SparcInstrInfo.td revision 7d052f272d3f9ad0acdebf6811e29d529f70c1e1
1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// True when generating 32-bit code.
25def Is32Bit : Predicate<"!Subtarget.is64Bit()">;
26
27// True when generating 64-bit code. This also implies HasV9.
28def Is64Bit : Predicate<"Subtarget.is64Bit()">;
29
30// HasV9 - This predicate is true when the target processor supports V9
31// instructions.  Note that the machine may be running in 32-bit mode.
32def HasV9   : Predicate<"Subtarget.isV9()">;
33
34// HasNoV9 - This predicate is true when the target doesn't have V9
35// instructions.  Use of this is just a hack for the isel not having proper
36// costs for V8 instructions that are more expensive than their V9 ones.
37def HasNoV9 : Predicate<"!Subtarget.isV9()">;
38
39// HasVIS - This is true when the target processor has VIS extensions.
40def HasVIS : Predicate<"Subtarget.isVIS()">;
41
42// HasHardQuad - This is true when the target processor supports quad floating
43// point instructions.
44def HasHardQuad : Predicate<"Subtarget.hasHardQuad()">;
45
46// UseDeprecatedInsts - This predicate is true when the target processor is a
47// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
48// to use when appropriate.  In either of these cases, the instruction selector
49// will pick deprecated instructions.
50def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
51
52//===----------------------------------------------------------------------===//
53// Instruction Pattern Stuff
54//===----------------------------------------------------------------------===//
55
56def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
57
58def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
59
60def LO10 : SDNodeXForm<imm, [{
61  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
62                                   MVT::i32);
63}]>;
64
65def HI22 : SDNodeXForm<imm, [{
66  // Transformation function: shift the immediate value down into the low bits.
67  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
68}]>;
69
70def SETHIimm : PatLeaf<(imm), [{
71  return isShiftedUInt<22, 10>(N->getZExtValue());
72}], HI22>;
73
74// Addressing modes.
75def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>;
76def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>;
77
78// Address operands
79def MEMrr : Operand<iPTR> {
80  let PrintMethod = "printMemOperand";
81  let MIOperandInfo = (ops ptr_rc, ptr_rc);
82}
83def MEMri : Operand<iPTR> {
84  let PrintMethod = "printMemOperand";
85  let MIOperandInfo = (ops ptr_rc, i32imm);
86}
87
88def TLSSym : Operand<iPTR>;
89
90// Branch targets have OtherVT type.
91def brtarget : Operand<OtherVT>;
92def calltarget : Operand<i32>;
93
94// Operand for printing out a condition code.
95let PrintMethod = "printCCOperand" in
96  def CCOp : Operand<i32>;
97
98def SDTSPcmpicc :
99SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>;
100def SDTSPcmpfcc :
101SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
102def SDTSPbrcc :
103SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
104def SDTSPselectcc :
105SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
106def SDTSPFTOI :
107SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
108def SDTSPITOF :
109SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
110
111def SDTSPtlsadd :
112SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
113def SDTSPtlsld :
114SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
115
116def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>;
117def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
118def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
119def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
120def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
121
122def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
123def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
124
125def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
126def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
127
128def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
129def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>;
130def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
131
132//  These are target-independent nodes, but have target-specific formats.
133def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
134def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
135                                        SDTCisVT<1, i32> ]>;
136
137def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
138                           [SDNPHasChain, SDNPOutGlue]>;
139def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
140                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
141
142def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
143def call          : SDNode<"SPISD::CALL", SDT_SPCall,
144                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
145                            SDNPVariadic]>;
146
147def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
148def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
149                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
150
151def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
152                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
153
154def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>;
155def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>;
156def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall,
157                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
158                             SDNPVariadic]>;
159
160def getPCX        : Operand<i32> {
161  let PrintMethod = "printGetPCX";
162}
163
164//===----------------------------------------------------------------------===//
165// SPARC Flag Conditions
166//===----------------------------------------------------------------------===//
167
168// Note that these values must be kept in sync with the CCOp::CondCode enum
169// values.
