SparcInstrInfo.td revision e50ed30282bb5b4a9ed952580523f2dda16215ac
1//===- SparcInstrInfo.td - Target Description for Sparc Target ------------===//
2// 
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7// 
8//===----------------------------------------------------------------------===//
9//
10// This file describes the Sparc instructions in TableGen format.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// Instruction format superclass
16//===----------------------------------------------------------------------===//
17
18include "SparcInstrFormats.td"
19
20//===----------------------------------------------------------------------===//
21// Feature predicates.
22//===----------------------------------------------------------------------===//
23
24// HasV9 - This predicate is true when the target processor supports V9
25// instructions.  Note that the machine may be running in 32-bit mode.
26def HasV9   : Predicate<"Subtarget.isV9()">;
27
28// HasNoV9 - This predicate is true when the target doesn't have V9
29// instructions.  Use of this is just a hack for the isel not having proper
30// costs for V8 instructions that are more expensive than their V9 ones.
31def HasNoV9 : Predicate<"!Subtarget.isV9()">;
32
33// HasVIS - This is true when the target processor has VIS extensions.
34def HasVIS : Predicate<"Subtarget.isVIS()">;
35
36// UseDeprecatedInsts - This predicate is true when the target processor is a
37// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
38// to use when appropriate.  In either of these cases, the instruction selector
39// will pick deprecated instructions.
40def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
41
42//===----------------------------------------------------------------------===//
43// Instruction Pattern Stuff
44//===----------------------------------------------------------------------===//
45
46def simm11  : PatLeaf<(imm), [{
47  // simm11 predicate - True if the imm fits in a 11-bit sign extended field.
48  return (((int)N->getZExtValue() << (32-11)) >> (32-11)) ==
49         (int)N->getZExtValue();
50}]>;
51
52def simm13  : PatLeaf<(imm), [{
53  // simm13 predicate - True if the imm fits in a 13-bit sign extended field.
54  return (((int)N->getZExtValue() << (32-13)) >> (32-13)) ==
55         (int)N->getZExtValue();
56}]>;
57
58def LO10 : SDNodeXForm<imm, [{
59  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
60                                   EVT::i32);
61}]>;
62
63def HI22 : SDNodeXForm<imm, [{
64  // Transformation function: shift the immediate value down into the low bits.
65  return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, EVT::i32);
66}]>;
67
68def SETHIimm : PatLeaf<(imm), [{
69  return (((unsigned)N->getZExtValue() >> 10) << 10) ==
70         (unsigned)N->getZExtValue();
71}], HI22>;
72
73// Addressing modes.
74def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
75def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
76
77// Address operands
78def MEMrr : Operand<i32> {
79  let PrintMethod = "printMemOperand";
80  let MIOperandInfo = (ops IntRegs, IntRegs);
81}
82def MEMri : Operand<i32> {
83  let PrintMethod = "printMemOperand";
84  let MIOperandInfo = (ops IntRegs, i32imm);
85}
86
87// Branch targets have OtherVT type.
88def brtarget : Operand<OtherVT>;
89def calltarget : Operand<i32>;
90
91// Operand for printing out a condition code.
92let PrintMethod = "printCCOperand" in
93  def CCOp : Operand<i32>;
94
95def SDTSPcmpfcc : 
96SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
97def SDTSPbrcc : 
98SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
99def SDTSPselectcc :
100SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
101def SDTSPFTOI :
102SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
103def SDTSPITOF :
104SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
105
106def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutFlag]>;
107def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutFlag]>;
108def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
109def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInFlag]>;
110
111def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
112def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
113
114def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>;
115def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>;
116
117def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInFlag]>;
118def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInFlag]>;
119
120// These are target-independent nodes, but have target-specific formats.
121def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
122def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>,
123                                        SDTCisVT<1, i32> ]>;
124
125def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
126                           [SDNPHasChain, SDNPOutFlag]>;
127def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd,
128                           [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
129
130def SDT_SPCall    : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
131def call          : SDNode<"SPISD::CALL", SDT_SPCall,
132                           [SDNPHasChain, SDNPOptInFlag, SDNPOutFlag]>;
133
134def retflag       : SDNode<"SPISD::RET_FLAG", SDTNone,
135                           [SDNPHasChain, SDNPOptInFlag]>;
136
137//===----------------------------------------------------------------------===//
138// SPARC Flag Conditions
139//===----------------------------------------------------------------------===//
140
141// Note that these values must be kept in sync with the CCOp::CondCode enum
142// values.
