SparcInstrInfo.td revision adaace8aa8df16f1fa2b097f32ded38a49d89208
1//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{
47  // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48  return (((int)N->getZExtValue() << (32-11)) >> (32-11)) ==
49         (int)N->getZExtValue();
50}]>;
51
52def simm13  : PatLeaf<(imm), [{
53  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
54  return (((int)N->getZExtValue() << (32-13)) >> (32-13)) ==
55         (int)N->getZExtValue();
56}]>;
57
58def LO10 : SDNodeXForm<imm, [{
59  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
60                                   MVT::i32);
61}]>;
62
63def HI22 : SDNodeXForm<imm, [{
64  // Transformation function: shift the immediate value down into the low bits.
65  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
66}]>;
67
68def SETHIimm : PatLeaf<(imm), [{
69  return (((unsigned)N->getZExtValue() >> 10) << 10) ==
70         (unsigned)N->getZExtValue();
71}], HI22>;
72
73// Addressing modes.
74def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
75def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
76
77// Address operands
78def MEMrr : Operand<i32> {
79  let PrintMethod = "printMemOperand";
80  let MIOperandInfo = (ops IntRegs, IntRegs);
81}
82def MEMri : Operand<i32> {
83  let PrintMethod = "printMemOperand";
84  let MIOperandInfo = (ops IntRegs, i32imm);
85}
86
87// Branch targets have OtherVT type.
88def brtarget : Operand<OtherVT>;
89def calltarget : Operand<i32>;
90
91// Operand for printing out a condition code.
92let PrintMethod = "printCCOperand" in
93  def CCOp : Operand<i32>;
94
95def SDTSPcmpfcc : 
96SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
97def SDTSPbrcc : 
98SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
99def SDTSPselectcc :
100SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
101def SDTSPFTOI :
102SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
103def SDTSPITOF :
104SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
105
106def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
107def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
108def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
109def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
110
111def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
112def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
113
114def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
115def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
116
117def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
118def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
119
120//  These are target-independent nodes, but have target-specific formats.
121def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
122def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
123                                        SDTCisVT<1, i32> ]>;
124
125def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
126                           [SDNPHasChain, SDNPOutFlag]>;
127def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
128                           [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
129
130def SDT_SPCall    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
131def call          : SDNode<"SPISD::CALL", SDT_SPCall,
132                           [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
133
134def retflag       : SDNode<"SPISD::RET_FLAG", SDTNone,
135                           [SDNPHasChain, SDNPOptInFlag]>;
136
137def getPCX        : Operand<i32> {
138  let PrintMethod = "printGetPCX";
139}  
140
141//===----------------------------------------------------------------------===//
142// SPARC Flag Conditions
143//===----------------------------------------------------------------------===//
144
145// Note that these values must be kept in sync with the CCOp::CondCode enum
146// values.
147class ICC_VAL<int N> : PatLeaf<(i32 N)>;
148def ICC_NE  : ICC_VAL< 9>;  // Not Equal
149def ICC_E   : ICC_VAL< 1>;  // Equal
150def ICC_G   : ICC_VAL<10>;  // Greater
151def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
152def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
153def ICC_L   : ICC_VAL< 3>;  // Less
154def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
155def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
156def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
157def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
158def ICC_POS : ICC_VAL<14>;  // Positive
159def ICC_NEG : ICC_VAL< 6>;  // Negative
160def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
161def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
162
163class FCC_VAL<int N> : PatLeaf<(i32 N)>;
164def FCC_U   : FCC_VAL<23>;  // Unordered
165def FCC_G   : FCC_VAL<22>;  // Greater
166def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
167def FCC_L   : FCC_VAL<20>;  // Less
168def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
169def FCC_LG  : FCC_VAL<18>;  // Less or Greater
170def FCC_NE  : FCC_VAL<17>;  // Not Equal
171def FCC_E   : FCC_VAL<25>;  // Equal
172def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
173def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
174def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
175def FCC_LE  : FCC_VAL<27>;  // Less or Equal
176def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
177def FCC_O   : FCC_VAL<29>;  // Ordered
178
179//===----------------------------------------------------------------------===//
180// Instruction Class Templates
181//===----------------------------------------------------------------------===//
182
183/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
184multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
185  def rr  : F3_1<2, Op3Val, 
186                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
187                 !strconcat(OpcStr, " $b, $c, $dst"),
188                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
189  def ri  : F3_2<2, Op3Val,
190                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
191                 !strconcat(OpcStr, " $b, $c, $dst"),
192                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
193}
194
195/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
196/// pattern.
197multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
198  def rr  : F3_1<2, Op3Val, 
199                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
200                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
201  def ri  : F3_2<2, Op3Val,
202                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
203                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
204}
205
206//===----------------------------------------------------------------------===//
207// Instructions
208//===----------------------------------------------------------------------===//
209
210// Pseudo instructions.
211class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
212   : InstSP<outs, ins, asmstr, pattern>;
213
214// GETPCX for PIC
215let Defs = [O7], Uses = [O7] in {
216  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
217}
218
219let Defs = [O6], Uses = [O6] in {
220def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
221                               "!ADJCALLSTACKDOWN $amt",
222                               [(callseq_start timm:$amt)]>;
223def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
224                            "!ADJCALLSTACKUP $amt1",
225                            [(callseq_end timm:$amt1, timm:$amt2)]>;
226}
227
228// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
229// fpmover pass.
230let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
231  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
232                      "!FpMOVD $src, $dst", []>;
233  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
234                      "!FpNEGD $src, $dst",
235                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
236  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
237                      "!FpABSD $src, $dst",
238                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
239}
240
241// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
242// instruction selection into a branch sequence.  This has to handle all
243// permutations of selection between i32/f32/f64 on ICC and FCC.
244let usesCustomInserter = 1 in {   // Expanded after instruction selection.
245  def SELECT_CC_Int_ICC
246   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
247            "; SELECT_CC_Int_ICC PSEUDO!",
248            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
249                                             imm:$Cond))]>;
250  def SELECT_CC_Int_FCC
251   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
252            "; SELECT_CC_Int_FCC PSEUDO!",
253            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
254                                             imm:$Cond))]>;
255  def SELECT_CC_FP_ICC
256   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
257            "; SELECT_CC_FP_ICC PSEUDO!",
258            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
259                                            imm:$Cond))]>;
260  def SELECT_CC_FP_FCC
261   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
262            "; SELECT_CC_FP_FCC PSEUDO!",
263            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
264                                            imm:$Cond))]>;
265  def SELECT_CC_DFP_ICC
266   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
267            "; SELECT_CC_DFP_ICC PSEUDO!",
268            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
269                                             imm:$Cond))]>;
270  def SELECT_CC_DFP_FCC
271   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
272            "; SELECT_CC_DFP_FCC PSEUDO!",
273            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
274                                             imm:$Cond))]>;
275}
276
277
278// Section A.3 - Synthetic Instructions, p. 85
279// special cases of JMPL:
280let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
281  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
282    def RETL: F3_2<2, 0b111000, (outs), (ins), "retl", [(retflag)]>;
283}
284
285// Section B.1 - Load Integer Instructions, p. 90
286def LDSBrr : F3_1<3, 0b001001,
287                  (outs IntRegs:$dst), (ins MEMrr:$addr),
288                  "ldsb [$addr], $dst",
289                  [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
290def LDSBri : F3_2<3, 0b001001,
291                  (outs IntRegs:$dst), (ins MEMri:$addr),
292                  "ldsb [$addr], $dst",
293                  [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
294def LDSHrr : F3_1<3, 0b001010,