170class ICC_VAL<int N> : PatLeaf<(i32 N)>;
171def ICC_NE  : ICC_VAL< 9>;  // Not Equal
172def ICC_E   : ICC_VAL< 1>;  // Equal
173def ICC_G   : ICC_VAL<10>;  // Greater
174def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
175def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
176def ICC_L   : ICC_VAL< 3>;  // Less
177def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
178def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
179def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
180def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
181def ICC_POS : ICC_VAL<14>;  // Positive
182def ICC_NEG : ICC_VAL< 6>;  // Negative
183def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
184def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
185
186class FCC_VAL<int N> : PatLeaf<(i32 N)>;
187def FCC_U   : FCC_VAL<23>;  // Unordered
188def FCC_G   : FCC_VAL<22>;  // Greater
189def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
190def FCC_L   : FCC_VAL<20>;  // Less
191def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
192def FCC_LG  : FCC_VAL<18>;  // Less or Greater
193def FCC_NE  : FCC_VAL<17>;  // Not Equal
194def FCC_E   : FCC_VAL<25>;  // Equal
195def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
196def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
197def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
198def FCC_LE  : FCC_VAL<27>;  // Less or Equal
199def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
200def FCC_O   : FCC_VAL<29>;  // Ordered
201
202//===----------------------------------------------------------------------===//
203// Instruction Class Templates
204//===----------------------------------------------------------------------===//
205
206/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
207multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
208  def rr  : F3_1<2, Op3Val,
209                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
210                 !strconcat(OpcStr, " $b, $c, $dst"),
211                 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
212  def ri  : F3_2<2, Op3Val,
213                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
214                 !strconcat(OpcStr, " $b, $c, $dst"),
215                 [(set i32:$dst, (OpNode i32:$b, (i32 simm13:$c)))]>;
216}
217
218/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
219/// pattern.
220multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
221  def rr  : F3_1<2, Op3Val,
222                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
223                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
224  def ri  : F3_2<2, Op3Val,
225                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
226                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
227}
228
229//===----------------------------------------------------------------------===//
230// Instructions
231//===----------------------------------------------------------------------===//
232
233// Pseudo instructions.
234class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
235   : InstSP<outs, ins, asmstr, pattern>;
236
237// GETPCX for PIC
238let Defs = [O7] in {
239  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
240}
241
242let Defs = [O6], Uses = [O6] in {
243def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
244                               "!ADJCALLSTACKDOWN $amt",
245                               [(callseq_start timm:$amt)]>;
246def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
247                            "!ADJCALLSTACKUP $amt1",
248                            [(callseq_end timm:$amt1, timm:$amt2)]>;
249}
250
251let hasSideEffects = 1, mayStore = 1 in {
252  let rd = 0, rs1 = 0, rs2 = 0 in
253    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
254                      "flushw",
255                      [(flushw)]>, Requires<[HasV9]>;
256  let rd = 0, rs1 = 1, simm13 = 3 in
257    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
258                   "ta 3",
259                   [(flushw)]>;
260}
261
262def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
263                "unimp $val", []>;
264
265// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
266// instruction selection into a branch sequence.  This has to handle all
267// permutations of selection between i32/f32/f64 on ICC and FCC.
268// Expanded after instruction selection.
269let Uses = [ICC], usesCustomInserter = 1 in {
270  def SELECT_CC_Int_ICC
271   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
272            "; SELECT_CC_Int_ICC PSEUDO!",
273            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
274  def SELECT_CC_FP_ICC
275   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
276            "; SELECT_CC_FP_ICC PSEUDO!",
277            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
278
279  def SELECT_CC_DFP_ICC
280   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
281            "; SELECT_CC_DFP_ICC PSEUDO!",
282            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
283
284  def SELECT_CC_QFP_ICC
285   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
286            "; SELECT_CC_QFP_ICC PSEUDO!",
287            [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>;
288}
289
290let usesCustomInserter = 1, Uses = [FCC] in {
291
292  def SELECT_CC_Int_FCC
293   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
294            "; SELECT_CC_Int_FCC PSEUDO!",
295            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
296
297  def SELECT_CC_FP_FCC
298   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
