SparcInstrInfo.td revision d28e30fcf44b22c897914343fce9061eb62d3b47
1//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
47
48def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
49
50def LO10 : SDNodeXForm<imm, [{
51  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
52                                   MVT::i32);
53}]>;
54
55def HI22 : SDNodeXForm<imm, [{
56  // Transformation function: shift the immediate value down into the low bits.
57  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
58}]>;
59
60def SETHIimm : PatLeaf<(imm), [{
61  return (((unsigned)N->getZExtValue() >> 10) << 10) ==
62         (unsigned)N->getZExtValue();
63}], HI22>;
64
65// Addressing modes.
66def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
67def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
68
69// Address operands
70def MEMrr : Operand<i32> {
71  let PrintMethod = "printMemOperand";
72  let MIOperandInfo = (ops IntRegs, IntRegs);
73}
74def MEMri : Operand<i32> {
75  let PrintMethod = "printMemOperand";
76  let MIOperandInfo = (ops IntRegs, i32imm);
77}
78
79// Branch targets have OtherVT type.
80def brtarget : Operand<OtherVT>;
81def calltarget : Operand<i32>;
82
83// Operand for printing out a condition code.
84let PrintMethod = "printCCOperand" in
85  def CCOp : Operand<i32>;
86
87def SDTSPcmpfcc : 
88SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
89def SDTSPbrcc : 
90SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
91def SDTSPselectcc :
92SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
93def SDTSPFTOI :
94SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
95def SDTSPITOF :
96SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
97
98def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>;
99def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
100def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
101def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
102
103def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
104def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
105
106def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
107def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
108
109def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
110def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
111
112//  These are target-independent nodes, but have target-specific formats.
113def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
114def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
115                                        SDTCisVT<1, i32> ]>;
116
117def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
118                           [SDNPHasChain, SDNPOutGlue]>;
119def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
120                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
121
122def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
123def call          : SDNode<"SPISD::CALL", SDT_SPCall,
124                           [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
125                            SDNPVariadic]>;
126
127def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
128def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
129                           [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
130
131def flushw        : SDNode<"SPISD::FLUSHW", SDTNone,
132                           [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>;
133
134def getPCX        : Operand<i32> {
135  let PrintMethod = "printGetPCX";
136}
137
138//===----------------------------------------------------------------------===//
139// SPARC Flag Conditions
140//===----------------------------------------------------------------------===//
141
142// Note that these values must be kept in sync with the CCOp::CondCode enum
143// values.
144class ICC_VAL<int N> : PatLeaf<(i32 N)>;
145def ICC_NE  : ICC_VAL< 9>;  // Not Equal
146def ICC_E   : ICC_VAL< 1>;  // Equal
147def ICC_G   : ICC_VAL<10>;  // Greater
148def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
149def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
150def ICC_L   : ICC_VAL< 3>;  // Less
151def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
152def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
153def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
154def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
155def ICC_POS : ICC_VAL<14>;  // Positive
156def ICC_NEG : ICC_VAL< 6>;  // Negative
157def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
158def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
159
160class FCC_VAL<int N> : PatLeaf<(i32 N)>;
161def FCC_U   : FCC_VAL<23>;  // Unordered
162def FCC_G   : FCC_VAL<22>;  // Greater
163def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
164def FCC_L   : FCC_VAL<20>;  // Less
165def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
166def FCC_LG  : FCC_VAL<18>;  // Less or Greater
167def FCC_NE  : FCC_VAL<17>;  // Not Equal
168def FCC_E   : FCC_VAL<25>;  // Equal
169def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
170def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
171def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
172def FCC_LE  : FCC_VAL<27>;  // Less or Equal
173def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
174def FCC_O   : FCC_VAL<29>;  // Ordered
175
176//===----------------------------------------------------------------------===//
177// Instruction Class Templates
178//===----------------------------------------------------------------------===//
179
180/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
181multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
182  def rr  : F3_1<2, Op3Val, 
183                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
184                 !strconcat(OpcStr, " $b, $c, $dst"),
185                 [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
186  def ri  : F3_2<2, Op3Val,
187                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
188                 !strconcat(OpcStr, " $b, $c, $dst"),
189                 [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
190}
191
192/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
193/// pattern.
194multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
195  def rr  : F3_1<2, Op3Val, 
196                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
197                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
198  def ri  : F3_2<2, Op3Val,
199                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
200                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
201}
202
203//===----------------------------------------------------------------------===//
204// Instructions
205//===----------------------------------------------------------------------===//
206
207// Pseudo instructions.
208class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
209   : InstSP<outs, ins, asmstr, pattern>;
210
211// GETPCX for PIC
212let Defs = [O7] in {
213  def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
214}
215
216let Defs = [O6], Uses = [O6] in {
217def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
218                               "!ADJCALLSTACKDOWN $amt",
219                               [(callseq_start timm:$amt)]>;
220def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
221                            "!ADJCALLSTACKUP $amt1",
222                            [(callseq_end timm:$amt1, timm:$amt2)]>;
223}
224
225let hasSideEffects = 1, mayStore = 1 in {
226  let rd = 0, rs1 = 0, rs2 = 0 in
227    def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
228                      "flushw",
229                      [(flushw)]>, Requires<[HasV9]>;
230  let rd = 0, rs1 = 1, simm13 = 3 in
231    def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
232                   "ta 3",
233                   [(flushw)]>;
234}
235
236def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
237                "unimp $val", []>;
238
239// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
240// fpmover pass.
241let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
242  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
243                      "!FpMOVD $src, $dst", []>;
244  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
245                      "!FpNEGD $src, $dst",
246                      [(set f64:$dst, (fneg f64:$src))]>;
247  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
248                      "!FpABSD $src, $dst",
249                      [(set f64:$dst, (fabs f64:$src))]>;
250}
251
252// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after
253// instruction selection into a branch sequence.  This has to handle all
254// permutations of selection between i32/f32/f64 on ICC and FCC.
255  // Expanded after instruction selection.
256let Uses = [ICC], usesCustomInserter = 1 in { 
257  def SELECT_CC_Int_ICC
258   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
259            "; SELECT_CC_Int_ICC PSEUDO!",
260            [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>;
261  def SELECT_CC_FP_ICC
262   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
263            "; SELECT_CC_FP_ICC PSEUDO!",
264            [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>;
265
266  def SELECT_CC_DFP_ICC
267   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
268            "; SELECT_CC_DFP_ICC PSEUDO!",
269            [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>;
270}
271
272let usesCustomInserter = 1, Uses = [FCC] in {
273
274  def SELECT_CC_Int_FCC
275   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
276            "; SELECT_CC_Int_FCC PSEUDO!",
277            [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>;
278
279  def SELECT_CC_FP_FCC
280   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
281            "; SELECT_CC_FP_FCC PSEUDO!",
282            [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>;
283  def SELECT_CC_DFP_FCC
284   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
285            "; SELECT_CC_DFP_FCC PSEUDO!",
286            [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>;
287}
288
289
290// Section A.3 - Synthetic Instructions, p. 85
291// special cases of JMPL:
292let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
293  let rd = O7.Num, rs1 = G0.Num in
294    def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
295                   "jmp %o7+$val", [(retflag simm13:$val)]>;
296
297  let rd = I7.Num, rs1 = G0.Num in
298    def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
299                  "jmp %i7+$val", []>;
300}
301
302// Section B.1 - Load Integer Instructions, p. 90
