SparcInstrInfo.td revision bb7b844bec6c53ac29ac4c50d7b3963e7f193efb
15c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
25c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// 
35c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//                     The LLVM Compiler Infrastructure
45c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
55c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// This file was developed by the LLVM research group and is distributed under
65c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// the University of Illinois Open Source License. See LICENSE.TXT for details.
75c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// 
85c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
95c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
105c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// This file describes the Sparc instructions in TableGen format.
115c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//
125c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
135c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
145c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
155c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// Instruction format superclass
165c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
175c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
185c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)include "SparcInstrFormats.td"
195c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
205c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
215c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// Feature predicates.
225c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
235c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
245c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// HasV9 - This predicate is true when the target processor supports V9
255c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// instructions.  Note that the machine may be running in 32-bit mode.
265c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)def HasV9   : Predicate<"Subtarget.isV9()">;
275c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
2853e740f4a82e17f3ae59772501622dc354e42336Torne (Richard Coles)// HasNoV9 - This predicate is true when the target doesn't have V9
295c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// instructions.  Use of this is just a hack for the isel not having proper
30c1847b1379d12d0e05df27436bf19a9b1bf12deaTorne (Richard Coles)// costs for V8 instructions that are more expensive than their V9 ones.
315c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32d5428f32f5d1719f774f62e19147104ca245a3abTorne (Richard Coles)
335c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// HasVIS - This is true when the target processor has VIS extensions.
345c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)def HasVIS : Predicate<"Subtarget.isVIS()">;
355c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
365c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// UseDeprecatedInsts - This predicate is true when the target processor is a
375c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
385c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// to use when appropriate.  In either of these cases, the instruction selector
395c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// will pick deprecated instructions.
405c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41d5428f32f5d1719f774f62e19147104ca245a3abTorne (Richard Coles)
425c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
435c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)// Instruction Pattern Stuff
445c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)//===----------------------------------------------------------------------===//
455c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
46c1847b1379d12d0e05df27436bf19a9b1bf12deaTorne (Richard Coles)def simm11  : PatLeaf<(imm), [{
475c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)  // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48c1847b1379d12d0e05df27436bf19a9b1bf12deaTorne (Richard Coles)  return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
495c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)}]>;
505c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
51d5428f32f5d1719f774f62e19147104ca245a3abTorne (Richard Coles)def simm13  : PatLeaf<(imm), [{
5253e740f4a82e17f3ae59772501622dc354e42336Torne (Richard Coles)  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
5353e740f4a82e17f3ae59772501622dc354e42336Torne (Richard Coles)  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
5453e740f4a82e17f3ae59772501622dc354e42336Torne (Richard Coles)}]>;
555c87bf8b86a7c82ef50fb7a89697d8e02e2553beTorne (Richard Coles)
5606f816c7c76bc45a15e452ade8a34e8af077693eTorne (Richard Coles)def LO10 : SDNodeXForm<imm, [{
5753e740f4a82e17f3ae59772501622dc354e42336Torne (Richard Coles)  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
5853e740f4a82e17f3ae59772501622dc354e42336Torne (Richard Coles)}]>;
5953e740f4a82e17f3ae59772501622dc354e42336Torne (Richard Coles)
6053e740f4a82e17f3ae59772501622dc354e42336Torne (Richard Coles)def HI22 : SDNodeXForm<imm, [{
61c1847b1379d12d0e05df27436bf19a9b1bf12deaTorne (Richard Coles)  // Transformation function: shift the immediate value down into the low bits.
62  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
70def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
71def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex]>;
72
73// Address operands
74def MEMrr : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let NumMIOperands = 2;
77  let MIOperandInfo = (ops IntRegs, IntRegs);
78}
79def MEMri : Operand<i32> {
80  let PrintMethod = "printMemOperand";
81  let NumMIOperands = 2;
82  let MIOperandInfo = (ops IntRegs, i32imm);
83}
84
85// Branch targets have OtherVT type.
86def brtarget : Operand<OtherVT>;
87def calltarget : Operand<i32>;
88
89// Operand for printing out a condition code.
90let PrintMethod = "printCCOperand" in
91  def CCOp : Operand<i32>;
92
93def SDTSPcmpfcc : 
94SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
95def SDTSPbrcc : 
96SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
97def SDTSPselectcc :
98SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
99def SDTSPFTOI :
100SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
101def SDTSPITOF :
102SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
103
104def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
105def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
106def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
107def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
108
109def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
110def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
111
112def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
113def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
114
115def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
116def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
117
118// These are target-independent nodes, but have target-specific formats.