299            "; SELECT_CC_FP_FCC PSEUDO!",
300            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
301  def SELECT_CC_DFP_FCC
302   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
303            "; SELECT_CC_DFP_FCC PSEUDO!",
304            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
305  def SELECT_CC_QFP_FCC
306   : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond),
307            "; SELECT_CC_QFP_FCC PSEUDO!",
308            [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>;
309}
310
311
312// Section A.3 - Synthetic Instructions, p. 85
313// special cases of JMPL:
314let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
315  let rd = 0, rs1 = 15 in
316    def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
317                   "jmp %o7+$val", [(retflag simm13:$val)]>;
318
319  let rd = 0, rs1 = 31 in
320    def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
321                  "jmp %i7+$val", []>;
322}
323
324// Section B.1 - Load Integer Instructions, p. 90
325def LDSBrr : F3_1<3, 0b001001,
326                  (outs IntRegs:$dst), (ins MEMrr:$addr),
327                  "ldsb [$addr], $dst",
328                  [(set i32:$dst, (sextloadi8 ADDRrr:$addr))]>;
329def LDSBri : F3_2<3, 0b001001,
330                  (outs IntRegs:$dst), (ins MEMri:$addr),
331                  "ldsb [$addr], $dst",
332                  [(set i32:$dst, (sextloadi8 ADDRri:$addr))]>;
333def LDSHrr : F3_1<3, 0b001010,
334                  (outs IntRegs:$dst), (ins MEMrr:$addr),
335                  "ldsh [$addr], $dst",
336                  [(set i32:$dst, (sextloadi16 ADDRrr:$addr))]>;
337def LDSHri : F3_2<3, 0b001010,
338                  (outs IntRegs:$dst), (ins MEMri:$addr),
339                  "ldsh [$addr], $dst",
340                  [(set i32:$dst, (sextloadi16 ADDRri:$addr))]>;
341def LDUBrr : F3_1<3, 0b000001,
342                  (outs IntRegs:$dst), (ins MEMrr:$addr),
343                  "ldub [$addr], $dst",
344                  [(set i32:$dst, (zextloadi8 ADDRrr:$addr))]>;
345def LDUBri : F3_2<3, 0b000001,
346                  (outs IntRegs:$dst), (ins MEMri:$addr),
347                  "ldub [$addr], $dst",
348                  [(set i32:$dst, (zextloadi8 ADDRri:$addr))]>;
349def LDUHrr : F3_1<3, 0b000010,
350                  (outs IntRegs:$dst), (ins MEMrr:$addr),
351                  "lduh [$addr], $dst",
352                  [(set i32:$dst, (zextloadi16 ADDRrr:$addr))]>;
353def LDUHri : F3_2<3, 0b000010,
354                  (outs IntRegs:$dst), (ins MEMri:$addr),
355                  "lduh [$addr], $dst",
356                  [(set i32:$dst, (zextloadi16 ADDRri:$addr))]>;
357def LDrr   : F3_1<3, 0b000000,
358                  (outs IntRegs:$dst), (ins MEMrr:$addr),
359                  "ld [$addr], $dst",
360                  [(set i32:$dst, (load ADDRrr:$addr))]>;
361def LDri   : F3_2<3, 0b000000,
362                  (outs IntRegs:$dst), (ins MEMri:$addr),
363                  "ld [$addr], $dst",
364                  [(set i32:$dst, (load ADDRri:$addr))]>;
365
366// Section B.2 - Load Floating-point Instructions, p. 92
367def LDFrr  : F3_1<3, 0b100000,
368                  (outs FPRegs:$dst), (ins MEMrr:$addr),
369                  "ld [$addr], $dst",
370                  [(set f32:$dst, (load ADDRrr:$addr))]>;
371def LDFri  : F3_2<3, 0b100000,
372                  (outs FPRegs:$dst), (ins MEMri:$addr),
373                  "ld [$addr], $dst",
374                  [(set f32:$dst, (load ADDRri:$addr))]>;
375def LDDFrr : F3_1<3, 0b100011,
376                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
377                  "ldd [$addr], $dst",
378                  [(set f64:$dst, (load ADDRrr:$addr))]>;
379def LDDFri : F3_2<3, 0b100011,
380                  (outs DFPRegs:$dst), (ins MEMri:$addr),
381                  "ldd [$addr], $dst",
382                  [(set f64:$dst, (load ADDRri:$addr))]>;
383def LDQFrr : F3_1<3, 0b100010,
384                  (outs QFPRegs:$dst), (ins MEMrr:$addr),
385                  "ldq [$addr], $dst",
386                  [(set f128:$dst, (load ADDRrr:$addr))]>,
387                  Requires<[HasV9, HasHardQuad]>;
388def LDQFri : F3_2<3, 0b100010,
389                  (outs QFPRegs:$dst), (ins MEMri:$addr),
390                  "ldq [$addr], $dst",
391                  [(set f128:$dst, (load ADDRri:$addr))]>,
392                  Requires<[HasV9, HasHardQuad]>;
393
394// Section B.4 - Store Integer Instructions, p. 95
395def STBrr : F3_1<3, 0b000101,
396                 (outs), (ins MEMrr:$addr, IntRegs:$src),
397                 "stb $src, [$addr]",
398                 [(truncstorei8 i32:$src, ADDRrr:$addr)]>;
399def STBri : F3_2<3, 0b000101,
400                 (outs), (ins MEMri:$addr, IntRegs:$src),
401                 "stb $src, [$addr]",
402                 [(truncstorei8 i32:$src, ADDRri:$addr)]>;
403def STHrr : F3_1<3, 0b000110,
404                 (outs), (ins MEMrr:$addr, IntRegs:$src),
405                 "sth $src, [$addr]",
406                 [(truncstorei16 i32:$src, ADDRrr:$addr)]>;
407def STHri : F3_2<3, 0b000110,
408                 (outs), (ins MEMri:$addr, IntRegs:$src),
409                 "sth $src, [$addr]",
410                 [(truncstorei16 i32:$src, ADDRri:$addr)]>;
411def STrr  : F3_1<3, 0b000100,
412                 (outs), (ins MEMrr:$addr, IntRegs:$src),
413                 "st $src, [$addr]",
414                 [(store i32:$src, ADDRrr:$addr)]>;
415def STri  : F3_2<3, 0b000100,
416                 (outs), (ins MEMri:$addr, IntRegs:$src),
417                 "st $src, [$addr]",
418                 [(store i32:$src, ADDRri:$addr)]>;
419
