SparcInstrInfo.td revision c8c0bb00a31381a8a2f838f53d72d230e9c77134
1//===- SparcV8Instrs.td - Target Description for SparcV8 Target -----------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the SparcV8 instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcV8InstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{
47  // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48  return (((int)N->getValue() << (32-11)) >> (32-11)) == (int)N->getValue();
49}]>;
50
51def simm13  : PatLeaf<(imm), [{
52  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
53  return (((int)N->getValue() << (32-13)) >> (32-13)) == (int)N->getValue();
54}]>;
55
56def LO10 : SDNodeXForm<imm, [{
57  return CurDAG->getTargetConstant((unsigned)N->getValue() & 1023, MVT::i32);
58}]>;
59
60def HI22 : SDNodeXForm<imm, [{
61  // Transformation function: shift the immediate value down into the low bits.
62  return CurDAG->getTargetConstant((unsigned)N->getValue() >> 10, MVT::i32);
63}]>;
64
65def SETHIimm : PatLeaf<(imm), [{
66  return (((unsigned)N->getValue() >> 10) << 10) == (unsigned)N->getValue();
67}], HI22>;
68
69// Addressing modes.
70def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", []>;
71def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", []>;
72
73// Address operands
74def MEMrr : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let NumMIOperands = 2;
77  let MIOperandInfo = (ops IntRegs, IntRegs);
78}
79def MEMri : Operand<i32> {
80  let PrintMethod = "printMemOperand";
81  let NumMIOperands = 2;
82  let MIOperandInfo = (ops IntRegs, i32imm);
83}
84
85// Branch targets have OtherVT type.
86def brtarget : Operand<OtherVT>;
87def calltarget : Operand<i32>;
88
89// Operand for printing out a condition code.
90let PrintMethod = "printV8CCOperand" in
91  def V8CC : Operand<i32>;
92
93def SDTV8cmpfcc : 
94SDTypeProfile<1, 2, [SDTCisVT<0, FlagVT>, SDTCisFP<1>, SDTCisSameAs<1, 2>]>;
95def SDTV8brcc : 
96SDTypeProfile<0, 3, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
97                     SDTCisVT<2, FlagVT>]>;
98def SDTV8selectcc :
99SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, 
100                     SDTCisVT<3, i32>, SDTCisVT<4, FlagVT>]>;
101def SDTV8FTOI :
102SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
103def SDTV8ITOF :
104SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
105
106def V8cmpicc : SDNode<"V8ISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
107def V8cmpfcc : SDNode<"V8ISD::CMPFCC", SDTV8cmpfcc, [SDNPOutFlag]>;
108def V8bricc : SDNode<"V8ISD::BRICC", SDTV8brcc, [SDNPHasChain]>;
109def V8brfcc : SDNode<"V8ISD::BRFCC", SDTV8brcc, [SDNPHasChain]>;
110
111def V8hi    : SDNode<"V8ISD::Hi", SDTIntUnaryOp>;
112def V8lo    : SDNode<"V8ISD::Lo", SDTIntUnaryOp>;
113
114def V8ftoi  : SDNode<"V8ISD::FTOI", SDTV8FTOI>;
115def V8itof  : SDNode<"V8ISD::ITOF", SDTV8ITOF>;
116
117def V8selecticc : SDNode<"V8ISD::SELECT_ICC", SDTV8selectcc>;
118def V8selectfcc : SDNode<"V8ISD::SELECT_FCC", SDTV8selectcc>;
119
120// These are target-independent nodes, but have target-specific formats.
121def SDT_V8CallSeq : SDTypeProfile<0, 1, [ SDTCisVT<0, i32> ]>;
122def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_V8CallSeq, [SDNPHasChain]>;
123def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_V8CallSeq, [SDNPHasChain]>;
124
125def SDT_V8Call    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
126def call          : SDNode<"V8ISD::CALL", SDT_V8Call,
127	                   [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
128
129def SDT_V8RetFlag : SDTypeProfile<0, 0, []>;
130def retflag       : SDNode<"V8ISD::RET_FLAG", SDT_V8RetFlag,
131	                   [SDNPHasChain, SDNPOptInFlag]>;
132
133//===----------------------------------------------------------------------===//
134// SPARC Flag Conditions
135//===----------------------------------------------------------------------===//
136
137// Note that these values must be kept in sync with the V8CC::CondCode enum
138// values.
