SparcInstrInfo.td revision 6ef781f3ce0d0311004adba9d1e7dbd7950918dd
1//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{
47  // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48  return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
49}]>;
50
51def simm13  : PatLeaf<(imm), [{
52  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
53  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
54}]>;
55
56def LO10 : SDNodeXForm<imm, [{
57  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
58}]>;
59
60def HI22 : SDNodeXForm<imm, [{
61  // Transformation function: shift the immediate value down into the low bits.
62  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
70def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
71def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
72
73// Address operands
74def MEMrr : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let MIOperandInfo = (ops IntRegs, IntRegs);
77}
78def MEMri : Operand<i32> {
79  let PrintMethod = "printMemOperand";
80  let MIOperandInfo = (ops IntRegs, i32imm);
81}
82
83// Branch targets have OtherVT type.
84def brtarget : Operand<OtherVT>;
85def calltarget : Operand<i32>;
86
87// Operand for printing out a condition code.
88let PrintMethod = "printCCOperand" in
89  def CCOp : Operand<i32>;
90
91def SDTSPcmpfcc : 
92SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
93def SDTSPbrcc : 
94SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
95def SDTSPselectcc :
96SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
97def SDTSPFTOI :
98SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
99def SDTSPITOF :
100SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
101
102def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
103def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
104def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
105def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
106
107def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
108def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
109
110def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
111def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
112
113def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
114def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
115
116// These are target-independent nodes, but have target-specific formats.
117def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
118def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
119                                        SDTCisVT<1, i32> ]>;
120
121def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
122                           [SDNPHasChain, SDNPOutFlag]>;
123def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
124                           [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
125
126def SDT_SPCall    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
127def call          : SDNode<"SPISD::CALL", SDT_SPCall,
128                           [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
129
130def SDT_SPRetFlag : SDTypeProfile<0, 0, []>;
131def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRetFlag,
132                           [SDNPHasChain, SDNPOptInFlag]>;
133
134//===----------------------------------------------------------------------===//
135// SPARC Flag Conditions
136//===----------------------------------------------------------------------===//
137
138// Note that these values must be kept in sync with the CCOp::CondCode enum
139// values.
140class ICC_VAL<int N> : PatLeaf<(i32 N)>;
141def ICC_NE  : ICC_VAL< 9>;  // Not Equal
142def ICC_E   : ICC_VAL< 1>;  // Equal
143def ICC_G   : ICC_VAL<10>;  // Greater
144def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
145def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
146def ICC_L   : ICC_VAL< 3>;  // Less
147def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
148def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
149def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
150def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
151def ICC_POS : ICC_VAL<14>;  // Positive
152def ICC_NEG : ICC_VAL< 6>;  // Negative
153def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
154def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
155
156class FCC_VAL<int N> : PatLeaf<(i32 N)>;
157def FCC_U   : FCC_VAL<23>;  // Unordered
158def FCC_G   : FCC_VAL<22>;  // Greater
159def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
160def FCC_L   : FCC_VAL<20>;  // Less
161def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
162def FCC_LG  : FCC_VAL<18>;  // Less or Greater
163def FCC_NE  : FCC_VAL<17>;  // Not Equal
164def FCC_E   : FCC_VAL<25>;  // Equal
165def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
166def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
167def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
168def FCC_LE  : FCC_VAL<27>;  // Less or Equal
169def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
170def FCC_O   : FCC_VAL<29>;  // Ordered
171
172//===----------------------------------------------------------------------===//
173// Instruction Class Templates
174//===----------------------------------------------------------------------===//
175
176/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
177multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
178  def rr  : F3_1<2, Op3Val, 
179                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
180                 !strconcat(OpcStr, " $b, $c, $dst"),
181                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
182  def ri  : F3_2<2, Op3Val,
183                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
184                 !strconcat(OpcStr, " $b, $c, $dst"),
185                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
186}
187
188/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
189/// pattern.
190multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
191  def rr  : F3_1<2, Op3Val, 
192                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
193                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
194  def ri  : F3_2<2, Op3Val,
195                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
196                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
197}
198
199//===----------------------------------------------------------------------===//
200// Instructions
201//===----------------------------------------------------------------------===//
202
203// Pseudo instructions.