119def SDT_SPCallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
120def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeq,
121                           [SDNPHasChain, SDNPOutFlag]>;
122def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeq,
123                           [SDNPHasChain, SDNPOutFlag]>;
124
125def SDT_SPCall    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
126def call          : SDNode<"SPISD::CALL", SDT_SPCall,
127	                   [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
128
129def SDT_SPRetFlag : SDTypeProfile<0, 0, []>;
130def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRetFlag,
131	                   [SDNPHasChain, SDNPOptInFlag]>;
132
133//===----------------------------------------------------------------------===//
134// SPARC Flag Conditions
135//===----------------------------------------------------------------------===//
136
137// Note that these values must be kept in sync with the CCOp::CondCode enum
138// values.
139class ICC_VAL<int N> : PatLeaf<(i32 N)>;
140def ICC_NE  : ICC_VAL< 9>;  // Not Equal
141def ICC_E   : ICC_VAL< 1>;  // Equal
142def ICC_G   : ICC_VAL<10>;  // Greater
143def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
144def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
145def ICC_L   : ICC_VAL< 3>;  // Less
146def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
147def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
148def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
149def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
150def ICC_POS : ICC_VAL<14>;  // Positive
151def ICC_NEG : ICC_VAL< 6>;  // Negative
152def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
153def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
154
155class FCC_VAL<int N> : PatLeaf<(i32 N)>;
156def FCC_U   : FCC_VAL<23>;  // Unordered
157def FCC_G   : FCC_VAL<22>;  // Greater
158def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
159def FCC_L   : FCC_VAL<20>;  // Less
160def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
161def FCC_LG  : FCC_VAL<18>;  // Less or Greater
162def FCC_NE  : FCC_VAL<17>;  // Not Equal
163def FCC_E   : FCC_VAL<25>;  // Equal
164def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
165def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
166def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
167def FCC_LE  : FCC_VAL<27>;  // Less or Equal
168def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
169def FCC_O   : FCC_VAL<29>;  // Ordered
170
171
172//===----------------------------------------------------------------------===//
173// Instructions
174//===----------------------------------------------------------------------===//
175
176// Pseudo instructions.
177class Pseudo<dag ops, string asmstr, list<dag> pattern>
178   : InstSP<ops, asmstr, pattern>;
179
180def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
181                               "!ADJCALLSTACKDOWN $amt",
182                               [(callseq_start imm:$amt)]>;
183def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
184                            "!ADJCALLSTACKUP $amt",
185                            [(callseq_end imm:$amt)]>;
186def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
187                              "!IMPLICIT_DEF $dst",
188                              [(set IntRegs:$dst, (undef))]>;
189def IMPLICIT_DEF_FP  : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
190                              [(set FPRegs:$dst, (undef))]>;
191def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
192                              [(set DFPRegs:$dst, (undef))]>;
193                              
194// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
195// fpmover pass.
196let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
197  def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
198                      "!FpMOVD $src, $dst", []>;
199  def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
200                      "!FpNEGD $src, $dst",
201                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
202  def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
203                      "!FpABSD $src, $dst",
204                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
205}
206
207// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded by the
208// scheduler into a branch sequence.  This has to handle all permutations of
209// selection between i32/f32/f64 on ICC and FCC.
210let usesCustomDAGSchedInserter = 1 in {   // Expanded by the scheduler.