139class ICC_VAL<int N> : PatLeaf<(i32 N)>;
140def ICC_NE  : ICC_VAL< 9>;  // Not Equal
141def ICC_E   : ICC_VAL< 1>;  // Equal
142def ICC_G   : ICC_VAL<10>;  // Greater
143def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
144def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
145def ICC_L   : ICC_VAL< 3>;  // Less
146def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
147def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
148def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
149def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
150def ICC_POS : ICC_VAL<14>;  // Positive
151def ICC_NEG : ICC_VAL< 6>;  // Negative
152def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
153def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
154
155class FCC_VAL<int N> : PatLeaf<(i32 N)>;
156def FCC_U   : FCC_VAL<23>;  // Unordered
157def FCC_G   : FCC_VAL<22>;  // Greater
158def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
159def FCC_L   : FCC_VAL<20>;  // Less
160def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
161def FCC_LG  : FCC_VAL<18>;  // Less or Greater
162def FCC_NE  : FCC_VAL<17>;  // Not Equal
163def FCC_E   : FCC_VAL<25>;  // Equal
164def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
165def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
166def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
167def FCC_LE  : FCC_VAL<27>;  // Less or Equal
168def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
169def FCC_O   : FCC_VAL<29>;  // Ordered
170
171
172//===----------------------------------------------------------------------===//
173// Instructions
174//===----------------------------------------------------------------------===//
175
176// Pseudo instructions.
177class Pseudo<dag ops, string asmstr, list<dag> pattern>
178   : InstV8<ops, asmstr, pattern>;
179
180def ADJCALLSTACKDOWN : Pseudo<(ops i32imm:$amt),
181                               "!ADJCALLSTACKDOWN $amt",
182                               [(callseq_start imm:$amt)]>;
183def ADJCALLSTACKUP : Pseudo<(ops i32imm:$amt),
184                            "!ADJCALLSTACKUP $amt",
185                            [(callseq_end imm:$amt)]>;
186def IMPLICIT_DEF_Int : Pseudo<(ops IntRegs:$dst),
187                              "!IMPLICIT_DEF $dst",
188                              [(set IntRegs:$dst, (undef))]>;
189def IMPLICIT_DEF_FP  : Pseudo<(ops FPRegs:$dst), "!IMPLICIT_DEF $dst",
190                              [(set FPRegs:$dst, (undef))]>;
191def IMPLICIT_DEF_DFP : Pseudo<(ops DFPRegs:$dst), "!IMPLICIT_DEF $dst",
192                              [(set DFPRegs:$dst, (undef))]>;
193                              
194// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
195// fpmover pass.
196let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
197  def FpMOVD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
198                      "!FpMOVD $src, $dst", []>;
199  def FpNEGD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
200                      "!FpNEGD $src, $dst",
201                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
202  def FpABSD : Pseudo<(ops DFPRegs:$dst, DFPRegs:$src),
203                      "!FpABSD $src, $dst",
204                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
205}
206
207// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded by the
208// scheduler into a branch sequence.  This has to handle all permutations of
209// selection between i32/f32/f64 on ICC and FCC.
210let usesCustomDAGSchedInserter = 1,    // Expanded by the scheduler.
211    Predicates = [HasNoV9] in {        // V9 has conditional moves
212  def SELECT_CC_Int_ICC
213   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
214            "; SELECT_CC_Int_ICC PSEUDO!",
215            [(set IntRegs:$dst, (V8selecticc IntRegs:$T, IntRegs:$F,
216                                             imm:$Cond, ICC))]>;
217  def SELECT_CC_Int_FCC
218   : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, i32imm:$Cond),
219            "; SELECT_CC_Int_FCC PSEUDO!",
220            [(set IntRegs:$dst, (V8selectfcc IntRegs:$T, IntRegs:$F,
221                                             imm:$Cond, FCC))]>;
222  def SELECT_CC_FP_ICC
223   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
224            "; SELECT_CC_FP_ICC PSEUDO!",
225            [(set FPRegs:$dst, (V8selecticc FPRegs:$T, FPRegs:$F,
226                                            imm:$Cond, ICC))]>;
227  def SELECT_CC_FP_FCC
228   : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, i32imm:$Cond),
229            "; SELECT_CC_FP_FCC PSEUDO!",
230            [(set FPRegs:$dst, (V8selectfcc FPRegs:$T, FPRegs:$F,
231                                            imm:$Cond, FCC))]>;
232  def SELECT_CC_DFP_ICC
233   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
234            "; SELECT_CC_DFP_ICC PSEUDO!",
235            [(set DFPRegs:$dst, (V8selecticc DFPRegs:$T, DFPRegs:$F,
236                                             imm:$Cond, ICC))]>;
237  def SELECT_CC_DFP_FCC