204class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
205   : InstSP<outs, ins, asmstr, pattern>;
206
207let Defs = [O6], Uses = [O6] in {
208def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
209                               "!ADJCALLSTACKDOWN $amt",
210                               [(callseq_start imm:$amt)]>;
211def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
212                            "!ADJCALLSTACKUP $amt1",
213                            [(callseq_end imm:$amt1, imm:$amt2)]>;
214}
215
216let isImplicitDef = 1 in {
217def IMPLICIT_DEF_Int : Pseudo<(outs IntRegs:$dst), (ins),
218                              "!IMPLICIT_DEF $dst",
219                              [(set IntRegs:$dst, (undef))]>;
220def IMPLICIT_DEF_FP  : Pseudo<(outs FPRegs:$dst), (ins), "!IMPLICIT_DEF $dst",
221                              [(set FPRegs:$dst, (undef))]>;
222def IMPLICIT_DEF_DFP : Pseudo<(outs DFPRegs:$dst), (ins), "!IMPLICIT_DEF $dst",
223                              [(set DFPRegs:$dst, (undef))]>;
224}
225                              
226// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
227// fpmover pass.
228let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
229  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
230                      "!FpMOVD $src, $dst", []>;
231  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
232                      "!FpNEGD $src, $dst",
233                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
234  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
235                      "!FpABSD $src, $dst",
236                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
237}
238
239// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded by the
240// scheduler into a branch sequence.  This has to handle all permutations of
241// selection between i32/f32/f64 on ICC and FCC.
242let usesCustomDAGSchedInserter = 1 in {   // Expanded by the scheduler.
243  def SELECT_CC_Int_ICC
244   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
245            "; SELECT_CC_Int_ICC PSEUDO!",
246            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
247                                             imm:$Cond))]>;
248  def SELECT_CC_Int_FCC
249   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
250            "; SELECT_CC_Int_FCC PSEUDO!",
251            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
252                                             imm:$Cond))]>;
253  def SELECT_CC_FP_ICC
254   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
255            "; SELECT_CC_FP_ICC PSEUDO!",
256            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
257                                            imm:$Cond))]>;
258  def SELECT_CC_FP_FCC
259   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
260            "; SELECT_CC_FP_FCC PSEUDO!",
261            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
262                                            imm:$Cond))]>;
263  def SELECT_CC_DFP_ICC
264   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
265            "; SELECT_CC_DFP_ICC PSEUDO!",
266            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
267                                             imm:$Cond))]>;
268  def SELECT_CC_DFP_FCC
269   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
270            "; SELECT_CC_DFP_FCC PSEUDO!",
271            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
272                                             imm:$Cond))]>;
273}
274
275
276// Section A.3 - Synthetic Instructions, p. 85
277// special cases of JMPL:
278let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in {
279  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
280    def RETL: F3_2<2, 0b111000, (outs), (ins), "retl", [(retflag)]>;
281}
282
283// Section B.1 - Load Integer Instructions, p. 90
284def LDSBrr : F3_1<3, 0b001001,
285                  (outs IntRegs:$dst), (ins MEMrr:$addr),
286                  "ldsb [$addr], $dst",
287                  [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
288def LDSBri : F3_2<3, 0b001001,
289                  (outs IntRegs:$dst), (ins MEMri:$addr),
290                  "ldsb [$addr], $dst",
291                  [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
292def LDSHrr : F3_1<3, 0b001010,
293                  (outs IntRegs:$dst), (ins MEMrr:$addr),
294                  "ldsh [$addr], $dst",