295                  (outs IntRegs:$dst), (ins MEMrr:$addr),
296                  "ldsh [$addr], $dst",
297                  [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
298def LDSHri : F3_2<3, 0b001010,
299                  (outs IntRegs:$dst), (ins MEMri:$addr),
300                  "ldsh [$addr], $dst",
301                  [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
302def LDUBrr : F3_1<3, 0b000001,
303                  (outs IntRegs:$dst), (ins MEMrr:$addr),
304                  "ldub [$addr], $dst",
305                  [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
306def LDUBri : F3_2<3, 0b000001,
307                  (outs IntRegs:$dst), (ins MEMri:$addr),
308                  "ldub [$addr], $dst",
309                  [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
310def LDUHrr : F3_1<3, 0b000010,
311                  (outs IntRegs:$dst), (ins MEMrr:$addr),
312                  "lduh [$addr], $dst",
313                  [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
314def LDUHri : F3_2<3, 0b000010,
315                  (outs IntRegs:$dst), (ins MEMri:$addr),
316                  "lduh [$addr], $dst",
317                  [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
318def LDrr   : F3_1<3, 0b000000,
319                  (outs IntRegs:$dst), (ins MEMrr:$addr),
320                  "ld [$addr], $dst",
321                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
322def LDri   : F3_2<3, 0b000000,
323                  (outs IntRegs:$dst), (ins MEMri:$addr),
324                  "ld [$addr], $dst",
325                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
326
327// Section B.2 - Load Floating-point Instructions, p. 92
328def LDFrr  : F3_1<3, 0b100000,
329                  (outs FPRegs:$dst), (ins MEMrr:$addr),
330                  "ld [$addr], $dst",
331                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
332def LDFri  : F3_2<3, 0b100000,
333                  (outs FPRegs:$dst), (ins MEMri:$addr),
334                  "ld [$addr], $dst",
335                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
336def LDDFrr : F3_1<3, 0b100011,
337                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
338                  "ldd [$addr], $dst",
339                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
340def LDDFri : F3_2<3, 0b100011,
341                  (outs DFPRegs:$dst), (ins MEMri:$addr),
342                  "ldd [$addr], $dst",
343                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
344
345// Section B.4 - Store Integer Instructions, p. 95
346def STBrr : F3_1<3, 0b000101,
347                 (outs), (ins MEMrr:$addr, IntRegs:$src),
348                 "stb $src, [$addr]",
349                 [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
350def STBri : F3_2<3, 0b000101,
351                 (outs), (ins MEMri:$addr, IntRegs:$src),
352                 "stb $src, [$addr]",
353                 [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
354def STHrr : F3_1<3, 0b000110,
355                 (outs), (ins MEMrr:$addr, IntRegs:$src),
356                 "sth $src, [$addr]",
357                 [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
358def STHri : F3_2<3, 0b000110,
359                 (outs), (ins MEMri:$addr, IntRegs:$src),
360                 "sth $src, [$addr]",
361                 [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
362def STrr  : F3_1<3, 0b000100,
363                 (outs), (ins MEMrr:$addr, IntRegs:$src),
364                 "st $src, [$addr]",
365                 [(store IntRegs:$src, ADDRrr:$addr)]>;
366def STri  : F3_2<3, 0b000100,
367                 (outs), (ins MEMri:$addr, IntRegs:$src),
368                 "st $src, [$addr]",
369                 [(store IntRegs:$src, ADDRri:$addr)]>;
370
371// Section B.5 - Store Floating-point Instructions, p. 97
372def STFrr   : F3_1<3, 0b100100,
373                   (outs), (ins MEMrr:$addr, FPRegs:$src),
374                   "st $src, [$addr]",
375                   [(store FPRegs:$src, ADDRrr:$addr)]>;
376def STFri   : F3_2<3, 0b100100,
377                   (outs), (ins MEMri:$addr, FPRegs:$src),
378                   "st $src, [$addr]",
379                   [(store FPRegs:$src, ADDRri:$addr)]>;
380def STDFrr  : F3_1<3, 0b100111,
381                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
382                   "std  $src, [$addr]",
383                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
384def STDFri  : F3_2<3, 0b100111,
