SparcInstrInfo.td revision 704df9fcbddd8bd6f358bef688ef51f8540dce4d
1//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{
47  // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48  return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
49}]>;
50
51def simm13  : PatLeaf<(imm), [{
52  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
53  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
54}]>;
55
56def LO10 : SDNodeXForm<imm, [{
57  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
58}]>;
59
60def HI22 : SDNodeXForm<imm, [{
61  // Transformation function: shift the immediate value down into the low bits.
62  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
70def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
71def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
72
73// Address operands
74def MEMrr : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let MIOperandInfo = (ops IntRegs, IntRegs);
77}
78def MEMri : Operand<i32> {
79  let PrintMethod = "printMemOperand";
80  let MIOperandInfo = (ops IntRegs, i32imm);
81}
82
83// Branch targets have OtherVT type.
84def brtarget : Operand<OtherVT>;
85def calltarget : Operand<i32>;
86
87// Operand for printing out a condition code.
88let PrintMethod = "printCCOperand" in
89  def CCOp : Operand<i32>;
90
91def SDTSPcmpfcc : 
92SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
93def SDTSPbrcc : 
94SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
95def SDTSPselectcc :
96SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
97def SDTSPFTOI :
98SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
99def SDTSPITOF :
100SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
101
102def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
103def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
104def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
105def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
106
107def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
108def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
109
110def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
111def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
112
113def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
114def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
115
116// These are target-independent nodes, but have target-specific formats.
117def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
118def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
119                                        SDTCisVT<1, i32> ]>;
120
121def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
122                           [SDNPHasChain, SDNPOutFlag]>;
123def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
124                           [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
125
126def SDT_SPCall    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
127def call          : SDNode<"SPISD::CALL", SDT_SPCall,
128                           [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
129
130def retflag       : SDNode<"SPISD::RET_FLAG", SDTNone,
131                           [SDNPHasChain, SDNPOptInFlag]>;
132
133//===----------------------------------------------------------------------===//
134// SPARC Flag Conditions
135//===----------------------------------------------------------------------===//
136
137// Note that these values must be kept in sync with the CCOp::CondCode enum
138// values.
139class ICC_VAL<int N> : PatLeaf<(i32 N)>;
140def ICC_NE  : ICC_VAL< 9>;  // Not Equal
141def ICC_E   : ICC_VAL< 1>;  // Equal
142def ICC_G   : ICC_VAL<10>;  // Greater
143def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
144def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
145def ICC_L   : ICC_VAL< 3>;  // Less
146def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
147def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
148def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
149def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
150def ICC_POS : ICC_VAL<14>;  // Positive
151def ICC_NEG : ICC_VAL< 6>;  // Negative
152def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
153def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
154
155class FCC_VAL<int N> : PatLeaf<(i32 N)>;
156def FCC_U   : FCC_VAL<23>;  // Unordered
157def FCC_G   : FCC_VAL<22>;  // Greater
158def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
159def FCC_L   : FCC_VAL<20>;  // Less
160def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
161def FCC_LG  : FCC_VAL<18>;  // Less or Greater
162def FCC_NE  : FCC_VAL<17>;  // Not Equal
163def FCC_E   : FCC_VAL<25>;  // Equal
164def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
165def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
166def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
167def FCC_LE  : FCC_VAL<27>;  // Less or Equal
168def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
169def FCC_O   : FCC_VAL<29>;  // Ordered
170
171//===----------------------------------------------------------------------===//
172// Instruction Class Templates
173//===----------------------------------------------------------------------===//
174
175/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
176multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
177  def rr  : F3_1<2, Op3Val, 
178                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
179                 !strconcat(OpcStr, " $b, $c, $dst"),
180                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
181  def ri  : F3_2<2, Op3Val,
182                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
183                 !strconcat(OpcStr, " $b, $c, $dst"),
184                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
185}
186
187/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
188/// pattern.
189multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
190  def rr  : F3_1<2, Op3Val, 
191                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
192                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
193  def ri  : F3_2<2, Op3Val,
194                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
195                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
196}
197
198//===----------------------------------------------------------------------===//
199// Instructions
200//===----------------------------------------------------------------------===//
201
202// Pseudo instructions.
