SparcInstrInfo.td revision c69107ca11282a905c252d1b62091951087f13dc
1//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{
47  // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48  return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
49}]>;
50
51def simm13  : PatLeaf<(imm), [{
52  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
53  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
54}]>;
55
56def LO10 : SDNodeXForm<imm, [{
57  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
58}]>;
59
60def HI22 : SDNodeXForm<imm, [{
61  // Transformation function: shift the immediate value down into the low bits.
62  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
70def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
71def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
72
73// Address operands
74def MEMrr : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let MIOperandInfo = (ops IntRegs, IntRegs);
77}
78def MEMri : Operand<i32> {
79  let PrintMethod = "printMemOperand";
80  let MIOperandInfo = (ops IntRegs, i32imm);
81}
82
83// Branch targets have OtherVT type.
84def brtarget : Operand<OtherVT>;
85def calltarget : Operand<i32>;
86
87// Operand for printing out a condition code.
88let PrintMethod = "printCCOperand" in
89  def CCOp : Operand<i32>;
90
91def SDTSPcmpfcc : 
92SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
93def SDTSPbrcc : 
94SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
95def SDTSPselectcc :
96SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
97def SDTSPFTOI :
98SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
99def SDTSPITOF :
100SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
101
102def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
103def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
104def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
105def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
106
107def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
108def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
109
110def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
111def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
112
113def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
114def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
115
116// These are target-independent nodes, but have target-specific formats.
117def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
118def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
119                                        SDTCisVT<1, i32> ]>;
120
121def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
122                           [SDNPHasChain, SDNPOutFlag]>;
123def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
124                           [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
125
126def SDT_SPCall    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
127def call          : SDNode<"SPISD::CALL", SDT_SPCall,
128	                   [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
129
130def SDT_SPRetFlag : SDTypeProfile<0, 0, []>;
131def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRetFlag,
132	                   [SDNPHasChain, SDNPOptInFlag]>;
133
134//===----------------------------------------------------------------------===//
135// SPARC Flag Conditions
136//===----------------------------------------------------------------------===//
137
138// Note that these values must be kept in sync with the CCOp::CondCode enum
139// values.
140class ICC_VAL<int N> : PatLeaf<(i32 N)>;
141def ICC_NE  : ICC_VAL< 9>;  // Not Equal
142def ICC_E   : ICC_VAL< 1>;  // Equal
143def ICC_G   : ICC_VAL<10>;  // Greater
144def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
145def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
146def ICC_L   : ICC_VAL< 3>;  // Less
147def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
148def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
149def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
150def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
151def ICC_POS : ICC_VAL<14>;  // Positive
152def ICC_NEG : ICC_VAL< 6>;  // Negative
153def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
154def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
155
156class FCC_VAL<int N> : PatLeaf<(i32 N)>;
157def FCC_U   : FCC_VAL<23>;  // Unordered
158def FCC_G   : FCC_VAL<22>;  // Greater
159def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
160def FCC_L   : FCC_VAL<20>;  // Less
161def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
162def FCC_LG  : FCC_VAL<18>;  // Less or Greater
163def FCC_NE  : FCC_VAL<17>;  // Not Equal
164def FCC_E   : FCC_VAL<25>;  // Equal
165def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
166def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
167def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
168def FCC_LE  : FCC_VAL<27>;  // Less or Equal
169def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
170def FCC_O   : FCC_VAL<29>;  // Ordered
171
172//===----------------------------------------------------------------------===//
173// Instruction Class Templates
174//===----------------------------------------------------------------------===//
175
176/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
177multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
178  def rr  : F3_1<2, Op3Val, 
179                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
180                 !strconcat(OpcStr, " $b, $c, $dst"),
181                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
182  def ri  : F3_2<2, Op3Val,
183                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
184                 !strconcat(OpcStr, " $b, $c, $dst"),
185                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
186}
187
188/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
189/// pattern.
190multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
191  def rr  : F3_1<2, Op3Val, 
192                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
193                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
194  def ri  : F3_2<2, Op3Val,
195                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
196                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
197}
198
199//===----------------------------------------------------------------------===//
200// Instructions
201//===----------------------------------------------------------------------===//
202
203// Pseudo instructions.