238   : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
239            "; SELECT_CC_DFP_FCC PSEUDO!",
240            [(set DFPRegs:$dst, (V8selectfcc DFPRegs:$T, DFPRegs:$F,
241                                             imm:$Cond, FCC))]>;
242}
243
244
245// Section A.3 - Synthetic Instructions, p. 85
246// special cases of JMPL:
247let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, noResults = 1 in {
248  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
249    def RETL: F3_2<2, 0b111000, (ops), "retl", [(retflag)]>;
250}
251
252// Section B.1 - Load Integer Instructions, p. 90
253def LDSBrr : F3_1<3, 0b001001,
254                  (ops IntRegs:$dst, MEMrr:$addr),
255                  "ldsb [$addr], $dst",
256                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i8))]>;
257def LDSBri : F3_2<3, 0b001001,
258                  (ops IntRegs:$dst, MEMri:$addr),
259                  "ldsb [$addr], $dst",
260                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i8))]>;
261def LDSHrr : F3_1<3, 0b001010,
262                  (ops IntRegs:$dst, MEMrr:$addr),
263                  "ldsh [$addr], $dst",
264                  [(set IntRegs:$dst, (sextload ADDRrr:$addr, i16))]>;
265def LDSHri : F3_2<3, 0b001010,
266                  (ops IntRegs:$dst, MEMri:$addr),
267                  "ldsh [$addr], $dst",
268                  [(set IntRegs:$dst, (sextload ADDRri:$addr, i16))]>;
269def LDUBrr : F3_1<3, 0b000001,
270                  (ops IntRegs:$dst, MEMrr:$addr),
271                  "ldub [$addr], $dst",
272                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i8))]>;
273def LDUBri : F3_2<3, 0b000001,
274                  (ops IntRegs:$dst, MEMri:$addr),
275                  "ldub [$addr], $dst",
276                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i8))]>;
277def LDUHrr : F3_1<3, 0b000010,
278                  (ops IntRegs:$dst, MEMrr:$addr),
279                  "lduh [$addr], $dst",
280                  [(set IntRegs:$dst, (zextload ADDRrr:$addr, i16))]>;
281def LDUHri : F3_2<3, 0b000010,
282                  (ops IntRegs:$dst, MEMri:$addr),
283                  "lduh [$addr], $dst",
284                  [(set IntRegs:$dst, (zextload ADDRri:$addr, i16))]>;
285def LDrr   : F3_1<3, 0b000000,
286                  (ops IntRegs:$dst, MEMrr:$addr),
287                  "ld [$addr], $dst",
288                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
289def LDri   : F3_2<3, 0b000000,
290                  (ops IntRegs:$dst, MEMri:$addr),
291                  "ld [$addr], $dst",
292                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
293
294// Section B.2 - Load Floating-point Instructions, p. 92
295def LDFrr  : F3_1<3, 0b100000,
296                  (ops FPRegs:$dst, MEMrr:$addr),
297                  "ld [$addr], $dst",
298                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
299def LDFri  : F3_2<3, 0b100000,
300                  (ops FPRegs:$dst, MEMri:$addr),
301                  "ld [$addr], $dst",
302                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
303def LDDFrr : F3_1<3, 0b100011,
304                  (ops DFPRegs:$dst, MEMrr:$addr),
305                  "ldd [$addr], $dst",
306                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
307def LDDFri : F3_2<3, 0b100011,
308                  (ops DFPRegs:$dst, MEMri:$addr),
309                  "ldd [$addr], $dst",
310                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
311
312// Section B.4 - Store Integer Instructions, p. 95
313def STBrr : F3_1<3, 0b000101,
314                 (ops MEMrr:$addr, IntRegs:$src),
315                 "stb $src, [$addr]",
316                 [(truncstore IntRegs:$src, ADDRrr:$addr, i8)]>;
317def STBri : F3_2<3, 0b000101,
318                 (ops MEMri:$addr, IntRegs:$src),
319                 "stb $src, [$addr]",
320                 [(truncstore IntRegs:$src, ADDRri:$addr, i8)]>;
321def STHrr : F3_1<3, 0b000110,
322                 (ops MEMrr:$addr, IntRegs:$src),
323                 "sth $src, [$addr]",
324                 [(truncstore IntRegs:$src, ADDRrr:$addr, i16)]>;
325def STHri : F3_2<3, 0b000110,
326                 (ops MEMri:$addr, IntRegs:$src),
327                 "sth $src, [$addr]",
328                 [(truncstore IntRegs:$src, ADDRri:$addr, i16)]>;
329def STrr  : F3_1<3, 0b000100,
330                 (ops MEMrr:$addr, IntRegs:$src),
331                 "st $src, [$addr]",
332                 [(store IntRegs:$src, ADDRrr:$addr)]>;
333def STri  : F3_2<3, 0b000100,
334                 (ops MEMri:$addr, IntRegs:$src),
335                 "st $src, [$addr]",
336                 [(store IntRegs:$src, ADDRri:$addr)]>;
337
338// Section B.5 - Store Floating-point Instructions, p. 97
339def STFrr   : F3_1<3, 0b100100,
340                   (ops MEMrr:$addr, FPRegs:$src),
341                   "st $src, [$addr]",
342                   [(store FPRegs:$src, ADDRrr:$addr)]>;
343def STFri   : F3_2<3, 0b100100,
344                   (ops MEMri:$addr, FPRegs:$src),