203class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
204   : InstSP<outs, ins, asmstr, pattern>;
205
206let Defs = [O6], Uses = [O6] in {
207def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
208                               "!ADJCALLSTACKDOWN $amt",
209                               [(callseq_start imm:$amt)]>;
210def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
211                            "!ADJCALLSTACKUP $amt1",
212                            [(callseq_end imm:$amt1, imm:$amt2)]>;
213}
214
215let isImplicitDef = 1 in {
216def IMPLICIT_DEF_Int : Pseudo<(outs IntRegs:$dst), (ins),
217                              "!IMPLICIT_DEF $dst",
218                              [(set IntRegs:$dst, (undef))]>;
219def IMPLICIT_DEF_FP  : Pseudo<(outs FPRegs:$dst), (ins), "!IMPLICIT_DEF $dst",
220                              [(set FPRegs:$dst, (undef))]>;
221def IMPLICIT_DEF_DFP : Pseudo<(outs DFPRegs:$dst), (ins), "!IMPLICIT_DEF $dst",
222                              [(set DFPRegs:$dst, (undef))]>;
223}
224                              
225// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
226// fpmover pass.
227let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
228  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
229                      "!FpMOVD $src, $dst", []>;
230  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
231                      "!FpNEGD $src, $dst",
232                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
233  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
234                      "!FpABSD $src, $dst",
235                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
236}
237
238// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded by the
239// scheduler into a branch sequence.  This has to handle all permutations of
240// selection between i32/f32/f64 on ICC and FCC.
241let usesCustomDAGSchedInserter = 1 in {   // Expanded by the scheduler.
242  def SELECT_CC_Int_ICC
243   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
244            "; SELECT_CC_Int_ICC PSEUDO!",
245            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
246                                             imm:$Cond))]>;
247  def SELECT_CC_Int_FCC
248   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
249            "; SELECT_CC_Int_FCC PSEUDO!",
250            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
251                                             imm:$Cond))]>;
252  def SELECT_CC_FP_ICC
253   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
254            "; SELECT_CC_FP_ICC PSEUDO!",
255            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
256                                            imm:$Cond))]>;
257  def SELECT_CC_FP_FCC
258   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
259            "; SELECT_CC_FP_FCC PSEUDO!",
260            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
261                                            imm:$Cond))]>;
262  def SELECT_CC_DFP_ICC
263   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
264            "; SELECT_CC_DFP_ICC PSEUDO!",
265            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
266                                             imm:$Cond))]>;
267  def SELECT_CC_DFP_FCC
268   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
269            "; SELECT_CC_DFP_FCC PSEUDO!",
270            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
271                                             imm:$Cond))]>;
272}
273
274
275// Section A.3 - Synthetic Instructions, p. 85
276// special cases of JMPL:
277let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in {
278  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
279    def RETL: F3_2<2, 0b111000, (outs), (ins), "retl", [(retflag)]>;
280}
281
282// Section B.1 - Load Integer Instructions, p. 90
283def LDSBrr : F3_1<3, 0b001001,
284                  (outs IntRegs:$dst), (ins MEMrr:$addr),
285                  "ldsb [$addr], $dst",
286                  [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
287def LDSBri : F3_2<3, 0b001001,
288                  (outs IntRegs:$dst), (ins MEMri:$addr),
289                  "ldsb [$addr], $dst",
290                  [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
291def LDSHrr : F3_1<3, 0b001010,
292                  (outs IntRegs:$dst), (ins MEMrr:$addr),
293                  "ldsh [$addr], $dst",