143class ICC_VAL<int N> : PatLeaf<(i32 N)>;
144def ICC_NE  : ICC_VAL< 9>;  // Not Equal
145def ICC_E   : ICC_VAL< 1>;  // Equal
146def ICC_G   : ICC_VAL<10>;  // Greater
147def ICC_LE  : ICC_VAL< 2>;  // Less or Equal
148def ICC_GE  : ICC_VAL<11>;  // Greater or Equal
149def ICC_L   : ICC_VAL< 3>;  // Less
150def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned
151def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned
152def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned
153def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned
154def ICC_POS : ICC_VAL<14>;  // Positive
155def ICC_NEG : ICC_VAL< 6>;  // Negative
156def ICC_VC  : ICC_VAL<15>;  // Overflow Clear
157def ICC_VS  : ICC_VAL< 7>;  // Overflow Set
158
159class FCC_VAL<int N> : PatLeaf<(i32 N)>;
160def FCC_U   : FCC_VAL<23>;  // Unordered
161def FCC_G   : FCC_VAL<22>;  // Greater
162def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
163def FCC_L   : FCC_VAL<20>;  // Less
164def FCC_UL  : FCC_VAL<19>;  // Unordered or Less
165def FCC_LG  : FCC_VAL<18>;  // Less or Greater
166def FCC_NE  : FCC_VAL<17>;  // Not Equal
167def FCC_E   : FCC_VAL<25>;  // Equal
168def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal
169def FCC_GE  : FCC_VAL<25>;  // Greater or Equal
170def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal
171def FCC_LE  : FCC_VAL<27>;  // Less or Equal
172def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal
173def FCC_O   : FCC_VAL<29>;  // Ordered
174
175//===----------------------------------------------------------------------===//
176// Instruction Class Templates
177//===----------------------------------------------------------------------===//
178
179/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
180multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
181  def rr  : F3_1<2, Op3Val, 
182                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
183                 !strconcat(OpcStr, " $b, $c, $dst"),
184                 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
185  def ri  : F3_2<2, Op3Val,
186                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
187                 !strconcat(OpcStr, " $b, $c, $dst"),
188                 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
189}
190
191/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
192/// pattern.
193multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
194  def rr  : F3_1<2, Op3Val, 
195                 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
196                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
197  def ri  : F3_2<2, Op3Val,
198                 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
199                 !strconcat(OpcStr, " $b, $c, $dst"), []>;
200}
201
202//===----------------------------------------------------------------------===//
203// Instructions
204//===----------------------------------------------------------------------===//
205
206// Pseudo instructions.
207class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
208   : InstSP<outs, ins, asmstr, pattern>;
209
210let Defs = [O6], Uses = [O6] in {
211def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
212                               "!ADJCALLSTACKDOWN $amt",
213                               [(callseq_start timm:$amt)]>;
214def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
215                            "!ADJCALLSTACKUP $amt1",
216                            [(callseq_end timm:$amt1, timm:$amt2)]>;
217}
218
219// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the 
220// fpmover pass.
221let Predicates = [HasNoV9] in {  // Only emit these in V8 mode.
222  def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
223                      "!FpMOVD $src, $dst", []>;
224  def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
225                      "!FpNEGD $src, $dst",
226                      [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
227  def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
228                      "!FpABSD $src, $dst",
229                      [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
230}
231
232// SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded by the
233// scheduler into a branch sequence.  This has to handle all permutations of
234// selection between i32/f32/f64 on ICC and FCC.
235let usesCustomDAGSchedInserter = 1 in {   // Expanded by the scheduler.