211  def SELECT_CC_Int_ICC
212   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
213            "; SELECT_CC_Int_ICC PSEUDO!",
214            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
215                                             imm:$Cond))]>;
216  def SELECT_CC_Int_FCC
217   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
218            "; SELECT_CC_Int_FCC PSEUDO!",
219            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
220                                             imm:$Cond))]>;
221  def SELECT_CC_FP_ICC
222   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
223            "; SELECT_CC_FP_ICC PSEUDO!",
224            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
225                                            imm:$Cond))]>;
226  def SELECT_CC_FP_FCC
227   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
228            "; SELECT_CC_FP_FCC PSEUDO!",
229            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
230                                            imm:$Cond))]>;
231  def SELECT_CC_DFP_ICC
232   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
233            "; SELECT_CC_DFP_ICC PSEUDO!",
234            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
235                                             imm:$Cond))]>;
236  def SELECT_CC_DFP_FCC
237   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
238            "; SELECT_CC_DFP_FCC PSEUDO!",
239            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
240                                             imm:$Cond))]>;
241}
242
243
244// Section A.3 - Synthetic Instructions, p. 85
245// special cases of JMPL:
246let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
247  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
248    def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
249}
250
251// Section B.1 - Load Integer Instructions, p. 90
252def LDSBrr : F3_1<3, 0b001001,
253                  (ops IntRegs:$dst, MEMrr:$addr),
254                  "ldsb [$addr], $dst",
255                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
256def LDSBri : F3_2<3, 0b001001,
257                  (ops IntRegs:$dst, MEMri:$addr),
258                  "ldsb [$addr], $dst",
259                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
260def LDSHrr : F3_1<3, 0b001010,
261                  (ops IntRegs:$dst, MEMrr:$addr),
262                  "ldsh [$addr], $dst",
263                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
264def LDSHri : F3_2<3, 0b001010,
265                  (ops IntRegs:$dst, MEMri:$addr),
266                  "ldsh [$addr], $dst",
267                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
268def LDUBrr : F3_1<3, 0b000001,
269                  (ops IntRegs:$dst, MEMrr:$addr),
270                  "ldub [$addr], $dst",
271                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
272def LDUBri : F3_2<3, 0b000001,
273                  (ops IntRegs:$dst, MEMri:$addr),
274                  "ldub [$addr], $dst",
275                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
276def LDUHrr : F3_1<3, 0b000010,
277                  (ops IntRegs:$dst, MEMrr:$addr),
278                  "lduh [$addr], $dst",
279                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
280def LDUHri : F3_2<3, 0b000010,
281                  (ops IntRegs:$dst, MEMri:$addr),
282                  "lduh [$addr], $dst",
283                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
284def LDrr   : F3_1<3, 0b000000,
285                  (ops IntRegs:$dst, MEMrr:$addr),
286                  "ld [$addr], $dst",
287                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
288def LDri   : F3_2<3, 0b000000,
289                  (ops IntRegs:$dst, MEMri:$addr),
290                  "ld [$addr], $dst",
291                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
292
293// Section B.2 - Load Floating-point Instructions, p. 92
294def LDFrr  : F3_1<3, 0b100000,
295                  (ops FPRegs:$dst, MEMrr:$addr),
296                  "ld [$addr], $dst",
297                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
298def LDFri  : F3_2<3, 0b100000,
299                  (ops FPRegs:$dst, MEMri:$addr),
300                  "ld [$addr], $dst",
301                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
302def LDDFrr : F3_1<3, 0b100011,
303                  (ops DFPRegs:$dst, MEMrr:$addr),
304                  "ldd [$addr], $dst",
305                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
306def LDDFri : F3_2<3, 0b100011,
307                  (ops DFPRegs:$dst, MEMri:$addr),
308                  "ldd [$addr], $dst",
309                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
310
311// Section B.4 - Store Integer Instructions, p. 95
312def STBrr : F3_1<3, 0b000101,
313                 (ops MEMrr:$addr, IntRegs:$src),
314                 "stb $src, [$addr]",
315                 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
316def STBri : F3_2<3, 0b000101,
317                 (ops MEMri:$addr, IntRegs:$src),
318                 "stb $src, [$addr]",
319                 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
320def STHrr : F3_1<3, 0b000110,
321                 (ops MEMrr:$addr, IntRegs:$src),
322                 "sth $src, [$addr]",
323                 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
324def STHri : F3_2<3, 0b000110,
325                 (ops MEMri:$addr, IntRegs:$src),