295                  [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
296def LDSHri : F3_2<3, 0b001010,
297                  (outs IntRegs:$dst), (ins MEMri:$addr),
298                  "ldsh [$addr], $dst",
299                  [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
300def LDUBrr : F3_1<3, 0b000001,
301                  (outs IntRegs:$dst), (ins MEMrr:$addr),
302                  "ldub [$addr], $dst",
303                  [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
304def LDUBri : F3_2<3, 0b000001,
305                  (outs IntRegs:$dst), (ins MEMri:$addr),
306                  "ldub [$addr], $dst",
307                  [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
308def LDUHrr : F3_1<3, 0b000010,
309                  (outs IntRegs:$dst), (ins MEMrr:$addr),
310                  "lduh [$addr], $dst",
311                  [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
312def LDUHri : F3_2<3, 0b000010,
313                  (outs IntRegs:$dst), (ins MEMri:$addr),
314                  "lduh [$addr], $dst",
315                  [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
316def LDrr   : F3_1<3, 0b000000,
317                  (outs IntRegs:$dst), (ins MEMrr:$addr),
318                  "ld [$addr], $dst",
319                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
320def LDri   : F3_2<3, 0b000000,
321                  (outs IntRegs:$dst), (ins MEMri:$addr),
322                  "ld [$addr], $dst",
323                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
324
325// Section B.2 - Load Floating-point Instructions, p. 92
326def LDFrr  : F3_1<3, 0b100000,
327                  (outs FPRegs:$dst), (ins MEMrr:$addr),
328                  "ld [$addr], $dst",
329                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
330def LDFri  : F3_2<3, 0b100000,
331                  (outs FPRegs:$dst), (ins MEMri:$addr),
332                  "ld [$addr], $dst",
333                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
334def LDDFrr : F3_1<3, 0b100011,
335                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
336                  "ldd [$addr], $dst",
337                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
338def LDDFri : F3_2<3, 0b100011,
339                  (outs DFPRegs:$dst), (ins MEMri:$addr),
340                  "ldd [$addr], $dst",
341                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
342
343// Section B.4 - Store Integer Instructions, p. 95
344def STBrr : F3_1<3, 0b000101,
345                 (outs), (ins MEMrr:$addr, IntRegs:$src),
346                 "stb $src, [$addr]",
347                 [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
348def STBri : F3_2<3, 0b000101,
349                 (outs), (ins MEMri:$addr, IntRegs:$src),
350                 "stb $src, [$addr]",
351                 [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
352def STHrr : F3_1<3, 0b000110,
353                 (outs), (ins MEMrr:$addr, IntRegs:$src),
354                 "sth $src, [$addr]",
355                 [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
356def STHri : F3_2<3, 0b000110,
357                 (outs), (ins MEMri:$addr, IntRegs:$src),
358                 "sth $src, [$addr]",
359                 [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
360def STrr  : F3_1<3, 0b000100,
361                 (outs), (ins MEMrr:$addr, IntRegs:$src),
362                 "st $src, [$addr]",
363                 [(store IntRegs:$src, ADDRrr:$addr)]>;
364def STri  : F3_2<3, 0b000100,
365                 (outs), (ins MEMri:$addr, IntRegs:$src),
366                 "st $src, [$addr]",
367                 [(store IntRegs:$src, ADDRri:$addr)]>;
368
369// Section B.5 - Store Floating-point Instructions, p. 97
370def STFrr   : F3_1<3, 0b100100,
371                   (outs), (ins MEMrr:$addr, FPRegs:$src),
372                   "st $src, [$addr]",
373                   [(store FPRegs:$src, ADDRrr:$addr)]>;
374def STFri   : F3_2<3, 0b100100,
375                   (outs), (ins MEMri:$addr, FPRegs:$src),
376                   "st $src, [$addr]",
377                   [(store FPRegs:$src, ADDRri:$addr)]>;
378def STDFrr  : F3_1<3, 0b100111,
379                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
380                   "std  $src, [$addr]",
381                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
382def STDFri  : F3_2<3, 0b100111,
383                   (outs), (ins MEMri:$addr, DFPRegs:$src),