236  def SELECT_CC_Int_ICC
237   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
238            "; SELECT_CC_Int_ICC PSEUDO!",
239            [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
240                                             imm:$Cond))]>;
241  def SELECT_CC_Int_FCC
242   : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
243            "; SELECT_CC_Int_FCC PSEUDO!",
244            [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
245                                             imm:$Cond))]>;
246  def SELECT_CC_FP_ICC
247   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
248            "; SELECT_CC_FP_ICC PSEUDO!",
249            [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
250                                            imm:$Cond))]>;
251  def SELECT_CC_FP_FCC
252   : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
253            "; SELECT_CC_FP_FCC PSEUDO!",
254            [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
255                                            imm:$Cond))]>;
256  def SELECT_CC_DFP_ICC
257   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
258            "; SELECT_CC_DFP_ICC PSEUDO!",
259            [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
260                                             imm:$Cond))]>;
261  def SELECT_CC_DFP_FCC
262   : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
263            "; SELECT_CC_DFP_FCC PSEUDO!",
264            [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
265                                             imm:$Cond))]>;
266}
267
268
269// Section A.3 - Synthetic Instructions, p. 85
270// special cases of JMPL:
271let isReturn = 1, isTerminator = 1, hasDelaySlot = 1 in {
272  let rd = O7.Num, rs1 = G0.Num, simm13 = 8 in
273    def RETL: F3_2<2, 0b111000, (outs), (ins), "retl", [(retflag)]>;
274}
275
276// Section B.1 - Load Integer Instructions, p. 90
277def LDSBrr : F3_1<3, 0b001001,
278                  (outs IntRegs:$dst), (ins MEMrr:$addr),
279                  "ldsb [$addr], $dst",
280                  [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
281def LDSBri : F3_2<3, 0b001001,
282                  (outs IntRegs:$dst), (ins MEMri:$addr),
283                  "ldsb [$addr], $dst",
284                  [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
285def LDSHrr : F3_1<3, 0b001010,
286                  (outs IntRegs:$dst), (ins MEMrr:$addr),
287                  "ldsh [$addr], $dst",
288                  [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
289def LDSHri : F3_2<3, 0b001010,
290                  (outs IntRegs:$dst), (ins MEMri:$addr),
291                  "ldsh [$addr], $dst",
292                  [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
293def LDUBrr : F3_1<3, 0b000001,
294                  (outs IntRegs:$dst), (ins MEMrr:$addr),
295                  "ldub [$addr], $dst",
296                  [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
297def LDUBri : F3_2<3, 0b000001,
298                  (outs IntRegs:$dst), (ins MEMri:$addr),
299                  "ldub [$addr], $dst",
300                  [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
301def LDUHrr : F3_1<3, 0b000010,
302                  (outs IntRegs:$dst), (ins MEMrr:$addr),
303                  "lduh [$addr], $dst",
304                  [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
305def LDUHri : F3_2<3, 0b000010,
306                  (outs IntRegs:$dst), (ins MEMri:$addr),
307                  "lduh [$addr], $dst",
308                  [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
309def LDrr   : F3_1<3, 0b000000,
310                  (outs IntRegs:$dst), (ins MEMrr:$addr),
311                  "ld [$addr], $dst",
312                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
313def LDri   : F3_2<3, 0b000000,
314                  (outs IntRegs:$dst), (ins MEMri:$addr),
315                  "ld [$addr], $dst",
316                  [(set IntRegs:$dst, (load ADDRri:$addr))]>;
317
318// Section B.2 - Load Floating-point Instructions, p. 92
319def LDFrr  : F3_1<3, 0b100000,
320                  (outs FPRegs:$dst), (ins MEMrr:$addr),
321                  "ld [$addr], $dst",
322                  [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
323def LDFri  : F3_2<3, 0b100000,
324                  (outs FPRegs:$dst), (ins MEMri:$addr),
325                  "ld [$addr], $dst",
326                  [(set FPRegs:$dst, (load ADDRri:$addr))]>;
327def LDDFrr : F3_1<3, 0b100011,
328                  (outs DFPRegs:$dst), (ins MEMrr:$addr),