345                   "st $src, [$addr]",
346                   [(store FPRegs:$src, ADDRri:$addr)]>;
347def STDFrr  : F3_1<3, 0b100111,
348                   (ops MEMrr:$addr, DFPRegs:$src),
349                   "std  $src, [$addr]",
350                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
351def STDFri  : F3_2<3, 0b100111,
352                   (ops MEMri:$addr, DFPRegs:$src),
353                   "std $src, [$addr]",
354                   [(store DFPRegs:$src, ADDRri:$addr)]>;
355
356// Section B.9 - SETHI Instruction, p. 104
357def SETHIi: F2_1<0b100,
358                 (ops IntRegs:$dst, i32imm:$src),
359                 "sethi $src, $dst",
360                 [(set IntRegs:$dst, SETHIimm:$src)]>;
361
362// Section B.10 - NOP Instruction, p. 105
363// (It's a special case of SETHI)
364let rd = 0, imm22 = 0 in
365  def NOP : F2_1<0b100, (ops), "nop", []>;
366
367// Section B.11 - Logical Instructions, p. 106
368def ANDrr   : F3_1<2, 0b000001,
369                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
370                   "and $b, $c, $dst",
371                   [(set IntRegs:$dst, (and IntRegs:$b, IntRegs:$c))]>;
372def ANDri   : F3_2<2, 0b000001,
373                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
374                   "and $b, $c, $dst",
375                   [(set IntRegs:$dst, (and IntRegs:$b, simm13:$c))]>;
376def ANDNrr  : F3_1<2, 0b000101,
377                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
378                   "andn $b, $c, $dst",
379                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
380def ANDNri  : F3_2<2, 0b000101,
381                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
382                   "andn $b, $c, $dst", []>;
383def ORrr    : F3_1<2, 0b000010,
384                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
385                   "or $b, $c, $dst",
386                   [(set IntRegs:$dst, (or IntRegs:$b, IntRegs:$c))]>;
387def ORri    : F3_2<2, 0b000010,
388                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
389                   "or $b, $c, $dst",
390                   [(set IntRegs:$dst, (or IntRegs:$b, simm13:$c))]>;
391def ORNrr   : F3_1<2, 0b000110,
392                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
393                   "orn $b, $c, $dst",
394                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
395def ORNri   : F3_2<2, 0b000110,
396                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
397                   "orn $b, $c, $dst", []>;
398def XORrr   : F3_1<2, 0b000011,
399                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
400                   "xor $b, $c, $dst",
401                   [(set IntRegs:$dst, (xor IntRegs:$b, IntRegs:$c))]>;
402def XORri   : F3_2<2, 0b000011,
403                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
404                   "xor $b, $c, $dst",
405                   [(set IntRegs:$dst, (xor IntRegs:$b, simm13:$c))]>;
406def XNORrr  : F3_1<2, 0b000111,
407                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
408                   "xnor $b, $c, $dst",
409                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
410def XNORri  : F3_2<2, 0b000111,
411                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
412                   "xnor $b, $c, $dst", []>;
413
414// Section B.12 - Shift Instructions, p. 107
415def SLLrr : F3_1<2, 0b100101,
416                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
417                 "sll $b, $c, $dst",
418                 [(set IntRegs:$dst, (shl IntRegs:$b, IntRegs:$c))]>;
419def SLLri : F3_2<2, 0b100101,
420                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
421                 "sll $b, $c, $dst",
422                 [(set IntRegs:$dst, (shl IntRegs:$b, simm13:$c))]>;
423def SRLrr : F3_1<2, 0b100110, 
424                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
425                  "srl $b, $c, $dst",
426                  [(set IntRegs:$dst, (srl IntRegs:$b, IntRegs:$c))]>;
427def SRLri : F3_2<2, 0b100110,
428                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
429                 "srl $b, $c, $dst", 
430                 [(set IntRegs:$dst, (srl IntRegs:$b, simm13:$c))]>;
431def SRArr : F3_1<2, 0b100111, 
432                 (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
433                  "sra $b, $c, $dst",
434                  [(set IntRegs:$dst, (sra IntRegs:$b, IntRegs:$c))]>;
435def SRAri : F3_2<2, 0b100111,
436                 (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
437                 "sra $b, $c, $dst",
438                 [(set IntRegs:$dst, (sra IntRegs:$b, simm13:$c))]>;
439
440// Section B.13 - Add Instructions, p. 108
441def ADDrr   : F3_1<2, 0b000000, 
442                  (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
443                  "add $b, $c, $dst",
444                   [(set IntRegs:$dst, (add IntRegs:$b, IntRegs:$c))]>;