326                 "sth $src, [$addr]",
327                 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
328def STrr  : F3_1<3, 0b000100,
329                 (ops MEMrr:$addr, IntRegs:$src),
330                 "st $src, [$addr]",
331                 [(store IntRegs:$src, ADDRrr:$addr)]>;
332def STri  : F3_2<3, 0b000100,
333                 (ops MEMri:$addr, IntRegs:$src),
334                 "st $src, [$addr]",
335                 [(store IntRegs:$src, ADDRri:$addr)]>;
336
337// Section B.5 - Store Floating-point Instructions, p. 97
338def STFrr   : F3_1<3, 0b100100,
339                   (ops MEMrr:$addr, FPRegs:$src),
340                   "st $src, [$addr]",
341                   [(store FPRegs:$src, ADDRrr:$addr)]>;
342def STFri   : F3_2<3, 0b100100,
343                   (ops MEMri:$addr, FPRegs:$src),
344                   "st $src, [$addr]",
345                   [(store FPRegs:$src, ADDRri:$addr)]>;
346def STDFrr  : F3_1<3, 0b100111,
347                   (ops MEMrr:$addr, DFPRegs:$src),
348                   "std  $src, [$addr]",
349                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
350def STDFri  : F3_2<3, 0b100111,
351                   (ops MEMri:$addr, DFPRegs:$src),
352                   "std $src, [$addr]",
353                   [(store DFPRegs:$src, ADDRri:$addr)]>;
354
355// Section B.9 - SETHI Instruction, p. 104
356def SETHIi: F2_1<0b100,
357                 (ops IntRegs:$dst, i32imm:$src),
358                 "sethi $src, $dst",
359                 [(set IntRegs:$dst, SETHIimm:$src)]>;
360
361// Section B.10 - NOP Instruction, p. 105
362// (It's a special case of SETHI)
363let rd = 0, imm22 = 0 in
364  def NOP : F2_1<0b100, (ops), "nop", []>;
365
366// Section B.11 - Logical Instructions, p. 106
367def ANDrr   : F3_1<2, 0b000001,
368                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
369                   "and $b, $c, $dst",
370                   [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
371def ANDri   : F3_2<2, 0b000001,
372                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
373                   "and $b, $c, $dst",
374                   [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
375def ANDNrr  : F3_1<2, 0b000101,
376                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
377                   "andn $b, $c, $dst",
378                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
379def ANDNri  : F3_2<2, 0b000101,
380                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
381                   "andn $b, $c, $dst", []>;
382def ORrr    : F3_1<2, 0b000010,
383                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
384                   "or $b, $c, $dst",
385                   [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
386def ORri    : F3_2<2, 0b000010,
387                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
388                   "or $b, $c, $dst",
389                   [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
390def ORNrr   : F3_1<2, 0b000110,
391                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
392                   "orn $b, $c, $dst",
393                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
394def ORNri   : F3_2<2, 0b000110,
395                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
396                   "orn $b, $c, $dst", []>;
397def XORrr   : F3_1<2, 0b000011,
398                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
399                   "xor $b, $c, $dst",
400                   [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
401def XORri   : F3_2<2, 0b000011,
402                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
403                   "xor $b, $c, $dst",
404                   [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
405def XNORrr  : F3_1<2, 0b000111,
406                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
407                   "xnor $b, $c, $dst",
408                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
409def XNORri  : F3_2<2, 0b000111,
410                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
411                   "xnor $b, $c, $dst", []>;
412
413// Section B.12 - Shift Instructions, p. 107
414def SLLrr : F3_1<2, 0b100101,
415                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
416                 "sll $b, $c, $dst",
417                 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
418def SLLri : F3_2<2, 0b100101,
419                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
420                 "sll $b, $c, $dst",
421                 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
422def SRLrr : F3_1<2, 0b100110, 
423                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
424                  "srl $b, $c, $dst",
425                  [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
426def SRLri : F3_2<2, 0b100110,
427                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
428                 "srl $b, $c, $dst", 
429                 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
430def SRArr : F3_1<2, 0b100111, 
431                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
432                  "sra $b, $c, $dst",
433                  [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
434def SRAri : F3_2<2, 0b100111,
435                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
436                 "sra $b, $c, $dst",
