, 0b001101001,
623                  (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
624                  "fsmuld $src1, $src2, $dst",
625                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
626                                            (fextend FPRegs:$src2)))]>;
627def FDIVS  : F3_3<2, 0b110100, 0b001001101,
628                 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
629                 "fdivs $src1, $src2, $dst",
630                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
631def FDIVD  : F3_3<2, 0b110100, 0b001001110,
632                 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
633                 "fdivd $src1, $src2, $dst",
634                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
635
636// Floating-point Compare Instructions, p. 148
637// Note: the 2nd template arg is different for these guys.
638// Note 2: the result of a FCMP is not available until the 2nd cycle
639// after the instr is retired, but there is no interlock. This behavior
640// is modelled with a forced noop after the instruction.
641def FCMPS  : F3_3<2, 0b110101, 0b001010001,
642                  (ops FPRegs:$src1, FPRegs:$src2),
643                  "fcmps $src1, $src2\n\tnop",
644                  [(set FCC, (V8cmpfcc FPRegs:$src1, FPRegs:$src2))]>;
645def FCMPD  : F3_3<2, 0b110101, 0b001010010,
646                  (ops DFPRegs:$src1, DFPRegs:$src2),
647                  "fcmpd $src1, $src2\n\tnop",
648                  [(set FCC, (V8cmpfcc DFPRegs:$src1, DFPRegs:$src2))]>;
649
650//===----------------------------------------------------------------------===//
651// Non-Instruction Patterns
652//===----------------------------------------------------------------------===//
653
654// Small immediates.
655def : Pat<(i32 simm13:$val),
656          (ORri G0, imm:$val)>;
657// Arbitrary immediates.
658def : Pat<(i32 imm:$val),
659          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
660