204class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
205   : InstSP<outs, ins, asmstr, pattern>;
206
207let Defs = [O6], Uses = [O6] in {
208def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
209                               "!ADJCALLSTACKDOWN $amt",
210                               [(callseq_start imm:$amt)]>;
211def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
212                            "!ADJCALLSTACKUP $amt1",
213                            [(callseq_end imm:$amt1, imm:$amt2)]>;
214}
215def IMPLICIT_DEF_Int : Pseudo<(outs IntRegs:$dst), (ins),
216                              "!IMPLICIT_DEF $dst",
217                              [(set IntRegs:$dst, (undef))]>;
218def IMPLICIT_DEF_FP  : Pseudo<(outs FPRegs:$dst), (ins), "!IMPLICIT_DEF $dst",
219                              [(set FPRegs:$dst, (undef))]>;
220def IMPLICIT_DEF_DFP : Pseudo<(outs DFPRegs:$dst), (ins), "!IMPLICIT_DEF $dst",
221                              [(set DFPRegs:$dst, (undef))]>;
222                              
223// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
224// fpmover pass.
225let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
226  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
227                      "!FpMOVD $src, $dst", []>;
228  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
229                      "!FpNEGD $src, $dst",
230                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
231  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
232                      "!FpABSD $src, $dst",
233                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
234}
235
236// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded by the
237// scheduler into a branch sequence.  This has to handle all permutations of
238// selection between i32/f32/f64 on ICC and FCC.
239let usesCustomDAGSchedInserter = 1 in {   // Expanded by the scheduler.
240  def SELECT_CC_Int_ICC
241   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
242            "; SELECT_CC_Int_ICC PSEUDO!",
243            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
244                                             imm:$Cond))]>;
245  def SELECT_CC_Int_FCC
246   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
247            "; SELECT_CC_Int_FCC PSEUDO!",
248            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
249                                             imm:$Cond))]>;
250  def SELECT_CC_FP_ICC
251   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
252            "; SELECT_CC_FP_ICC PSEUDO!",
253            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
254                                            imm:$Cond))]>;
255  def SELECT_CC_FP_FCC
256   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
257            "; SELECT_CC_FP_FCC PSEUDO!",
258            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
259                                            imm:$Cond))]>;
260  def SELECT_CC_DFP_ICC
261   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
262            "; SELECT_CC_DFP_ICC PSEUDO!",
263            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
264                                             imm:$Cond))]>;
265  def SELECT_CC_DFP_FCC
266   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
267            "; SELECT_CC_DFP_FCC PSEUDO!",
268            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
269                                             imm:$Cond))]>;
270}
271
272
273// Section A.3 - Synthetic Instructions, p. 85
274// special cases of JMPL:
275let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in {
276  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
277    def RETL: F3_2<2, 0b111000, (outs), (ins), "retl", [(retflag)]>;
278}
279
280// Section B.1 - Load Integer Instructions, p. 90
281def LDSBrr : F3_1<3, 0b001001,
282                  (outs IntRegs:$dst), (ins MEMrr:$addr),
283                  "ldsb [$addr], $dst",
284                  [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
285def LDSBri : F3_2<3, 0b001001,
286                  (outs IntRegs:$dst), (ins MEMri:$addr),
287                  "ldsb [$addr], $dst",
288                  [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
289def LDSHrr : F3_1<3, 0b001010,
290                  (outs IntRegs:$dst), (ins MEMrr:$addr),
291                  "ldsh [$addr], $dst",
292                  [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
293def LDSHri : F3_2<3, 0b001010,
294                  (outs IntRegs:$dst), (ins MEMri:$addr),
295                  "ldsh [$addr], $dst",
296                  [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
297def LDUBrr : F3_1<3, 0b000001,
298                  (outs IntRegs:$dst), (ins MEMrr:$addr),
299                  "ldub [$addr], $dst",
300                  [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
301def LDUBri : F3_2<3, 0b000001,
302                  (outs IntRegs:$dst), (ins MEMri:$addr),
303                  "ldub [$addr], $dst",