437                 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
438
439// Section B.13 - Add Instructions, p. 108
440def ADDrr   : F3_1<2, 0b000000, 
441                  (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
442                  "add $b, $c, $dst",
443                   [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
444def ADDri   : F3_2<2, 0b000000,
445                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
446                   "add $b, $c, $dst",
447                   [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
448
449// "LEA" forms of add (patterns to make tblgen happy)
450def LEA_ADDri   : F3_2<2, 0b000000,
451                   (ops IntRegs:$dst, MEMri:$addr),
452                   "add ${addr:arith}, $dst",
453                   [(set IntRegs:$dst, ADDRri:$addr)]>;
454                   
455def ADDCCrr : F3_1<2, 0b010000, 
456                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
457                   "addcc $b, $c, $dst",
458                   [(set IntRegs:$dst, (addc IntRegs:$b, IntRegs:$c))]>;
459def ADDCCri : F3_2<2, 0b010000,
460                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
461                   "addcc $b, $c, $dst", 
462                   [(set IntRegs:$dst, (addc IntRegs:$b, simm13:$c))]>;
463def ADDXrr  : F3_1<2, 0b001000, 
464                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
465                   "addx $b, $c, $dst",
466                   [(set IntRegs:$dst, (adde IntRegs:$b, IntRegs:$c))]>;
467def ADDXri  : F3_2<2, 0b001000,
468                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
469                   "addx $b, $c, $dst",
470                   [(set IntRegs:$dst, (adde IntRegs:$b, simm13:$c))]>;
471
472// Section B.15 - Subtract Instructions, p. 110
473def SUBrr   : F3_1<2, 0b000100, 
474                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
475                   "sub $b, $c, $dst",
476                   [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
477def SUBri   : F3_2<2, 0b000100,
478                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
479                   "sub $b, $c, $dst",
480                   [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
481def SUBXrr  : F3_1<2, 0b001100, 
482                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
483                   "subx $b, $c, $dst",
484                   [(set IntRegs:$dst, (sube IntRegs:$b, IntRegs:$c))]>;
485def SUBXri  : F3_2<2, 0b001100,
486                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
487                   "subx $b, $c, $dst",
488                   [(set IntRegs:$dst, (sube IntRegs:$b, simm13:$c))]>;
489def SUBCCrr : F3_1<2, 0b010100, 
490                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
491                   "subcc $b, $c, $dst",
492                   [(set IntRegs:$dst, (SPcmpicc IntRegs:$b, IntRegs:$c))]>;
493def SUBCCri : F3_2<2, 0b010100,
494                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
495                   "subcc $b, $c, $dst",
496                   [(set IntRegs:$dst, (SPcmpicc IntRegs:$b, simm13:$c))]>;
497def SUBXCCrr: F3_1<2, 0b011100, 
498                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
499                   "subxcc $b, $c, $dst", []>;
500
501// Section B.18 - Multiply Instructions, p. 113
502def UMULrr  : F3_1<2, 0b001010, 
503                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
504                   "umul $b, $c, $dst", []>;
505def UMULri  : F3_2<2, 0b001010,
506                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
507                   "umul $b, $c, $dst", []>;
508                   
509def SMULrr  : F3_1<2, 0b001011, 
510                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
511                   "smul $b, $c, $dst",
512                   [(set IntRegs:$dst, (mul IntRegs:$b, IntRegs:$c))]>;
513def SMULri  : F3_2<2, 0b001011,
514                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
515                   "smul $b, $c, $dst",
516                   [(set IntRegs:$dst, (mul IntRegs:$b, simm13:$c))]>;
517
518/*
519//===-------------------------
520// Sparc Example
521defm intinst{OPC1, OPC2}<bits Opc, string asmstr, SDNode code> {
522  def OPC1 : F3_1<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
523                  [(set IntRegs:$dst, (code IntRegs:$b, IntRegs:$c))]>;
524  def OPC2 : F3_2<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
525                  [(set IntRegs:$dst, (code IntRegs:$b, simm13:$c))]>;
526}
527defm intinst_np{OPC1, OPC2}<bits Opc, string asmstr> {
528  def OPC1 : F3_1<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
529                  []>;
530  def OPC2 : F3_2<2, Opc, asmstr, (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
531                  []>;
532}
533
534def { ADDXrr,  ADDXri} : intinstnp<0b001000,  "addx $b, $c, $dst">;
535def {  SUBrr,   SUBri} : intinst  <0b000100,   "sub $b, $c, $dst",  sub>;
536def intinstnp{ SUBXrr,  SUBXri}<0b001100,  "subx $b, $c, $dst">;
537def intinst  {SUBCCrr, SUBCCri}<0b010100, "subcc $b, $c, $dst",  SPcmpicc>;
538def intinst  { SMULrr,  SMULri}<0b001011,  "smul $b, $c, $dst",  mul>;
539
540//===-------------------------
541// X86 Example
542defm cmov32<id OPC1, id OPC2, int opc, string asmstr, PatLeaf cond> {
543  def OPC1 : I<opc, MRMSrcReg, (ops R32:$dst, R32:$src1, R32:$src2),
544               asmstr+" {$src2, $dst|$dst, $src2}",
545               [(set R32:$dst, (X86cmov R32:$src1, R32:$src2, cond))]>, TB;