420// Section B.5 - Store Floating-point Instructions, p. 97
421def STFrr   : F3_1<3, 0b100100,
422                   (outs), (ins MEMrr:$addr, FPRegs:$src),
423                   "st $src, [$addr]",
424                   [(store f32:$src, ADDRrr:$addr)]>;
425def STFri   : F3_2<3, 0b100100,
426                   (outs), (ins MEMri:$addr, FPRegs:$src),
427                   "st $src, [$addr]",
428                   [(store f32:$src, ADDRri:$addr)]>;
429def STDFrr  : F3_1<3, 0b100111,
430                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
431                   "std  $src, [$addr]",
432                   [(store f64:$src, ADDRrr:$addr)]>;
433def STDFri  : F3_2<3, 0b100111,
434                   (outs), (ins MEMri:$addr, DFPRegs:$src),
435                   "std $src, [$addr]",
436                   [(store f64:$src, ADDRri:$addr)]>;
437def STQFrr  : F3_1<3, 0b100110,
438                   (outs), (ins MEMrr:$addr, QFPRegs:$src),
439                   "stq  $src, [$addr]",
440                   [(store f128:$src, ADDRrr:$addr)]>,
441                   Requires<[HasV9, HasHardQuad]>;
442def STQFri  : F3_2<3, 0b100110,
443                   (outs), (ins MEMri:$addr, QFPRegs:$src),
444                   "stq $src, [$addr]",
445                   [(store f128:$src, ADDRri:$addr)]>,
446                   Requires<[HasV9, HasHardQuad]>;
447
448// Section B.9 - SETHI Instruction, p. 104
449def SETHIi: F2_1<0b100,
450                 (outs IntRegs:$dst), (ins i32imm:$src),
451                 "sethi $src, $dst",
452                 [(set i32:$dst, SETHIimm:$src)]>;
453
454// Section B.10 - NOP Instruction, p. 105
455// (It's a special case of SETHI)
456let rd = 0, imm22 = 0 in
457  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
458
459// Section B.11 - Logical Instructions, p. 106
460defm AND    : F3_12<"and", 0b000001, and>;
461
462def ANDNrr  : F3_1<2, 0b000101,
463                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
464                   "andn $b, $c, $dst",
465                   [(set i32:$dst, (and i32:$b, (not i32:$c)))]>;
466def ANDNri  : F3_2<2, 0b000101,
467                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
468                   "andn $b, $c, $dst", []>;
469
470defm OR     : F3_12<"or", 0b000010, or>;
471
472def ORNrr   : F3_1<2, 0b000110,
473                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
474                   "orn $b, $c, $dst",
475                   [(set i32:$dst, (or i32:$b, (not i32:$c)))]>;
476def ORNri   : F3_2<2, 0b000110,
477                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
478                   "orn $b, $c, $dst", []>;
479defm XOR    : F3_12<"xor", 0b000011, xor>;
480
481def XNORrr  : F3_1<2, 0b000111,
482                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
483                   "xnor $b, $c, $dst",
484                   [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
485def XNORri  : F3_2<2, 0b000111,
486                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
487                   "xnor $b, $c, $dst", []>;
488
489// Section B.12 - Shift Instructions, p. 107
490defm SLL : F3_12<"sll", 0b100101, shl>;
491defm SRL : F3_12<"srl", 0b100110, srl>;
492defm SRA : F3_12<"sra", 0b100111, sra>;
493
494// Section B.13 - Add Instructions, p. 108
495defm ADD   : F3_12<"add", 0b000000, add>;
496
497// "LEA" forms of add (patterns to make tblgen happy)
498def LEA_ADDri   : F3_2<2, 0b000000,
499                   (outs IntRegs:$dst), (ins MEMri:$addr),
500                   "add ${addr:arith}, $dst",
501                   [(set iPTR:$dst, ADDRri:$addr)]>;
502
503let Defs = [ICC] in
504  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
505
506let Uses = [ICC] in
507  defm ADDX  : F3_12<"addx", 0b001000, adde>;
508
509// Section B.15 - Subtract Instructions, p. 110
510defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
511let Uses = [ICC] in
512  defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
513
514let Defs = [ICC] in {
515  defm SUBCC  : F3_12  <"subcc", 0b010100, subc>;
516
517  def CMPrr   : F3_1<2, 0b010100,
518                     (outs), (ins IntRegs:$b, IntRegs:$c),
519                     "cmp $b, $c",
520                     [(SPcmpicc i32:$b, i32:$c)]>;
521  def CMPri   : F3_1<2, 0b010100,
522                     (outs), (ins IntRegs:$b, i32imm:$c),
523                     "cmp $b, $c",
524                     [(SPcmpicc i32:$b, (i32 simm13:$c))]>;
525}
526
527let Uses = [ICC], Defs = [ICC] in
528  def SUBXCCrr: F3_1<2, 0b011100,
529                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
530                "subxcc $b, $c, $dst", []>;
531
532
533// Section B.18 - Multiply Instructions, p. 113
534let Defs = [Y] in {
535  defm UMUL : F3_12np<"umul", 0b001010>;
536  defm SMUL : F3_12  <"smul", 0b001011, mul>;
537}
538
539// Section B.19 - Divide Instructions, p. 115
540let Defs = [Y] in {
541  defm UDIV : F3_12np<"udiv", 0b001110>;
542  defm SDIV : F3_12np<"sdiv", 0b001111>;
543}
544
545// Section B.20 - SAVE and RESTORE, p. 117
546defm SAVE    : F3_12np<"save"   , 0b111100>;
547defm RESTORE : F3_12np<"restore", 0b111101>;
548
549// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
550
551// conditional branch class:
552class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
553 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
554  let isBranch = 1;
555  let isTerminator = 1;
556  let hasDelaySlot = 1;
557}
558
559let isBarrier = 1 in
560  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
561                      "ba $dst",
562                      [(br bb:$dst)]>;
563
564// Indirect branch instructions.