294                  [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
295def LDSHri : F3_2<3, 0b001010,
296                  (outs IntRegs:$dst), (ins MEMri:$addr),
297                  "ldsh [$addr], $dst",
298                  [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
299def LDUBrr : F3_1<3, 0b000001,
300                  (outs IntRegs:$dst), (ins MEMrr:$addr),
301                  "ldub [$addr], $dst",
302                  [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
303def LDUBri : F3_2<3, 0b000001,
304                  (outs IntRegs:$dst), (ins MEMri:$addr),
305                  "ldub [$addr], $dst",
306                  [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
307def LDUHrr : F3_1<3, 0b000010,
308                  (outs IntRegs:$dst), (ins MEMrr:$addr),
309                  "lduh [$addr], $dst",
310                  [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
311def LDUHri : F3_2<3, 0b000010,
312                  (outs IntRegs:$dst), (ins MEMri:$addr),
313                  "lduh [$addr], $dst",
314                  [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
315def LDrr   : F3_1<3, 0b000000,
316                  (outs IntRegs:$dst), (ins MEMrr:$addr),
317                  "ld [$addr], $dst",
318                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
319def LDri   : F3_2<3, 0b000000,
320                  (outs IntRegs:$dst), (ins MEMri:$addr),
321                  "ld [$addr], $dst",
322                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
323
324// Section B.2 - Load Floating-point Instructions, p. 92
325def LDFrr  : F3_1<3, 0b100000,
326                  (outs FPRegs:$dst), (ins MEMrr:$addr),
327                  "ld [$addr], $dst",
328                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
329def LDFri  : F3_2<3, 0b100000,
330                  (outs FPRegs:$dst), (ins MEMri:$addr),
331                  "ld [$addr], $dst",
332                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
333def LDDFrr : F3_1<3, 0b100011,
334                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
335                  "ldd [$addr], $dst",
336                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
337def LDDFri : F3_2<3, 0b100011,
338                  (outs DFPRegs:$dst), (ins MEMri:$addr),
339                  "ldd [$addr], $dst",
340                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
341
342// Section B.4 - Store Integer Instructions, p. 95
343def STBrr : F3_1<3, 0b000101,
344                 (outs), (ins MEMrr:$addr, IntRegs:$src),
345                 "stb $src, [$addr]",
346                 [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
347def STBri : F3_2<3, 0b000101,
348                 (outs), (ins MEMri:$addr, IntRegs:$src),
349                 "stb $src, [$addr]",
350                 [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
351def STHrr : F3_1<3, 0b000110,
352                 (outs), (ins MEMrr:$addr, IntRegs:$src),
353                 "sth $src, [$addr]",
354                 [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
355def STHri : F3_2<3, 0b000110,
356                 (outs), (ins MEMri:$addr, IntRegs:$src),
357                 "sth $src, [$addr]",
358                 [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
359def STrr  : F3_1<3, 0b000100,
360                 (outs), (ins MEMrr:$addr, IntRegs:$src),
361                 "st $src, [$addr]",
362                 [(store IntRegs:$src, ADDRrr:$addr)]>;
363def STri  : F3_2<3, 0b000100,
364                 (outs), (ins MEMri:$addr, IntRegs:$src),
365                 "st $src, [$addr]",
366                 [(store IntRegs:$src, ADDRri:$addr)]>;
367
368// Section B.5 - Store Floating-point Instructions, p. 97
369def STFrr   : F3_1<3, 0b100100,
370                   (outs), (ins MEMrr:$addr, FPRegs:$src),
371                   "st $src, [$addr]",
372                   [(store FPRegs:$src, ADDRrr:$addr)]>;
373def STFri   : F3_2<3, 0b100100,
374                   (outs), (ins MEMri:$addr, FPRegs:$src),
375                   "st $src, [$addr]",
376                   [(store FPRegs:$src, ADDRri:$addr)]>;
377def STDFrr  : F3_1<3, 0b100111,
378                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
379                   "std  $src, [$addr]",
380                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
381def STDFri  : F3_2<3, 0b100111,
382                   (outs), (ins MEMri:$addr, DFPRegs:$src),