303def LDSBrr : F3_1<3, 0b001001,
304                  (outs IntRegs:$dst), (ins MEMrr:$addr),
305                  "ldsb [$addr], $dst",
306                  [(set i32:$dst, (sextloadi8 ADDRrr:$addr))]>;
307def LDSBri : F3_2<3, 0b001001,
308                  (outs IntRegs:$dst), (ins MEMri:$addr),
309                  "ldsb [$addr], $dst",
310                  [(set i32:$dst, (sextloadi8 ADDRri:$addr))]>;
311def LDSHrr : F3_1<3, 0b001010,
312                  (outs IntRegs:$dst), (ins MEMrr:$addr),
313                  "ldsh [$addr], $dst",
314                  [(set i32:$dst, (sextloadi16 ADDRrr:$addr))]>;
315def LDSHri : F3_2<3, 0b001010,
316                  (outs IntRegs:$dst), (ins MEMri:$addr),
317                  "ldsh [$addr], $dst",
318                  [(set i32:$dst, (sextloadi16 ADDRri:$addr))]>;
319def LDUBrr : F3_1<3, 0b000001,
320                  (outs IntRegs:$dst), (ins MEMrr:$addr),
321                  "ldub [$addr], $dst",
322                  [(set i32:$dst, (zextloadi8 ADDRrr:$addr))]>;
323def LDUBri : F3_2<3, 0b000001,
324                  (outs IntRegs:$dst), (ins MEMri:$addr),
325                  "ldub [$addr], $dst",
326                  [(set i32:$dst, (zextloadi8 ADDRri:$addr))]>;
327def LDUHrr : F3_1<3, 0b000010,
328                  (outs IntRegs:$dst), (ins MEMrr:$addr),
329                  "lduh [$addr], $dst",
330                  [(set i32:$dst, (zextloadi16 ADDRrr:$addr))]>;
331def LDUHri : F3_2<3, 0b000010,
332                  (outs IntRegs:$dst), (ins MEMri:$addr),
333                  "lduh [$addr], $dst",
334                  [(set i32:$dst, (zextloadi16 ADDRri:$addr))]>;
335def LDrr   : F3_1<3, 0b000000,
336                  (outs IntRegs:$dst), (ins MEMrr:$addr),
337                  "ld [$addr], $dst",
338                  [(set i32:$dst, (load ADDRrr:$addr))]>;
339def LDri   : F3_2<3, 0b000000,
340                  (outs IntRegs:$dst), (ins MEMri:$addr),
341                  "ld [$addr], $dst",
342                  [(set i32:$dst, (load ADDRri:$addr))]>;
343
344// Section B.2 - Load Floating-point Instructions, p. 92
345def LDFrr  : F3_1<3, 0b100000,
346                  (outs FPRegs:$dst), (ins MEMrr:$addr),
347                  "ld [$addr], $dst",
348                  [(set f32:$dst, (load ADDRrr:$addr))]>;
349def LDFri  : F3_2<3, 0b100000,
350                  (outs FPRegs:$dst), (ins MEMri:$addr),
351                  "ld [$addr], $dst",
352                  [(set f32:$dst, (load ADDRri:$addr))]>;
353def LDDFrr : F3_1<3, 0b100011,
354                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
355                  "ldd [$addr], $dst",
356                  [(set f64:$dst, (load ADDRrr:$addr))]>;
357def LDDFri : F3_2<3, 0b100011,
358                  (outs DFPRegs:$dst), (ins MEMri:$addr),
359                  "ldd [$addr], $dst",
360                  [(set f64:$dst, (load ADDRri:$addr))]>;
361
362// Section B.4 - Store Integer Instructions, p. 95
363def STBrr : F3_1<3, 0b000101,
364                 (outs), (ins MEMrr:$addr, IntRegs:$src),
365                 "stb $src, [$addr]",
366                 [(truncstorei8 i32:$src, ADDRrr:$addr)]>;
367def STBri : F3_2<3, 0b000101,
368                 (outs), (ins MEMri:$addr, IntRegs:$src),
369                 "stb $src, [$addr]",
370                 [(truncstorei8 i32:$src, ADDRri:$addr)]>;
371def STHrr : F3_1<3, 0b000110,
372                 (outs), (ins MEMrr:$addr, IntRegs:$src),
373                 "sth $src, [$addr]",
374                 [(truncstorei16 i32:$src, ADDRrr:$addr)]>;
375def STHri : F3_2<3, 0b000110,
376                 (outs), (ins MEMri:$addr, IntRegs:$src),
377                 "sth $src, [$addr]",
378                 [(truncstorei16 i32:$src, ADDRri:$addr)]>;
379def STrr  : F3_1<3, 0b000100,
380                 (outs), (ins MEMrr:$addr, IntRegs:$src),
381                 "st $src, [$addr]",
382                 [(store i32:$src, ADDRrr:$addr)]>;
383def STri  : F3_2<3, 0b000100,
384                 (outs), (ins MEMri:$addr, IntRegs:$src),
385                 "st $src, [$addr]",
386                 [(store i32:$src, ADDRri:$addr)]>;
387
388// Section B.5 - Store Floating-point Instructions, p. 97
389def STFrr   : F3_1<3, 0b100100,
390                   (outs), (ins MEMrr:$addr, FPRegs:$src),
391                   "st $src, [$addr]",
392                   [(store f32:$src, ADDRrr:$addr)]>;
393def STFri   : F3_2<3, 0b100100,
394                   (outs), (ins MEMri:$addr, FPRegs:$src),