565let isTerminator = 1, isBarrier = 1,
566     hasDelaySlot = 1, isBranch =1,
567     isIndirectBranch = 1 in {
568  def BINDrr  : F3_1<2, 0b111000,
569                   (outs), (ins MEMrr:$ptr),
570                   "jmp $ptr",
571                   [(brind ADDRrr:$ptr)]>;
572  def BINDri  : F3_2<2, 0b111000,
573                   (outs), (ins MEMri:$ptr),
574                   "jmp $ptr",
575                   [(brind ADDRri:$ptr)]>;
576}
577
578// FIXME: the encoding for the JIT should look at the condition field.
579let Uses = [ICC] in
580  def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
581                         "b$cc $dst",
582                        [(SPbricc bb:$dst, imm:$cc)]>;
583
584
585// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
586
587// floating-point conditional branch class:
588class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
589 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
590  let isBranch = 1;
591  let isTerminator = 1;
592  let hasDelaySlot = 1;
593}
594
595// FIXME: the encoding for the JIT should look at the condition field.
596let Uses = [FCC] in
597  def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
598                              "fb$cc $dst",
599                              [(SPbrfcc bb:$dst, imm:$cc)]>;
600
601
602// Section B.24 - Call and Link Instruction, p. 125
603// This is the only Format 1 instruction
604let Uses = [O6],
605    hasDelaySlot = 1, isCall = 1 in {
606  def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
607                    "call $dst", []> {
608    bits<30> disp;
609    let op = 1;
610    let Inst{29-0} = disp;
611  }
612
613  // indirect calls
614  def JMPLrr : F3_1<2, 0b111000,
615                    (outs), (ins MEMrr:$ptr, variable_ops),
616                    "call $ptr",
617                    [(call ADDRrr:$ptr)]>;
618  def JMPLri : F3_2<2, 0b111000,
619                    (outs), (ins MEMri:$ptr, variable_ops),
620                    "call $ptr",
621                    [(call ADDRri:$ptr)]>;
622}
623
624// Section B.28 - Read State Register Instructions
625let Uses = [Y] in
626  def RDY : F3_1<2, 0b101000,
627                 (outs IntRegs:$dst), (ins),
628                 "rd %y, $dst", []>;
629
630// Section B.29 - Write State Register Instructions
631let Defs = [Y] in {
632  def WRYrr : F3_1<2, 0b110000,
633                   (outs), (ins IntRegs:$b, IntRegs:$c),
634                   "wr $b, $c, %y", []>;
635  def WRYri : F3_2<2, 0b110000,
636                   (outs), (ins IntRegs:$b, i32imm:$c),
637                   "wr $b, $c, %y", []>;
638}
639// Convert Integer to Floating-point Instructions, p. 141
640def FITOS : F3_3<2, 0b110100, 0b011000100,
641                 (outs FPRegs:$dst), (ins FPRegs:$src),
642                 "fitos $src, $dst",
643                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
644def FITOD : F3_3<2, 0b110100, 0b011001000,
645                 (outs DFPRegs:$dst), (ins FPRegs:$src),
646                 "fitod $src, $dst",
647                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
648def FITOQ : F3_3<2, 0b110100, 0b011001100,
649                 (outs QFPRegs:$dst), (ins FPRegs:$src),
650                 "fitoq $src, $dst",
651                 [(set QFPRegs:$dst, (SPitof FPRegs:$src))]>,
652                 Requires<[HasHardQuad]>;
653
654// Convert Floating-point to Integer Instructions, p. 142
655def FSTOI : F3_3<2, 0b110100, 0b011010001,
656                 (outs FPRegs:$dst), (ins FPRegs:$src),
657                 "fstoi $src, $dst",
658                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
659def FDTOI : F3_3<2, 0b110100, 0b011010010,
660                 (outs FPRegs:$dst), (ins DFPRegs:$src),
661                 "fdtoi $src, $dst",
662                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
663def FQTOI : F3_3<2, 0b110100, 0b011010011,
664                 (outs FPRegs:$dst), (ins QFPRegs:$src),
665                 "fqtoi $src, $dst",
666                 [(set FPRegs:$dst, (SPftoi QFPRegs:$src))]>,
667                 Requires<[HasHardQuad]>;
668
669// Convert between Floating-point Formats Instructions, p. 143
670def FSTOD : F3_3<2, 0b110100, 0b011001001,
671                 (outs DFPRegs:$dst), (ins FPRegs:$src),
672                 "fstod $src, $dst",
673                 [(set f64:$dst, (fextend f32:$src))]>;
674def FSTOQ : F3_3<2, 0b110100, 0b011001101,
675                 (outs QFPRegs:$dst), (ins FPRegs:$src),
