SparcInstrInfo.td revision 749d6fadf8ac410bb4083a3467ea9f0429c30455
1//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SparcV8 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcV8InstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{
47  // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48  return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
49}]>;
50
51def simm13  : PatLeaf<(imm), [{
52  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
53  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
54}]>;
55
56def LO10 : SDNodeXForm<imm, [{
57  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
58}]>;
59
60def HI22 : SDNodeXForm<imm, [{
61  // Transformation function: shift the immediate value down into the low bits.
62  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
70def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
71def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", []>;
72
73// Address operands
74def MEMrr : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let NumMIOperands = 2;
77  let MIOperandInfo = (ops IntRegs, IntRegs);
78}
79def MEMri : Operand<i32> {
80  let PrintMethod = "printMemOperand";
81  let NumMIOperands = 2;
82  let MIOperandInfo = (ops IntRegs, i32imm);
83}
84
85// Branch targets have OtherVT type.
86def brtarget : Operand<OtherVT>;
87def calltarget : Operand<i32>;
88
89def SDTV8cmpfcc : 
90SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisFP<1>, SDTCisSameAs<1, 2>]>;
91def SDTV8brcc : 
92SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
93                     SDTCisVT<2, FlagVT>]>;
94def SDTV8selectcc :
95SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, 
96                     SDTCisVT<3, i32>, SDTCisVT<4, FlagVT>]>;
97def SDTV8FTOI :
98SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
99def SDTV8ITOF :
100SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
101
102def V8cmpicc : SDNode<"V8ISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
103def V8cmpfcc : SDNode<"V8ISD::CMPFCC", SDTV8cmpfcc, [SDNPOutFlag]>;
104def V8bricc : SDNode<"V8ISD::BRICC", SDTV8brcc, [SDNPHasChain]>;
105def V8brfcc : SDNode<"V8ISD::BRFCC", SDTV8brcc, [SDNPHasChain]>;
106
107def V8hi    : SDNode<"V8ISD::Hi", SDTIntUnaryOp>;
108def V8lo    : SDNode<"V8ISD::Lo", SDTIntUnaryOp>;
109
110def V8ftoi  : SDNode<"V8ISD::FTOI", SDTV8FTOI>;
111def V8itof  : SDNode<"V8ISD::ITOF", SDTV8ITOF>;
112
113def V8selecticc : SDNode<"V8ISD::SELECT_ICC", SDTV8selectcc>;
114def V8selectfcc : SDNode<"V8ISD::SELECT_FCC", SDTV8selectcc>;
115
116// These are target-independent nodes, but have target-specific formats.
117def SDT_V8CallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
118def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_V8CallSeq, [SDNPHasChain]>;
119def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_V8CallSeq, [SDNPHasChain]>;
120
121def SDT_V8Call    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
122def call          : SDNode<"V8ISD::CALL", SDT_V8Call,
123	                   [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
124
125def SDT_V8RetFlag : SDTypeProfile<0, 0, []>;
126def retflag       : SDNode<"V8ISD::RET_FLAG", SDT_V8RetFlag,
127	                   [SDNPHasChain, SDNPOptInFlag]>;
128
129//===----------------------------------------------------------------------===//
130// SPARC Flag Conditions
131//===----------------------------------------------------------------------===//
132
133// Note that these values must be kept in sync with the V8CC::CondCode enum
134// values.
135class ICC_VAL<int N> : PatLeaf<(i32 N)> {
136 int ICCVal = N;
137}
138def ICC_NE  : ICC_VAL< 9>;  // Not Equal
139def ICC_E   : ICC_VAL< 1>;  // Equal
140def ICC_G   : ICC_VAL<10>;  // Greater
141def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
142def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
143def ICC_L   : ICC_VAL< 3>;  // Less
144def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
145def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
146def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
147def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
148def ICC_POS : ICC_VAL<14>;  // Positive
149def ICC_NEG : ICC_VAL< 6>;  // Negative
150def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
151def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
152
153class FCC_VAL<int N> : PatLeaf<(i32 N)> {
154  int FCCVal = N;
155}
156def FCC_U   : FCC_VAL<23>;  // Unordered
157def FCC_G   : FCC_VAL<22>;  // Greater
158def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
159def FCC_L   : FCC_VAL<20>;  // Less
160def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
161def FCC_LG  : FCC_VAL<18>;  // Less or Greater
162def FCC_NE  : FCC_VAL<17>;  // Not Equal
163def FCC_E   : FCC_VAL<25>;  // Equal
164def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
165def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
166def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
167def FCC_LE  : FCC_VAL<27>;  // Less or Equal
168def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
169def FCC_O   : FCC_VAL<29>;  // Ordered
170
171
172//===----------------------------------------------------------------------===//
173// Instructions
174//===----------------------------------------------------------------------===//
175
176// Pseudo instructions.