546  def OPC2 : I<opc, MRMSrcMem, (ops R32:$dst, R32:$src1, i32mem:$src2),
547               asmstr+" {$src2, $dst|$dst, $src2}",
548               [(set R32:$dst, (X86cmov R32:$src1,
549                                        (loadi32 addr:$src2), cond))]>, TB;
550}
551
552def cmov<CMOVL32rr, CMOVL32rm, 0x4C, "cmovl", X86_COND_L>;
553def cmov<CMOVB32rr, CMOVB32rm, 0x4C, "cmovb", X86_COND_B>;
554
555//===-------------------------
556// PPC Example
557
558def fpunop<id OPC1, id OPC2, id FORM, int op1, int op2, int op3, string asmstr, 
559           SDNode code> {
560  def OPC1 : FORM<op1, op3, (ops F4RC:$frD, F4RC:$frB),
561                  asmstr+" $frD, $frB", FPGeneral,
562                  [(set F4RC:$frD, (code F4RC:$frB))]>;
563  def OPC2 : FORM<op2, op3, (ops F8RC:$frD, F8RC:$frB),
564                  asmstr+" $frD, $frB", FPGeneral,
565                  [(set F8RC:$frD, (code F8RC:$frB))]>;
566}
567
568def fpunop< FABSS,  FABSD, XForm_26, 63, 63, 264,  "fabs",  fabs>;
569def fpunop<FNABSS, FNABSD, XForm_26, 63, 63, 136, "fnabs", fnabs>;
570def fpunop< FNEGS,  FNEGD, XForm_26, 63, 63,  40,  "fneg",  fneg>;
571*/
572
573// Section B.19 - Divide Instructions, p. 115
574def UDIVrr   : F3_1<2, 0b001110, 
575                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
576                    "udiv $b, $c, $dst", []>;
577def UDIVri   : F3_2<2, 0b001110,
578                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
579                    "udiv $b, $c, $dst", []>;
580def SDIVrr   : F3_1<2, 0b001111,
581                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
582                    "sdiv $b, $c, $dst", []>;
583def SDIVri   : F3_2<2, 0b001111,
584                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
585                    "sdiv $b, $c, $dst", []>;
586
587// Section B.20 - SAVE and RESTORE, p. 117
588def SAVErr    : F3_1<2, 0b111100,
589                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
590                     "save $b, $c, $dst", []>;
591def SAVEri    : F3_2<2, 0b111100,
592                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
593                     "save $b, $c, $dst", []>;
594def RESTORErr : F3_1<2, 0b111101,
595                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
596                     "restore $b, $c, $dst", []>;
597def RESTOREri : F3_2<2, 0b111101,
598                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
599                     "restore $b, $c, $dst", []>;
600
601// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
602
603// conditional branch class:
604class BranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
605 : F2_2<cc, 0b010, ops, asmstr, pattern> {
606  let isBranch = 1;
607  let isTerminator = 1;
608  let hasDelaySlot = 1;
609  let noResults = 1;
610}
611
612let isBarrier = 1 in
613  def BA   : BranchSP<0b1000, (ops brtarget:$dst),
614                      "ba $dst",
615                      [(br bb:$dst)]>;
616                      
617// FIXME: the encoding for the JIT should look at the condition field.
618def BCOND : BranchSP<0, (ops brtarget:$dst, CCOp:$cc),
619                     "b$cc $dst",
620                     [(SPbricc bb:$dst, imm:$cc)]>;
621
622
623// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
624
625// floating-point conditional branch class:
626class FPBranchSP<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
627 : F2_2<cc, 0b110, ops, asmstr, pattern> {
628  let isBranch = 1;
629  let isTerminator = 1;
630  let hasDelaySlot = 1;
631  let noResults = 1;
632}
633
634// FIXME: the encoding for the JIT should look at the condition field.
635def FBCOND  : FPBranchSP<0, (ops brtarget:$dst, CCOp:$cc),
636                      "fb$cc $dst",
637                      [(SPbrfcc bb:$dst, imm:$cc)]>;
638
639
640// Section B.24 - Call and Link Instruction, p. 125
641// This is the only Format 1 instruction
642let Uses = [O0, O1, O2, O3, O4, O5],
643    hasDelaySlot = 1, isCall = 1, noResults = 1,
644    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
645    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
646  def CALL : InstSP<(ops calltarget:$dst),
647                    "call $dst", []> {
648    bits<30> disp;
649    let op = 1;
650    let Inst{29-0} = disp;
651  }
652  
653  // indirect calls
654  def JMPLrr : F3_1<2, 0b111000,
655                    (ops MEMrr:$ptr),
656                    "call $ptr",
657                    [(call  ADDRrr:$ptr)]>;
658  def JMPLri : F3_2<2, 0b111000,
659                    (ops MEMri:$ptr),
660                    "call $ptr",
661                    [(call  ADDRri:$ptr)]>;
662}
663
664// Section B.28 - Read State Register Instructions
665def RDY : F3_1<2, 0b101000,
666               (ops IntRegs:$dst),
667               "rd %y, $dst", []>;
668
669// Section B.29 - Write State Register Instructions
670def WRYrr : F3_1<2, 0b110000,
671                 (ops IntRegs:$b, IntRegs:$c),
672                 "wr $b, $c, %y", []>;
673def WRYri : F3_2<2, 0b110000,
674                 (ops IntRegs:$b, i32imm:$c),
675                 "wr $b, $c, %y", []>;
676
677// Convert Integer to Floating-point Instructions, p. 141
678def FITOS : F3_3<2, 0b110100, 0b011000100,
679                 (ops FPRegs:$dst, FPRegs:$src),
680                 "fitos $src, $dst",
681                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
682def FITOD : F3_3<2, 0b110100, 0b011001000, 
683                 (ops DFPRegs:$dst, FPRegs:$src),
684                 "fitod $src, $dst",