395                   "st $src, [$addr]",
396                   [(store f32:$src, ADDRri:$addr)]>;
397def STDFrr  : F3_1<3, 0b100111,
398                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
399                   "std  $src, [$addr]",
400                   [(store f64:$src, ADDRrr:$addr)]>;
401def STDFri  : F3_2<3, 0b100111,
402                   (outs), (ins MEMri:$addr, DFPRegs:$src),
403                   "std $src, [$addr]",
404                   [(store f64:$src, ADDRri:$addr)]>;
405
406// Section B.9 - SETHI Instruction, p. 104
407def SETHIi: F2_1<0b100,
408                 (outs IntRegs:$dst), (ins i32imm:$src),
409                 "sethi $src, $dst",
410                 [(set i32:$dst, SETHIimm:$src)]>;
411
412// Section B.10 - NOP Instruction, p. 105
413// (It's a special case of SETHI)
414let rd = 0, imm22 = 0 in
415  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
416
417// Section B.11 - Logical Instructions, p. 106
418defm AND    : F3_12<"and", 0b000001, and>;
419
420def ANDNrr  : F3_1<2, 0b000101,
421                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
422                   "andn $b, $c, $dst",
423                   [(set i32:$dst, (and i32:$b, (not i32:$c)))]>;
424def ANDNri  : F3_2<2, 0b000101,
425                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
426                   "andn $b, $c, $dst", []>;
427
428defm OR     : F3_12<"or", 0b000010, or>;
429
430def ORNrr   : F3_1<2, 0b000110,
431                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
432                   "orn $b, $c, $dst",
433                   [(set i32:$dst, (or i32:$b, (not i32:$c)))]>;
434def ORNri   : F3_2<2, 0b000110,
435                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
436                   "orn $b, $c, $dst", []>;
437defm XOR    : F3_12<"xor", 0b000011, xor>;
438
439def XNORrr  : F3_1<2, 0b000111,
440                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
441                   "xnor $b, $c, $dst",
442                   [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
443def XNORri  : F3_2<2, 0b000111,
444                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
445                   "xnor $b, $c, $dst", []>;
446
447// Section B.12 - Shift Instructions, p. 107
448defm SLL : F3_12<"sll", 0b100101, shl>;
449defm SRL : F3_12<"srl", 0b100110, srl>;
450defm SRA : F3_12<"sra", 0b100111, sra>;
451
452// Section B.13 - Add Instructions, p. 108
453defm ADD   : F3_12<"add", 0b000000, add>;
454
455// "LEA" forms of add (patterns to make tblgen happy)
456def LEA_ADDri   : F3_2<2, 0b000000,
457                   (outs IntRegs:$dst), (ins MEMri:$addr),
458                   "add ${addr:arith}, $dst",
459                   [(set i32:$dst, ADDRri:$addr)]>;
460
461let Defs = [ICC] in                   
462  defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
463
464let Uses = [ICC] in
465  defm ADDX  : F3_12<"addx", 0b001000, adde>;
466
467// Section B.15 - Subtract Instructions, p. 110
468defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
469let Uses = [ICC] in 
470  defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
471
472let Defs = [ICC] in 
473  defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
474
475let Uses = [ICC], Defs = [ICC] in
476  def SUBXCCrr: F3_1<2, 0b011100, 
477                (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
478                "subxcc $b, $c, $dst", []>;
479
480
481// Section B.18 - Multiply Instructions, p. 113
482let Defs = [Y] in {
483  defm UMUL : F3_12np<"umul", 0b001010>;
484  defm SMUL : F3_12  <"smul", 0b001011, mul>;
485}
486
487// Section B.19 - Divide Instructions, p. 115
488let Defs = [Y] in {
489  defm UDIV : F3_12np<"udiv", 0b001110>;
490  defm SDIV : F3_12np<"sdiv", 0b001111>;
491}
492
493// Section B.20 - SAVE and RESTORE, p. 117
494defm SAVE    : F3_12np<"save"   , 0b111100>;
495defm RESTORE : F3_12np<"restore", 0b111101>;
496
497// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
498
499// conditional branch class:
500class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
501 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
502  let isBranch = 1;
503  let isTerminator = 1;
504  let hasDelaySlot = 1;
505}
506
507let isBarrier = 1 in
508  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
509                      "ba $dst",
510                      [(br bb:$dst)]>;
511
512// FIXME: the encoding for the JIT should look at the condition field.