177class Pseudo<dag ops, string asmstr, list<dag> pattern>
178   : InstV8<ops, asmstr, pattern>;
179
180def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
181                               "!ADJCALLSTACKDOWN $amt",
182                               [(callseq_start imm:$amt)]>;
183def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
184                            "!ADJCALLSTACKUP $amt",
185                            [(callseq_end imm:$amt)]>;
186def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
187                              "!IMPLICIT_DEF $dst",
188                              [(set IntRegs:$dst, (undef))]>;
189def IMPLICIT_DEF_FP  : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
190                              [(set FPRegs:$dst, (undef))]>;
191def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
192                              [(set DFPRegs:$dst, (undef))]>;
193                              
194// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
195// fpmover pass.
196let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
197  def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
198                      "!FpMOVD $src, $dst", []>;
199  def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
200                      "!FpNEGD $src, $dst",
201                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
202  def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
203                      "!FpABSD $src, $dst",
204                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
205}
206
207// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded by the
208// scheduler into a branch sequence.  This has to handle all permutations of
209// selection between i32/f32/f64 on ICC and FCC.
210let usesCustomDAGSchedInserter = 1 in {  // Expanded by the scheduler.
211  def SELECT_CC_Int_ICC
212   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
213            "; SELECT_CC_Int_ICC PSEUDO!",
214            [(set IntRegs:$dst, (V8selecticc IntRegs:$T, IntRegs:$F,
215                                             imm:$Cond, ICC))]>;
216  def SELECT_CC_Int_FCC
217   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
218            "; SELECT_CC_Int_FCC PSEUDO!",
219            [(set IntRegs:$dst, (V8selectfcc IntRegs:$T, IntRegs:$F,
220                                             imm:$Cond, FCC))]>;
221  def SELECT_CC_FP_ICC
222   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
223            "; SELECT_CC_FP_ICC PSEUDO!",
224            [(set FPRegs:$dst, (V8selecticc FPRegs:$T, FPRegs:$F,
225                                            imm:$Cond, ICC))]>;
226  def SELECT_CC_FP_FCC
227   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
228            "; SELECT_CC_FP_FCC PSEUDO!",
229            [(set FPRegs:$dst, (V8selectfcc FPRegs:$T, FPRegs:$F,
230                                            imm:$Cond, FCC))]>;
231  def SELECT_CC_DFP_ICC
232   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
233            "; SELECT_CC_DFP_ICC PSEUDO!",
234            [(set DFPRegs:$dst, (V8selecticc DFPRegs:$T, DFPRegs:$F,
235                                             imm:$Cond, ICC))]>;
236  def SELECT_CC_DFP_FCC
237   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
238            "; SELECT_CC_DFP_FCC PSEUDO!",
239            [(set DFPRegs:$dst, (V8selectfcc DFPRegs:$T, DFPRegs:$F,
240                                             imm:$Cond, FCC))]>;
241}
242
243
244// Section A.3 - Synthetic Instructions, p. 85
245// special cases of JMPL:
246let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
247  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
248    def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
249}
250
251// Section B.1 - Load Integer Instructions, p. 90
252def LDSBrr : F3_1<3, 0b001001,
253                  (ops IntRegs:$dst, MEMrr:$addr),
254                  "ldsb [$addr], $dst",
255                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
256def LDSBri : F3_2<3, 0b001001,
257                  (ops IntRegs:$dst, MEMri:$addr),
258                  "ldsb [$addr], $dst",
259                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
260def LDSHrr : F3_1<3, 0b001010,
261                  (ops IntRegs:$dst, MEMrr:$addr),
262                  "ldsh [$addr], $dst",
263                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
264def LDSHri : F3_2<3, 0b001010,
265                  (ops IntRegs:$dst, MEMri:$addr),
266                  "ldsh [$addr], $dst",
267                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
268def LDUBrr : F3_1<3, 0b000001,
269                  (ops IntRegs:$dst, MEMrr:$addr),
270                  "ldub [$addr], $dst",
271                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
272def LDUBri : F3_2<3, 0b000001,
273                  (ops IntRegs:$dst, MEMri:$addr),
274                  "ldub [$addr], $dst",
275                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
276def LDUHrr : F3_1<3, 0b000010,
277                  (ops IntRegs:$dst, MEMrr:$addr),
278                  "lduh [$addr], $dst",
279                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
280def LDUHri : F3_2<3, 0b000010,
281                  (ops IntRegs:$dst, MEMri:$addr),
282                  "lduh [$addr], $dst",
283                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
284def LDrr   : F3_1<3, 0b000000,
285                  (ops IntRegs:$dst, MEMrr:$addr),
286                  "ld [$addr], $dst",
287                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
288def LDri   : F3_2<3, 0b000000,
289                  (ops IntRegs:$dst, MEMri:$addr),
290                  "ld [$addr], $dst",
291                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
292