304                  [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
305def LDUHrr : F3_1<3, 0b000010,
306                  (outs IntRegs:$dst), (ins MEMrr:$addr),
307                  "lduh [$addr], $dst",
308                  [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
309def LDUHri : F3_2<3, 0b000010,
310                  (outs IntRegs:$dst), (ins MEMri:$addr),
311                  "lduh [$addr], $dst",
312                  [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
313def LDrr   : F3_1<3, 0b000000,
314                  (outs IntRegs:$dst), (ins MEMrr:$addr),
315                  "ld [$addr], $dst",
316                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
317def LDri   : F3_2<3, 0b000000,
318                  (outs IntRegs:$dst), (ins MEMri:$addr),
319                  "ld [$addr], $dst",
320                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
321
322// Section B.2 - Load Floating-point Instructions, p. 92
323def LDFrr  : F3_1<3, 0b100000,
324                  (outs FPRegs:$dst), (ins MEMrr:$addr),
325                  "ld [$addr], $dst",
326                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
327def LDFri  : F3_2<3, 0b100000,
328                  (outs FPRegs:$dst), (ins MEMri:$addr),
329                  "ld [$addr], $dst",
330                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
331def LDDFrr : F3_1<3, 0b100011,
332                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
333                  "ldd [$addr], $dst",
334                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
335def LDDFri : F3_2<3, 0b100011,
336                  (outs DFPRegs:$dst), (ins MEMri:$addr),
337                  "ldd [$addr], $dst",
338                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
339
340// Section B.4 - Store Integer Instructions, p. 95
341def STBrr : F3_1<3, 0b000101,
342                 (outs), (ins MEMrr:$addr, IntRegs:$src),
343                 "stb $src, [$addr]",
344                 [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
345def STBri : F3_2<3, 0b000101,
346                 (outs), (ins MEMri:$addr, IntRegs:$src),
347                 "stb $src, [$addr]",
348                 [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
349def STHrr : F3_1<3, 0b000110,
350                 (outs), (ins MEMrr:$addr, IntRegs:$src),
351                 "sth $src, [$addr]",
352                 [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
353def STHri : F3_2<3, 0b000110,
354                 (outs), (ins MEMri:$addr, IntRegs:$src),
355                 "sth $src, [$addr]",
356                 [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
357def STrr  : F3_1<3, 0b000100,
358                 (outs), (ins MEMrr:$addr, IntRegs:$src),
359                 "st $src, [$addr]",
360                 [(store IntRegs:$src, ADDRrr:$addr)]>;
361def STri  : F3_2<3, 0b000100,
362                 (outs), (ins MEMri:$addr, IntRegs:$src),
363                 "st $src, [$addr]",
364                 [(store IntRegs:$src, ADDRri:$addr)]>;
365
366// Section B.5 - Store Floating-point Instructions, p. 97
367def STFrr   : F3_1<3, 0b100100,
368                   (outs), (ins MEMrr:$addr, FPRegs:$src),
369                   "st $src, [$addr]",
370                   [(store FPRegs:$src, ADDRrr:$addr)]>;
371def STFri   : F3_2<3, 0b100100,
372                   (outs), (ins MEMri:$addr, FPRegs:$src),
373                   "st $src, [$addr]",
374                   [(store FPRegs:$src, ADDRri:$addr)]>;
375def STDFrr  : F3_1<3, 0b100111,
376                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
377                   "std  $src, [$addr]",
378                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
379def STDFri  : F3_2<3, 0b100111,
380                   (outs), (ins MEMri:$addr, DFPRegs:$src),
381                   "std $src, [$addr]",
382                   [(store DFPRegs:$src, ADDRri:$addr)]>;
383
384// Section B.9 - SETHI Instruction, p. 104
385def SETHIi: F2_1<0b100,
386                 (outs IntRegs:$dst), (ins i32imm:$src),
387                 "sethi $src, $dst",
388                 [(set IntRegs:$dst, SETHIimm:$src)]>;
389
390// Section B.10 - NOP Instruction, p. 105
391// (It's a special case of SETHI)
392let rd = 0, imm22 = 0 in
393  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
394
395// Section B.11 - Logical Instructions, p. 106
396defm AND    : F3_12<"and", 0b000001, and>;
397
398def ANDNrr  : F3_1<2, 0b000101,
399                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
400                   "andn $b, $c, $dst",
401                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
402def ANDNri  : F3_2<2, 0b000101,
403                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
404                   "andn $b, $c, $dst", []>;
405
406defm OR     : F3_12<"or", 0b000010, or>;
407
408def ORNrr   : F3_1<2, 0b000110,
409                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
410                   "orn $b, $c, $dst",