385                   (outs), (ins MEMri:$addr, DFPRegs:$src),
386                   "std $src, [$addr]",
387                   [(store DFPRegs:$src, ADDRri:$addr)]>;
388
389// Section B.9 - SETHI Instruction, p. 104
390def SETHIi: F2_1<0b100,
391                 (outs IntRegs:$dst), (ins i32imm:$src),
392                 "sethi $src, $dst",
393                 [(set IntRegs:$dst, SETHIimm:$src)]>;
394
395// Section B.10 - NOP Instruction, p. 105
396// (It's a special case of SETHI)
397let rd = 0, imm22 = 0 in
398  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
399
400// Section B.11 - Logical Instructions, p. 106
401defm AND    : F3_12<"and", 0b000001, and>;
402
403def ANDNrr  : F3_1<2, 0b000101,
404                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
405                   "andn $b, $c, $dst",
406                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
407def ANDNri  : F3_2<2, 0b000101,
408                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
409                   "andn $b, $c, $dst", []>;
410
411defm OR     : F3_12<"or", 0b000010, or>;
412
413def ORNrr   : F3_1<2, 0b000110,
414                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
415                   "orn $b, $c, $dst",
416                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
417def ORNri   : F3_2<2, 0b000110,
418                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
419                   "orn $b, $c, $dst", []>;
420defm XOR    : F3_12<"xor", 0b000011, xor>;
421
422def XNORrr  : F3_1<2, 0b000111,
423                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
424                   "xnor $b, $c, $dst",
425                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
426def XNORri  : F3_2<2, 0b000111,
427                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
428                   "xnor $b, $c, $dst", []>;
429
430// Section B.12 - Shift Instructions, p. 107
431defm SLL : F3_12<"sll", 0b100101, shl>;
432defm SRL : F3_12<"srl", 0b100110, srl>;
433defm SRA : F3_12<"sra", 0b100111, sra>;
434
435// Section B.13 - Add Instructions, p. 108
436defm ADD   : F3_12<"add", 0b000000, add>;
437
438// "LEA" forms of add (patterns to make tblgen happy)
439def LEA_ADDri   : F3_2<2, 0b000000,
440                   (outs IntRegs:$dst), (ins MEMri:$addr),
441                   "add ${addr:arith}, $dst",
442                   [(set IntRegs:$dst, ADDRri:$addr)]>;
443
444let Defs = [ICC] in                   
445  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
446
447defm ADDX  : F3_12<"addx", 0b001000, adde>;
448
449// Section B.15 - Subtract Instructions, p. 110
450defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
451defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
452
453let Defs = [ICC] in {
454  defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
455
456  def SUBXCCrr: F3_1<2, 0b011100, 
457                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
458                "subxcc $b, $c, $dst", []>;
459}
460
461// Section B.18 - Multiply Instructions, p. 113
462defm UMUL : F3_12np<"umul", 0b001010>;
463defm SMUL : F3_12  <"smul", 0b001011, mul>;
464
465
466// Section B.19 - Divide Instructions, p. 115
467defm UDIV : F3_12np<"udiv", 0b001110>;
468defm SDIV : F3_12np<"sdiv", 0b001111>;
469
470// Section B.20 - SAVE and RESTORE, p. 117
471defm SAVE    : F3_12np<"save"   , 0b111100>;
472defm RESTORE : F3_12np<"restore", 0b111101>;
473
474// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
475
476// conditional branch class:
477class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
478 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
479  let isBranch = 1;
480  let isTerminator = 1;
481  let hasDelaySlot = 1;
482}
483
484let isBarrier = 1 in
485  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
486                      "ba $dst",
487                      [(br bb:$dst)]>;
488
489// FIXME: the encoding for the JIT should look at the condition field.
490let Uses = [ICC] in
491  def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
492                         "b$cc $dst",
493                        [(SPbricc bb:$dst, imm:$cc)]>;
494
495
496// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
497
498// floating-point conditional branch class:
499class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
500 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
501  let isBranch = 1;
502  let isTerminator = 1;
503  let hasDelaySlot = 1;
504}
505
506// FIXME: the encoding for the JIT should look at the condition field.