293// Section B.2 - Load Floating-point Instructions, p. 92
294def LDFrr  : F3_1<3, 0b100000,
295                  (ops FPRegs:$dst, MEMrr:$addr),
296                  "ld [$addr], $dst",
297                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
298def LDFri  : F3_2<3, 0b100000,
299                  (ops FPRegs:$dst, MEMri:$addr),
300                  "ld [$addr], $dst",
301                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
302def LDDFrr : F3_1<3, 0b100011,
303                  (ops DFPRegs:$dst, MEMrr:$addr),
304                  "ldd [$addr], $dst",
305                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
306def LDDFri : F3_2<3, 0b100011,
307                  (ops DFPRegs:$dst, MEMri:$addr),
308                  "ldd [$addr], $dst",
309                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
310
311// Section B.4 - Store Integer Instructions, p. 95
312def STBrr : F3_1<3, 0b000101,
313                 (ops MEMrr:$addr, IntRegs:$src),
314                 "stb $src, [$addr]",
315                 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
316def STBri : F3_2<3, 0b000101,
317                 (ops MEMri:$addr, IntRegs:$src),
318                 "stb $src, [$addr]",
319                 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
320def STHrr : F3_1<3, 0b000110,
321                 (ops MEMrr:$addr, IntRegs:$src),
322                 "sth $src, [$addr]",
323                 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
324def STHri : F3_2<3, 0b000110,
325                 (ops MEMri:$addr, IntRegs:$src),
326                 "sth $src, [$addr]",
327                 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
328def STrr  : F3_1<3, 0b000100,
329                 (ops MEMrr:$addr, IntRegs:$src),
330                 "st $src, [$addr]",
331                 [(store IntRegs:$src, ADDRrr:$addr)]>;
332def STri  : F3_2<3, 0b000100,
333                 (ops MEMri:$addr, IntRegs:$src),
334                 "st $src, [$addr]",
335                 [(store IntRegs:$src, ADDRri:$addr)]>;
336
337// Section B.5 - Store Floating-point Instructions, p. 97
338def STFrr   : F3_1<3, 0b100100,
339                   (ops MEMrr:$addr, FPRegs:$src),
340                   "st $src, [$addr]",
341                   [(store FPRegs:$src, ADDRrr:$addr)]>;
342def STFri   : F3_2<3, 0b100100,
343                   (ops MEMri:$addr, FPRegs:$src),
344                   "st $src, [$addr]",
345                   [(store FPRegs:$src, ADDRri:$addr)]>;
346def STDFrr  : F3_1<3, 0b100111,
347                   (ops MEMrr:$addr, DFPRegs:$src),
348                   "std  $src, [$addr]",
349                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
350def STDFri  : F3_2<3, 0b100111,
351                   (ops MEMri:$addr, DFPRegs:$src),
352                   "std $src, [$addr]",
353                   [(store DFPRegs:$src, ADDRri:$addr)]>;
354
355// Section B.9 - SETHI Instruction, p. 104
356def SETHIi: F2_1<0b100,
357                 (ops IntRegs:$dst, i32imm:$src),
358                 "sethi $src, $dst",
359                 [(set IntRegs:$dst, SETHIimm:$src)]>;
360
361// Section B.10 - NOP Instruction, p. 105
362// (It's a special case of SETHI)
363let rd = 0, imm22 = 0 in
364  def NOP : F2_1<0b100, (ops), "nop", []>;
365
366// Section B.11 - Logical Instructions, p. 106
367def ANDrr   : F3_1<2, 0b000001,
368                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
369                   "and $b, $c, $dst",
370                   [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
371def ANDri   : F3_2<2, 0b000001,
372                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
373                   "and $b, $c, $dst",
374                   [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
375def ANDNrr  : F3_1<2, 0b000101,
376                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
377                   "andn $b, $c, $dst",
378                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
379def ANDNri  : F3_2<2, 0b000101,
380                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
381                   "andn $b, $c, $dst", []>;
382def ORrr    : F3_1<2, 0b000010,
383                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
384                   "or $b, $c, $dst",
385                   [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
386def ORri    : F3_2<2, 0b000010,
387                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
388                   "or $b, $c, $dst",
389                   [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
390def ORNrr   : F3_1<2, 0b000110,
391                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
392                   "orn $b, $c, $dst",
393                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
394def ORNri   : F3_2<2, 0b000110,
395                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
396                   "orn $b, $c, $dst", []>;
397def XORrr   : F3_1<2, 0b000011,
398                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
399                   "xor $b, $c, $dst",
400                   [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
401def XORri   : F3_2<2, 0b000011,
402                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
403                   "xor $b, $c, $dst",
404                   [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
405def XNORrr  : F3_1<2, 0b000111,
406                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
407                   "xnor $b, $c, $dst",
408                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
409def XNORri  : F3_2<2, 0b000111,
410                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
411                   "xnor $b, $c, $dst", []>;