411                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
412def ORNri   : F3_2<2, 0b000110,
413                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
414                   "orn $b, $c, $dst", []>;
415defm XOR    : F3_12<"xor", 0b000011, xor>;
416
417def XNORrr  : F3_1<2, 0b000111,
418                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
419                   "xnor $b, $c, $dst",
420                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
421def XNORri  : F3_2<2, 0b000111,
422                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
423                   "xnor $b, $c, $dst", []>;
424
425// Section B.12 - Shift Instructions, p. 107
426defm SLL : F3_12<"sll", 0b100101, shl>;
427defm SRL : F3_12<"srl", 0b100110, srl>;
428defm SRA : F3_12<"sra", 0b100111, sra>;
429
430// Section B.13 - Add Instructions, p. 108
431defm ADD   : F3_12<"add", 0b000000, add>;
432
433// "LEA" forms of add (patterns to make tblgen happy)
434def LEA_ADDri   : F3_2<2, 0b000000,
435                   (outs IntRegs:$dst), (ins MEMri:$addr),
436                   "add ${addr:arith}, $dst",
437                   [(set IntRegs:$dst, ADDRri:$addr)]>;
438                   
439defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
440defm ADDX  : F3_12<"addx", 0b001000, adde>;
441
442// Section B.15 - Subtract Instructions, p. 110
443defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
444defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
445defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
446
447def SUBXCCrr: F3_1<2, 0b011100, 
448                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
449                   "subxcc $b, $c, $dst", []>;
450
451// Section B.18 - Multiply Instructions, p. 113
452defm UMUL : F3_12np<"umul", 0b001010>;
453defm SMUL : F3_12  <"smul", 0b001011, mul>;
454
455
456// Section B.19 - Divide Instructions, p. 115
457defm UDIV : F3_12np<"udiv", 0b001110>;
458defm SDIV : F3_12np<"sdiv", 0b001111>;
459
460// Section B.20 - SAVE and RESTORE, p. 117
461defm SAVE    : F3_12np<"save"   , 0b111100>;
462defm RESTORE : F3_12np<"restore", 0b111101>;
463
464// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
465
466// conditional branch class:
467class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
468 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
469  let isBranch = 1;
470  let isTerminator = 1;
471  let hasDelaySlot = 1;
472}
473
474let isBarrier = 1 in
475  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
476                      "ba $dst",
477                      [(br bb:$dst)]>;
478                      
479// FIXME: the encoding for the JIT should look at the condition field.
480def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
481                     "b$cc $dst",
482                     [(SPbricc bb:$dst, imm:$cc)]>;
483
484
485// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
486
487// floating-point conditional branch class:
488class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
489 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
490  let isBranch = 1;
491  let isTerminator = 1;
492  let hasDelaySlot = 1;
493}
494
495// FIXME: the encoding for the JIT should look at the condition field.
496def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
497                      "fb$cc $dst",
498                      [(SPbrfcc bb:$dst, imm:$cc)]>;
499
500
501// Section B.24 - Call and Link Instruction, p. 125
502// This is the only Format 1 instruction
503let Uses = [O0, O1, O2, O3, O4, O5],
504    hasDelaySlot = 1, isCall = 1,
505    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
506    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
507  def CALL : InstSP<(outs), (ins calltarget:$dst),
508                    "call $dst", []> {
509    bits<30> disp;
510    let op = 1;
511    let Inst{29-0} = disp;
512  }
513  
514  // indirect calls
515  def JMPLrr : F3_1<2, 0b111000,
516                    (outs), (ins MEMrr:$ptr),
517                    "call $ptr",
518                    [(call  ADDRrr:$ptr)]>;
519  def JMPLri : F3_2<2, 0b111000,
520                    (outs), (ins MEMri:$ptr),
521                    "call $ptr",
522                    [(call  ADDRri:$ptr)]>;
523}
524
525// Section B.28 - Read State Register Instructions
526def RDY : F3_1<2, 0b101000,
527               (outs IntRegs:$dst), (ins),
528               "rd %y, $dst", []>;
529
530// Section B.29 - Write State Register Instructions
531def WRYrr : F3_1<2, 0b110000,
532                 (outs), (ins IntRegs:$b, IntRegs:$c),
533                 "wr $b, $c, %y", []>;
534def WRYri : F3_2<2, 0b110000,
535                 (outs), (ins IntRegs:$b, i32imm:$c),
536                 "wr $b, $c, %y", []>;
537
538// Convert Integer to Floating-point Instructions, p. 141
539def FITOS : F3_3<2, 0b110100, 0b011000100,
540                 (outs FPRegs:$dst), (ins FPRegs:$src),
541                 "fitos $src, $dst",
542                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
543def FITOD : F3_3<2, 0b110100, 0b011001000, 