383                   "std $src, [$addr]",
384                   [(store DFPRegs:$src, ADDRri:$addr)]>;
385
386// Section B.9 - SETHI Instruction, p. 104
387def SETHIi: F2_1<0b100,
388                 (outs IntRegs:$dst), (ins i32imm:$src),
389                 "sethi $src, $dst",
390                 [(set IntRegs:$dst, SETHIimm:$src)]>;
391
392// Section B.10 - NOP Instruction, p. 105
393// (It's a special case of SETHI)
394let rd = 0, imm22 = 0 in
395  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
396
397// Section B.11 - Logical Instructions, p. 106
398defm AND    : F3_12<"and", 0b000001, and>;
399
400def ANDNrr  : F3_1<2, 0b000101,
401                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
402                   "andn $b, $c, $dst",
403                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
404def ANDNri  : F3_2<2, 0b000101,
405                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
406                   "andn $b, $c, $dst", []>;
407
408defm OR     : F3_12<"or", 0b000010, or>;
409
410def ORNrr   : F3_1<2, 0b000110,
411                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
412                   "orn $b, $c, $dst",
413                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
414def ORNri   : F3_2<2, 0b000110,
415                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
416                   "orn $b, $c, $dst", []>;
417defm XOR    : F3_12<"xor", 0b000011, xor>;
418
419def XNORrr  : F3_1<2, 0b000111,
420                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
421                   "xnor $b, $c, $dst",
422                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
423def XNORri  : F3_2<2, 0b000111,
424                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
425                   "xnor $b, $c, $dst", []>;
426
427// Section B.12 - Shift Instructions, p. 107
428defm SLL : F3_12<"sll", 0b100101, shl>;
429defm SRL : F3_12<"srl", 0b100110, srl>;
430defm SRA : F3_12<"sra", 0b100111, sra>;
431
432// Section B.13 - Add Instructions, p. 108
433defm ADD   : F3_12<"add", 0b000000, add>;
434
435// "LEA" forms of add (patterns to make tblgen happy)
436def LEA_ADDri   : F3_2<2, 0b000000,
437                   (outs IntRegs:$dst), (ins MEMri:$addr),
438                   "add ${addr:arith}, $dst",
439                   [(set IntRegs:$dst, ADDRri:$addr)]>;
440                   
441defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
442defm ADDX  : F3_12<"addx", 0b001000, adde>;
443
444// Section B.15 - Subtract Instructions, p. 110
445defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
446defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
447defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
448
449def SUBXCCrr: F3_1<2, 0b011100, 
450                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
451                   "subxcc $b, $c, $dst", []>;
452
453// Section B.18 - Multiply Instructions, p. 113
454defm UMUL : F3_12np<"umul", 0b001010>;
455defm SMUL : F3_12  <"smul", 0b001011, mul>;
456
457
458// Section B.19 - Divide Instructions, p. 115
459defm UDIV : F3_12np<"udiv", 0b001110>;
460defm SDIV : F3_12np<"sdiv", 0b001111>;
461
462// Section B.20 - SAVE and RESTORE, p. 117
463defm SAVE    : F3_12np<"save"   , 0b111100>;
464defm RESTORE : F3_12np<"restore", 0b111101>;
465
466// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
467
468// conditional branch class:
469class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
470 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
471  let isBranch = 1;
472  let isTerminator = 1;
473  let hasDelaySlot = 1;
474}
475
476let isBarrier = 1 in
477  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
478                      "ba $dst",
479                      [(br bb:$dst)]>;
480                      
481// FIXME: the encoding for the JIT should look at the condition field.
482def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
483                     "b$cc $dst",
484                     [(SPbricc bb:$dst, imm:$cc)]>;
485
486
487// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
488
489// floating-point conditional branch class:
490class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
491 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
492  let isBranch = 1;
493  let isTerminator = 1;
494  let hasDelaySlot = 1;
495}
496
497// FIXME: the encoding for the JIT should look at the condition field.