685                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
686
687// Convert Floating-point to Integer Instructions, p. 142
688def FSTOI : F3_3<2, 0b110100, 0b011010001,
689                 (ops FPRegs:$dst, FPRegs:$src),
690                 "fstoi $src, $dst",
691                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
692def FDTOI : F3_3<2, 0b110100, 0b011010010,
693                 (ops FPRegs:$dst, DFPRegs:$src),
694                 "fdtoi $src, $dst",
695                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
696
697// Convert between Floating-point Formats Instructions, p. 143
698def FSTOD : F3_3<2, 0b110100, 0b011001001, 
699                 (ops DFPRegs:$dst, FPRegs:$src),
700                 "fstod $src, $dst",
701                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
702def FDTOS : F3_3<2, 0b110100, 0b011000110,
703                 (ops FPRegs:$dst, DFPRegs:$src),
704                 "fdtos $src, $dst",
705                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
706
707// Floating-point Move Instructions, p. 144
708def FMOVS : F3_3<2, 0b110100, 0b000000001,
709                 (ops FPRegs:$dst, FPRegs:$src),
710                 "fmovs $src, $dst", []>;
711def FNEGS : F3_3<2, 0b110100, 0b000000101, 
712                 (ops FPRegs:$dst, FPRegs:$src),
713                 "fnegs $src, $dst",
714                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
715def FABSS : F3_3<2, 0b110100, 0b000001001, 
716                 (ops FPRegs:$dst, FPRegs:$src),
717                 "fabss $src, $dst",
718                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
719
720
721// Floating-point Square Root Instructions, p.145
722def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
723                  (ops FPRegs:$dst, FPRegs:$src),
724                  "fsqrts $src, $dst",
725                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
726def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
727                  (ops DFPRegs:$dst, DFPRegs:$src),
728                  "fsqrtd $src, $dst",
729                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
730
731
732
733// Floating-point Add and Subtract Instructions, p. 146
734def FADDS  : F3_3<2, 0b110100, 0b001000001,
735                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
736                  "fadds $src1, $src2, $dst",
737                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
738def FADDD  : F3_3<2, 0b110100, 0b001000010,
739                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
740                  "faddd $src1, $src2, $dst",
741                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
742def FSUBS  : F3_3<2, 0b110100, 0b001000101,
743                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
744                  "fsubs $src1, $src2, $dst",
745                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
746def FSUBD  : F3_3<2, 0b110100, 0b001000110,
747                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
748                  "fsubd $src1, $src2, $dst",
749                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
750
751// Floating-point Multiply and Divide Instructions, p. 147
752def FMULS  : F3_3<2, 0b110100, 0b001001001,
753                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
754                  "fmuls $src1, $src2, $dst",
755                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
756def FMULD  : F3_3<2, 0b110100, 0b001001010,
757                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
758                  "fmuld $src1, $src2, $dst",
759                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
760def FSMULD : F3_3<2, 0b110100, 0b001101001,
761                  (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
762                  "fsmuld $src1, $src2, $dst",
763                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
764                                            (fextend FPRegs:$src2)))]>;
765def FDIVS  : F3_3<2, 0b110100, 0b001001101,
766                 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
767                 "fdivs $src1, $src2, $dst",
768                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
769def FDIVD  : F3_3<2, 0b110100, 0b001001110,
770                 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
771                 "fdivd $src1, $src2, $dst",
772                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
773
774// Floating-point Compare Instructions, p. 148
775// Note: the 2nd template arg is different for these guys.
776// Note 2: the result of a FCMP is not available until the 2nd cycle
777// after the instr is retired, but there is no interlock. This behavior
778// is modelled with a forced noop after the instruction.
779def FCMPS  : F3_3<2, 0b110101, 0b001010001,
780                  (ops FPRegs:$src1, FPRegs:$src2),
781                  "fcmps $src1, $src2\n\tnop",
782                  [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
783def FCMPD  : F3_3<2, 0b110101, 0b001010010,
784                  (ops DFPRegs:$src1, DFPRegs:$src2),
785                  "fcmpd $src1, $src2\n\tnop",
786                  [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
787
788
789//===----------------------------------------------------------------------===//
790// V9 Instructions
791//===----------------------------------------------------------------------===//
792
793// V9 Conditional Moves.