513let Uses = [ICC] in
514  def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
515                         "b$cc $dst",
516                        [(SPbricc bb:$dst, imm:$cc)]>;
517
518
519// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
520
521// floating-point conditional branch class:
522class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
523 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
524  let isBranch = 1;
525  let isTerminator = 1;
526  let hasDelaySlot = 1;
527}
528
529// FIXME: the encoding for the JIT should look at the condition field.
530let Uses = [FCC] in
531  def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
532                              "fb$cc $dst",
533                              [(SPbrfcc bb:$dst, imm:$cc)]>;
534
535
536// Section B.24 - Call and Link Instruction, p. 125
537// This is the only Format 1 instruction
538let Uses = [O6],
539    hasDelaySlot = 1, isCall = 1,
540    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
541    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
542        ICC, FCC, Y] in {
543  def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
544                    "call $dst", []> {
545    bits<30> disp;
546    let op = 1;
547    let Inst{29-0} = disp;
548  }
549  
550  // indirect calls
551  def JMPLrr : F3_1<2, 0b111000,
552                    (outs), (ins MEMrr:$ptr, variable_ops),
553                    "call $ptr",
554                    [(call ADDRrr:$ptr)]>;
555  def JMPLri : F3_2<2, 0b111000,
556                    (outs), (ins MEMri:$ptr, variable_ops),
557                    "call $ptr",
558                    [(call ADDRri:$ptr)]>;
559}
560
561// Section B.28 - Read State Register Instructions
562let Uses = [Y] in 
563  def RDY : F3_1<2, 0b101000,
564                 (outs IntRegs:$dst), (ins),
565                 "rd %y, $dst", []>;
566
567// Section B.29 - Write State Register Instructions
568let Defs = [Y] in {
569  def WRYrr : F3_1<2, 0b110000,
570                   (outs), (ins IntRegs:$b, IntRegs:$c),
571                   "wr $b, $c, %y", []>;
572  def WRYri : F3_2<2, 0b110000,
573                   (outs), (ins IntRegs:$b, i32imm:$c),
574                   "wr $b, $c, %y", []>;
575}
576// Convert Integer to Floating-point Instructions, p. 141
577def FITOS : F3_3<2, 0b110100, 0b011000100,
578                 (outs FPRegs:$dst), (ins FPRegs:$src),
579                 "fitos $src, $dst",
580                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
581def FITOD : F3_3<2, 0b110100, 0b011001000, 
582                 (outs DFPRegs:$dst), (ins FPRegs:$src),
583                 "fitod $src, $dst",
584                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
585
586// Convert Floating-point to Integer Instructions, p. 142
587def FSTOI : F3_3<2, 0b110100, 0b011010001,
588                 (outs FPRegs:$dst), (ins FPRegs:$src),
589                 "fstoi $src, $dst",
590                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
591def FDTOI : F3_3<2, 0b110100, 0b011010010,
592                 (outs FPRegs:$dst), (ins DFPRegs:$src),
593                 "fdtoi $src, $dst",
594                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
595
596// Convert between Floating-point Formats Instructions, p. 143
597def FSTOD : F3_3<2, 0b110100, 0b011001001, 
598                 (outs DFPRegs:$dst), (ins FPRegs:$src),
599                 "fstod $src, $dst",
600                 [(set f64:$dst, (fextend f32:$src))]>;
601def FDTOS : F3_3<2, 0b110100, 0b011000110,
602                 (outs FPRegs:$dst), (ins DFPRegs:$src),
603                 "fdtos $src, $dst",
604                 [(set f32:$dst, (fround f64:$src))]>;
605
606// Floating-point Move Instructions, p. 144
607def FMOVS : F3_3<2, 0b110100, 0b000000001,
608                 (outs FPRegs:$dst), (ins FPRegs:$src),
609                 "fmovs $src, $dst", []>;
610def FNEGS : F3_3<2, 0b110100, 0b000000101, 
611                 (outs FPRegs:$dst), (ins FPRegs:$src),
612                 "fnegs $src, $dst",
613                 [(set f32:$dst, (fneg f32:$src))]>;