498def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
499                      "fb$cc $dst",
500                      [(SPbrfcc bb:$dst, imm:$cc)]>;
501
502
503// Section B.24 - Call and Link Instruction, p. 125
504// This is the only Format 1 instruction
505let Uses = [O0, O1, O2, O3, O4, O5],
506    hasDelaySlot = 1, isCall = 1,
507    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
508    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
509  def CALL : InstSP<(outs), (ins calltarget:$dst),
510                    "call $dst", []> {
511    bits<30> disp;
512    let op = 1;
513    let Inst{29-0} = disp;
514  }
515  
516  // indirect calls
517  def JMPLrr : F3_1<2, 0b111000,
518                    (outs), (ins MEMrr:$ptr),
519                    "call $ptr",
520                    [(call  ADDRrr:$ptr)]>;
521  def JMPLri : F3_2<2, 0b111000,
522                    (outs), (ins MEMri:$ptr),
523                    "call $ptr",
524                    [(call  ADDRri:$ptr)]>;
525}
526
527// Section B.28 - Read State Register Instructions
528def RDY : F3_1<2, 0b101000,
529               (outs IntRegs:$dst), (ins),
530               "rd %y, $dst", []>;
531
532// Section B.29 - Write State Register Instructions
533def WRYrr : F3_1<2, 0b110000,
534                 (outs), (ins IntRegs:$b, IntRegs:$c),
535                 "wr $b, $c, %y", []>;
536def WRYri : F3_2<2, 0b110000,
537                 (outs), (ins IntRegs:$b, i32imm:$c),
538                 "wr $b, $c, %y", []>;
539
540// Convert Integer to Floating-point Instructions, p. 141
541def FITOS : F3_3<2, 0b110100, 0b011000100,
542                 (outs FPRegs:$dst), (ins FPRegs:$src),
543                 "fitos $src, $dst",
544                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
545def FITOD : F3_3<2, 0b110100, 0b011001000, 
546                 (outs DFPRegs:$dst), (ins FPRegs:$src),
547                 "fitod $src, $dst",
548                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
549
550// Convert Floating-point to Integer Instructions, p. 142
551def FSTOI : F3_3<2, 0b110100, 0b011010001,
552                 (outs FPRegs:$dst), (ins FPRegs:$src),
553                 "fstoi $src, $dst",
554                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
555def FDTOI : F3_3<2, 0b110100, 0b011010010,
556                 (outs FPRegs:$dst), (ins DFPRegs:$src),
557                 "fdtoi $src, $dst",
558                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
559
560// Convert between Floating-point Formats Instructions, p. 143
561def FSTOD : F3_3<2, 0b110100, 0b011001001, 
562                 (outs DFPRegs:$dst), (ins FPRegs:$src),
563                 "fstod $src, $dst",
564                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
565def FDTOS : F3_3<2, 0b110100, 0b011000110,
566                 (outs FPRegs:$dst), (ins DFPRegs:$src),
567                 "fdtos $src, $dst",
568                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
569
570// Floating-point Move Instructions, p. 144
571def FMOVS : F3_3<2, 0b110100, 0b000000001,
572                 (outs FPRegs:$dst), (ins FPRegs:$src),
573                 "fmovs $src, $dst", []>;
574def FNEGS : F3_3<2, 0b110100, 0b000000101, 
575                 (outs FPRegs:$dst), (ins FPRegs:$src),
576                 "fnegs $src, $dst",
577                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
578def FABSS : F3_3<2, 0b110100, 0b000001001, 
579                 (outs FPRegs:$dst), (ins FPRegs:$src),
580                 "fabss $src, $dst",
581                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
582
583
584// Floating-point Square Root Instructions, p.145
585def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
586                  (outs FPRegs:$dst), (ins FPRegs:$src),
587                  "fsqrts $src, $dst",
588                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
589def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
590                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
591                  "fsqrtd $src, $dst",
592                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
593
594
595
596// Floating-point Add and Subtract Instructions, p. 146
597def FADDS  : F3_3<2, 0b110100, 0b001000001,
598                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
599                  "fadds $src1, $src2, $dst",
600                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
601def FADDD  : F3_3<2, 0b110100, 0b001000010,
602                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
603                  "faddd $src1, $src2, $dst",
604                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
605def FSUBS  : F3_3<2, 0b110100, 0b001000101,
606                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
607                  "fsubs $src1, $src2, $dst",
608                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
609def FSUBD  : F3_3<2, 0b110100, 0b001000110,
610                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
611                  "fsubd $src1, $src2, $dst",
612                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
613
614// Floating-point Multiply and Divide Instructions, p. 147
615def FMULS  : F3_3<2, 0b110100, 0b001001001,
616                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
617                  "fmuls $src1, $src2, $dst",
618                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
619def FMULD  : F3_3<2, 0b110100, 0b001001010,
620                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
621                  "fmuld $src1, $src2, $dst",
622                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
623def FSMULD : F3_3<2, 0b110100, 0b001101001,
624                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
625                  "fsmuld $src1, $src2, $dst",
626                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
627                                            (fextend FPRegs:$src2)))]>;
628def FDIVS  : F3_3<2, 0b110100, 0b001001101,
629                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
630                 "fdivs $src1, $src2, $dst",
631                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
632def FDIVD  : F3_3<2, 0b110100, 0b001001110,
633                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
634                 "fdivd $src1, $src2, $dst",
635                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
636
637// Floating-point Compare Instructions, p. 148
638// Note: the 2nd template arg is different for these guys.