329                  "ldd [$addr], $dst",
330                  [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
331def LDDFri : F3_2<3, 0b100011,
332                  (outs DFPRegs:$dst), (ins MEMri:$addr),
333                  "ldd [$addr], $dst",
334                  [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
335
336// Section B.4 - Store Integer Instructions, p. 95
337def STBrr : F3_1<3, 0b000101,
338                 (outs), (ins MEMrr:$addr, IntRegs:$src),
339                 "stb $src, [$addr]",
340                 [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
341def STBri : F3_2<3, 0b000101,
342                 (outs), (ins MEMri:$addr, IntRegs:$src),
343                 "stb $src, [$addr]",
344                 [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
345def STHrr : F3_1<3, 0b000110,
346                 (outs), (ins MEMrr:$addr, IntRegs:$src),
347                 "sth $src, [$addr]",
348                 [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
349def STHri : F3_2<3, 0b000110,
350                 (outs), (ins MEMri:$addr, IntRegs:$src),
351                 "sth $src, [$addr]",
352                 [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
353def STrr  : F3_1<3, 0b000100,
354                 (outs), (ins MEMrr:$addr, IntRegs:$src),
355                 "st $src, [$addr]",
356                 [(store IntRegs:$src, ADDRrr:$addr)]>;
357def STri  : F3_2<3, 0b000100,
358                 (outs), (ins MEMri:$addr, IntRegs:$src),
359                 "st $src, [$addr]",
360                 [(store IntRegs:$src, ADDRri:$addr)]>;
361
362// Section B.5 - Store Floating-point Instructions, p. 97
363def STFrr   : F3_1<3, 0b100100,
364                   (outs), (ins MEMrr:$addr, FPRegs:$src),
365                   "st $src, [$addr]",
366                   [(store FPRegs:$src, ADDRrr:$addr)]>;
367def STFri   : F3_2<3, 0b100100,
368                   (outs), (ins MEMri:$addr, FPRegs:$src),
369                   "st $src, [$addr]",
370                   [(store FPRegs:$src, ADDRri:$addr)]>;
371def STDFrr  : F3_1<3, 0b100111,
372                   (outs), (ins MEMrr:$addr, DFPRegs:$src),
373                   "std  $src, [$addr]",
374                   [(store DFPRegs:$src, ADDRrr:$addr)]>;
375def STDFri  : F3_2<3, 0b100111,
376                   (outs), (ins MEMri:$addr, DFPRegs:$src),
377                   "std $src, [$addr]",
378                   [(store DFPRegs:$src, ADDRri:$addr)]>;
379
380// Section B.9 - SETHI Instruction, p. 104
381def SETHIi: F2_1<0b100,
382                 (outs IntRegs:$dst), (ins i32imm:$src),
383                 "sethi $src, $dst",
384                 [(set IntRegs:$dst, SETHIimm:$src)]>;
385
386// Section B.10 - NOP Instruction, p. 105
387// (It's a special case of SETHI)
388let rd = 0, imm22 = 0 in
389  def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
390
391// Section B.11 - Logical Instructions, p. 106
392defm AND    : F3_12<"and", 0b000001, and>;
393
394def ANDNrr  : F3_1<2, 0b000101,
395                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
396                   "andn $b, $c, $dst",
397                   [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
398def ANDNri  : F3_2<2, 0b000101,
399                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
400                   "andn $b, $c, $dst", []>;
401
402defm OR     : F3_12<"or", 0b000010, or>;
403
404def ORNrr   : F3_1<2, 0b000110,
405                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
406                   "orn $b, $c, $dst",
407                   [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
408def ORNri   : F3_2<2, 0b000110,
409                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
410                   "orn $b, $c, $dst", []>;
411defm XOR    : F3_12<"xor", 0b000011, xor>;
412
413def XNORrr  : F3_1<2, 0b000111,
414                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
415                   "xnor $b, $c, $dst",
416                   [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
417def XNORri  : F3_2<2, 0b000111,
418                   (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
419                   "xnor $b, $c, $dst", []>;
420
421// Section B.12 - Shift Instructions, p. 107
422defm SLL : F3_12<"sll", 0b100101, shl>;
423defm SRL : F3_12<"srl", 0b100110, srl>;
424defm SRA : F3_12<"sra", 0b100111, sra>;
425
426// Section B.13 - Add Instructions, p. 108
427defm ADD   : F3_12<"add", 0b000000, add>;
428
429// "LEA" forms of add (patterns to make tblgen happy)