445def ADDri   : F3_2<2, 0b000000,
446                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
447                   "add $b, $c, $dst",
448                   [(set IntRegs:$dst, (add IntRegs:$b, simm13:$c))]>;
449def ADDCCrr : F3_1<2, 0b010000, 
450                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
451                   "addcc $b, $c, $dst", []>;
452def ADDCCri : F3_2<2, 0b010000,
453                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
454                   "addcc $b, $c, $dst", []>;
455def ADDXrr  : F3_1<2, 0b001000, 
456                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
457                   "addx $b, $c, $dst", []>;
458def ADDXri  : F3_2<2, 0b001000,
459                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
460                   "addx $b, $c, $dst", []>;
461
462// Section B.15 - Subtract Instructions, p. 110
463def SUBrr   : F3_1<2, 0b000100, 
464                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
465                   "sub $b, $c, $dst",
466                   [(set IntRegs:$dst, (sub IntRegs:$b, IntRegs:$c))]>;
467def SUBri   : F3_2<2, 0b000100,
468                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
469                   "sub $b, $c, $dst",
470                   [(set IntRegs:$dst, (sub IntRegs:$b, simm13:$c))]>;
471def SUBXrr  : F3_1<2, 0b001100, 
472                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
473                   "subx $b, $c, $dst", []>;
474def SUBXri  : F3_2<2, 0b001100,
475                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
476                   "subx $b, $c, $dst", []>;
477def SUBCCrr : F3_1<2, 0b010100, 
478                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
479                   "subcc $b, $c, $dst",
480                   [(set IntRegs:$dst, (V8cmpicc IntRegs:$b, IntRegs:$c))]>;
481def SUBCCri : F3_2<2, 0b010100,
482                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
483                   "subcc $b, $c, $dst",
484                   [(set IntRegs:$dst, (V8cmpicc IntRegs:$b, simm13:$c))]>;
485def SUBXCCrr: F3_1<2, 0b011100, 
486                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
487                   "subxcc $b, $c, $dst", []>;
488
489// Section B.18 - Multiply Instructions, p. 113
490def UMULrr  : F3_1<2, 0b001010, 
491                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
492                   "umul $b, $c, $dst", []>;
493def UMULri  : F3_2<2, 0b001010,
494                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
495                   "umul $b, $c, $dst", []>;
496def SMULrr  : F3_1<2, 0b001011, 
497                   (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
498                   "smul $b, $c, $dst",
499                   [(set IntRegs:$dst, (mul IntRegs:$b, IntRegs:$c))]>;
500def SMULri  : F3_2<2, 0b001011,
501                   (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
502                   "smul $b, $c, $dst",
503                   [(set IntRegs:$dst, (mul IntRegs:$b, simm13:$c))]>;
504
505// Section B.19 - Divide Instructions, p. 115
506def UDIVrr   : F3_1<2, 0b001110, 
507                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
508                    "udiv $b, $c, $dst", []>;
509def UDIVri   : F3_2<2, 0b001110,
510                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
511                    "udiv $b, $c, $dst", []>;
512def SDIVrr   : F3_1<2, 0b001111,
513                    (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
514                    "sdiv $b, $c, $dst", []>;
515def SDIVri   : F3_2<2, 0b001111,
516                    (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
517                    "sdiv $b, $c, $dst", []>;
518
519// Section B.20 - SAVE and RESTORE, p. 117
520def SAVErr    : F3_1<2, 0b111100,
521                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
522                     "save $b, $c, $dst", []>;
523def SAVEri    : F3_2<2, 0b111100,
524                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
525                     "save $b, $c, $dst", []>;
526def RESTORErr : F3_1<2, 0b111101,
527                     (ops IntRegs:$dst, IntRegs:$b, IntRegs:$c),
528                     "restore $b, $c, $dst", []>;
529def RESTOREri : F3_2<2, 0b111101,
530                     (ops IntRegs:$dst, IntRegs:$b, i32imm:$c),
531                     "restore $b, $c, $dst", []>;
532
533// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
534
535// conditional branch class:
536class BranchV8<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
537 : F2_2<cc, 0b010, ops, asmstr, pattern> {
538  let isBranch = 1;
539  let isTerminator = 1;
540  let hasDelaySlot = 1;
541  let noResults = 1;
542}
543
544let isBarrier = 1 in
545  def BA   : BranchV8<0b1000, (ops brtarget:$dst),
546                      "ba $dst",
547                      [(br bb:$dst)]>;
548                      
549// FIXME: the encoding for the JIT should look at the condition field.