639// Note 2: the result of a FCMP is not available until the 2nd cycle
640// after the instr is retired, but there is no interlock. This behavior
641// is modelled with a forced noop after the instruction.
642def FCMPS  : F3_3<2, 0b110101, 0b001010001,
643                  (outs), (ins FPRegs:$src1, FPRegs:$src2),
644                  "fcmps $src1, $src2\n\tnop",
645                  [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
646def FCMPD  : F3_3<2, 0b110101, 0b001010010,
647                  (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
648                  "fcmpd $src1, $src2\n\tnop",
649                  [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
650
651
652//===----------------------------------------------------------------------===//
653// V9 Instructions
654//===----------------------------------------------------------------------===//
655
656// V9 Conditional Moves.
657let Predicates = [HasV9], isTwoAddress = 1 in {
658  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
659  // FIXME: Add instruction encodings for the JIT some day.
660  def MOVICCrr
661    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
662             "mov$cc %icc, $F, $dst",
663             [(set IntRegs:$dst,
664                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
665  def MOVICCri
666    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
667             "mov$cc %icc, $F, $dst",
668             [(set IntRegs:$dst,
669                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
670
671  def MOVFCCrr
672    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
673             "mov$cc %fcc0, $F, $dst",
674             [(set IntRegs:$dst,
675                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
676  def MOVFCCri
677    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
678             "mov$cc %fcc0, $F, $dst",
679             [(set IntRegs:$dst,
680                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
681
682  def FMOVS_ICC
683    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
684             "fmovs$cc %icc, $F, $dst",
685             [(set FPRegs:$dst,
686                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
687  def FMOVD_ICC
688    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
689             "fmovd$cc %icc, $F, $dst",
690             [(set DFPRegs:$dst,
691                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
692  def FMOVS_FCC
693    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
694             "fmovs$cc %fcc0, $F, $dst",
695             [(set FPRegs:$dst,
696                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
697  def FMOVD_FCC
698    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
699             "fmovd$cc %fcc0, $F, $dst",
700             [(set DFPRegs:$dst,
701                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
702
703}
704
705// Floating-Point Move Instructions, p. 164 of the V9 manual.
706let Predicates = [HasV9] in {
707  def FMOVD : F3_3<2, 0b110100, 0b000000010,
708                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
709                   "fmovd $src, $dst", []>;
710  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
711                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
712                   "fnegd $src, $dst",
713                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
714  def FABSD : F3_3<2, 0b110100, 0b000001010, 
715                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
716                   "fabsd $src, $dst",
717                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
718}
719
720// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
721// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
722def POPCrr : F3_1<2, 0b101110, 
723                  (outs IntRegs:$dst), (ins IntRegs:$src),
724                  "popc $src, $dst", []>, Requires<[HasV9]>;
725def : Pat<(ctpop IntRegs:$src),
726          (POPCrr (SLLri IntRegs:$src, 0))>;
727
728//===----------------------------------------------------------------------===//
729// Non-Instruction Patterns
730//===----------------------------------------------------------------------===//
731
732// Small immediates.
733def : Pat<(i32 simm13:$val),
734          (ORri G0, imm:$val)>;
735// Arbitrary immediates.
736def : Pat<(i32 imm:$val),
737          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
738
739// subc
740def : Pat<(subc IntRegs:$b, IntRegs:$c),
741          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
742def : Pat<(subc IntRegs:$b, simm13:$val),
743          (SUBCCri IntRegs:$b, imm:$val)>;
744
745// Global addresses, constant pool entries
746def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
747def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
748def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
749def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
750
751// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
752def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
753          (ADDri IntRegs:$r, tglobaladdr:$in)>;
754def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
755          (ADDri IntRegs:$r, tconstpool:$in)>;
756
757// Calls: 
758def : Pat<(call tglobaladdr:$dst),
759          (CALL tglobaladdr:$dst)>;
760def : Pat<(call texternalsym:$dst),
761          (CALL texternalsym:$dst)>;
762
763def : Pat<(ret), (RETL)>;
764
765// Map integer extload's to zextloads.
766def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
767def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
768def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
769def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
770def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
771def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
772
773// zextload bool -> zextload byte
774def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
775def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
776