676                 "fstoq $src, $dst",
677                 [(set f128:$dst, (fextend f32:$src))]>,
678                 Requires<[HasHardQuad]>;
679def FDTOS : F3_3<2, 0b110100, 0b011000110,
680                 (outs FPRegs:$dst), (ins DFPRegs:$src),
681                 "fdtos $src, $dst",
682                 [(set f32:$dst, (fround f64:$src))]>;
683def FDTOQ : F3_3<2, 0b110100, 0b01101110,
684                 (outs QFPRegs:$dst), (ins DFPRegs:$src),
685                 "fdtoq $src, $dst",
686                 [(set f128:$dst, (fextend f64:$src))]>,
687                 Requires<[HasHardQuad]>;
688def FQTOS : F3_3<2, 0b110100, 0b011000111,
689                 (outs FPRegs:$dst), (ins QFPRegs:$src),
690                 "fqtos $src, $dst",
691                 [(set f32:$dst, (fround f128:$src))]>,
692                 Requires<[HasHardQuad]>;
693def FQTOD : F3_3<2, 0b110100, 0b011001011,
694                 (outs DFPRegs:$dst), (ins QFPRegs:$src),
695                 "fqtod $src, $dst",
696                 [(set f64:$dst, (fround f128:$src))]>,
697                 Requires<[HasHardQuad]>;
698
699// Floating-point Move Instructions, p. 144
700def FMOVS : F3_3<2, 0b110100, 0b000000001,
701                 (outs FPRegs:$dst), (ins FPRegs:$src),
702                 "fmovs $src, $dst", []>;
703def FNEGS : F3_3<2, 0b110100, 0b000000101,
704                 (outs FPRegs:$dst), (ins FPRegs:$src),
705                 "fnegs $src, $dst",
706                 [(set f32:$dst, (fneg f32:$src))]>;
707def FABSS : F3_3<2, 0b110100, 0b000001001,
708                 (outs FPRegs:$dst), (ins FPRegs:$src),
709                 "fabss $src, $dst",
710                 [(set f32:$dst, (fabs f32:$src))]>;
711
712
713// Floating-point Square Root Instructions, p.145
714def FSQRTS : F3_3<2, 0b110100, 0b000101001,
715                  (outs FPRegs:$dst), (ins FPRegs:$src),
716                  "fsqrts $src, $dst",
717                  [(set f32:$dst, (fsqrt f32:$src))]>;
718def FSQRTD : F3_3<2, 0b110100, 0b000101010,
719                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
720                  "fsqrtd $src, $dst",
721                  [(set f64:$dst, (fsqrt f64:$src))]>;
722def FSQRTQ : F3_3<2, 0b110100, 0b000101011,
723                  (outs QFPRegs:$dst), (ins QFPRegs:$src),
724                  "fsqrtq $src, $dst",
725                  [(set f128:$dst, (fsqrt f128:$src))]>,
726                  Requires<[HasHardQuad]>;
727
728
729
730// Floating-point Add and Subtract Instructions, p. 146
731def FADDS  : F3_3<2, 0b110100, 0b001000001,
732                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
733                  "fadds $src1, $src2, $dst",
734                  [(set f32:$dst, (fadd f32:$src1, f32:$src2))]>;
735def FADDD  : F3_3<2, 0b110100, 0b001000010,
736                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
737                  "faddd $src1, $src2, $dst",
738                  [(set f64:$dst, (fadd f64:$src1, f64:$src2))]>;
739def FADDQ  : F3_3<2, 0b110100, 0b001000011,
740                  (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
741                  "faddq $src1, $src2, $dst",
742                  [(set f128:$dst, (fadd f128:$src1, f128:$src2))]>,
743                  Requires<[HasHardQuad]>;
744
745def FSUBS  : F3_3<2, 0b110100, 0b001000101,
746                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
747                  "fsubs $src1, $src2, $dst",
748                  [(set f32:$dst, (fsub f32:$src1, f32:$src2))]>;
749def FSUBD  : F3_3<2, 0b110100, 0b001000110,
750                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
751                  "fsubd $src1, $src2, $dst",
752                  [(set f64:$dst, (fsub f64:$src1, f64:$src2))]>;
753def FSUBQ  : F3_3<2, 0b110100, 0b001000111,
754                  (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
755                  "fsubq $src1, $src2, $dst",
756                  [(set f128:$dst, (fsub f128:$src1, f128:$src2))]>,
757                  Requires<[HasHardQuad]>;
758
759
760// Floating-point Multiply and Divide Instructions, p. 147
761def FMULS  : F3_3<2, 0b110100, 0b001001001,
762                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
763                  "fmuls $src1, $src2, $dst",
764                  [(set f32:$dst, (fmul f32:$src1, f32:$src2))]>;
765def FMULD  : F3_3<2, 0b110100, 0b001001010,
766                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
767                  "fmuld $src1, $src2, $dst",