550def BCOND : BranchV8<0, (ops brtarget:$dst, V8CC:$cc),
551                     "b$cc $dst",
552                     [(V8bricc bb:$dst, imm:$cc, ICC)]>;
553
554
555// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
556
557// floating-point conditional branch class:
558class FPBranchV8<bits<4> cc, dag ops, string asmstr, list<dag> pattern>
559 : F2_2<cc, 0b110, ops, asmstr, pattern> {
560  let isBranch = 1;
561  let isTerminator = 1;
562  let hasDelaySlot = 1;
563  let noResults = 1;
564}
565
566// FIXME: the encoding for the JIT should look at the condition field.
567def FBCOND  : FPBranchV8<0, (ops brtarget:$dst, V8CC:$cc),
568                      "fb$cc $dst",
569                      [(V8brfcc bb:$dst, imm:$cc, FCC)]>;
570
571
572// Section B.24 - Call and Link Instruction, p. 125
573// This is the only Format 1 instruction
574let Uses = [O0, O1, O2, O3, O4, O5],
575    hasDelaySlot = 1, isCall = 1, noResults = 1,
576    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
577    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
578  def CALL : InstV8<(ops calltarget:$dst),
579                    "call $dst", []> {
580    bits<30> disp;
581    let op = 1;
582    let Inst{29-0} = disp;
583  }
584  
585  // indirect calls
586  def JMPLrr : F3_1<2, 0b111000,
587                    (ops MEMrr:$ptr),
588                    "call $ptr",
589                    [(call  ADDRrr:$ptr)]>;
590  def JMPLri : F3_2<2, 0b111000,
591                    (ops MEMri:$ptr),
592                    "call $ptr",
593                    [(call  ADDRri:$ptr)]>;
594}
595
596// Section B.28 - Read State Register Instructions
597def RDY : F3_1<2, 0b101000,
598               (ops IntRegs:$dst),
599               "rd %y, $dst", []>;
600
601// Section B.29 - Write State Register Instructions
602def WRYrr : F3_1<2, 0b110000,
603                 (ops IntRegs:$b, IntRegs:$c),
604                 "wr $b, $c, %y", []>;
605def WRYri : F3_2<2, 0b110000,
606                 (ops IntRegs:$b, i32imm:$c),
607                 "wr $b, $c, %y", []>;
608
609// Convert Integer to Floating-point Instructions, p. 141
610def FITOS : F3_3<2, 0b110100, 0b011000100,
611                 (ops FPRegs:$dst, FPRegs:$src),
612                 "fitos $src, $dst",
613                 [(set FPRegs:$dst, (V8itof FPRegs:$src))]>;
614def FITOD : F3_3<2, 0b110100, 0b011001000, 
615                 (ops DFPRegs:$dst, FPRegs:$src),
616                 "fitod $src, $dst",
617                 [(set DFPRegs:$dst, (V8itof FPRegs:$src))]>;
618
619// Convert Floating-point to Integer Instructions, p. 142
620def FSTOI : F3_3<2, 0b110100, 0b011010001,
621                 (ops FPRegs:$dst, FPRegs:$src),
622                 "fstoi $src, $dst",
623                 [(set FPRegs:$dst, (V8ftoi FPRegs:$src))]>;
624def FDTOI : F3_3<2, 0b110100, 0b011010010,
625                 (ops FPRegs:$dst, DFPRegs:$src),
626                 "fdtoi $src, $dst",
627                 [(set FPRegs:$dst, (V8ftoi DFPRegs:$src))]>;
628
629// Convert between Floating-point Formats Instructions, p. 143
630def FSTOD : F3_3<2, 0b110100, 0b011001001, 
631                 (ops DFPRegs:$dst, FPRegs:$src),
632                 "fstod $src, $dst",
633                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
634def FDTOS : F3_3<2, 0b110100, 0b011000110,
635                 (ops FPRegs:$dst, DFPRegs:$src),
636                 "fdtos $src, $dst",
637                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
638
639// Floating-point Move Instructions, p. 144
640def FMOVS : F3_3<2, 0b110100, 0b000000001,
641                 (ops FPRegs:$dst, FPRegs:$src),
642                 "fmovs $src, $dst", []>;
643def FNEGS : F3_3<2, 0b110100, 0b000000101, 
644                 (ops FPRegs:$dst, FPRegs:$src),
645                 "fnegs $src, $dst",
646                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
647def FABSS : F3_3<2, 0b110100, 0b000001001, 
648                 (ops FPRegs:$dst, FPRegs:$src),
649                 "fabss $src, $dst",
650                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
651
652
653// Floating-point Square Root Instructions, p.145
654def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
655                  (ops FPRegs:$dst, FPRegs:$src),
656                  "fsqrts $src, $dst",
657                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
658def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
659                  (ops DFPRegs:$dst, DFPRegs:$src),
660                  "fsqrtd $src, $dst",
661                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
662
663
664
665// Floating-point Add and Subtract Instructions, p. 146
666def FADDS  : F3_3<2, 0b110100, 0b001000001,
667                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
668                  "fadds $src1, $src2, $dst",
669                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
670def FADDD  : F3_3<2, 0b110100, 0b001000010,
671                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
672                  "faddd $src1, $src2, $dst",
673                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