430def LEA_ADDri   : F3_2<2, 0b000000,
431                   (outs IntRegs:$dst), (ins MEMri:$addr),
432                   "add ${addr:arith}, $dst",
433                   [(set IntRegs:$dst, ADDRri:$addr)]>;
434                   
435defm ADDCC  : F3_12<"addcc", 0b010000, addc>;
436defm ADDX  : F3_12<"addx", 0b001000, adde>;
437
438// Section B.15 - Subtract Instructions, p. 110
439defm SUB    : F3_12  <"sub"  , 0b000100, sub>;
440defm SUBX   : F3_12  <"subx" , 0b001100, sube>;
441defm SUBCC  : F3_12  <"subcc", 0b010100, SPcmpicc>;
442
443def SUBXCCrr: F3_1<2, 0b011100, 
444                   (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
445                   "subxcc $b, $c, $dst", []>;
446
447// Section B.18 - Multiply Instructions, p. 113
448defm UMUL : F3_12np<"umul", 0b001010>;
449defm SMUL : F3_12  <"smul", 0b001011, mul>;
450
451
452// Section B.19 - Divide Instructions, p. 115
453defm UDIV : F3_12np<"udiv", 0b001110>;
454defm SDIV : F3_12np<"sdiv", 0b001111>;
455
456// Section B.20 - SAVE and RESTORE, p. 117
457defm SAVE    : F3_12np<"save"   , 0b111100>;
458defm RESTORE : F3_12np<"restore", 0b111101>;
459
460// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
461
462// conditional branch class:
463class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
464 : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
465  let isBranch = 1;
466  let isTerminator = 1;
467  let hasDelaySlot = 1;
468}
469
470let isBarrier = 1 in
471  def BA   : BranchSP<0b1000, (ins brtarget:$dst),
472                      "ba $dst",
473                      [(br bb:$dst)]>;
474                      
475// FIXME: the encoding for the JIT should look at the condition field.
476def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
477                     "b$cc $dst",
478                     [(SPbricc bb:$dst, imm:$cc)]>;
479
480
481// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
482
483// floating-point conditional branch class:
484class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
485 : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
486  let isBranch = 1;
487  let isTerminator = 1;
488  let hasDelaySlot = 1;
489}
490
491// FIXME: the encoding for the JIT should look at the condition field.
492def FBCOND  : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
493                      "fb$cc $dst",
494                      [(SPbrfcc bb:$dst, imm:$cc)]>;
495
496
497// Section B.24 - Call and Link Instruction, p. 125
498// This is the only Format 1 instruction
499let Uses = [O0, O1, O2, O3, O4, O5],
500    hasDelaySlot = 1, isCall = 1,
501    Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
502    D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15] in { 
503  def CALL : InstSP<(outs), (ins calltarget:$dst),
504                    "call $dst", []> {
505    bits<30> disp;
506    let op = 1;
507    let Inst{29-0} = disp;
508  }
509  
510  // indirect calls
511  def JMPLrr : F3_1<2, 0b111000,
512                    (outs), (ins MEMrr:$ptr),
513                    "call $ptr",
514                    [(call  ADDRrr:$ptr)]>;
515  def JMPLri : F3_2<2, 0b111000,
516                    (outs), (ins MEMri:$ptr),
517                    "call $ptr",
518                    [(call  ADDRri:$ptr)]>;
519}
520
521// Section B.28 - Read State Register Instructions
522def RDY : F3_1<2, 0b101000,
523               (outs IntRegs:$dst), (ins),
524               "rd %y, $dst", []>;
525
526// Section B.29 - Write State Register Instructions
527def WRYrr : F3_1<2, 0b110000,
528                 (outs), (ins IntRegs:$b, IntRegs:$c),
529                 "wr $b, $c, %y", []>;
530def WRYri : F3_2<2, 0b110000,
531                 (outs), (ins IntRegs:$b, i32imm:$c),
532                 "wr $b, $c, %y", []>;
533
534// Convert Integer to Floating-point Instructions, p. 141
535def FITOS : F3_3<2, 0b110100, 0b011000100,
536                 (outs FPRegs:$dst), (ins FPRegs:$src),
537                 "fitos $src, $dst",
538                 [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
539def FITOD : F3_3<2, 0b110100, 0b011001000, 
540                 (outs DFPRegs:$dst), (ins FPRegs:$src),
541                 "fitod $src, $dst",
542                 [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
543
544// Convert Floating-point to Integer Instructions, p. 142
545def FSTOI : F3_3<2, 0b110100, 0b011010001,
546                 (outs FPRegs:$dst), (ins FPRegs:$src),
547                 "fstoi $src, $dst",
548                 [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
549def FDTOI : F3_3<2, 0b110100, 0b011010010,