768                  [(set f64:$dst, (fmul f64:$src1, f64:$src2))]>;
769def FMULQ  : F3_3<2, 0b110100, 0b001001011,
770                  (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
771                  "fmulq $src1, $src2, $dst",
772                  [(set f128:$dst, (fmul f128:$src1, f128:$src2))]>,
773                  Requires<[HasHardQuad]>;
774
775def FSMULD : F3_3<2, 0b110100, 0b001101001,
776                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
777                  "fsmuld $src1, $src2, $dst",
778                  [(set f64:$dst, (fmul (fextend f32:$src1),
779                                        (fextend f32:$src2)))]>;
780def FDMULQ : F3_3<2, 0b110100, 0b001101110,
781                  (outs QFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
782                  "fdmulq $src1, $src2, $dst",
783                  [(set f128:$dst, (fmul (fextend f64:$src1),
784                                         (fextend f64:$src2)))]>,
785                  Requires<[HasHardQuad]>;
786
787def FDIVS  : F3_3<2, 0b110100, 0b001001101,
788                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
789                 "fdivs $src1, $src2, $dst",
790                 [(set f32:$dst, (fdiv f32:$src1, f32:$src2))]>;
791def FDIVD  : F3_3<2, 0b110100, 0b001001110,
792                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
793                 "fdivd $src1, $src2, $dst",
794                 [(set f64:$dst, (fdiv f64:$src1, f64:$src2))]>;
795def FDIVQ  : F3_3<2, 0b110100, 0b001001111,
796                 (outs QFPRegs:$dst), (ins QFPRegs:$src1, QFPRegs:$src2),
797                 "fdivq $src1, $src2, $dst",
798                 [(set f128:$dst, (fdiv f128:$src1, f128:$src2))]>,
799                 Requires<[HasHardQuad]>;
800
801// Floating-point Compare Instructions, p. 148
802// Note: the 2nd template arg is different for these guys.
803// Note 2: the result of a FCMP is not available until the 2nd cycle
804// after the instr is retired, but there is no interlock. This behavior
805// is modelled with a forced noop after the instruction.
806let Defs = [FCC] in {
807  def FCMPS  : F3_3<2, 0b110101, 0b001010001,
808                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
809                   "fcmps $src1, $src2\n\tnop",
810                   [(SPcmpfcc f32:$src1, f32:$src2)]>;
811  def FCMPD  : F3_3<2, 0b110101, 0b001010010,
812                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
813                   "fcmpd $src1, $src2\n\tnop",
814                   [(SPcmpfcc f64:$src1, f64:$src2)]>;
815  def FCMPQ  : F3_3<2, 0b110101, 0b001010011,
816                   (outs), (ins QFPRegs:$src1, QFPRegs:$src2),
817                   "fcmpq $src1, $src2\n\tnop",
818                   [(SPcmpfcc f128:$src1, f128:$src2)]>,
819                   Requires<[HasHardQuad]>;
820}
821
822//===----------------------------------------------------------------------===//
823// Instructions for Thread Local Storage(TLS).
824//===----------------------------------------------------------------------===//
825
826def TLS_ADDrr : F3_1<2, 0b000000,
827                    (outs IntRegs:$rd),
828                    (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym),
829                    "add $rs1, $rs2, $rd, $sym",
830                    [(set i32:$rd,
831                        (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>;
832
833let mayLoad = 1 in
834  def TLS_LDrr : F3_1<3, 0b000000,
835                      (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym),
836                      "ld [$addr], $dst, $sym",
837                      [(set i32:$dst,
838                          (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>;
839
840let Uses = [O6], isCall = 1 in
841  def TLS_CALL : InstSP<(outs),
842                        (ins calltarget:$disp, TLSSym:$sym, variable_ops),
843                        "call $disp, $sym\n\tnop",
844                        [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)]> {
845  bits<30> disp;
846  let op = 1;
847  let Inst{29-0} = disp;
848}
849
850//===----------------------------------------------------------------------===//
851// V9 Instructions
852//===----------------------------------------------------------------------===//
853
854// V9 Conditional Moves.
855let Predicates = [HasV9], Constraints = "$f = $rd" in {
856  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
857  // FIXME: Add instruction encodings for the JIT some day.