384                   "std $src, [$addr]",
385                   [(store DFPRegs:$src, ADDRri:$addr)]>;
386
387// Section B.9 - SETHI Instruction, p. 104
388def SETHIi: F2_1<0b100,
389                 (outs IntRegs:$dst), (ins i32imm:$src),
390                 "sethi $src, $dst",
391                 [(set IntRegs:$dst, SETHIimm:$src)]>;
392
393// Section B.10 - NOP Instruction, p. 105
394// (It's a special case of SETHI)
395let rd = 0, imm22 = 0 in
396  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
397
398// Section B.11 - Logical Instructions, p. 106
399defm AND    : F3_12<"and", 0b000001, and>;
400
401def ANDNrr  : F3_1<2, 0b000101,
402                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
403                   "andn $b, $c, $dst",
404                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
405def ANDNri  : F3_2<2, 0b000101,
406                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
407                   "andn $b, $c, $dst", []>;
408
409defm OR     : F3_12<"or", 0b000010, or>;
410
411def ORNrr   : F3_1<2, 0b000110,
412                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
413                   "orn $b, $c, $dst",
414                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
415def ORNri   : F3_2<2, 0b000110,
416                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
417                   "orn $b, $c, $dst", []>;
418defm XOR    : F3_12<"xor", 0b000011, xor>;
419
420def XNORrr  : F3_1<2, 0b000111,
421                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
422                   "xnor $b, $c, $dst",
423                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
424def XNORri  : F3_2<2, 0b000111,
425                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
426                   "xnor $b, $c, $dst", []>;
427
428// Section B.12 - Shift Instructions, p. 107
429defm SLL : F3_12<"sll", 0b100101, shl>;
430defm SRL : F3_12<"srl", 0b100110, srl>;
431defm SRA : F3_12<"sra", 0b100111, sra>;
432
433// Section B.13 - Add Instructions, p. 108
434defm ADD   : F3_12<"add", 0b000000, add>;
435
436// "LEA" forms of add (patterns to make tblgen happy)
437def LEA_ADDri   : F3_2<2, 0b000000,
438                   (outs IntRegs:$dst), (ins MEMri:$addr),
439                   "add ${addr:arith}, $dst",
440                   [(set IntRegs:$dst, ADDRri:$addr)]>;
441                   
442defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
443defm ADDX  : F3_12<"addx", 0b001000, adde>;
444
445// Section B.15 - Subtract Instructions, p. 110
446defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
447defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
448defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
449
450def SUBXCCrr: F3_1<2, 0b011100, 
451                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
452                   "subxcc $b, $c, $dst", []>;
453
454// Section B.18 - Multiply Instructions, p. 113
455defm UMUL : F3_12np<"umul", 0b001010>;
456defm SMUL : F3_12  <"smul", 0b001011, mul>;
457
458
459// Section B.19 - Divide Instructions, p. 115
460defm UDIV : F3_12np<"udiv", 0b001110>;
461defm SDIV : F3_12np<"sdiv", 0b001111>;
462
463// Section B.20 - SAVE and RESTORE, p. 117
464defm SAVE    : F3_12np<"save"   , 0b111100>;
465defm RESTORE : F3_12np<"restore", 0b111101>;
466
467// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
468
469// conditional branch class:
470class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
471 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
472  let isBranch = 1;
473  let isTerminator = 1;
474  let hasDelaySlot = 1;
475}
476
477let isBarrier = 1 in
478  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
479                      "ba $dst",
480                      [(br bb:$dst)]>;
481                      
482// FIXME: the encoding for the JIT should look at the condition field.
483def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
484                     "b$cc $dst",
485                     [(SPbricc bb:$dst, imm:$cc)]>;
486
487
488// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
489
490// floating-point conditional branch class:
491class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
492 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
493  let isBranch = 1;
494  let isTerminator = 1;
495  let hasDelaySlot = 1;
496}
497
498// FIXME: the encoding for the JIT should look at the condition field.