550                 (outs FPRegs:$dst), (ins DFPRegs:$src),
551                 "fdtoi $src, $dst",
552                 [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
553
554// Convert between Floating-point Formats Instructions, p. 143
555def FSTOD : F3_3<2, 0b110100, 0b011001001, 
556                 (outs DFPRegs:$dst), (ins FPRegs:$src),
557                 "fstod $src, $dst",
558                 [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
559def FDTOS : F3_3<2, 0b110100, 0b011000110,
560                 (outs FPRegs:$dst), (ins DFPRegs:$src),
561                 "fdtos $src, $dst",
562                 [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
563
564// Floating-point Move Instructions, p. 144
565def FMOVS : F3_3<2, 0b110100, 0b000000001,
566                 (outs FPRegs:$dst), (ins FPRegs:$src),
567                 "fmovs $src, $dst", []>;
568def FNEGS : F3_3<2, 0b110100, 0b000000101, 
569                 (outs FPRegs:$dst), (ins FPRegs:$src),
570                 "fnegs $src, $dst",
571                 [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
572def FABSS : F3_3<2, 0b110100, 0b000001001, 
573                 (outs FPRegs:$dst), (ins FPRegs:$src),
574                 "fabss $src, $dst",
575                 [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
576
577
578// Floating-point Square Root Instructions, p.145
579def FSQRTS : F3_3<2, 0b110100, 0b000101001, 
580                  (outs FPRegs:$dst), (ins FPRegs:$src),
581                  "fsqrts $src, $dst",
582                  [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
583def FSQRTD : F3_3<2, 0b110100, 0b000101010, 
584                  (outs DFPRegs:$dst), (ins DFPRegs:$src),
585                  "fsqrtd $src, $dst",
586                  [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
587
588
589
590// Floating-point Add and Subtract Instructions, p. 146
591def FADDS  : F3_3<2, 0b110100, 0b001000001,
592                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
593                  "fadds $src1, $src2, $dst",
594                  [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
595def FADDD  : F3_3<2, 0b110100, 0b001000010,
596                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
597                  "faddd $src1, $src2, $dst",
598                  [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
599def FSUBS  : F3_3<2, 0b110100, 0b001000101,
600                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
601                  "fsubs $src1, $src2, $dst",
602                  [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
603def FSUBD  : F3_3<2, 0b110100, 0b001000110,
604                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
605                  "fsubd $src1, $src2, $dst",
606                  [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
607
608// Floating-point Multiply and Divide Instructions, p. 147
609def FMULS  : F3_3<2, 0b110100, 0b001001001,
610                  (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
611                  "fmuls $src1, $src2, $dst",
612                  [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
613def FMULD  : F3_3<2, 0b110100, 0b001001010,
614                  (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
615                  "fmuld $src1, $src2, $dst",
616                  [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
617def FSMULD : F3_3<2, 0b110100, 0b001101001,
618                  (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
619                  "fsmuld $src1, $src2, $dst",
620                  [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
621                                            (fextend FPRegs:$src2)))]>;
622def FDIVS  : F3_3<2, 0b110100, 0b001001101,
623                 (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
624                 "fdivs $src1, $src2, $dst",
625                 [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
626def FDIVD  : F3_3<2, 0b110100, 0b001001110,
627                 (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
628                 "fdivd $src1, $src2, $dst",
629                 [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
630
631// Floating-point Compare Instructions, p. 148
632// Note: the 2nd template arg is different for these guys.
633// Note 2: the result of a FCMP is not available until the 2nd cycle
634// after the instr is retired, but there is no interlock. This behavior
635// is modelled with a forced noop after the instruction.