858  let Uses = [ICC] in {
859    def MOVICCrr
860      : Pseudo<(outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cc),
861               "mov$cc %icc, $rs2, $rd",
862               [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cc))]>;
863    def MOVICCri
864      : Pseudo<(outs IntRegs:$rd), (ins i32imm:$i, IntRegs:$f, CCOp:$cc),
865               "mov$cc %icc, $i, $rd",
866               [(set i32:$rd, (SPselecticc simm11:$i, i32:$f, imm:$cc))]>;
867  }
868
869  let Uses = [FCC] in {
870    def MOVFCCrr
871      : Pseudo<(outs IntRegs:$rd), (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cc),
872               "mov$cc %fcc0, $rs2, $rd",
873               [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cc))]>;
874    def MOVFCCri
875      : Pseudo<(outs IntRegs:$rd), (ins i32imm:$i, IntRegs:$f, CCOp:$cc),
876               "mov$cc %fcc0, $i, $rd",
877               [(set i32:$rd, (SPselectfcc simm11:$i, i32:$f, imm:$cc))]>;
878  }
879
880  let Uses = [ICC] in {
881    def FMOVS_ICC
882      : Pseudo<(outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cc),
883               "fmovs$cc %icc, $rs2, $rd",
884               [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cc))]>;
885    def FMOVD_ICC
886      : Pseudo<(outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cc),
887               "fmovd$cc %icc, $rs2, $rd",
888               [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cc))]>;
889  }
890
891  let Uses = [FCC] in {
892    def FMOVS_FCC
893      : Pseudo<(outs FPRegs:$rd), (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cc),
894               "fmovs$cc %fcc0, $rs2, $rd",
895               [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cc))]>;
896    def FMOVD_FCC
897      : Pseudo<(outs DFPRegs:$rd), (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cc),
898               "fmovd$cc %fcc0, $rs2, $rd",
899               [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cc))]>;
900  }
901
902}
903
904// Floating-Point Move Instructions, p. 164 of the V9 manual.
905let Predicates = [HasV9] in {
906  def FMOVD : F3_3<2, 0b110100, 0b000000010,
907                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
908                   "fmovd $src, $dst", []>;
909  def FMOVQ : F3_3<2, 0b110100, 0b000000011,
910                   (outs QFPRegs:$dst), (ins QFPRegs:$src),
911                   "fmovq $src, $dst", []>,
912                   Requires<[HasHardQuad]>;
913  def FNEGD : F3_3<2, 0b110100, 0b000000110,
914                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
915                   "fnegd $src, $dst",
916                   [(set f64:$dst, (fneg f64:$src))]>;
917  def FNEGQ : F3_3<2, 0b110100, 0b000000111,
918                   (outs QFPRegs:$dst), (ins QFPRegs:$src),
919                   "fnegq $src, $dst",
920                   [(set f128:$dst, (fneg f128:$src))]>,
921                   Requires<[HasHardQuad]>;
922  def FABSD : F3_3<2, 0b110100, 0b000001010,
923                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
924                   "fabsd $src, $dst",
925                   [(set f64:$dst, (fabs f64:$src))]>;
926  def FABSQ : F3_3<2, 0b110100, 0b000001011,
927                   (outs QFPRegs:$dst), (ins QFPRegs:$src),
928                   "fabsq $src, $dst",
929                   [(set f128:$dst, (fabs f128:$src))]>,
930                   Requires<[HasHardQuad]>;
931}
932
933// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
934// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
935def POPCrr : F3_1<2, 0b101110,
936                  (outs IntRegs:$dst), (ins IntRegs:$src),
937                  "popc $src, $dst", []>, Requires<[HasV9]>;
938def : Pat<(ctpop i32:$src),
939          (POPCrr (SLLri $src, 0))>;
940
941//===----------------------------------------------------------------------===//
942// Non-Instruction Patterns
943//===----------------------------------------------------------------------===//
944
945// Small immediates.
946def : Pat<(i32 simm13:$val),
947          (ORri (i32 G0), imm:$val)>;
948// Arbitrary immediates.
949def : Pat<(i32 imm:$val),
950          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
951
952
953// Global addresses, constant pool entries
954def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
955def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>;
956def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
957def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>;
958
959// GlobalTLS addresses
960def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>;
961def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>;
962def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
963          (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
964def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)),
965          (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>;
966
967// Blockaddress
968def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>;
969def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>;
970
971// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
972def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>;
973def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>;
974def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)),
975                        (ADDri $r, tblockaddress:$in)>;
976
977// Calls:
978def : Pat<(call tglobaladdr:$dst),
979          (CALL tglobaladdr:$dst)>;
980def : Pat<(call texternalsym:$dst),
981          (CALL texternalsym:$dst)>;
982
983// Map integer extload's to zextloads.
984def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
985def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
986def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
987def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
988def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
989def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
990
991// zextload bool -> zextload byte
992def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
993def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
994
995// store 0, addr -> store %g0, addr
996def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>;
997def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>;
998
999include "SparcInstr64Bit.td"
1000