614def FABSS : F3_3<2, 0b110100, 0b000001001, 
615                 (outs FPRegs:$dst), (ins FPRegs:$src),
616                 "fabss $src, $dst",
617                 [(set f32:$dst, (fabs f32:$src))]>;
618
619
620// Floating-point Square Root Instructions, p.145
621def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
622                  (outs FPRegs:$dst), (ins FPRegs:$src),
623                  "fsqrts $src, $dst",
624                  [(set f32:$dst, (fsqrt f32:$src))]>;
625def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
626                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
627                  "fsqrtd $src, $dst",
628                  [(set f64:$dst, (fsqrt f64:$src))]>;
629
630
631
632// Floating-point Add and Subtract Instructions, p. 146
633def FADDS  : F3_3<2, 0b110100, 0b001000001,
634                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
635                  "fadds $src1, $src2, $dst",
636                  [(set f32:$dst, (fadd f32:$src1, f32:$src2))]>;
637def FADDD  : F3_3<2, 0b110100, 0b001000010,
638                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
639                  "faddd $src1, $src2, $dst",
640                  [(set f64:$dst, (fadd f64:$src1, f64:$src2))]>;
641def FSUBS  : F3_3<2, 0b110100, 0b001000101,
642                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
643                  "fsubs $src1, $src2, $dst",
644                  [(set f32:$dst, (fsub f32:$src1, f32:$src2))]>;
645def FSUBD  : F3_3<2, 0b110100, 0b001000110,
646                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
647                  "fsubd $src1, $src2, $dst",
648                  [(set f64:$dst, (fsub f64:$src1, f64:$src2))]>;
649
650// Floating-point Multiply and Divide Instructions, p. 147
651def FMULS  : F3_3<2, 0b110100, 0b001001001,
652                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
653                  "fmuls $src1, $src2, $dst",
654                  [(set f32:$dst, (fmul f32:$src1, f32:$src2))]>;
655def FMULD  : F3_3<2, 0b110100, 0b001001010,
656                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
657                  "fmuld $src1, $src2, $dst",
658                  [(set f64:$dst, (fmul f64:$src1, f64:$src2))]>;
659def FSMULD : F3_3<2, 0b110100, 0b001101001,
660                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
661                  "fsmuld $src1, $src2, $dst",
662                  [(set f64:$dst, (fmul (fextend f32:$src1),
663                                        (fextend f32:$src2)))]>;
664def FDIVS  : F3_3<2, 0b110100, 0b001001101,
665                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
666                 "fdivs $src1, $src2, $dst",
667                 [(set f32:$dst, (fdiv f32:$src1, f32:$src2))]>;
668def FDIVD  : F3_3<2, 0b110100, 0b001001110,
669                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
670                 "fdivd $src1, $src2, $dst",
671                 [(set f64:$dst, (fdiv f64:$src1, f64:$src2))]>;
672
673// Floating-point Compare Instructions, p. 148
674// Note: the 2nd template arg is different for these guys.
675// Note 2: the result of a FCMP is not available until the 2nd cycle
676// after the instr is retired, but there is no interlock. This behavior
677// is modelled with a forced noop after the instruction.
678let Defs = [FCC] in {
679  def FCMPS  : F3_3<2, 0b110101, 0b001010001,
680                   (outs), (ins FPRegs:$src1, FPRegs:$src2),
681                   "fcmps $src1, $src2\n\tnop",
682                   [(SPcmpfcc f32:$src1, f32:$src2)]>;
683  def FCMPD  : F3_3<2, 0b110101, 0b001010010,
684                   (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
685                   "fcmpd $src1, $src2\n\tnop",
686                   [(SPcmpfcc f64:$src1, f64:$src2)]>;
687}
688
689//===----------------------------------------------------------------------===//
690// V9 Instructions
691//===----------------------------------------------------------------------===//
692
693// V9 Conditional Moves.