636def FCMPS  : F3_3<2, 0b110101, 0b001010001,
637                  (outs), (ins FPRegs:$src1, FPRegs:$src2),
638                  "fcmps $src1, $src2\n\tnop",
639                  [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
640def FCMPD  : F3_3<2, 0b110101, 0b001010010,
641                  (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
642                  "fcmpd $src1, $src2\n\tnop",
643                  [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
644
645
646//===----------------------------------------------------------------------===//
647// V9 Instructions
648//===----------------------------------------------------------------------===//
649
650// V9 Conditional Moves.
651let Predicates = [HasV9], isTwoAddress = 1 in {
652  // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
653  // FIXME: Add instruction encodings for the JIT some day.
654  def MOVICCrr
655    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
656             "mov$cc %icc, $F, $dst",
657             [(set IntRegs:$dst,
658                         (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
659  def MOVICCri
660    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
661             "mov$cc %icc, $F, $dst",
662             [(set IntRegs:$dst,
663                          (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
664
665  def MOVFCCrr
666    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
667             "mov$cc %fcc0, $F, $dst",
668             [(set IntRegs:$dst,
669                         (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
670  def MOVFCCri
671    : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
672             "mov$cc %fcc0, $F, $dst",
673             [(set IntRegs:$dst,
674                          (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
675
676  def FMOVS_ICC
677    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
678             "fmovs$cc %icc, $F, $dst",
679             [(set FPRegs:$dst,
680                         (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
681  def FMOVD_ICC
682    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
683             "fmovd$cc %icc, $F, $dst",
684             [(set DFPRegs:$dst,
685                         (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
686  def FMOVS_FCC
687    : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
688             "fmovs$cc %fcc0, $F, $dst",
689             [(set FPRegs:$dst,
690                         (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
691  def FMOVD_FCC
692    : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
693             "fmovd$cc %fcc0, $F, $dst",
694             [(set DFPRegs:$dst,
695                         (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
696
697}
698
699// Floating-Point Move Instructions, p. 164 of the V9 manual.
700let Predicates = [HasV9] in {
701  def FMOVD : F3_3<2, 0b110100, 0b000000010,
702                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
703                   "fmovd $src, $dst", []>;
704  def FNEGD : F3_3<2, 0b110100, 0b000000110, 
705                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
706                   "fnegd $src, $dst",
707                   [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
708  def FABSD : F3_3<2, 0b110100, 0b000001010, 
709                   (outs DFPRegs:$dst), (ins DFPRegs:$src),
710                   "fabsd $src, $dst",
711                   [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
712}
713
714// POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear
715// the top 32-bits before using it.  To do this clearing, we use a SLLri X,0.
716def POPCrr : F3_1<2, 0b101110, 
717                  (outs IntRegs:$dst), (ins IntRegs:$src),
718                  "popc $src, $dst", []>, Requires<[HasV9]>;
719def : Pat<(ctpop IntRegs:$src),
720          (POPCrr (SLLri IntRegs:$src, 0))>;
721
722//===----------------------------------------------------------------------===//
723// Non-Instruction Patterns
724//===----------------------------------------------------------------------===//
725
726// Small immediates.
727def : Pat<(i32 simm13:$val),
728          (ORri G0, imm:$val)>;
729// Arbitrary immediates.
730def : Pat<(i32 imm:$val),
731          (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
732
733// subc
734def : Pat<(subc IntRegs:$b, IntRegs:$c),
735          (SUBCCrr IntRegs:$b, IntRegs:$c)>;
736def : Pat<(subc IntRegs:$b, simm13:$val),
737          (SUBCCri IntRegs:$b, imm:$val)>;
738
739// Global addresses, constant pool entries
740def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
741def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
742def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
743def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
744
745// Add reg, lo.  This is used when taking the addr of a global/constpool entry.
746def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
747          (ADDri IntRegs:$r, tglobaladdr:$in)>;
748def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
749          (ADDri IntRegs:$r, tconstpool:$in)>;
750
751// Calls: 
752def : Pat<(call tglobaladdr:$dst),
753          (CALL tglobaladdr:$dst)>;
754def : Pat<(call texternalsym:$dst),
755          (CALL texternalsym:$dst)>;
756
757// Map integer extload's to zextloads.
758def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
759def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
760def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
761def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
762def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
763def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
764
765// zextload bool -> zextload byte
766def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
767def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
768