412
413// Section B.12 - Shift Instructions, p. 107
414def SLLrr : F3_1<2, 0b100101,
415                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
416                 "sll $b, $c, $dst",
417                 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
418def SLLri : F3_2<2, 0b100101,
419                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
420                 "sll $b, $c, $dst",
421                 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
422def SRLrr : F3_1<2, 0b100110, 
423                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
424                  "srl $b, $c, $dst",
425                  [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
426def SRLri : F3_2<2, 0b100110,
427                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
428                 "srl $b, $c, $dst", 
429                 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
430def SRArr : F3_1<2, 0b100111, 
431                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
432                  "sra $b, $c, $dst",
433                  [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
434def SRAri : F3_2<2, 0b100111,
435                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
436                 "sra $b, $c, $dst",
437                 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
438
439// Section B.13 - Add Instructions, p. 108
440def ADDrr   : F3_1<2, 0b000000, 
441                  (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
442                  "add $b, $c, $dst",
443                   [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
444def ADDri   : F3_2<2, 0b000000,
445                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
446                   "add $b, $c, $dst",
447                   [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
448def ADDCCrr : F3_1<2, 0b010000, 
449                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
450                   "addcc $b, $c, $dst", []>;
451def ADDCCri : F3_2<2, 0b010000,
452                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
453                   "addcc $b, $c, $dst", []>;
454def ADDXrr  : F3_1<2, 0b001000, 
455                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
456                   "addx $b, $c, $dst", []>;
457def ADDXri  : F3_2<2, 0b001000,
458                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
459                   "addx $b, $c, $dst", []>;
460
461// Section B.15 - Subtract Instructions, p. 110
462def SUBrr   : F3_1<2, 0b000100, 
463                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
464                   "sub $b, $c, $dst",
465                   [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
466def SUBri   : F3_2<2, 0b000100,
467                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
468                   "sub $b, $c, $dst",
469                   [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
470def SUBXrr  : F3_1<2, 0b001100, 
471                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
472                   "subx $b, $c, $dst", []>;
473def SUBXri  : F3_2<2, 0b001100,
474                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
475                   "subx $b, $c, $dst", []>;
476def SUBCCrr : F3_1<2, 0b010100, 
477                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
478                   "subcc $b, $c, $dst",
479                   [(set IntRegs:$dst, (V8cmpicc IntRegs:$b, IntRegs:$c))]>;
480def SUBCCri : F3_2<2, 0b010100,
481                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
482                   "subcc $b, $c, $dst",
483                   [(set IntRegs:$dst, (V8cmpicc IntRegs:$b, simm13:$c))]>;
484def SUBXCCrr: F3_1<2, 0b011100, 
485                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
486                   "subxcc $b, $c, $dst", []>;
487
488// Section B.18 - Multiply Instructions, p. 113
489def UMULrr  : F3_1<2, 0b001010, 
490                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
491                   "umul $b, $c, $dst", []>;
492def UMULri  : F3_2<2, 0b001010,
493                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
494                   "umul $b, $c, $dst", []>;
495def SMULrr  : F3_1<2, 0b001011, 
496                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
497                   "smul $b, $c, $dst",
498                   [(set IntRegs:$dst, (mul IntRegs:$b, IntRegs:$c))]>;
499def SMULri  : F3_2<2, 0b001011,
500                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
501                   "smul $b, $c, $dst",
502                   [(set IntRegs:$dst, (mul IntRegs:$b, simm13:$c))]>;
503
504// Section B.19 - Divide Instructions, p. 115
505def UDIVrr   : F3_1<2, 0b001110, 
506                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
507                    "udiv $b, $c, $dst", []>;
508def UDIVri   : F3_2<2, 0b001110,
509                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
510                    "udiv $b, $c, $dst", []>;
511def SDIVrr   : F3_1<2, 0b001111,
512                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
513                    "sdiv $b, $c, $dst", []>;
514def SDIVri   : F3_2<2, 0b001111,
515                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
516                    "sdiv $b, $c, $dst", []>;
517
518// Section B.20 - SAVE and RESTORE, p. 117
519def SAVErr    : F3_1<2, 0b111100,
520                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
521                     "save $b, $c, $dst", []>;
522def SAVEri    : F3_2<2, 0b111100,
523                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
524                     "save $b, $c, $dst", []>;