674def FSUBS  : F3_3<2, 0b110100, 0b001000101,
675                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
676                  "fsubs $src1, $src2, $dst",
677                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
678def FSUBD  : F3_3<2, 0b110100, 0b001000110,
679                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
680                  "fsubd $src1, $src2, $dst",
681                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
682
683// Floating-point Multiply and Divide Instructions, p. 147
684def FMULS  : F3_3<2, 0b110100, 0b001001001,
685                  (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
686                  "fmuls $src1, $src2, $dst",
687                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
688def FMULD  : F3_3<2, 0b110100, 0b001001010,
689                  (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
690                  "fmuld $src1, $src2, $dst",
691                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
692def FSMULD : F3_3<2, 0b110100, 0b001101001,
693                  (ops DFPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
694                  "fsmuld $src1, $src2, $dst",
695                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
696                                            (fextend FPRegs:$src2)))]>;
697def FDIVS  : F3_3<2, 0b110100, 0b001001101,
698                 (ops FPRegs:$dst, FPRegs:$src1, FPRegs:$src2),
699                 "fdivs $src1, $src2, $dst",
700                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
701def FDIVD  : F3_3<2, 0b110100, 0b001001110,
702                 (ops DFPRegs:$dst, DFPRegs:$src1, DFPRegs:$src2),
703                 "fdivd $src1, $src2, $dst",
704                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
705
706// Floating-point Compare Instructions, p. 148
707// Note: the 2nd template arg is different for these guys.
708// Note 2: the result of a FCMP is not available until the 2nd cycle
709// after the instr is retired, but there is no interlock. This behavior
710// is modelled with a forced noop after the instruction.
711def FCMPS  : F3_3<2, 0b110101, 0b001010001,
712                  (ops FPRegs:$src1, FPRegs:$src2),
713                  "fcmps $src1, $src2\n\tnop",
714                  [(set FCC, (V8cmpfcc FPRegs:$src1, FPRegs:$src2))]>;
715def FCMPD  : F3_3<2, 0b110101, 0b001010010,
716                  (ops DFPRegs:$src1, DFPRegs:$src2),
717                  "fcmpd $src1, $src2\n\tnop",
718                  [(set FCC, (V8cmpfcc DFPRegs:$src1, DFPRegs:$src2))]>;
719
720
721//===----------------------------------------------------------------------===//
722// V9 Instructions
723//===----------------------------------------------------------------------===//
724
725// V9 Conditional Moves.
726let Predicates = [HasV9], isTwoAddress = 1 in {
727  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
728  // FIXME: Add instruction encodings for the JIT some day.
729  def MOVICCrr
730    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, V8CC:$cc),
731             "mov$cc %icc, $F, $dst",
732             [(set IntRegs:$dst,
733                         (V8selecticc IntRegs:$F, IntRegs:$T, imm:$cc, ICC))]>;
734  def MOVICCri
735    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, V8CC:$cc),
736             "mov$cc %icc, $F, $dst",
737             [(set IntRegs:$dst,
738                          (V8selecticc simm11:$F, IntRegs:$T, imm:$cc, ICC))]>;
739
740  def MOVFCCrr
741    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, IntRegs:$F, V8CC:$cc),
742             "mov$cc %fcc0, $F, $dst",
743             [(set IntRegs:$dst,
744                         (V8selectfcc IntRegs:$F, IntRegs:$T, imm:$cc, FCC))]>;
745  def MOVFCCri
746    : Pseudo<(ops IntRegs:$dst, IntRegs:$T, i32imm:$F, V8CC:$cc),
747             "mov$cc %fcc0, $F, $dst",
748             [(set IntRegs:$dst,
749                          (V8selectfcc simm11:$F, IntRegs:$T, imm:$cc, FCC))]>;
750
751  def FMOVS_ICC
752    : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, V8CC:$cc),
753             "fmovs$cc %icc, $F, $dst",
754             [(set FPRegs:$dst,
755                         (V8selecticc FPRegs:$F, FPRegs:$T, imm:$cc, ICC))]>;
756  def FMOVD_ICC
757    : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, V8CC:$cc),
758             "fmovd$cc %icc, $F, $dst",
759             [(set DFPRegs:$dst,
760                         (V8selecticc DFPRegs:$F, DFPRegs:$T, imm:$cc, ICC))]>;
761  def FMOVS_FCC
762    : Pseudo<(ops FPRegs:$dst, FPRegs:$T, FPRegs:$F, V8CC:$cc),
763             "fmovs$cc %fcc0, $F, $dst",
764             [(set FPRegs:$dst,
765                         (V8selectfcc FPRegs:$F, FPRegs:$T, imm:$cc, FCC))]>;
766  def FMOVD_FCC
767    : Pseudo<(ops DFPRegs:$dst, DFPRegs:$T, DFPRegs:$F, V8CC:$cc),
768             "fmovd$cc %fcc0, $F, $dst",
769             [(set DFPRegs:$dst,
770                         (V8selectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc, FCC))]>;
771
772}
773
774// Floating-Point Move Instructions, p. 164 of the V9 manual.