507let Uses = [FCC] in
508  def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
509                              "fb$cc $dst",
510                              [(SPbrfcc bb:$dst, imm:$cc)]>;
511
512
513// Section B.24 - Call and Link Instruction, p. 125
514// This is the only Format 1 instruction
515let Uses = [O0, O1, O2, O3, O4, O5],
516    hasDelaySlot = 1, isCall = 1,
517    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
518    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
519  def CALL : InstSP<(outs), (ins calltarget:$dst),
520                    "call $dst", []> {
521    bits<30> disp;
522    let op = 1;
523    let Inst{29-0} = disp;
524  }
525  
526  // indirect calls
527  def JMPLrr : F3_1<2, 0b111000,
528                    (outs), (ins MEMrr:$ptr),
529                    "call $ptr",
530                    [(call  ADDRrr:$ptr)]>;
531  def JMPLri : F3_2<2, 0b111000,
532                    (outs), (ins MEMri:$ptr),
533                    "call $ptr",
534                    [(call  ADDRri:$ptr)]>;
535}
536
537// Section B.28 - Read State Register Instructions
538def RDY : F3_1<2, 0b101000,
539               (outs IntRegs:$dst), (ins),
540               "rd %y, $dst", []>;
541
542// Section B.29 - Write State Register Instructions
543def WRYrr : F3_1<2, 0b110000,
544                 (outs), (ins IntRegs:$b, IntRegs:$c),
545                 "wr $b, $c, %y", []>;
546def WRYri : F3_2<2, 0b110000,
547                 (outs), (ins IntRegs:$b, i32imm:$c),
548                 "wr $b, $c, %y", []>;
549
550// Convert Integer to Floating-point Instructions, p. 141
551def FITOS : F3_3<2, 0b110100, 0b011000100,
552                 (outs FPRegs:$dst), (ins FPRegs:$src),
553                 "fitos $src, $dst",
554                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
555def FITOD : F3_3<2, 0b110100, 0b011001000, 
556                 (outs DFPRegs:$dst), (ins FPRegs:$src),
557                 "fitod $src, $dst",
558                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
559
560// Convert Floating-point to Integer Instructions, p. 142
561def FSTOI : F3_3<2, 0b110100, 0b011010001,
562                 (outs FPRegs:$dst), (ins FPRegs:$src),
563                 "fstoi $src, $dst",
564                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
565def FDTOI : F3_3<2, 0b110100, 0b011010010,
566                 (outs FPRegs:$dst), (ins DFPRegs:$src),
567                 "fdtoi $src, $dst",
568                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
569
570// Convert between Floating-point Formats Instructions, p. 143
571def FSTOD : F3_3<2, 0b110100, 0b011001001, 
572                 (outs DFPRegs:$dst), (ins FPRegs:$src),
573                 "fstod $src, $dst",
574                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
575def FDTOS : F3_3<2, 0b110100, 0b011000110,
576                 (outs FPRegs:$dst), (ins DFPRegs:$src),
577                 "fdtos $src, $dst",
578                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
579
580// Floating-point Move Instructions, p. 144
581def FMOVS : F3_3<2, 0b110100, 0b000000001,
582                 (outs FPRegs:$dst), (ins FPRegs:$src),
583                 "fmovs $src, $dst", []>;
584def FNEGS : F3_3<2, 0b110100, 0b000000101, 
585                 (outs FPRegs:$dst), (ins FPRegs:$src),
586                 "fnegs $src, $dst",
587                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
588def FABSS : F3_3<2, 0b110100, 0b000001001, 
589                 (outs FPRegs:$dst), (ins FPRegs:$src),
590                 "fabss $src, $dst",
591                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
592
593
594// Floating-point Square Root Instructions, p.145
595def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
596                  (outs FPRegs:$dst), (ins FPRegs:$src),
597                  "fsqrts $src, $dst",
598                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
599def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
600                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
601                  "fsqrtd $src, $dst",
602                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
603
604
605
606// Floating-point Add and Subtract Instructions, p. 146
607def FADDS  : F3_3<2, 0b110100, 0b001000001,
608                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
609                  "fadds $src1, $src2, $dst",
610                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
611def FADDD  : F3_3<2, 0b110100, 0b001000010,
612                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
613                  "faddd $src1, $src2, $dst",
614                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
615def FSUBS  : F3_3<2, 0b110100, 0b001000101,
616                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
617                  "fsubs $src1, $src2, $dst",
618                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
619def FSUBD  : F3_3<2, 0b110100, 0b001000110,
620                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
621                  "fsubd $src1, $src2, $dst",
622                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
623
624// Floating-point Multiply and Divide Instructions, p. 147
625def FMULS  : F3_3<2, 0b110100, 0b001001001,
626                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
627                  "fmuls $src1, $src2, $dst",
628                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
629def FMULD  : F3_3<2, 0b110100, 0b001001010,
630                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
631                  "fmuld $src1, $src2, $dst",
632                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
633def FSMULD : F3_3<2, 0b110100, 0b001101001,
634                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
635                  "fsmuld $src1, $src2, $dst",
636                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
637                                            (fextend FPRegs:$src2)))]>;
638def FDIVS  : F3_3<2, 0b110100, 0b001001101,
639                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
640                 "fdivs $src1, $src2, $dst",
641                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
642def FDIVD  : F3_3<2, 0b110100, 0b001001110,
643                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
644                 "fdivd $src1, $src2, $dst",
645                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
646
647// Floating-point Compare Instructions, p. 148
648// Note: the 2nd template arg is different for these guys.