525def RESTORErr : F3_1<2, 0b111101,
526                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
527                     "restore $b, $c, $dst", []>;
528def RESTOREri : F3_2<2, 0b111101,
529                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
530                     "restore $b, $c, $dst", []>;
531
532// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
533
534// conditional branch class:
535class BranchV8<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
536 : F2_2<cc, 0b010, ops, asmstr, pattern> {
537  let isBranch = 1;
538  let isTerminator = 1;
539  let hasDelaySlot = 1;
540  let noResults = 1;
541}
542
543let isBarrier = 1 in
544  def BA   : BranchV8<0b1000, (ops brtarget:$dst),
545                      "ba $dst",
546                      [(br bb:$dst)]>;
547def BNE  : BranchV8<0b1001, (ops brtarget:$dst),
548                    "bne $dst",
549                    [(V8bricc bb:$dst, ICC_NE, ICC)]>;
550def BE   : BranchV8<0b0001, (ops brtarget:$dst),
551                    "be $dst",
552                    [(V8bricc bb:$dst, ICC_E, ICC)]>;
553def BG   : BranchV8<0b1010, (ops brtarget:$dst),
554                    "bg $dst",
555                    [(V8bricc bb:$dst, ICC_G, ICC)]>;
556def BLE  : BranchV8<0b0010, (ops brtarget:$dst),
557                    "ble $dst",
558                    [(V8bricc bb:$dst, ICC_LE, ICC)]>;
559def BGE  : BranchV8<0b1011, (ops brtarget:$dst),
560                    "bge $dst",
561                    [(V8bricc bb:$dst, ICC_GE, ICC)]>;
562def BL   : BranchV8<0b0011, (ops brtarget:$dst),
563                    "bl $dst",
564                    [(V8bricc bb:$dst, ICC_L, ICC)]>;
565def BGU  : BranchV8<0b1100, (ops brtarget:$dst),
566                    "bgu $dst",
567                    [(V8bricc bb:$dst, ICC_GU, ICC)]>;
568def BLEU : BranchV8<0b0100, (ops brtarget:$dst),
569                    "bleu $dst",
570                    [(V8bricc bb:$dst, ICC_LEU, ICC)]>;
571def BCC  : BranchV8<0b1101, (ops brtarget:$dst),
572                    "bcc $dst",
573                    [(V8bricc bb:$dst, ICC_CC, ICC)]>;
574def BCS  : BranchV8<0b0101, (ops brtarget:$dst),
575                    "bcs $dst",
576                    [(V8bricc bb:$dst, ICC_CS, ICC)]>;
577def BPOS : BranchV8<0b1110, (ops brtarget:$dst),
578                    "bpos $dst",
579                    [(V8bricc bb:$dst, ICC_POS, ICC)]>;
580def BNEG : BranchV8<0b0110, (ops brtarget:$dst),
581                    "bneg $dst",
582                    [(V8bricc bb:$dst, ICC_NEG, ICC)]>;
583def BVC  : BranchV8<0b1111, (ops brtarget:$dst),
584                    "bvc $dst",
585                    [(V8bricc bb:$dst, ICC_VC, ICC)]>;
586def BVS  : BranchV8<0b0111, (ops brtarget:$dst),
587                    "bvs $dst",
588                    [(V8bricc bb:$dst, ICC_VS, ICC)]>;
589
590
591
592// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
593
594// floating-point conditional branch class:
595class FPBranchV8<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
596 : F2_2<cc, 0b110, ops, asmstr, pattern> {
597  let isBranch = 1;
598  let isTerminator = 1;
599  let hasDelaySlot = 1;
600  let noResults = 1;
601}
602
603def FBU  : FPBranchV8<0b0111, (ops brtarget:$dst),
604                      "fbu $dst",
605                      [(V8brfcc bb:$dst, FCC_U, FCC)]>;
606def FBG  : FPBranchV8<0b0110, (ops brtarget:$dst),
607                      "fbg $dst",
608                      [(V8brfcc bb:$dst, FCC_G, FCC)]>;
609def FBUG : FPBranchV8<0b0101, (ops brtarget:$dst),
610                      "fbug $dst",
611                      [(V8brfcc bb:$dst, FCC_UG, FCC)]>;
612def FBL  : FPBranchV8<0b0100, (ops brtarget:$dst),
613                      "fbl $dst",
614                      [(V8brfcc bb:$dst, FCC_L, FCC)]>;
615def FBUL : FPBranchV8<0b0011, (ops brtarget:$dst),
616                      "fbul $dst",
617                      [(V8brfcc bb:$dst, FCC_UL, FCC)]>;
618def FBLG : FPBranchV8<0b0010, (ops brtarget:$dst),
619                      "fblg $dst",
620                      [(V8brfcc bb:$dst, FCC_LG, FCC)]>;
621def FBNE : FPBranchV8<0b0001, (ops brtarget:$dst),
622                      "fbne $dst",
623                      [(V8brfcc bb:$dst, FCC_NE, FCC)]>;
624def FBE  : FPBranchV8<0b1001, (ops brtarget:$dst),
625                      "fbe $dst",
626                      [(V8brfcc bb:$dst, FCC_E, FCC)]>;
627def FBUE : FPBranchV8<0b1010, (ops brtarget:$dst),
628                      "fbue $dst",
629                      [(V8brfcc bb:$dst, FCC_UE, FCC)]>;
630def FBGE : FPBranchV8<0b1011, (ops brtarget:$dst),
631                      "fbge $dst",
632                      [(V8brfcc bb:$dst, FCC_GE, FCC)]>;
633def FBUGE: FPBranchV8<0b1100, (ops brtarget:$dst),
634                      "fbuge $dst",
635                      [(V8brfcc bb:$dst, FCC_UGE, FCC)]>;
636def FBLE : FPBranchV8<0b1101, (ops brtarget:$dst),
637                      "fble $dst",
638                      [(V8brfcc bb:$dst, FCC_LE, FCC)]>;
639def FBULE: FPBranchV8<0b1110, (ops brtarget:$dst),
640                      "fbule $dst",
641                      [(V8brfcc bb:$dst, FCC_ULE, FCC)]>;
642def FBO  : FPBranchV8<0b1111, (ops brtarget:$dst),
643                      "fbo $dst",
644                      [(V8brfcc bb:$dst, FCC_O, FCC)]>;
645
646
647
648// Section B.24 - Call and Link Instruction, p. 125
649// This is the only Format 1 instruction
650let Uses = [O0, O1, O2, O3, O4, O5],
651    hasDelaySlot = 1, isCall = 1, noResults = 1,
652    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
653    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
654  def CALL : InstV8<(ops calltarget:$dst),
655                    "call $dst", []> {
656    bits<30> disp;
657    let op = 1;
658    let Inst{29-0} = disp;
659  }
660  
661  // indirect calls
662  def JMPLrr : F3_1<2, 0b111000,