499def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
500                      "fb$cc $dst",
501                      [(SPbrfcc bb:$dst, imm:$cc)]>;
502
503
504// Section B.24 - Call and Link Instruction, p. 125
505// This is the only Format 1 instruction
506let Uses = [O0, O1, O2, O3, O4, O5],
507    hasDelaySlot = 1, isCall = 1,
508    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
509    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
510  def CALL : InstSP<(outs), (ins calltarget:$dst),
511                    "call $dst", []> {
512    bits<30> disp;
513    let op = 1;
514    let Inst{29-0} = disp;
515  }
516  
517  // indirect calls
518  def JMPLrr : F3_1<2, 0b111000,
519                    (outs), (ins MEMrr:$ptr),
520                    "call $ptr",
521                    [(call  ADDRrr:$ptr)]>;
522  def JMPLri : F3_2<2, 0b111000,
523                    (outs), (ins MEMri:$ptr),
524                    "call $ptr",
525                    [(call  ADDRri:$ptr)]>;
526}
527
528// Section B.28 - Read State Register Instructions
529def RDY : F3_1<2, 0b101000,
530               (outs IntRegs:$dst), (ins),
531               "rd %y, $dst", []>;
532
533// Section B.29 - Write State Register Instructions
534def WRYrr : F3_1<2, 0b110000,
535                 (outs), (ins IntRegs:$b, IntRegs:$c),
536                 "wr $b, $c, %y", []>;
537def WRYri : F3_2<2, 0b110000,
538                 (outs), (ins IntRegs:$b, i32imm:$c),
539                 "wr $b, $c, %y", []>;
540
541// Convert Integer to Floating-point Instructions, p. 141
542def FITOS : F3_3<2, 0b110100, 0b011000100,
543                 (outs FPRegs:$dst), (ins FPRegs:$src),
544                 "fitos $src, $dst",
545                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
546def FITOD : F3_3<2, 0b110100, 0b011001000, 
547                 (outs DFPRegs:$dst), (ins FPRegs:$src),
548                 "fitod $src, $dst",
549                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
550
551// Convert Floating-point to Integer Instructions, p. 142
552def FSTOI : F3_3<2, 0b110100, 0b011010001,
553                 (outs FPRegs:$dst), (ins FPRegs:$src),
554                 "fstoi $src, $dst",
555                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
556def FDTOI : F3_3<2, 0b110100, 0b011010010,
557                 (outs FPRegs:$dst), (ins DFPRegs:$src),
558                 "fdtoi $src, $dst",
559                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
560
561// Convert between Floating-point Formats Instructions, p. 143
562def FSTOD : F3_3<2, 0b110100, 0b011001001, 
563                 (outs DFPRegs:$dst), (ins FPRegs:$src),
564                 "fstod $src, $dst",
565                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
566def FDTOS : F3_3<2, 0b110100, 0b011000110,
567                 (outs FPRegs:$dst), (ins DFPRegs:$src),
568                 "fdtos $src, $dst",
569                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
570
571// Floating-point Move Instructions, p. 144
572def FMOVS : F3_3<2, 0b110100, 0b000000001,
573                 (outs FPRegs:$dst), (ins FPRegs:$src),
574                 "fmovs $src, $dst", []>;
575def FNEGS : F3_3<2, 0b110100, 0b000000101, 
576                 (outs FPRegs:$dst), (ins FPRegs:$src),
577                 "fnegs $src, $dst",
578                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
579def FABSS : F3_3<2, 0b110100, 0b000001001, 
580                 (outs FPRegs:$dst), (ins FPRegs:$src),
581                 "fabss $src, $dst",
582                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
583
584
585// Floating-point Square Root Instructions, p.145
586def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
587                  (outs FPRegs:$dst), (ins FPRegs:$src),
588                  "fsqrts $src, $dst",
589                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
590def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
591                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
592                  "fsqrtd $src, $dst",
593                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
594
595
596
597// Floating-point Add and Subtract Instructions, p. 146
598def FADDS  : F3_3<2, 0b110100, 0b001000001,
599                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
600                  "fadds $src1, $src2, $dst",
601                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
602def FADDD  : F3_3<2, 0b110100, 0b001000010,
603                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
604                  "faddd $src1, $src2, $dst",
605                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
606def FSUBS  : F3_3<2, 0b110100, 0b001000101,
607                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
608                  "fsubs $src1, $src2, $dst",
609                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
610def FSUBD  : F3_3<2, 0b110100, 0b001000110,
611                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
612                  "fsubd $src1, $src2, $dst",
613                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
614
615// Floating-point Multiply and Divide Instructions, p. 147
616def FMULS  : F3_3<2, 0b110100, 0b001001001,
617                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
618                  "fmuls $src1, $src2, $dst",
619                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
620def FMULD  : F3_3<2, 0b110100, 0b001001010,
621                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
622                  "fmuld $src1, $src2, $dst",
623                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
624def FSMULD : F3_3<2, 0b110100, 0b001101001,
625                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
626                  "fsmuld $src1, $src2, $dst",
627                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
628                                            (fextend FPRegs:$src2)))]>;
629def FDIVS  : F3_3<2, 0b110100, 0b001001101,
630                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
631                 "fdivs $src1, $src2, $dst",
632                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
633def FDIVD  : F3_3<2, 0b110100, 0b001001110,
634                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
635                 "fdivd $src1, $src2, $dst",
636                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
637
638// Floating-point Compare Instructions, p. 148
639// Note: the 2nd template arg is different for these guys.