694let Predicates = [HasV9], Constraints = "$T = $dst" in {
695  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
696  // FIXME: Add instruction encodings for the JIT some day.
697  let Uses = [ICC] in {
698    def MOVICCrr
699      : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
700               "mov$cc %icc, $F, $dst",
701               [(set i32:$dst, (SPselecticc i32:$F, i32:$T, imm:$cc))]>;
702    def MOVICCri
703      : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
704               "mov$cc %icc, $F, $dst",
705               [(set i32:$dst, (SPselecticc simm11:$F, i32:$T, imm:$cc))]>;
706  }
707
708  let Uses = [FCC] in {
709    def MOVFCCrr
710      : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
711               "mov$cc %fcc0, $F, $dst",
712               [(set i32:$dst, (SPselectfcc i32:$F, i32:$T, imm:$cc))]>;
713    def MOVFCCri
714      : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
715               "mov$cc %fcc0, $F, $dst",
716               [(set i32:$dst, (SPselectfcc simm11:$F, i32:$T, imm:$cc))]>;
717  }
718
719  let Uses = [ICC] in {
720    def FMOVS_ICC
721      : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
722               "fmovs$cc %icc, $F, $dst",
723               [(set f32:$dst,
724                           (SPselecticc f32:$F, f32:$T, imm:$cc))]>;
725    def FMOVD_ICC
726      : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
727               "fmovd$cc %icc, $F, $dst",
728               [(set f64:$dst, (SPselecticc f64:$F, f64:$T, imm:$cc))]>;
729  }
730
731  let Uses = [FCC] in {
732    def FMOVS_FCC
733      : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
734               "fmovs$cc %fcc0, $F, $dst",
735               [(set f32:$dst, (SPselectfcc f32:$F, f32:$T, imm:$cc))]>;
736    def FMOVD_FCC
737      : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
738               "fmovd$cc %fcc0, $F, $dst",
739               [(set f64:$dst, (SPselectfcc f64:$F, f64:$T, imm:$cc))]>;
740  }
741
742}
743
744// Floating-Point Move Instructions, p. 164 of the V9 manual.
745let Predicates = [HasV9] in {
746  def FMOVD : F3_3<2, 0b110100, 0b000000010,
747                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
748                   "fmovd $src, $dst", []>;
749  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
750                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
751                   "fnegd $src, $dst",
752                   [(set f64:$dst, (fneg f64:$src))]>;
753  def FABSD : F3_3<2, 0b110100, 0b000001010, 
754                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
755                   "fabsd $src, $dst",
756                   [(set f64:$dst, (fabs f64:$src))]>;
757}
758
759// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
760// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
761def POPCrr : F3_1<2, 0b101110, 
762                  (outs IntRegs:$dst), (ins IntRegs:$src),
763                  "popc $src, $dst", []>, Requires<[HasV9]>;
764def : Pat<(ctpop i32:$src),
765          (POPCrr (SLLri $src, 0))>;
766
767//===----------------------------------------------------------------------===//
768// Non-Instruction Patterns
769//===----------------------------------------------------------------------===//
770
771// Small immediates.
772def : Pat<(i32 simm13:$val),
773          (ORri G0, imm:$val)>;
774// Arbitrary immediates.
775def : Pat<(i32 imm:$val),
776          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
777
778// subc
779def : Pat<(subc i32:$b, i32:$c),
780          (SUBCCrr $b, $c)>;
781def : Pat<(subc i32:$b, simm13:$val),
782          (SUBCCri $b, imm:$val)>;
783
784// Global addresses, constant pool entries
785def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
786def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
787def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
788def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
789
790// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
791def : Pat<(add i32:$r, (SPlo tglobaladdr:$in)),
792          (ADDri $r, tglobaladdr:$in)>;
793def : Pat<(add i32:$r, (SPlo tconstpool:$in)),
794          (ADDri $r, tconstpool:$in)>;
795
796// Calls: 
797def : Pat<(call tglobaladdr:$dst),
798          (CALL tglobaladdr:$dst)>;
799def : Pat<(call texternalsym:$dst),
800          (CALL texternalsym:$dst)>;
801
802// Map integer extload's to zextloads.
803def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
804def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
805def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
806def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
807def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
808def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
809
810// zextload bool -> zextload byte
811def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
812def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
813