663                    (ops MEMrr:$ptr),
664                    "call $ptr",
665                    [(call  ADDRrr:$ptr)]>;
666  def JMPLri : F3_2<2, 0b111000,
667                    (ops MEMri:$ptr),
668                    "call $ptr",
669                    [(call  ADDRri:$ptr)]>;
670}
671
672// Section B.28 - Read State Register Instructions
673def RDY : F3_1<2, 0b101000,
674               (ops IntRegs:$dst),
675               "rd %y, $dst", []>;
676
677// Section B.29 - Write State Register Instructions
678def WRYrr : F3_1<2, 0b110000,
679                 (ops IntRegs:$b, IntRegs:$c),
680                 "wr $b, $c, %y", []>;
681def WRYri : F3_2<2, 0b110000,
682                 (ops IntRegs:$b, i32imm:$c),
683                 "wr $b, $c, %y", []>;
684
685// Convert Integer to Floating-point Instructions, p. 141
686def FITOS : F3_3<2, 0b110100, 0b011000100,
687                 (ops FPRegs:$dst, FPRegs:$src),
688                 "fitos $src, $dst",
689                 [(set FPRegs:$dst, (V8itof FPRegs:$src))]>;
690def FITOD : F3_3<2, 0b110100, 0b011001000, 
691                 (ops DFPRegs:$dst, FPRegs:$src),
692                 "fitod $src, $dst",
693                 [(set DFPRegs:$dst, (V8itof FPRegs:$src))]>;
694
695// Convert Floating-point to Integer Instructions, p. 142
696def FSTOI : F3_3<2, 0b110100, 0b011010001,
697                 (ops FPRegs:$dst, FPRegs:$src),
698                 "fstoi $src, $dst",
699                 [(set FPRegs:$dst, (V8ftoi FPRegs:$src))]>;
700def FDTOI : F3_3<2, 0b110100, 0b011010010,
701                 (ops FPRegs:$dst, DFPRegs:$src),
702                 "fdtoi $src, $dst",
703                 [(set FPRegs:$dst, (V8ftoi DFPRegs:$src))]>;
704
705// Convert between Floating-point Formats Instructions, p. 143
706def FSTOD : F3_3<2, 0b110100, 0b011001001, 
707                 (ops DFPRegs:$dst, FPRegs:$src),
708                 "fstod $src, $dst",
709                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
710def FDTOS : F3_3<2, 0b110100, 0b011000110,
711                 (ops FPRegs:$dst, DFPRegs:$src),
712                 "fdtos $src, $dst",
713                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
714
715// Floating-point Move Instructions, p. 144
716def FMOVS : F3_3<2, 0b110100, 0b000000001,
717                 (ops FPRegs:$dst, FPRegs:$src),
718                 "fmovs $src, $dst", []>;
719def FNEGS : F3_3<2, 0b110100, 0b000000101, 
720                 (ops FPRegs:$dst, FPRegs:$src),
721                 "fnegs $src, $dst",
722                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
723def FABSS : F3_3<2, 0b110100, 0b000001001, 
724                 (ops FPRegs:$dst, FPRegs:$src),
725                 "fabss $src, $dst",
726                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
727
728
729// Floating-point Square Root Instructions, p.145
730def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
731                  (ops FPRegs:$dst, FPRegs:$src),
732                  "fsqrts $src, $dst",
733                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
734def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
735                  (ops DFPRegs:$dst, DFPRegs:$src),
736                  "fsqrtd $src, $dst",
737                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
738
739
740
741// Floating-point Add and Subtract Instructions, p. 146
742def FADDS  : F3_3<2, 0b110100, 0b001000001,
743                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
744                  "fadds $src1, $src2, $dst",
745                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
746def FADDD  : F3_3<2, 0b110100, 0b001000010,
747                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
748                  "faddd $src1, $src2, $dst",
749                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
750def FSUBS  : F3_3<2, 0b110100, 0b001000101,
751                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
752                  "fsubs $src1, $src2, $dst",
753                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
754def FSUBD  : F3_3<2, 0b110100, 0b001000110,
755                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
756                  "fsubd $src1, $src2, $dst",
757                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
758
759// Floating-point Multiply and Divide Instructions, p. 147
760def FMULS  : F3_3<2, 0b110100, 0b001001001,
761                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
762                  "fmuls $src1, $src2, $dst",
763                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
764def FMULD  : F3_3<2, 0b110100, 0b001001010,
765                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
766                  "fmuld $src1, $src2, $dst",
767                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
768def FSMULD : F3_3<2, 0b110100, 0b001101001,
769                  (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
770                  "fsmuld $src1, $src2, $dst",
771                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
772                                            (fextend FPRegs:$src2)))]>;
773def FDIVS  : F3_3<2, 0b110100, 0b001001101,
774                 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
775                 "fdivs $src1, $src2, $dst",
776                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
777def FDIVD  : F3_3<2, 0b110100, 0b001001110,
778                 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
779                 "fdivd $src1, $src2, $dst",
780                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
781
782// Floating-point Compare Instructions, p. 148
783// Note: the 2nd template arg is different for these guys.