649// Note 2: the result of a FCMP is not available until the 2nd cycle
650// after the instr is retired, but there is no interlock. This behavior
651// is modelled with a forced noop after the instruction.
652let Defs = [FCC] in {
653  def FCMPS  : F3_3<2, 0b110101, 0b001010001,
654                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
655                   "fcmps $src1, $src2\n\tnop",
656                   [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
657  def FCMPD  : F3_3<2, 0b110101, 0b001010010,
658                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
659                   "fcmpd $src1, $src2\n\tnop",
660                   [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
661}
662
663//===----------------------------------------------------------------------===//
664// V9 Instructions
665//===----------------------------------------------------------------------===//
666
667// V9 Conditional Moves.
668let Predicates = [HasV9], isTwoAddress = 1 in {
669  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
670  // FIXME: Add instruction encodings for the JIT some day.
671  def MOVICCrr
672    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
673             "mov$cc %icc, $F, $dst",
674             [(set IntRegs:$dst,
675                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
676  def MOVICCri
677    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
678             "mov$cc %icc, $F, $dst",
679             [(set IntRegs:$dst,
680                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
681
682  def MOVFCCrr
683    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
684             "mov$cc %fcc0, $F, $dst",
685             [(set IntRegs:$dst,
686                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
687  def MOVFCCri
688    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
689             "mov$cc %fcc0, $F, $dst",
690             [(set IntRegs:$dst,
691                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
692
693  def FMOVS_ICC
694    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
695             "fmovs$cc %icc, $F, $dst",
696             [(set FPRegs:$dst,
697                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
698  def FMOVD_ICC
699    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
700             "fmovd$cc %icc, $F, $dst",
701             [(set DFPRegs:$dst,
702                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
703  def FMOVS_FCC
704    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
705             "fmovs$cc %fcc0, $F, $dst",
706             [(set FPRegs:$dst,
707                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
708  def FMOVD_FCC
709    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
710             "fmovd$cc %fcc0, $F, $dst",
711             [(set DFPRegs:$dst,
712                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
713
714}
715
716// Floating-Point Move Instructions, p. 164 of the V9 manual.
717let Predicates = [HasV9] in {
718  def FMOVD : F3_3<2, 0b110100, 0b000000010,
719                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
720                   "fmovd $src, $dst", []>;
721  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
722                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
723                   "fnegd $src, $dst",
724                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
725  def FABSD : F3_3<2, 0b110100, 0b000001010, 
726                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
727                   "fabsd $src, $dst",
728                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
729}
730
731// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
732// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
733def POPCrr : F3_1<2, 0b101110, 
734                  (outs IntRegs:$dst), (ins IntRegs:$src),
735                  "popc $src, $dst", []>, Requires<[HasV9]>;
736def : Pat<(ctpop IntRegs:$src),
737          (POPCrr (SLLri IntRegs:$src, 0))>;
738
739//===----------------------------------------------------------------------===//
740// Non-Instruction Patterns
741//===----------------------------------------------------------------------===//
742
743// Small immediates.
744def : Pat<(i32 simm13:$val),
745          (ORri G0, imm:$val)>;
746// Arbitrary immediates.
747def : Pat<(i32 imm:$val),
748          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
749
750// subc
751def : Pat<(subc IntRegs:$b, IntRegs:$c),
752          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
753def : Pat<(subc IntRegs:$b, simm13:$val),
754          (SUBCCri IntRegs:$b, imm:$val)>;
755
756// Global addresses, constant pool entries
757def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
758def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
759def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
760def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
761
762// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
763def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
764          (ADDri IntRegs:$r, tglobaladdr:$in)>;
765def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
766          (ADDri IntRegs:$r, tconstpool:$in)>;
767
768// Calls: 
769def : Pat<(call tglobaladdr:$dst),
770          (CALL tglobaladdr:$dst)>;
771def : Pat<(call texternalsym:$dst),
772          (CALL texternalsym:$dst)>;
773
774// Map integer extload's to zextloads.
775def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
776def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
777def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
778def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
779def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
780def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
781
782// zextload bool -> zextload byte
783def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
784def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
785