640// Note 2: the result of a FCMP is not available until the 2nd cycle
641// after the instr is retired, but there is no interlock. This behavior
642// is modelled with a forced noop after the instruction.
643def FCMPS  : F3_3<2, 0b110101, 0b001010001,
644                  (outs), (ins FPRegs:$src1, FPRegs:$src2),
645                  "fcmps $src1, $src2\n\tnop",
646                  [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
647def FCMPD  : F3_3<2, 0b110101, 0b001010010,
648                  (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
649                  "fcmpd $src1, $src2\n\tnop",
650                  [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
651
652
653//===----------------------------------------------------------------------===//
654// V9 Instructions
655//===----------------------------------------------------------------------===//
656
657// V9 Conditional Moves.
658let Predicates = [HasV9], isTwoAddress = 1 in {
659  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
660  // FIXME: Add instruction encodings for the JIT some day.
661  def MOVICCrr
662    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
663             "mov$cc %icc, $F, $dst",
664             [(set IntRegs:$dst,
665                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
666  def MOVICCri
667    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
668             "mov$cc %icc, $F, $dst",
669             [(set IntRegs:$dst,
670                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
671
672  def MOVFCCrr
673    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
674             "mov$cc %fcc0, $F, $dst",
675             [(set IntRegs:$dst,
676                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
677  def MOVFCCri
678    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
679             "mov$cc %fcc0, $F, $dst",
680             [(set IntRegs:$dst,
681                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
682
683  def FMOVS_ICC
684    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
685             "fmovs$cc %icc, $F, $dst",
686             [(set FPRegs:$dst,
687                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
688  def FMOVD_ICC
689    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
690             "fmovd$cc %icc, $F, $dst",
691             [(set DFPRegs:$dst,
692                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
693  def FMOVS_FCC
694    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
695             "fmovs$cc %fcc0, $F, $dst",
696             [(set FPRegs:$dst,
697                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
698  def FMOVD_FCC
699    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
700             "fmovd$cc %fcc0, $F, $dst",
701             [(set DFPRegs:$dst,
702                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
703
704}
705
706// Floating-Point Move Instructions, p. 164 of the V9 manual.
707let Predicates = [HasV9] in {
708  def FMOVD : F3_3<2, 0b110100, 0b000000010,
709                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
710                   "fmovd $src, $dst", []>;
711  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
712                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
713                   "fnegd $src, $dst",
714                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
715  def FABSD : F3_3<2, 0b110100, 0b000001010, 
716                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
717                   "fabsd $src, $dst",
718                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
719}
720
721// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
722// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
723def POPCrr : F3_1<2, 0b101110, 
724                  (outs IntRegs:$dst), (ins IntRegs:$src),
725                  "popc $src, $dst", []>, Requires<[HasV9]>;
726def : Pat<(ctpop IntRegs:$src),
727          (POPCrr (SLLri IntRegs:$src, 0))>;
728
729//===----------------------------------------------------------------------===//
730// Non-Instruction Patterns
731//===----------------------------------------------------------------------===//
732
733// Small immediates.
734def : Pat<(i32 simm13:$val),
735          (ORri G0, imm:$val)>;
736// Arbitrary immediates.
737def : Pat<(i32 imm:$val),
738          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
739
740// subc
741def : Pat<(subc IntRegs:$b, IntRegs:$c),
742          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
743def : Pat<(subc IntRegs:$b, simm13:$val),
744          (SUBCCri IntRegs:$b, imm:$val)>;
745
746// Global addresses, constant pool entries
747def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
748def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
749def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
750def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
751
752// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
753def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
754          (ADDri IntRegs:$r, tglobaladdr:$in)>;
755def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
756          (ADDri IntRegs:$r, tconstpool:$in)>;
757
758// Calls: 
759def : Pat<(call tglobaladdr:$dst),
760          (CALL tglobaladdr:$dst)>;
761def : Pat<(call texternalsym:$dst),
762          (CALL texternalsym:$dst)>;
763
764def : Pat<(ret), (RETL)>;
765
766// Map integer extload's to zextloads.
767def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
768def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
769def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
770def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
771def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
772def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
773
774// zextload bool -> zextload byte
775def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
776def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
777