784// Note 2: the result of a FCMP is not available until the 2nd cycle
785// after the instr is retired, but there is no interlock. This behavior
786// is modelled with a forced noop after the instruction.
787def FCMPS  : F3_3<2, 0b110101, 0b001010001,
788                  (ops FPRegs:$src1, FPRegs:$src2),
789                  "fcmps $src1, $src2\n\tnop",
790                  [(set FCC, (V8cmpfcc FPRegs:$src1, FPRegs:$src2))]>;
791def FCMPD  : F3_3<2, 0b110101, 0b001010010,
792                  (ops DFPRegs:$src1, DFPRegs:$src2),
793                  "fcmpd $src1, $src2\n\tnop",
794                  [(set FCC, (V8cmpfcc DFPRegs:$src1, DFPRegs:$src2))]>;
795
796
797//===----------------------------------------------------------------------===//
798// V9 Instructions
799//===----------------------------------------------------------------------===//
800
801// V9 Conditional Moves.
802let Predicates = [HasV9], isTwoAddress = 1 in {
803  // FIXME: Add instruction encodings for the JIT some day.
804  class IntCMOVICCrr<string asmstr, ICC_VAL CC>
805    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F),
806             asmstr,
807             [(set IntRegs:$dst,
808                          (V8selecticc IntRegs:$F, IntRegs:$T, CC, ICC))]> {
809    int CondBits = CC.ICCVal;
810  }
811  
812  
813  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
814  def MOVNErr   : IntCMOVICCrr< "movne %icc, $F, $dst", ICC_NE>;
815  def MOVErr    : IntCMOVICCrr<  "move %icc, $F, $dst", ICC_E>; 
816  def MOVGrr    : IntCMOVICCrr<  "movg %icc, $F, $dst", ICC_G>;
817  def MOVLErr   : IntCMOVICCrr< "movle %icc, $F, $dst", ICC_LE>;
818  def MOVGErr   : IntCMOVICCrr< "movge %icc, $F, $dst", ICC_GE>;
819  def MOVLrr    : IntCMOVICCrr<  "movl %icc, $F, $dst", ICC_L>;
820  def MOVGUrr   : IntCMOVICCrr< "movgu %icc, $F, $dst", ICC_GU>;
821  def MOVLEUrr  : IntCMOVICCrr<"movleu %icc, $F, $dst", ICC_LEU>;
822  def MOVCCrr   : IntCMOVICCrr< "movcc %icc, $F, $dst", ICC_CC>;
823  def MOVCSrr   : IntCMOVICCrr< "movcs %icc, $F, $dst", ICC_CS>;
824  def MOVPOSrr  : IntCMOVICCrr<"movpos %icc, $F, $dst", ICC_POS>;
825  def MOVNEGrr  : IntCMOVICCrr<"movneg %icc, $F, $dst", ICC_NEG>;
826  def MOVVCrr   : IntCMOVICCrr< "movvc %icc, $F, $dst", ICC_VC>;
827  def MOVVSrr   : IntCMOVICCrr< "movvs %icc, $F, $dst", ICC_VS>;
828
829  // FIXME: Allow regalloc of the fcc condition code some day.