544                 (outs DFPRegs:$dst), (ins FPRegs:$src),
545                 "fitod $src, $dst",
546                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
547
548// Convert Floating-point to Integer Instructions, p. 142
549def FSTOI : F3_3<2, 0b110100, 0b011010001,
550                 (outs FPRegs:$dst), (ins FPRegs:$src),
551                 "fstoi $src, $dst",
552                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
553def FDTOI : F3_3<2, 0b110100, 0b011010010,
554                 (outs FPRegs:$dst), (ins DFPRegs:$src),
555                 "fdtoi $src, $dst",
556                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
557
558// Convert between Floating-point Formats Instructions, p. 143
559def FSTOD : F3_3<2, 0b110100, 0b011001001, 
560                 (outs DFPRegs:$dst), (ins FPRegs:$src),
561                 "fstod $src, $dst",
562                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
563def FDTOS : F3_3<2, 0b110100, 0b011000110,
564                 (outs FPRegs:$dst), (ins DFPRegs:$src),
565                 "fdtos $src, $dst",
566                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
567
568// Floating-point Move Instructions, p. 144
569def FMOVS : F3_3<2, 0b110100, 0b000000001,
570                 (outs FPRegs:$dst), (ins FPRegs:$src),
571                 "fmovs $src, $dst", []>;
572def FNEGS : F3_3<2, 0b110100, 0b000000101, 
573                 (outs FPRegs:$dst), (ins FPRegs:$src),
574                 "fnegs $src, $dst",
575                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
576def FABSS : F3_3<2, 0b110100, 0b000001001, 
577                 (outs FPRegs:$dst), (ins FPRegs:$src),
578                 "fabss $src, $dst",
579                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
580
581
582// Floating-point Square Root Instructions, p.145
583def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
584                  (outs FPRegs:$dst), (ins FPRegs:$src),
585                  "fsqrts $src, $dst",
586                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
587def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
588                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
589                  "fsqrtd $src, $dst",
590                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
591
592
593
594// Floating-point Add and Subtract Instructions, p. 146
595def FADDS  : F3_3<2, 0b110100, 0b001000001,
596                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
597                  "fadds $src1, $src2, $dst",
598                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
599def FADDD  : F3_3<2, 0b110100, 0b001000010,
600                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
601                  "faddd $src1, $src2, $dst",
602                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
603def FSUBS  : F3_3<2, 0b110100, 0b001000101,
604                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
605                  "fsubs $src1, $src2, $dst",
606                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
607def FSUBD  : F3_3<2, 0b110100, 0b001000110,
608                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
609                  "fsubd $src1, $src2, $dst",
610                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
611
612// Floating-point Multiply and Divide Instructions, p. 147
613def FMULS  : F3_3<2, 0b110100, 0b001001001,
614                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
615                  "fmuls $src1, $src2, $dst",
616                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
617def FMULD  : F3_3<2, 0b110100, 0b001001010,
618                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
619                  "fmuld $src1, $src2, $dst",
620                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
621def FSMULD : F3_3<2, 0b110100, 0b001101001,
622                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
623                  "fsmuld $src1, $src2, $dst",
624                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
625                                            (fextend FPRegs:$src2)))]>;
626def FDIVS  : F3_3<2, 0b110100, 0b001001101,
627                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
628                 "fdivs $src1, $src2, $dst",
629                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
630def FDIVD  : F3_3<2, 0b110100, 0b001001110,
631                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
632                 "fdivd $src1, $src2, $dst",
633                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
634
635// Floating-point Compare Instructions, p. 148
636// Note: the 2nd template arg is different for these guys.
637// Note 2: the result of a FCMP is not available until the 2nd cycle
638// after the instr is retired, but there is no interlock. This behavior
639// is modelled with a forced noop after the instruction.