794let Predicates = [HasV9], isTwoAddress = 1 in {
795  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
796  // FIXME: Add instruction encodings for the JIT some day.
797  def MOVICCrr
798    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
799             "mov$cc %icc, $F, $dst",
800             [(set IntRegs:$dst,
801                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
802  def MOVICCri
803    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
804             "mov$cc %icc, $F, $dst",
805             [(set IntRegs:$dst,
806                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
807
808  def MOVFCCrr
809    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, CCOp:$cc),
810             "mov$cc %fcc0, $F, $dst",
811             [(set IntRegs:$dst,
812                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
813  def MOVFCCri
814    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, CCOp:$cc),
815             "mov$cc %fcc0, $F, $dst",
816             [(set IntRegs:$dst,
817                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
818
819  def FMOVS_ICC
820    : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
821             "fmovs$cc %icc, $F, $dst",
822             [(set FPRegs:$dst,
823                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
824  def FMOVD_ICC
825    : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
826             "fmovd$cc %icc, $F, $dst",
827             [(set DFPRegs:$dst,
828                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
829  def FMOVS_FCC
830    : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, CCOp:$cc),
831             "fmovs$cc %fcc0, $F, $dst",
832             [(set FPRegs:$dst,
833                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
834  def FMOVD_FCC
835    : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
836             "fmovd$cc %fcc0, $F, $dst",
837             [(set DFPRegs:$dst,
838                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
839
840}
841
842// Floating-Point Move Instructions, p. 164 of the V9 manual.
843let Predicates = [HasV9] in {
844  def FMOVD : F3_3<2, 0b110100, 0b000000010,
845                   (ops DFPRegs:$dst, DFPRegs:$src),
846                   "fmovd $src, $dst", []>;
847  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
848                   (ops DFPRegs:$dst, DFPRegs:$src),
849                   "fnegd $src, $dst",
850                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
851  def FABSD : F3_3<2, 0b110100, 0b000001010, 
852                   (ops DFPRegs:$dst, DFPRegs:$src),
853                   "fabsd $src, $dst",
854                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
855}
856
857// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
858// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
859def POPCrr : F3_1<2, 0b101110, 
860                  (ops IntRegs:$dst, IntRegs:$src),
861                  "popc $src, $dst", []>, Requires<[HasV9]>;
862def : Pat<(ctpop IntRegs:$src),
863          (POPCrr (SLLri IntRegs:$src, 0))>;
864
865//===----------------------------------------------------------------------===//
866// Non-Instruction Patterns
867//===----------------------------------------------------------------------===//
868
869// Small immediates.
870def : Pat<(i32 simm13:$val),
871          (ORri G0, imm:$val)>;
872// Arbitrary immediates.
873def : Pat<(i32 imm:$val),
874          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
875
876// subc
877def : Pat<(subc IntRegs:$b, IntRegs:$c),
878          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
879def : Pat<(subc IntRegs:$b, simm13:$val),
880          (SUBCCri IntRegs:$b, imm:$val)>;
881
882// Global addresses, constant pool entries
883def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
884def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
885def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
886def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
887
888// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
889def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
890          (ADDri IntRegs:$r, tglobaladdr:$in)>;
891def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
892          (ADDri IntRegs:$r, tconstpool:$in)>;
893
894// Calls: 
895def : Pat<(call tglobaladdr:$dst),
896          (CALL tglobaladdr:$dst)>;
897def : Pat<(call texternalsym:$dst),
898          (CALL texternalsym:$dst)>;
899
900def : Pat<(ret), (RETL)>;
901
902// Map integer extload's to zextloads.
903def : Pat<(i32 (extload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
904def : Pat<(i32 (extload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
905def : Pat<(i32 (extload ADDRrr:$src, i8)), (LDUBrr ADDRrr:$src)>;
906def : Pat<(i32 (extload ADDRri:$src, i8)), (LDUBri ADDRri:$src)>;
907def : Pat<(i32 (extload ADDRrr:$src, i16)), (LDUHrr ADDRrr:$src)>;
908def : Pat<(i32 (extload ADDRri:$src, i16)), (LDUHri ADDRri:$src)>;
909
910// zextload bool -> zextload byte
911def : Pat<(i32 (zextload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
912def : Pat<(i32 (zextload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
913
914// truncstore bool -> truncstore byte.
915def : Pat<(truncstore IntRegs:$src, ADDRrr:$addr, i1), 
916          (STBrr ADDRrr:$addr, IntRegs:$src)>;
917def : Pat<(truncstore IntRegs:$src, ADDRri:$addr, i1), 
918          (STBri ADDRri:$addr, IntRegs:$src)>;
919