830  class IntCMOVFCCrr<string asmstr, FCC_VAL CC>
831    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F),
832             asmstr,
833             [(set IntRegs:$dst,
834                          (V8selectfcc IntRegs:$F, IntRegs:$T, CC, FCC))]> {
835    int CondBits = CC.FCCVal;
836  }
837
838  def MOVFUrr   : IntCMOVFCCrr<  "movfu %fcc, $F, $dst", FCC_U>;
839  def MOVFGrr   : IntCMOVFCCrr<  "movfg %fcc, $F, $dst", FCC_G>;
840  def MOVFUGrr  : IntCMOVFCCrr< "movfug %fcc, $F, $dst", FCC_UG>;
841  def MOVFLrr   : IntCMOVFCCrr<  "movfl %fcc, $F, $dst", FCC_L>;
842  def MOVFULrr  : IntCMOVFCCrr< "movful %fcc, $F, $dst", FCC_UL>;
843  def MOVFLGrr  : IntCMOVFCCrr< "movflg %fcc, $F, $dst", FCC_LG>;
844  def MOVFNErr  : IntCMOVFCCrr< "movfne %fcc, $F, $dst", FCC_NE>;
845  def MOVFErr   : IntCMOVFCCrr<  "movfe %fcc, $F, $dst", FCC_E>;
846  def MOVFUErr  : IntCMOVFCCrr< "movfue %fcc, $F, $dst", FCC_UE>;
847  def MOVFGErr  : IntCMOVFCCrr< "movfge %fcc, $F, $dst", FCC_GE>;
848  def MOVFUGErr : IntCMOVFCCrr<"movfuge %fcc, $F, $dst", FCC_UGE>;
849  def MOVFLErr  : IntCMOVFCCrr< "movfle %fcc, $F, $dst", FCC_LE>;
850  def MOVFULErr : IntCMOVFCCrr<"movfule %fcc, $F, $dst", FCC_ULE>;
851  def MOVFOrr   : IntCMOVFCCrr<  "movfo %fcc, $F, $dst", FCC_O>;
852}
853
854// Floating-Point Move Instructions, p. 164 of the V9 manual.
855let Predicates = [HasV9] in {
856  def FMOVD : F3_3<2, 0b110100, 0b000000010,
857                   (ops DFPRegs:$dst, DFPRegs:$src),
858                   "fmovd $src, $dst", []>;
859  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
860                   (ops DFPRegs:$dst, DFPRegs:$src),
861                   "fnegd $src, $dst",
862                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
863  def FABSD : F3_3<2, 0b110100, 0b000001010, 
864                   (ops DFPRegs:$dst, DFPRegs:$src),
865                   "fabsd $src, $dst",
866                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
867}
868
869// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
870// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
871def POPCrr : F3_1<2, 0b101110, 
872                  (ops IntRegs:$dst, IntRegs:$src),
873                  "popc $src, $dst", []>, Requires<[HasV9]>;
874def : Pat<(ctpop IntRegs:$src),
875          (POPCrr (SLLri IntRegs:$src, 0))>;
876
877//===----------------------------------------------------------------------===//
878// Non-Instruction Patterns
879//===----------------------------------------------------------------------===//
880
881// Small immediates.
882def : Pat<(i32 simm13:$val),
883          (ORri G0, imm:$val)>;
884// Arbitrary immediates.
885def : Pat<(i32 imm:$val),
886          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
887
888// Global addresses, constant pool entries
889def : Pat<(V8hi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
890def : Pat<(V8lo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
891def : Pat<(V8hi tconstpool:$in), (SETHIi tconstpool:$in)>;
892def : Pat<(V8lo tconstpool:$in), (ORri G0, tconstpool:$in)>;
893
894// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
895def : Pat<(add IntRegs:$r, (V8lo tglobaladdr:$in)),
896          (ADDri IntRegs:$r, tglobaladdr:$in)>;
897def : Pat<(add IntRegs:$r, (V8lo tconstpool:$in)),
898          (ADDri IntRegs:$r, tconstpool:$in)>;
899
900
901// Calls: 
902def : Pat<(call tglobaladdr:$dst),
903          (CALL tglobaladdr:$dst)>;
904def : Pat<(call externalsym:$dst),
905          (CALL externalsym:$dst)>;
906
907def : Pat<(ret), (RETL)>;
908
909// Map integer extload's to zextloads.
910def : Pat<(i32 (extload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
911def : Pat<(i32 (extload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
912def : Pat<(i32 (extload ADDRrr:$src, i8)), (LDUBrr ADDRrr:$src)>;
913def : Pat<(i32 (extload ADDRri:$src, i8)), (LDUBri ADDRri:$src)>;
914def : Pat<(i32 (extload ADDRrr:$src, i16)), (LDUHrr ADDRrr:$src)>;
915def : Pat<(i32 (extload ADDRri:$src, i16)), (LDUHri ADDRri:$src)>;
916
917// zextload bool -> zextload byte
918def : Pat<(i32 (zextload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
919def : Pat<(i32 (zextload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
920
921// truncstore bool -> truncstore byte.
922def : Pat<(truncstore IntRegs:$src, ADDRrr:$addr, i1), 
923          (STBrr ADDRrr:$addr, IntRegs:$src)>;
924def : Pat<(truncstore IntRegs:$src, ADDRri:$addr, i1), 
925          (STBri ADDRri:$addr, IntRegs:$src)>;
926