640def FCMPS  : F3_3<2, 0b110101, 0b001010001,
641                  (outs), (ins FPRegs:$src1, FPRegs:$src2),
642                  "fcmps $src1, $src2\n\tnop",
643                  [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
644def FCMPD  : F3_3<2, 0b110101, 0b001010010,
645                  (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
646                  "fcmpd $src1, $src2\n\tnop",
647                  [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
648
649
650//===----------------------------------------------------------------------===//
651// V9 Instructions
652//===----------------------------------------------------------------------===//
653
654// V9 Conditional Moves.
655let Predicates = [HasV9], isTwoAddress = 1 in {
656  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
657  // FIXME: Add instruction encodings for the JIT some day.
658  def MOVICCrr
659    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
660             "mov$cc %icc, $F, $dst",
661             [(set IntRegs:$dst,
662                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
663  def MOVICCri
664    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
665             "mov$cc %icc, $F, $dst",
666             [(set IntRegs:$dst,
667                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
668
669  def MOVFCCrr
670    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
671             "mov$cc %fcc0, $F, $dst",
672             [(set IntRegs:$dst,
673                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
674  def MOVFCCri
675    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
676             "mov$cc %fcc0, $F, $dst",
677             [(set IntRegs:$dst,
678                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
679
680  def FMOVS_ICC
681    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
682             "fmovs$cc %icc, $F, $dst",
683             [(set FPRegs:$dst,
684                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
685  def FMOVD_ICC
686    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
687             "fmovd$cc %icc, $F, $dst",
688             [(set DFPRegs:$dst,
689                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
690  def FMOVS_FCC
691    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
692             "fmovs$cc %fcc0, $F, $dst",
693             [(set FPRegs:$dst,
694                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
695  def FMOVD_FCC
696    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
697             "fmovd$cc %fcc0, $F, $dst",
698             [(set DFPRegs:$dst,
699                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
700
701}
702
703// Floating-Point Move Instructions, p. 164 of the V9 manual.
704let Predicates = [HasV9] in {
705  def FMOVD : F3_3<2, 0b110100, 0b000000010,
706                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
707                   "fmovd $src, $dst", []>;
708  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
709                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
710                   "fnegd $src, $dst",
711                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
712  def FABSD : F3_3<2, 0b110100, 0b000001010, 
713                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
714                   "fabsd $src, $dst",
715                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
716}
717
718// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
719// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
720def POPCrr : F3_1<2, 0b101110, 
721                  (outs IntRegs:$dst), (ins IntRegs:$src),
722                  "popc $src, $dst", []>, Requires<[HasV9]>;
723def : Pat<(ctpop IntRegs:$src),
724          (POPCrr (SLLri IntRegs:$src, 0))>;
725
726//===----------------------------------------------------------------------===//
727// Non-Instruction Patterns
728//===----------------------------------------------------------------------===//
729
730// Small immediates.
731def : Pat<(i32 simm13:$val),
732          (ORri G0, imm:$val)>;
733// Arbitrary immediates.
734def : Pat<(i32 imm:$val),
735          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
736
737// subc
738def : Pat<(subc IntRegs:$b, IntRegs:$c),
739          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
740def : Pat<(subc IntRegs:$b, simm13:$val),
741          (SUBCCri IntRegs:$b, imm:$val)>;
742
743// Global addresses, constant pool entries
744def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
745def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
746def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
747def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
748
749// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
750def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
751          (ADDri IntRegs:$r, tglobaladdr:$in)>;
752def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
753          (ADDri IntRegs:$r, tconstpool:$in)>;
754
755// Calls: 
756def : Pat<(call tglobaladdr:$dst),
757          (CALL tglobaladdr:$dst)>;
758def : Pat<(call texternalsym:$dst),
759          (CALL texternalsym:$dst)>;
760
761def : Pat<(ret), (RETL)>;
762
763// Map integer extload's to zextloads.
764def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
765def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
766def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
767def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
768def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
769def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
770
771// zextload bool -> zextload byte
772def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
773def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
774
775// truncstore bool -> truncstore byte.
776def : Pat<(truncstorei1 IntRegs:$src, ADDRrr:$addr),
777          (STBrr ADDRrr:$addr, IntRegs:$src)>;
778def : Pat<(truncstorei1 IntRegs:$src, ADDRri:$addr), 
779          (STBri ADDRri:$addr, IntRegs:$src)>;
780