775let Predicates = [HasV9] in {
776  def FMOVD : F3_3<2, 0b110100, 0b000000010,
777                   (ops DFPRegs:$dst, DFPRegs:$src),
778                   "fmovd $src, $dst", []>;
779  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
780                   (ops DFPRegs:$dst, DFPRegs:$src),
781                   "fnegd $src, $dst",
782                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
783  def FABSD : F3_3<2, 0b110100, 0b000001010, 
784                   (ops DFPRegs:$dst, DFPRegs:$src),
785                   "fabsd $src, $dst",
786                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
787}
788
789// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
790// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
791def POPCrr : F3_1<2, 0b101110, 
792                  (ops IntRegs:$dst, IntRegs:$src),
793                  "popc $src, $dst", []>, Requires<[HasV9]>;
794def : Pat<(ctpop IntRegs:$src),
795          (POPCrr (SLLri IntRegs:$src, 0))>;
796
797//===----------------------------------------------------------------------===//
798// Non-Instruction Patterns
799//===----------------------------------------------------------------------===//
800
801// Small immediates.
802def : Pat<(i32 simm13:$val),
803          (ORri G0, imm:$val)>;
804// Arbitrary immediates.
805def : Pat<(i32 imm:$val),
806          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
807
808// Global addresses, constant pool entries
809def : Pat<(V8hi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
810def : Pat<(V8lo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
811def : Pat<(V8hi tconstpool:$in), (SETHIi tconstpool:$in)>;
812def : Pat<(V8lo tconstpool:$in), (ORri G0, tconstpool:$in)>;
813
814// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
815def : Pat<(add IntRegs:$r, (V8lo tglobaladdr:$in)),
816          (ADDri IntRegs:$r, tglobaladdr:$in)>;
817def : Pat<(add IntRegs:$r, (V8lo tconstpool:$in)),
818          (ADDri IntRegs:$r, tconstpool:$in)>;
819
820
821// Calls: 
822def : Pat<(call tglobaladdr:$dst),
823          (CALL tglobaladdr:$dst)>;
824def : Pat<(call externalsym:$dst),
825          (CALL externalsym:$dst)>;
826
827def : Pat<(ret), (RETL)>;
828
829// Map integer extload's to zextloads.
830def : Pat<(i32 (extload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
831def : Pat<(i32 (extload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
832def : Pat<(i32 (extload ADDRrr:$src, i8)), (LDUBrr ADDRrr:$src)>;
833def : Pat<(i32 (extload ADDRri:$src, i8)), (LDUBri ADDRri:$src)>;
834def : Pat<(i32 (extload ADDRrr:$src, i16)), (LDUHrr ADDRrr:$src)>;
835def : Pat<(i32 (extload ADDRri:$src, i16)), (LDUHri ADDRri:$src)>;
836
837// zextload bool -> zextload byte
838def : Pat<(i32 (zextload ADDRrr:$src, i1)), (LDUBrr ADDRrr:$src)>;
839def : Pat<(i32 (zextload ADDRri:$src, i1)), (LDUBri ADDRri:$src)>;
840
841// truncstore bool -> truncstore byte.
842def : Pat<(truncstore IntRegs:$src, ADDRrr:$addr, i1), 
843          (STBrr ADDRrr:$addr, IntRegs:$src)>;
844def : Pat<(truncstore IntRegs:$src, ADDRri:$addr, i1), 
845          (STBri ADDRri:$addr, IntRegs:$src)>;
846